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Abstract
We propose a novel phase based analysis with the purpose of quantifying the periodic bursts of activity observed in vari-
ous neuronal systems. The way bursts are intiated and propagate in a spatial network is still insufficiently characterized. In 
particular, we investigate here how these spatiotemporal dynamics depend on the mean connection length. We use a sim-
plified description of a neuron’s state as a time varying phase between firings. This leads to a definition of network bursts, 
that does not depend on the practitioner’s individual judgment as the usage of subjective thresholds and time scales. This 
allows both an easy and objective characterization of the bursting dynamics, only depending on system’s proper scales. Our 
approach thus ensures more reliable and reproducible measurements. We here use it to describe the spatiotemporal processes 
in networks of intrinsically oscillating neurons. The analysis rigorously reveals the role of the mean connectivity length in 
spatially embedded networks in determining the existence of “leader” neurons during burst initiation, a feature incompletely 
understood observed in several neuronal cultures experiments. The precise definition of a burst with our method allowed 
us to rigorously characterize the initiation dynamics of bursts and show how it depends on the mean connectivity length. 
Although presented with simulations, the methodology can be applied to other forms of neuronal spatiotemporal data. As 
shown in a preliminary study with MEA recordings, it is not limited to in silico modeling.

Keywords Network Burst · Synchronization · Dynamics · Phase · Initiation · Propagation

1 Introduction

With experimental recordings or numerical simulations from 
the whole brain (Olmi et al., 2019; Massimini et al., 2004) to 
neuronal cultures (Paraskevov & Zendrikov, 2017; Orlandi 
et al., 2013) scientists try to understand the information pro-
cessing (Kirst et al., 2016) underlying propagating activities 
in complex neuronal networks. Phenomena of rhythmic act-
vivity coupled to propagation are extensively studied in com-
plex neuronal systems. In a bottom up approach, exploring 
the variety of activity patterns that exists is a relevant path 
in order to understand higher brain functions, or diseases. 
As an example, propagating waves have been identified as 

the default activity of cortical structures (Sanchez-Vives 
et al., 2017; Sanchez-Vives, 2015). They are observed in 
various conditions, during sleep in the healthy brain, or dur-
ing epileptic epochs, and at different scales: from thousands 
of neurons in less than a millimeter in culture, to billions of 
neurons through the whole cortical layer. In order to go even 
deeper in the understanding of neuronal wave activity, one 
needs reproducible and unbiased quantitative measurements 
adapted to the considered phenomena.

We propose here a methodological approach of such phe-
nomena motivated by studies on neuronal culture activity 
(Renault et al., 2015; Renault et al., 2016; Yamamoto et al., 
2018; Tibau et al., 2018). Although recorded at different scales, 
activity observed in vitro are thought to be a well suited model 
for propagating phenomenon in the brain either similar to slow 
wave sleep (Sanchez-Vives & McCormick, 2000) or to epileptic 
activity (Derchansky et al., 2008; McCormick and Contreras, 
2001). Indeed, recent studies on young 2D neuronal cultures 
have forwarded evidences that specific regions are able to initiate 
a propagating front of activity going through the whole network 
during what is now called a network burst (Orlandi et al., 2013; 
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Lonardoni et al., 2017; Paraskevov & Zendrikov, 2017). A rhyth-
mic activity takes place within the culture, formed by long peri-
ods of silence and shorter epochs of intense firing at the culture 
scale, that constitute a burst. Although morphological properties 
of neurons grown in culture may vary from healthy brain tis-
sues, this process of localised initiation and/or propagation has 
been observed during many activity routing in the brain: during 
epileptic seizures (McCormick and Contreras, 2001), slow wave 
sleep (Massimini et al., 2004), retinal development (Butts et al., 
1999; Maccione et al., 2014) or in cortical areas in anesthetized 
and awake conditions (Muller & Destexhe, 2012),

1.1  Motivations

Spatiotemporal analysis of collective rythms and waves is not 
straightforward, as shown by the multiple number of methods 
used in the literature. How to faithfully quantify neuronal net-
work activity in time and space is still an open question. The 
most common approach uses a binning strategy: neurons’ activ-
ity is considered to be a series of consecutive discrete events 
in time and space thus easy to count within specific time bin 
of size Δt . The obtained function can afterwards be used to 
compute a firing rate as a function of time (Penn et al., 2016; 
Gritsun et al., 2012; Bologna et al., 2010; Eckmann et al., 2008; 
Eytan & Marom, 2006), a degree of synchrony with cross/
auto-correlations (Penn et al., 2016; Stegenga et al., 2008; 
Chiappalone et al., 2006; Salinas & Sejnowski, 2001; Wand 
& Buzski, 1996), a global network activation (percentage of 
active units within a time bin) (Yamamoto et al., 2018), spatial 
properties of information transfer with avalanches (Yaghoubi 
et al., 2018; Zierenberg et al., 2018; Levina & Herrmann, 2006; 
Beggs & Plenz, 2003), a center of activity and trajectory (Chao 
et al., 2005), or even very persuasive snapshots displaying the 
activity in space (Paraskevov & Zendrikov, 2017; Gritsun et al., 
2012; Kitano and Fukai, 2007). However, all those tools are 
known to display time binning and/or thresholds biases (Tsai 
et al., 2017; Touboul & Destexhe, 2010). These are example 
of analytical biases. We call here biased, any computation that 
uses arbitrary parameters that may modify the result. For exam-
ple, the avalanches size distribution may or may not resemble 
a critical-like power law distribution depending on Δt (Beggs 
& Plenz, 2003). Moreover, the discrete nature of neuron com-
municating system as action potential should not be taken as 
the characteristic of a two state dynamical system: either active 
of inactive. Action potentials are simple hallmarks of a much 
complex dynamics. However, a binning strategy represents the 
idea that neurons are either active or silent and thus neglects 
their dynamical properties.

Let us also note that the very nature of the observed peri-
odic activity in culture is ill-defined, and different definitions 
of a network burst are found in the literature (Lonardoni 
et al., 2017; Eckmann et al., 2008; Mazzoni et al., 2007). 
Along with different definitions (and namings), various 

methods exist to detect bursting states. At a single unit level, 
Cotterill et al. (2016) concluded, after analyzing 8 represent-
atives algorithms, that there is still need for an accurate burst 
detection method to be adopted. The variety of methods and 
definitions (Lonardoni et al., 2017; Eckmann et al., 2008; 
Eytan & Marom, 2006; Chiappalone et al., 2006) used at the 
network level is an impediment to a reproducible descrip-
tion of a neuronal synchronized state independent of any 
arbitrary parameters.

1.2  Objectives

The main focus of this article is to show that there exists 
an unbiased, parameter free quantity that can define and 
identify bursts in neuronal culture (Section 2.2.2). Along 
with a clear definition of a network burst (Section 2.2.3), we 
present, on simulated data, the dynamical process involved 
in the recruitment of the network during the bursts initia-
tion. The key concept we introduce to properly define net-
work bursts is the network phase function. We illustrate the 
potential of this definition on a theoretical model of neuronal 
culture made of oscillatory units and reveal the bursts initia-
tion involved. Rigourosly, the firing rate is the single-spike 
probability density (Dayan & Abbott, 2001), although it is 
always represented as the spike-count firing rate. Coming 
back to the original definition of the firing rate, as a prob-
ability density, we show that our burst definition reveals 
the initiation time scale of nework bursts (Section 3.1). We 
conclude on the activity in the 2 dimensional real space and 
discuss the role of the network connectivity length in the 
burst initiation (Section 3.3).

2  Materials and methods

2.1  Simulations of neuronal networks

2.1.1  Neurons activity

The methods described in the following sections are stud-
ied on simulations of neuronal networks (see Appendix 2 for 
more details). Neuronal activity is modeled via the adaptive 
exponential integrate and fire model (Brette & Gerstner, 2005) 
for its computational efficiency and biological relevance.

By controlling both pre and post synaptic mechanisms 
Penn et al. (2016) found that over two thirds of dissociated 
hippocampal and cortical neurons are pacemaker neurons. 
Neurons are said to be pacemakers when they regularly spike 
even when pull apart from any other neurons. They are oscil-
lators. In neuronal cultures, such behavior may come from 
persistent sodium current INa,P (Tazerart et al., 2008; Sipil 
et al., 2006), gap junctions (Draguhn et al., 1998; Rouach 
et al., 2003) or even glial cells. Following these results, we 
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use 3 different parameter sets corresponding to self-sustained 
oscillating neurons independently of their connectivity. They 
will be referred to as ’Noise Driven’, ’Regular Spiking’ and 
’Intrinsically Bursting’ depending on their spiking patterns 
(see Appendix 2 for further details). We want to raise aware-
ness on the Noise Driven type. Although the name might be 
misleading, ND neurons are regularly spiking, however the 
spike interval depends highly on the number and intensity of 
inputs received (for example noise). Looking at pacemaker 
neurons comes with significant consequences. Those neu-
rons intrinsically follow their inner dynamics, and pushing 
them away from their stable cycle demands specific condi-
tions. For instance, the required input to make a pacemaker 
spike in a small time window, depends on this neuron inner 
state when the input is received and not only on its strength. 
The examples illustrating this paper investigate a novel per-
spective on bursting phenomena with pacemaker neurons.

2.1.2  Network model

Metric correlations of the network have been shown to shape 
network global activation (Hernandez-Navarro et al., 2017). 
We take this into account by choosing an Exponential Dis-
tance Rule (EDR) model (Fardet, 2018) for the neuronal 
connectivity. This is an Erdös-Rényi like network, where the 
connection probability depends on the Euclidean distance, 
with an exponential decrease. The exponential characteristic 
length � is later called, the network spatial scale and is equal 
to the mean connectivity length. The network is built under 
the condition of fixed mean degree, from a random selection 
of somata positions in a 800 �m radius circular culture with 
strict border conditions (more details in the Appendix 2). 
Each pair of somata separated by a distance (d) is connected 
with the probability p(d) = p0e

−d∕� , with p0 a normalization 
factor. It is to be noted that the proposed analysis is not lim-
ited to those specific parameters and model. As an example, 
a different model is analyzed in detail in Appendix 3.

2.2  Temporal spikes analysis

2.2.1  Spike count rate

We consider spikes as identical, discrete events, vary-
ing only in their time of emission and emitter position. In 
other words, we neglect the information that may exist in 
the spike shapes and sub-threshold membrane oscillations. 
Usually, the firing rate is approximated with a convolu-
tion of the neural response function with a chosen kernel 
(rectangular, gaussian, exponential, alpha etc...). Although 
this spike-count rate has been shown to correlate with 
specific stimuli in neuroscience studies (Dayan & Abbott, 
2001), this approach entails huge variability and may not be 

reproducible depending on the choice of kernel, and its char-
acteristic time scale. In an attempt to provide unbiased esti-
mators of neurons activity, we suggest a different method in 
order to rid activity analysis of time binning strategies. We 
use in this paper individual spike times. While our method is 
specially appropriate for simulations, the required high spati-
otemporal resolution necessary to discriminate single spikes 
is increasingly available through MEA (Grewe et al., 2010) 
and even fast calcium imaging that reaches the millisecond 
range with Oregon Green BAPTA-1 calcium indicator (Tsai 
et al., 2017).

2.2.2  The network phase

Pikovsky et al. (2001) defined the phase of an oscillatory 
signal with discrete events as a piecewise continuous func-
tion in between two events. Thus, concurrently to single 
spike times, we will use �i(t) for neuron i, and any time t in 
between two spikes ti,k and ti,k+1:

where ti,k is the time of the kth spike of neuron i, in the 
ordered sequence of spike times. The phase function of a 
discrete set of events is computed after the recording of 
the sequence of firing times; its value at some time t > ti,k 
depending on the knowledge of the following firing time 
ti,k+1 . The phase �i(t) is the difference between time t and 
the closest spike in the past, divided by the instantaneous 
interspike interval at this time t. An oscillatory neuron state 
can thus be defined by this bounded variable, that embodies 
both frequency and spike timing. It is the simplest step to 
estimate a neuron dynamical state, without constraining it 
to a two state dynamics. We define the network phase as the 
mean phase:

with N the total number of neurons. After each spike, the 
phase of a neuron decreases from 1 to 0 in a discontinu-
ous way. Accordingly, the network phase decreases by an 
amount in the range of 1

N
 . Because of this reset, the network 

phase decreases more significantly whenever several neu-
rons spike simultaneously, allowing us to detect and define 
a synchronized bursting regime. The network phase typi-
cally increases slowly in between bursts because few neurons 
spike, and rather irregularly, and it decreases down, and/or 
oscillates around 0.5, during bursts because of high firing 
rate (see Fig. 1). Let us stress that the network phase we use 
here is a simple way to access the complexity of the spike 

(1)
�i(t) =

t − ti,k

ti,k+1 − ti,k
, t ∈ [ti,k, ti,k+1[

(2)Φ(t) =
1

N

N∑
i=1

�i(t)
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times’ sequence from experimental or simulated data and 
not a novel modeling of the dynamics.

2.2.3  Burst definition

Using the network phase, we develop now a mathematical 
characterization of synchronous bursting states. The network 
phase Φ(t) specific behavior in bursting activities (see Fig. 1) 
guides us towards a definition: bursts are global events 
observed in between a maximum and minimum of the net-
work phase. Let us show that, a local maximum of the net-
work phase is associated with the synchronization of at least 
some neurons in the culture. Let us call q the proportion of 
synchronized neurons that spike in a specific time window, 
let’s call it Δt , around time t. This proportion q of coacti-
vated neurons might not represent the whole network, thus 
a proportion p = 1 − q does not spike in this time window 
but at a latter time in the burst. Because the phase between 
two spikes has a linear evolution, (with the slope being the 
inverse of the interspike) the network phase variation due to 
non-synchronous neurons is easily determined. On the con-
trary, the phase of the spiking neurons goes through the hard 
reset from 1 to 0 which forces the network phase to decrease 
by a certain amount |ΔΦ| . We note N1 and N2 the number of 
synchronous, and non-synchronous neurons (respectively). 
The synchronous neurons represent the first one to fire in a 
burst, whereas the non-synchronous neurons represent those 

who will spike at a latter time, not at all or with an irregular 
pattern. We can write the quantity ΔΦ being equal to:

And, given the definition of the network phase (Equation 
(1)), the most general form is:

As explained before, because of synchronous spiking neu-
rons, the network phase will decrease when a burst starts. 
We are looking for the condition for Δ� to be negative. In 
order to continue the computation without to much com-
plexity, we assume that the instantaneous interspike inter-
val, noted ISI, is the same for both synchronous and non-
synchronous populations. This is sufficient to capture the 
important parameters at play, and reflects data recorded with 
calcium imaging, where only the first spikes of a burst are 
accessible with high resolution. For synchronized neurons 
the ISI corresponds to the interburst interval, while for non-
synchronized neurons the ISI represents the interval between 
irregular firings. We can write:

ΔΦ = Φ(t +
Δt

2
) − Φ(t −

Δt

2
)

ΔΦ =
1

N

( N2∑
i=1

t +
Δt

2
− ti,k+1

ti,k+2 − ti,k+1
−

t −
Δt

2
− ti,k

ti,k+1 − ti,k

+

N2∑
i=N1+1

Δt

ti,k+1 − ti,k

)

Fig. 1  Bursting events acting as an epoch of synchronous spiking is 
visible with large oscillations of the network phase. The middle panel 
represents the maximum (red) and minimum (green) values of the 
phase extrema averaged over 50s simulations. In each simulation a 
proportion p of Intrinsically Bursting neurons, in a synchronous state, 
have been substituted for a Poisson spiking neuron of rate 10 Hz in 
order to mimick non-synchronous neurons. As expected (see Eq. (4)), 

the proportion of synchronous neurons correlates with the network 
phase peak values. Left and right panels show the network phase and 
a raster plot of 50 randomly chosen neurons (in a population of 2000 
neurons) as functions of time for two different proportion p = 0.14 
(left) p = 0.78 (right). One can see the two peaks that surround the 
bursts
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The first and second terms describe respectively, the 
decrease of the network phase due to the synchronous neu-
rons and the increase due to the non-synchronous ones. 
Thus, the characterization of a synchronous event as we 
defined it above implies :

This means that a decrease of the network phase happens 
if a proportion q of the population spikes in a time scale 
smaller than q × ISI . This coactivation is associated with a 
decrease of the network phase by an amount proportional to 
the size q. A bursting state can thus be detected without any 
arbitrary parameters and happens in between a maximum 
and a minimum of the network phase. The amplitude |ΔΦ| 
is related to the proportion of bursting neurons.

With less restrictive assumptions, one can understand 
that the network phase decreases whenever some neurons 
are coactivated in a time interval Δt . The network phase 
decreases by an amount proportional to q, as long as this 
group phase does not increase back to 1 in this Δt time win-
dow. This increase is represented by the last term in Equation 
(3): (1 − Δt

2ISI
) . Hence, the time scale of the synchronization 

Δt has to be smaller than the fast time scale q × ISIin_burst.
With this definition, the network phase Φ(t) offers, inde-

pendantly of any arbitrary parameters, a burst starting time 
reference as a maximum, and an ending time reference as 
a minimum. Moreover, as Eq. (4) demonstrates it, the dif-
ference between the maximum and minimum values of the 
network phase is a measure of the proportion of synchronous 
neurons. As Fig. 1 represents it, the minimum and maximum 
values are linearly correlated with the proportion of syn-
chronous neurons, or equivalently non-synchronous neurons.

2.2.4  The network phase with experimental recording

Large oscillations of the phase, showing bursting regime 
and different degree of synchronization can also be seen 
in experimental recordings. Data publicly available, from 
Lonardoni et al. (2017) is represented in Fig. 2. It is a 
recording of hippocampal cell cultures made with a 64x64 
micro-electrode array. Each electrode is considered as an 
individual unit to compute the phase with, and the network 
phase is the mean average over the 4096 electrodes.

2.2.5  First spike probability distribution

Eytan and Marom (2006) have introduced the idea that some 
neurons in a culture are consistently the first ones to fire 

(3)ΔΦ = q
(

Δt

2ISI
− (1 −

Δt

2ISI
)
)
+ p

Δt

ISI

(4)
Δt

ISI
− q < 0

over consecutive bursts. Their analysis however depended 
on an arbitrary threshold on the activity in order to define 
the sequence of precursors in neuron firing. Our approach 
allows an unbiased characterization of these. We are going 
to compute the probability density for the occurrence of a 
spike close to the burst beginning. Thanks to the time ref-
erence for each burst given by its phase’s maximum (see 
Section 2.2.3), we can derive the probability for a neuron to 
emit its first spike during the burst at time � = t − tb where 
tb is the detected burst starting time (see Fig. 1). Note that � 
can be above or below zero. This probability is the rigorous 
definition of the firing rate. Indeed, according to Dayan and 
Abbott (2001) “The probability density for the occurrence 
of a spike is, by definition, the firing rate [...]”. Here, each 
trial is an individual burst, and in order to look for the burst 
initiation, we only take into consideration the first recorded 
spike of each neuron. Let us note however that in many 
publications, possibly due to finite number of recordings, 
the term “firing rate” is more commonly associated with its 
approximation, the spike count rate. To avoid confusion we 
will speak in the paper of “spike probability distribution”.

Although we modeled neurons as pacemaker, the noise 
added as miniature post synaptic events (see Appendix 2 for 
more details) creates some variability and the sequence of action 
potentials may vary from burst to burst. Hence the need to inves-
tigate the initiation in a probabilistic manner. In order to carry 
out this analysis one needs a time reference coherent over con-
secutive bursts/trials with the spike sequence probability density.

To compute this quantity, one first detects for each neuron 
the first spike in a burst and then compute the cumulative 
activity: Cb(�) =

1

N

∑N

n=1
Θ(� − �n,b) , where N is the number 

of neurons, and �n,b is their first spiking time in burst b and 
Θ the Heaviside function. The cumulative activity is then 
averaged over multiple bursts of the same simulation. Then 
the numerical derivative F is the first spike time probability 
density, computed with the time resolution r:

2.3  Spatial spike analysis

This section focuses on the initiation in space of bursting 
dynamics. Many studies (Orlandi et al., 2013; Lonardoni 
et al., 2017; Paraskevov & Zendrikov, 2017) either from 
numerical simulations or experimental recordings in cul-
tures, have reported that bursts start repeatedly in one or 
several localised regions of the culture. We propose here a 
method to detect such regions based on a clustering algo-
rithm of spiking neurons. Although we know the in-burst 
spike times because of the high resolution used in simula-
tions, we will use only the first spike of each neuron in order 
to look at how does the bursting regime starts.

(5)F(𝜏) =
< Cb > (𝜏 + r)− < Cb > (𝜏)

r
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2.3.1  A specific region of the culture starts spiking 
before the whole population

As a first hypothesis, one considers that the culture is homo-
geneously and randomly seeded with neurons. Thus, if one 
region is to start the activity, it should have a density of spik-
ing neurons close to the density of the culture. This is how 
we will detect the initiation area. The algorithm DBSCAN 
(Ester et al., 1996) from the Scikit Library (Pedragosa et al., 
2011), is a density based algorithm for cluster detection that 
only requires two parameters and does not need a priori 
guess of the number of clusters. The two parameters are, a 
radius of search � to look for nearest neighbors, and thresh-
old for the minimum number of neighbors Nth required to 
belong in a cluster. We introduce later an approach to avoid 
these two arbitrary parameters. Overall, the algorithm can 
be used at any time point and works as follow: 

1. Each burst is identified with the extrema of the network 
phase

2. For each burst, one looks at the first spike of each neuron. At 
the considered time point, if a neuron has not spiked yet, it is 
invisible to the DBSCAN search, if a neuron has spiked, one 
turns it into a visible state. Visible neurons are neurons that 
have spiked at least once before the considered time point.

3. The DBSCAN algorithm proceeds as the following:

– For each visible neuron i, one counts the number of 
visible neurons in a radius � , noted ni

– If ni is larger than or equal to Nth , neuron i is said to 
belong to a cluster

– If two neurons detected in a cluster are closer than � , 
they are in the same cluster.

4. Initiation areas are approximated with an ellipse over-
lapping each neuron in a cluster. There can be several 
regions, and they can overlap too.

The underlying hypothesis for what is here called a vis-
ible neuron, is that a spike may have causal influence 
over very long period of time. One needs to consider here 
first the propagation delay and second the integration pro-
cesses in the post-synaptic neuron, which theoretically 
speaking can be as long as the interspike interval for 
pacemaker neurons as shown by Izhikevich (Izhikevich, 
2007) with the description of the phase response curve.

The algorithm output is a region of the two dimen-
sional culture -sometimes several regions- of high activ-
ity, in the sense that this region is not necessarily fast 
spiking at the moment or near the moment of the compu-
tation but most of its neurons have been active up to the 
point of computation. Figure 3 represents this search and 
the corresponding areas.

2.3.2  Parameters estimation

In order to reduce the number of arbitrary parameters we 
propose to modify the original DBSCAN algorithm. We first 
choose to relate the minimum number of neighbors threshold 
Nth and the radius of search � to one another. To be identified 
as the initiation region, almost each neuron in it has to be 
activated. Thus, the threshold Nth has to be the mean number 
of neuron in a disk of radius � . Given the density d of the 
culture, we could set Nth = d × ��2 . However, doing so, one 
does not account for the different local densities that arise 
from the strict condition on the culture boundary. Neurons 
in the center have necessarily a higher number of neighbors. 
Thus, we set Nth to be the mean number of neurons in a disk, 
corrected by one standard deviation. In this way, neurons at 
the border can contribute to a cluster more easily. Under the 
assumption that the standard deviation scales as the square 
root of the mean, we set:

To estimate � let us first quote that for small values, some 
neurons may not be able to reach the threshold Nth because 
there are to few neighbors at this distance. For large � val-
ues, because of Equation (6), the threshold will be high and 
some neurons may not be able to reach it. This comes from 
the fact that, locally, the number of neighbors may not scale 
as fast as Nth with � . Thus, there exists a suitable range of 
values that we are going to look for. Figure 4 presents an 
estimation of � for 2 culture geometries based on running 

(6)Nth = d × ��2 −
√
d × ��2

Fig. 2  Raster plot of 50 electrodes and the network phase as a func-
tion of time of experimental recordings from Lonardoni et al. (2017). 
The burst can clearly be identified. The different sizes of synchro-
nized neurons’ groups in the high frequency regime of the bursts is 
clearly visible with the phase oscillations
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the DBSCAN program with different visible neurons. The 
goals are the following:

– If each neuron of the culture is visible, the algorithm 
should detect only one cluster with each neuron in it.

– If a large percentage of the population (at least more than 
half) is uniformly spiking in the culture, the algorithm should 
also detect 1 cluster with most of the spiking neurons in it.

– It can detect separate regions of activity.

Figure 4 presents the number of neurons in the initiation area 
as function of � for different scenarii. One can observe that 
the 3 goals are to some extend achieved. As predicted, small 
values of � are not suitable, and large values also miss the 
clusters. One can observe that the number of neurons in a 
cluster slightly depends on the culture geometry and density 
of activity. Sharp edges, with few neurons will be detected in 
a cluster for larger values of epsilon than culture with aspect 
ratio 1:1. However, for a relatively broad range of values the 
resulting number of neurons in a cluster does not depend on 
� . This is the range we are interested in. What is important for 
the following analysis is that the algorithm can localise high 
densities and treats each neurons equally in order to detect 
activity near the border as well as in the center. Moreover, 
it does not necessarily depend on the culture aspect ratio 
because the most suitable value of � can be adapted to indi-
vidual cultures.

Also, it is important to note that we only used here 
the first spike of a burst, making this analysis suitable 

for calcium imaging. The better the resolution on the 
first spike, the better one will be able to study the cluster 
growth.

3  Results

The results presented in this section demonstrate the 
valuable contribution of the maximum of the phase we 
introduced before to unambiguously unravel the network 
dynamics during bursts initiation. Indeed, this extremum 
defines a specific time point in the dynamics of a burst, 
coherent over consecutive bursts. With simulated neuronal 
populations in cultures we illustrate the spatio-temporal 
dynamics of initiation, uncharacterised until now. Then, 
with publicly available MEA data from (Lonardoni et al., 
2017) we discuss on the practical use of our methods with 
experimental data.

3.1  Burst initiation

We now make use of the probability distribution to reveal dif-
ferent dynamical regimes during bursts. Figure 5 displays the 
temporal dynamics of burst initiation for a set of simulations with 
different connectivity spatial scales and neuron models. One can 
observe that the detected time of burst, at � = 0 , appears to be 
a critical value that separates different behaviors. The probabil-
ity density for 𝜏 < 0 can be used to define a temporal scale for 
the initiation. With an estimation of the width of the probability 

Fig. 3  Search for initiation area in a bursting activity of Intrinsically 
Bursting neurons. Bottom panel is a raster plot of the burst, each line 
is one out of 800 neurons randomly pick in the 2000 neurons simula-
tion. The black line represents the network phase. Top panels repre-
sent in space 4 different time points with colored neurons as neurons 
that have spiked up to the considered time (dashed lines in the raster 
plot). Neurons that have not yet spiked are plotted in grey. Shadows 

represent the elliptic initiation area. One can observe that at first, the 
activity is dispersed and no specific region is detected. Some time 
after, a region has been sufficiently active to be detected then at a 
later time an other one appears on the right (last panel) These two 
regions latter grow up to the size of the culture when all neurons have 
started spiking
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density function, we find an initiation duration in the order of 10 
ms for regular spiking neurons, and 100 ms for noise driven ones.

Surprisingly enough, the probability distribution for 𝜏 < 0 
seems independent of the connectivity spatial scale of the 
EDR model but depends on the neurons inner dynamics 
(here modeled through different sets of parameters). This 
time scale comes from the inner neurons dynamics, and not 
from the spatial correlation of the network model. On the 
contrary, for 𝜏 > 0 the overall neuronal population is largely 
characterized by an uni-modal distribution that depends on 
the network spatial scale. The importance of the spatial 

correlation emerges in the second regime, ( 𝜏 > 0 ) where the 
curves for two different EDR scale differ from one another.

3.2  Spatial initiation: cluster algorithm 
performance

In order to quantify the localised initiation, we propose 
to measure the nucleation site identification performance 
of our cluster detection algorithm, more simply called 
performance. As presented before (see Section 2.3), the 
clustering algorithm is able to target regions of activity 

Fig. 5  Probability density function for any neuron to emit its first 
spike at time � = t − tb , where tb is the time of the network phase 
maximum (see Burst definition 2.2.3). The right panel represents the 
probability function for Noise Driven neurons, and the left panel rep-

resents Regular Spiking neurons. Both panels include a zoom-in of 
the region of interest: first-to-fire neurons for 𝜏 < 0 . Networks with an 
EDR scale 1000 (lightgray) and 50 (black) � m are considered

Fig. 4  Estimation of the parameter � . Each panel shows the number 
of detected cluster (red) and the number of neurons in it normalized 
by the total number of neurons (blue) as function of � . Top row: cir-
cular culture of radius 800 � m. Bottom row: Triangular culture, with 
aspect ratio 1:10. Scale bar in the inset of the right panel shows 400 
� m. Both geometries present similar total densities. Each inset pre-
sents the result for � = 35� m: orange dots are neurons in a cluster and 
black dots are visible neurons not in a cluster. Column A: All neurons 
are visible for the DBSCAN algorithm, and although a first cluster is 

detected at � = 10� m, each neuron belongs to this cluster above 25 
� m. This sets the minimum value possible. Column B: Same cultures, 
with only 20% randomly chosen neurons visible. We observe that for 
large � the density of visible neurons is too low for any cluster to be 
detected: because of Equation (6), the threshold number of neigh-
bors cannot be reached. Column C: Same cultures, with two separate 
regions and a total of 10% visible neurons. In the two examples (cir-
cular and triangular) the activated regions are the same size, with the 
same number of neurons
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initiation. We define the performance of the detected 
cluster(s) Pc as the number of visible (meaning active) 
neurons (see Section 2.3.1) in the detected region divided 
by the total number of visible neurons in the population at 
the calculation time point. As time evolves, one can run 
the algorithm and compute the performance as function of 
the estimated region’s surface (estimated as the smallest 
ellipse that encompass each point in it). When the activ-
ity starts, it may be sparse and the detected region will 
probably be of low performance. However, if the activ-
ity is indeed localised, in the sense that it is confined 
into a small region and extends from it, the performance 
should increase faster than the cluster(s) area and then 
stay relatively constant as the activity extends to the 
whole culture.

Moreover, one can estimate the smallest region with 
the maximum performance looking at the maximum of 
Pc −

Ac

Atot

 , with Pc the performance of the detected 
cluster(s), and Ac , Atot respectively, the cluster(s) and cul-
ture area. The allows us to define consistently what we 
call “the initiation region”. Figure 6 represents the per-
formance for two EDR networks with different connectiv-
ity scale. One can easily notice that (also reported earlier 
by Paraskevov and Zendrikov (2017)), long range con-
nectivity does not exhibit localised initiation. This is 

noticeable both with the initiation region area being larger 
than 25% of the culture and the shape of the performance: 
growing slowly towards 1.

3.3  Looking for leaders

A debated topic is whether some neurons behave as “lead-
ers” that display consistently a precursor activity, and what 
are there characteristics (Faci-Lázaro et al., 2019; Eckmann 
et al., 2008). In order to show the existence of leader neurons 
in simulations with pacemaker neurons, we focus on the first 
spike probability density before the burst onset time defined 
by the maximum of the network phase (see Fig. 5). Neurons 
that spike in the time lapse described here by 𝜏 < 0 display a 
significantly different dynamics than the rest of the network. 
The main reason being that this is the only period of time 
where the probability density does not depend on the network 
spatial scale but on neurons’ inner dynamics. With noise 
driven neurons, the integral of the curve indicates that there 
are 20 first-to-fire neurons per bursts. However, they may not 
always be the same ones. In order to identify leadership in 
bursting dynamics, we look for first-to-fire statistics. If some 
neurons are repeatedly first-to-fire, we will call them leaders.

Fig. 6  Performance as a function of the detected cluster(s) surface. 
Top panels represent burst initiation in simulations with a network of 
Regular Spiking neuron and EDR scale of 50 � m. Snapshots are sep-
arated by 20 ms and red dots represent visible neurons (see Sec-
tion 2.3.1). The activity is manifestly localised. Bottom panels repre-
sent burst initiation in simulations with the same neuron parameters, 
but a network with EDR scale of 1000 � m. Snapshots are separated 
by 20 ms and red dots represent visible neurons (see Section 2.3.1). 

The activity is seemingly not-localised. Middle panel shows the cor-
responding performance: the last fifty bursts have been analyzed 
through the clustering algorithm with a time step smaller than a milli-
second. Each data point is here represented, and the red line is a mean 
average with linear extrapolation in between points. Straight lines 
represent the maximum of Pc −

Ac

Atot

 . They correspond to top second 
image and bottom last image
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Figure 7 displays the first-to-fire statistics for two net-
works of different EDR scale. Although the distribution 
probability, Fig. 5 was similar for both of these networks, 
the first-to-fire statistics is notably different. By using 
an exponential fit of the distributions of Fig. 7 we esti-
mate the total number of neurons acting as first-to-fire to 
be 24 and 95 for networks of connectivity scales respec-
tively, 50 and 1000 � m. Thus, in our simulations, with 
a small EDR scale, the total number of first-to-fire is in 
the same range as the number of first-to-fire per burst. 
These short range networks contain leaders: around 20 
neurons repeatedly drive the network to a bursting state 
in simulations with noise driven neurons. On the contrary 
with large EDR scale, the total number of neurons that 
act as first-to-fire is much larger than the number of first-
to-fire per bursts. Thus, an established group of regular 
leader neurons does not exist in a network with long range 
connectivity.

For the culture sizes we simulated, we note a common 
growth dynamics that requires approximately 20 neurons 
to initiate a burst for long and short connectivity spa-
tial scales. For short EDR scales, leader neurons exists, 
they are repeatedly in the burst initiation sequence among 
other rarely initiation neurons. For lager EDR scales, the 
variation in the composition of the burst precursor group 
is much larger and leaders rarefy.

4  Discussion

4.1  Dynamical regimes

The separation of behavior at � = 0 in the spike time prob-
ability distribution reveals the specific dynamics of what 
has been reported earlier as leader electrodes. (Eckmann 
et al., 2008; Eytan & Marom, 2006). Using a complex sort-
ing algorithm, Eckmann et al. reported the existence of 
leader electrodes in neuronal cultures. They used an arbi-
trary threshold between the probability to spike during a 
pre-burst period (see Eckmann et al. (2008) for definition of 
a pre-burst) and the probability to spike at any time during 
silent periods (low firing rate) to identify leader electrodes.

Here, thanks to the first spike probability distribution, 
we distinguish naturally the very dynamics of first-to-fire 
neurons during what (Eckmann et al., 2008) called the pre-
burst. This allowed us to show that the very beginning of 
these neurons activity is independent of the network spatial 
correlations. This property is clearly revealed thanks to our 
method unique feature to align bursts initiation through the 
maximum of the phase. The key element of this characteri-
zation is that the maximum of the phase is a coherent time 
point in the synchronization process over consecutive bursts. 
Because of this, the firing time sequences are properly 
aligned allowing to compute the first spike time probability 
distribution and reveal the initiation dynamics time scale. 
Previous methods making use of arbitrary reference time are 
not able to separate the spatial scale independent dynamics 
( 𝜏 < 0 ) from the spatial scale dependent one ( 𝜏 > 0 ). This is 
illustrated in Appendix 4 where the first spike time probabil-
ity distribution is evaluated through a conventional method. 
There, the burst initiation dynamics is blurred because of the 
arbitrary time reference.

Our burst initiation alignment method allows us to high-
light, on simulations, different regimes during a burst and 
the role of spatial correlations during initiation and propa-
gation. Indeed, the spike time distributions in Fig. 5 show 
distinct initiation and spreading stages. The initiation stage 
appears insensitive to spatial correlations, while the burst 
propagation is strongly affected by it.

In addition, the spatial connectivity scale plays a role for 
the initiation localisation and the existence of leader neu-
rons. Both properties have been found only in networks with 
small connectivity spatial scale. In order to understand this, 
we discuss the assumption that neuronal networks activity is 
made of avalanches. Neuronal avalanches are understood as 
the spreading of neuronal firings by a cascading process dur-
ing which neurons that fire at some time t trigger other neu-
ron firing at a later time. The activation of neurons at some 
time point is predominately determined by the inputs they 
receive from other neurons of the population just before. 

Fig. 7  Statistics for each neuron to be a first-to-fire over 50 bursts in 
a simulation with Noise Driven neurons. X-axis has been sorted out 
to display a decreasing statistic. Black and grey refers to networks 
where the EDR scale was respectively 50 and 1000 � m (grey is sltihly 
transparent for better visualisation). There are 10 first-to-fire neurons 
present in more than 50% of the considered bursts for the small EDR 
scale, and most of the culture is never first-to-fire. On the contrary, 
long conectivity length increase the number of possible first-to-fire up 
to a third of the culture
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Let us first call “causal time”, the time duration between a 
neuron spike and the last input that may have influenced it. 
Because of the time delay due to spike propagation or other 
inner dynamics, a pre-synaptic neuron spike may not influ-
ence a post-synaptic neuron future spiking. Thus, there is 
a causal time below which neurons appearing co-activated 
are in fact, unrelated with one another, even if they are syn-
aptically connected. Hence, the assumption that neuronal 
networks activity is made of avalanches tells us that multiple 
spikes with a time shift smaller than the causal time must 
have common predecessors that spiked during the avalanche: 
there is a path in the network (with inverted direction of con-
nections) from those co-activated neurons to the first-to-fire 
that started the avalanche.

Although we have not reported it here, bursts of activity, 
when initiated locally, grow with a synchronous propagating 
front (Paraskevov & Zendrikov, 2017) (it can be seen in the 
activity snapshots in Appendix 6). These fast synchronous 
propagating fronts are an example of co-activations in time 
scale smaller than this causal time. They are synchronous 
because of the activity of their predecessors, their predeces-
sors were synchronous because of their predecessors, and so 
on and so forth. The first ones being the first-to-fire in the 
burst, which spike at their own pace, according to their own 
dynamics dimly influenced by the network structural char-
acteristics. Hence, the common temporal dynamics observed 
for different network spatial scale. Then, these first-to-fire 
neurons project to, and activate the propagating front starting 
at the phase maximum. The phase maximum corresponds to 
the time point of the first co-activated neurons in the ava-
lanche: the beginning of the propagating dynamics. This 
regime depends highly on the network spatial correlations, 
and corresponds to an avalanche. Because of this avalanche 
dynamics, first-to-fire neurons can activate a synchronous 
propagating front if they share common successors. Neurons 
spatially localised with common successors are numerous 
in networks with small connectivity spatial scale, and are 
not likely to exist in networks with long range connections. 
Hence, the initiation is localised and a synchronous propa-
gating front exists only in network with small connectivity 
spatial scale.

This scenario is revealed because the maximum of the 
phase is the time point that separates the leaders’ dynamics 
and the avalanche dynamics. Although, in simulations with 
pacemaker neurons, the network spatial correlations do not 
shape the leaders’ dynamics, the choice of leaders emerges 
as a result of the interaction between the network complex 
stucture and the neurons dynamics. Then, the second stage 
of the burst, dominated by an avalanche dynamics, coupled 
with a small connectivity spatial scale appears to be the key 
elements for a propagating front to exist.

4.2  Experimental data

Although our methods were developed alongside simulated 
data, we were concerned about their applicability on experi-
mental data. The application of our analysis on experimen-
tal data is mainly dependent on the temporal resolution of 
the recordings. The decrease of calcium indicators fluores-
cence signal is too slow in many cases to reach the resolu-
tion needed to investigate in-bursts dynamics. However, the 
increase of the fluorescence signal during the action poten-
tial can be sufficiently fast to solve with high resolution the 
first spike of each burst. The methods presented in this paper 
can be applied when only the first spike in a burst is known. 
The computation of the network phase does not require high 
precision in the burst to pinpoint the starting point. Finally, 
all the analysis on space and temporal dynamics require only 
the first spike in each burst. Thus we believe that our meth-
ods are also suited for high resolution calcium recordings.

Matrix Electrode Arrays (MEA) provide high temporal 
resolution sufficient to resolve single spikes. We have looked 
at recordings from 64x64 MEA, in order to show that spatial 
resolution is not an issue with modern tools. The sample rate 
is 7 kHz and the spatial resolution 80 � m. The fast increase 
of the performance as function of the increasing area of 
activity, in Fig. 8 prooves that the bursts start locally. Like 
in our simulations, we were able to identify a specific region 
of the network, representing 14% of the MEA surface that 
initiates the bursting regime.

With a threshold based burst detection method, Lonardoni 
et al. (2017) were able to show that the bursts initiation sites 
are related to spatially segregated functionnal communities. 
We here find that the surface of initiation, unambiguously 
identified with our method, represents 14% of the MEA, 
similar to the size of the functionnal communities (see Fig. 4 
of their paper). This links activity cross-correlation results 
from a full recording, with individual bursts initiation.

5  Conclusion

This study presents a novel methodology for characterizing 
synchronous bursting and propagating events in neuronal 
cultures. In particular we present the network phase, a natu-
ral measure for studying synchronous events. It enables us 
to propose a simple definition and detection criterion for 
a network burst starting time. This time reference is the 
basic component in order to determine the first spike time 
probability distribution which describes the burst initiation 
dynamics and indicates the existence of leader neurons in 
networks of naturally oscillating units. It also shows the 
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characteristic time scale of the neuronal population dynam-
ics during what Eckmann et al. (2008) called a pre-burst.

We use a modified clustering algorithm in order to detect 
whether the growing activity is confined in space. To do this, 
we compute a quantity we call performance which evalu-
ate the location of activity. Its time evolution can highlight 
localised burst initiation, and pinpoint the area of initiation.

Finally, the presented methods are used to describe the 
burst initiation dynamics. The time reference we introduce 
with the network phase, allows us separate the first-to-fire 
inner dynamics from the regime where avalanches dominate. 
It shows a separation of behavior both in time and space. 
Our simulations with spatial networks of pacemaker neu-
rons show that localised initiation happens only with a small 
connectivity spatial scale breaking the cylindrical symmetry 
of the simulated culture. Networks with a long connectivity 
scale display the same pre-burst initiation dynamics as short 
scale ones. However they do not display a localised initiation.

The methodology developed here makes possible a sys-
temic analysis of bursting states, and the initiation dynam-
ics still under many questionings. The network structural 
properties that drive specific neurons to be leader of burst-
ing activities is still unknown but is now easier to address. 
Moreover, thanks to the linear correlation between the net-
work phase and the number of synchronous events, it may 
become a powerful tool to further the discussion on the 
keenly debated topic of criticality in neuronal cultures.

In future work we would like to set up similar analysis on 
high temporal resolution calcium imaging in order to verify the 

applicability of the methods introduced here, and investigate with 
precision biological neuronal networks dynamics during bursting 
regime.

Appendix

Simulation of neuronal network

Simulate neuronal activity

Simulations are carried out with the adaptive Exponential 
Integrate and Fire model (aEIF) (Brette & Gerstner, 2005) 
via the NNGT python library (Fardet, 2019) and NEST sim-
ulator (Gewaltig & Diesmann, 2007). This model is compu-
tationally reasonable and provide a large variety of activity 
patterns (Naud et al., 2008). Each neuron is described as a 
two dimensional system with the menbrane potential vari-
able Vm (as in the Integrate-and-Fire model) and an adapta-
tion current w which modulate neurons’ excitability (as in 
the Izhikevich (2003) model).

Where Cm is the membrane capacitance, EL is the resting poten-
tial, gL is the leak conductance, ΔT is a potential normalization 
constant that affect the spiking current, Vth is the soft threshold, 
�w is the adaptation time scale, a relates to the sub-threshold 
adaptation, whereas b gives the spike-triggered adaptation 
strength and Vr is the reset potential after the potential Vm 
reaches Vpeak . Ie and Is are currents that come from respec-
tively external sources or neighboring spikes. The exponential 
non-linearity model the pre-spike membrane potential sharp 
increase and is needed to describe in-burst fast dynamics. In the 
end, we choose this model because it is more biologically rel-
evant than the Izhikevich model (Izhikevich, 2003), and much 
less complex than the Hodgkin-Huxley model.

To follow indications of neurons in cultures being oscil-
lators even when uncoupled, reported by Penn et al. (2016), 
we simulate the activity with three sets of parameters that 
display pacemaker neurons: Intrinsically Bursting (IB), Reg-
ular Spiking (RS) and Noise Driven neurons (ND) whose 
behavior is detailed in Fig. 9. A neuron said Regular Spiking 
has a very periodic activity even when submitted to noisy 
input. Its interspike interval varies by 3% when submitted to 
a 15 s −1 poisson spike train. A Noise Driven neuron, on the 

(7)

Vm < Vpeak

⎧
⎪⎪⎨⎪⎪⎩

Cm

dVm

dt
= −gL(Vm − EL) + gLΔTe

Vm − Vth

ΔT

−w + Ie + Is

𝜏w
dw

dt
= a(Vm − EL) − w

Vm > Vpeak

�
Vm ←� Vr

w ←� w + b

Fig. 8  Performance computed with a recording on 64x64 MEA from 
Lonardoni et  al. (2017), as function of the detected cluster(s) area. 
The same process is used as in Fig. 6. Black dots are data points, and 
the red curve is the average curve. The black line shows the minimum 
area for the maximum performance. It corresponds to 14% of the 
5.12x5.12 mm2 MEA. The activity recorded by the MEA appears to 
start in a region of 3.5 mm2 representing more than 80% of the over-
all activity during the bursts nucleation. The activity is not uniformly 
distributed, but is initiated in the identified region
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other hand, is much more dependant on the input it receives: 
its interspike interval varies by 50 % under the same condi-
tions. Intrinsically Bursting neurons present a more complex 
frequency pattern: high frequencies are super-imposed over 
a natural small one. This can be seen in the resetting point 
after a spike: it is below the Vm nullcline (see Fig. 9). We 
use in the paper those 3 sets of parameters to show that the 
presented methods does not depend on specific values.

Model parameters

Table 1 lists all parameters with their values used in the 
paper.

Spatial network

To account for the spatial correlations that exist in cultures 
and shape its activity (Hernandez-Navarro et al., 2017), we 
use an Exponential Distance Rule (EDR) to connect all neu-
rons. A population of 2000 excitatory neurons is randomly 
drawn in a circular culture of radius 800 � m. Then, with the 
same process as an Erdös-Renyi network generation, one con-
nect node i to j with probability: pij = p0e

dij∕� , where dij is the 
Euclidean distance between them. This results in a directional 
network, whose topological properties are predetermined by 
the magnitude of � , the EDR scale and a sharp border condi-
tion: neurons can connect only inside the circular culture.

Fig. 9  Phase space and activity of the considered parameter sets. 
Each line describes one set of parameters, namely (from top to bot-
tom) Intrinsically Bursting, Noise Driven and Regular Spiking neu-
rons. The ( Vm,w) phase plane (left column) is represented with a 
couple of cycle represented in dark dots. Blue line is the membrane 
potential nullcline (set of points where dVm

dt
= 0 ) and green line is the 

adaptation current nullcline (set of points where dw
dt

= 0 ). The middle 
column represents the corresponding menbrane potential and adap-
tive current traces as functions of time. The left column is an histo-
gram of interspike intervals with a poissonian input of rate 15 s −1 and 
increasing weights: from zero noise in black to the highest in brown 
in pA
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Post synaptic current

Interactions are modeled as fast current injection into the 
post-synaptic neuron, following a pre-synaptic spike and a 
space dependent delay. The delay is set as a 3.0 ms con-
stant plus a spike propagation of velocity 0.1 m.s−1 , similar 
to what has been experimentaly observed in cultures (Barral 
and Reyes, 2016). Overall, it follows a log-normal distribu-
tion of mean 5. to 15. ms for every network. The network 
metric properties set up both specific connectivity patterns, 
and the delay in spike propagation with different connection 
spatial length. Miniature events are also set as a Poisson noise 
of rate 15 s −1 for each synapses and with a post synaptic cur-
rent (PSC) of half the amplitude of a spike-triggered PSC.

Synaptic weights that determine the post synaptic current 
amplitude are set such that the rhythmic activity is observed 
and stable. Stability of this state is estimated with the mean 
average interspike interval and network phase.

Analysis with the Izhikevich model, synaptic 
depression and stochastic inputs

We want to show that our methods can be used to analyze sim-
ulations with different models. For examples, previous stud-
ies (Orlandi et al., 2013; Levina & Herrmann, 2006; Levina 
et al., 2007) described the neuronal activity with dynamical 
synapses and stochastic inputs. More specifically we want to 
bring together various point of view in the understanding of 
bursting networks. Orlandi et al proposed a mechanism called 
noise focusing, based on simulations and experimental record-
ings, in order to interpret activity during burst initiation. On 
the other hand, we based our simulations under the assumption 
that bursting states are an example of oscillator synchroniza-
tion (Dhamala et al., 2004; Penn et al., 2016).

Inspired by in silico networks in Orlandi et al. (2013), the 
following simulations are done with an EDR network with 
mean in-degree 70 and scale 100 � m in a culture of radius 

Table 1  Parameters Values Parameters Values

Intrinsically Bursting Noise Driven Regular Spiking

Network modeling
Number of neurons N 2000
Culture radius R 800�m
Density d 1000 mm−2

EDR scale� 50 − 1000 �m
Mean in-degreek̄ 100
Neuron modeling
Membrane capacitanceCm 400 pF 250 pF 200 pF
Resting PotentialEL -70 mV -64.2 mV -70. mV
Leak conductancegL 9 nS 10 nS 12.01 nS
Potential normalizationΔT 2 mV 5.5 mV 1.8 mV
Soft thresholdVth -50 mV -55 mV -50 mV
Adaptation time scale�w 400 ms 500 ms 300 ms
Sub-threshold adaptation a -6.5 nS -1.5 nS 2. nS
Adaptation strength b 10 pA 50 pA 70 pA
Reset PotentialVr -47.8 mV -59 mV -48 mV
Potential spike peakVpeak 0 mV 20 mV 30 mV
External currentIe 38.8 pA 25 pA 262 pA
Refractory period Duration�ref 2 ms 2 ms 2 ms
Synapses modeling
Synaptic weight g 20 - 50 pA 50 - 125 pA 10 - 50 pA
Synaptic time scale�syn 0.2 ms 0.2 ms 0.2 ms
Miniature events raterminis 15 s −1 15 s −1 15 s −1

Miniature events weightgminis 10 - 25 pA 20 - 62 pA 5 - 25 pA
Simulation
Time stepΔt 0.1 ms
Typical simulation time 300 s
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2.5 mm with 5000 neurons, so that the density is 250 mm−2 . 
Following Izhikevich (2003) we look for parameters that dis-
play regular spiking neurons, who are not intrinsically spiking 
(synaptic connection and noise create the activity). This model 
is represented in its reduced form with the following equation

where v represents the membrane potential and u a mem-
brane recovery variable, which accounts for ionic currents. 
The parameter a represents the recovery variable time scale, 
b represents the sub-threshold adaptation, c describes the 
after-spike polarisation, d the spike-triggered adaptation 
strenght, and Is(t) is the post synaptic current. � is a Gauss-
ian White Noise current of mean value 0 and standard devia-
tion 10 pA. It stays constant for a duration of 5 times the 
simulation time step, then changes values etc... Miniature 
events are also set as a Poisson noise of rate 50 s −1 . We set 
the following values: a = 0.02 , b = 0.25 , c = −65 and d = 8.

(8)

if V < 30mV

⎧
⎪⎨⎪⎩

dv

dt
= 0.04v2 + 5v + 140 − u + Is(t) + 𝜂(t)

du

dt
= a(bv − u)

else V ≥ 30mV

�
v ←� c

u ←� u + d

Following previous work, (Orlandi et al., 2013; Levina 
et  al., 2007) we consider dynamical synapses with the 
Tsodyks et al. (2000) model described by the following 
equations:

where x, y and z are the fractions of synaptic ressources 
in a (respectively) recovered (ready), active, and inactive 
state ; �rec is the recovery time scale for synaptic depres-
sion and is set to 1.2 s and U determines the decrease of 
available ressources used by each presynaptic spike and 
is set to 0.2; �PSC is the post synaptic current time scale 
and is set to 10 ms. Facilitation has been taken away by 
setting �facil = 0ms.

It results in a synaptic current for neuron i given by 
Ii =

∑ki
j
gijyij(t) , where gij is the absolute synaptic strength 

between i and j. The sum runs over all pre-synaptic neu-
rons of i.

(9)

dx

dt
=

z

�rec
− Ux�(t − tspk)

dy

dt
= −

y

�PSC
+ Ux�(t − tspk)

dz

dt
=

y

�PSC
−

z

�rec

Fig. 10  Analysis with the Izhikevich model. Top panel is a raster plot 
of 100 randomly selected neurons. Middle panel is a trace of the cor-
responding network phase. Bursts appear as in the paper, between 
2 consecutive maxima and minima, however inter burst activity is 
always high thus the phase stays close to 0.5. Bottom left panel shows 
the first spike time probability distribution. This distribution shows 

the lack of first-to-fire dynamics neurons in this example. Middle bot-
tom panel shows the clustering algorithm in space for 3 consecutive 
time step: visible neurons are represented as red dots, and all other as 
black dots. The corresponding performance is plotted in the bottom 
left panel. It shows the characteristic curve of localised growth with a 
region of initiation representing 14% of the total culture
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Figures 10 and 11 represent the overall analysis from 
the network phase maximum detection to the spatial rep-
resentation of the activity with the neuron’s individual 
phase. The proposed methodology is here able to pinpoint 
that this model displays a different spatiotemporal dynam-
ics, not seen with simulations of pacemaker neurons pre-
sented in the paper. The spike probability distribution 

does not display the hallmarks of first-to-fire specific 
dynamic. Since the global activity is high in between 
burst a co-activation structured in space as a propaga-
tion front can be created without specific initiation. Spa-
tial initiation is still both localised, and structured into a 
propagation front.

Firing rate and first spike probability 
distribution

In order to show that the maximum of the phase repre-
sents a specific point in the bursting dynamics, we look 
at a time reference computed with the spike count rate. 
This firing rate was computed with a convolution with an 
exponential kernel first (with temporal scale 3 ms), then 
gaussian kernel (with temporal standard deviation 3 ms). 
The resulting function was searched for maximum above 
a certain threshold to detect bursting events. This maxi-
mum and a 20 Hz threshold value was then used as time 
references to compute the first spike probability distribu-
tion. Figure 12 shows an example of firing rate and spike 
time probability distribution for the same simulations as 
in the paper (Fig. 5) with two time references. The burst 
definition presented in the paper is specifically designed 
to look at the spiking pattern during initiation. It gives a 
time reference related to the network state with informa-
tion about previous and future spikes and not only spikes 
in a couple of milliseconds time window. Hence, this 
time reference stays coherent over consecutive burst in 
the spike time probability distribution. The arbitrariness 
in the firing rate threshold method cannot achieve such 
coherence.

Data and code

Data and code are available in the a github repository: 
MalloryDazza/NN_Burst_Dynamics.

Activity snapshots

The following figures shows snapshots of the in-burst 
activity pattern, displayed with neurons individual phases. 
They correspond to the examples used in the paper (see 
Figs. 13, 14, 15, and 16).

Fig. 11  Representation in space of 2 bursts with neurons’ phases in 
color scale. Culture radius is 2.5mm. Time goes from left to right, 
then top to bottom. The starting point of the bursts is in between 
snapshot 3 and 4

Fig. 12  Spike time probability density for two different time refer-
ences. Right panels show the spike count rate of 4 consecutive bursts 
aligned on their maximum (bottom) and on an arbitrary 20 Hz thresh-
old crossing time (top). Left panels show the probability distributions 
with the corresponding time reference. The simulations correspond to 
Noise Driven neurons, used in the paper in Fig. 5. One can observe 
that changing the time reference does not strongly change the distri-
bution shape, however here, we cannot observe first to fire behavior 
anymore
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Fig. 13  Representation in space of the burst used for presenting the spatial cluster detection (Fig. 2) in the paper. Neurons’ phases are plot at the 
soma location. Each frame are separated by 22 milliseconds

Fig. 14  Representation in space of the burst used for performance computation (Fig. 5) in the paper (top activity). Neurons’ phases are plot at 
the soma location. Each frame are separated by 5 milliseconds
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Fig. 15  Representation in space of the burst used for performance computation (Fig. 5) in the paper (bottom activity). Neurons’ phases are plot 
at the soma location. Each frame are separated by 4 milliseconds

Fig. 16  Representation in space of the burst used for velocity computation (Fig. 6) in the paper (left panel). Neurons’ phases are plot at the soma 
location. Each frame are separated by 12 milliseconds
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