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Abstract
An important problem in systems neuroscience is to understand how information is communicated among brain regions, 
and it has been proposed that communication is mediated by neuronal oscillations, such as rhythms in the gamma band. We 
sought to investigate this idea by using a network model with two components, a source (sending) and a target (receiving) 
component, both built to resemble local populations in the cerebral cortex. To measure the effectiveness of communication, 
we used population-level correlations in spike times between the source and target. We found that after correcting for a 
response time that is independent of initial conditions, spike-time correlations between the source and target are significant, 
due in large measure to the alignment of firing events in their gamma rhythms. But, we also found that regular oscillations 
cannot produce the results observed in our model simulations of cortical neurons. Surprisingly, it is the irregularity of gamma 
rhythms, the absence of internal clocks, together with the malleability of these rhythms and their tendency to align with 
external pulses — features that are known to be present in gamma rhythms in the real cortex — that produced the results 
observed. These findings and the mechanistic explanations we offered are our primary results. Our secondary result is a 
mathematical relationship between correlations and the sizes of the samples used for their calculation. As improving technol-
ogy enables recording simultaneously from increasing numbers of neurons, this relationship could be useful for interpreting 
results from experimental recordings.

Keywords  Correlations · Gamma rhythms · Population dynamics · Synchrony · Time-delays

1  Introduction

The following two bodies of facts in neuroscience are 
well established. The first is that brain regions are highly 
interconnected and a significant part of signal transmission is 
via the spiking of neurons. These facts are well documented, 
e.g. in Binzegger et al. (2009); Felleman and Van Essen 
(1991); Sincich and Horton (2005). The second body 

of facts, also well known, involves rhythms in the brain: 
rhythms in various frequency bands ( �, �, �, � and � ) are 
ubiquitous (Buzsaki, 2011).

How exactly these rhythms impact signal transmission  
is an intriguing question: it is challenging to define 
precisely what it means to facilitate communication, let 
alone to measure or quantify it. It has been suggested 
that gamma rhythms are important for information 
transfer (Rodriguez et al., 1999; Fries, 2005; Fries, 2015; 
Pesaran et  al., 2002; Womelsdorf et  al., 2007; Sohal 
et al., 2009). It has also been documented that certain 
diseases and drugs, as well as heightened attention, 
learning, and memory formation are associated with 
altered gamma rhythms (Fries et al., 2001; Sederberg 
et al., 2003; Gonzalez-Burgos et al., 2010; Uhlhaas & 
Singer, 2010; McCarthy et al., 2012; Gonzalez-Burgos 
et al., 2015).

Motivated by these facts and ideas, this paper uses 
computational modeling to study the effect of gamma 
rhythms on signal transmission. We consider here two 
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local neuronal populations, one a source (sending) and the  
other a target (receiving), and our goal is to understand 
– on the mechanistic level – how gamma rhythms affect 
communication between them. The local populations are  
groups of a few hundred Excitatory and Inhibitory integrate- 
and-fire neurons, with connectivities similar to those in local  
circuits of the cerebral cortex. Population activity is driven 
by external input together with dynamical interaction among  
the neurons. We wanted our models to be realistic enough so  
that our results can be related to experiments. At the same 
time, the study is not customized to specific brain regions, 
in order to produce broadly relevant results.

As to how to quantify communication, we have elected 
to study correlations in spike firing on brief timescales 
of several milliseconds, a range that reflects gamma-
band activity, and we chose to focus on population-level 
correlations between the source and target, meaning time 
correlations between the aggregated spike trains produced 
by the source and the target populations without regard to 
the participation of individual neurons. This metric is similar 
to that in Vogels and Abbot (2005), and was used in favor 
of correlations between pairs of neurons because we believe 
that it is a better reflection of communication between 
two populations. Though experimental capabilities are 
improving, we recognize that present technology does not 
yet permit the direct measurement of spike firing in entire 
populations, and most existing experimental results are for 
paired correlations (Roe & Ts’o, 1999; Nowak et al., 1999; 
Jia et al., 2013; Zandvakili & Kohn, 2015). To connect with 
existing results, we derived a formula relating correlations 
measured from different sample sizes.

There are other interpretations of “communication” 
besides correlated spiking: for example, some have 
interpreted Fries (2005) as proposing that higher firing 
rates in the target population was indicative of effective 
communication, and this study considered this possibility 
as well.

Our model populations needed to produce realistic gamma 
rhythms to enable us to investigate how rhythms impact 
communication. We have tried to emulate experimental data, 
which show that there are two aspects to gamma-band activity. 
One is its oscillatory behavior, and the other is the irregular, 
even episodic nature of the rhythm (Burns et al., 2011; Xing 
et al., 2012). It has been proposed in Fries (2005) and studied in 
theoretical works (Gielen et al., 2010; Börgers & Kopell, 2008; 
Battaglia et al., 2012; ter Wal & Tiesinga, 2017) that neuronal 
oscillations are responsible for effective communication, 
and we confirm these ideas using a more realistic model 
than was used in the aforementioned works. The main thrust 
of this paper, however, is that oscillatory behavior alone is 
insufficient: it is the irregularity in the oscillations that plays 
an important enabling role. Another feature, first pointed out 
in Chariker et al. (2018), is the malleability of the timing in 

gamma events – meaning that a driving population can non-
trivially influence the spike times of the receiving population, 
causing their firing events to align. This was found to be a 
very significant contributor to the robust correlation between 
connected populations.

Finally, in addition to identifying relevant phenomena, 
we also offer mechanistic explanations for the phenomena 
observed, seeking to shed light on cortical mechanisms. 
The proposals in this paper are based on experimental 
data, known theoretical and modeling results, and our own 
simulations. This emphasis on elucidating mechanisms is a 
distinguishing feature of the present paper.

2 � Preliminaries I: Single‑population models

In this section, we describe the models for the local 
populations used for the correlation studies to follow. 
We also document their gamma-band activity, which we 
will show in the sections to follow, serves to synchronize 
connected populations.

2.1 � Model description

Local populations in this paper are intended to model local 
circuits in the cerebral cortex. Typically they consist of a 
few hundred to a thousand neurons, three quarters of which 
are Excitatory (E) and the rest Inhibitory (I). The neurons 
are randomly and homogeneously connected to one another 
according to certain specified probabilities, and they are 
modeled as integrate-and-fire neurons. Similar models were 
used in Chariker and Young (2015).

The local population models used for the simulations 
here are networks consisting of 300 E and 100 I-neurons. 
On average, each E-neuron is postsynaptic to about 80 
other E-neurons and 50 I-neurons, and each I-neuron is 
postsynaptic to about 240 E-neurons and 50 other I-neurons. 
Connectivity between pairs of neurons are subject to 
variance, and are randomly drawn according to the means 
above. These connection probabilities, with E-to-E being 
more sparse than connections that involve I-neurons, are 
consistent with neuroanatomy (Chariker et al., 2016).

Leaving details to Supplementary Information, we 
outline the rules governing the dynamical interaction within  
the local population. The dynamics of individual neurons 
are described by the following conductance-based leaky 
integrate-and-fire (LIF) equation:

This equation describes the evolution of the membrane 
potential of a neuron, V, over time in milliseconds (ms). 
The membrane potential has been normalized so that V = 0 

(1)V̇ = −
1

𝜏leak
V − (V − VE)gE − (V − VI)gI
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is the resting state, and when V reaches 1, the neuron fires 
an action potential following which its membrane potential 
is immediately reset to 0, where it remains in refractory for  
a couple of ms. Eq. (1) contains three constants: �leak = 
20 ms is the leak rate, and VE =

14

3
 , VI = −

2

3
 are excitatory  

and inhibitory reversal potentials in normalized units 
(McLaughlin et al., 2000). These are accepted biophysical 
constants (Koch, 1999). The functions gE(t) and gI(t) are 
the excitatory and inhibitory conductances of the neuron 
in question. When an excitatory spike is received, gE(t) is 
temporarily elevated for a few ms; the same is true for gI(t) 
when a spike is received from an inhibitory neuron.

This system has 8 parameters. Four of them, SQQ′ , 
Q,Q� ∈ {E, I} , represent the synaptic coupling weights from 
neurons of type Q′ to neurons of type Q. Two others, �E 
and �I , denote the rates at which the E and I-conductances, 
which elevate upon the arrival of a spike, decay to zero. The 
remaining two determine the amount of external drive fed 
into the system, described in the next paragraph.

In addition to the synaptic input received from within 
the local population, each neuron receives an excitatory 
external drive modeled as a Poisson point process. This 
drive is independent from neuron to neuron. The external 

drive has two components: a synaptic component, which 
consists of E-spikes representing input from other regions 
of the brain with synaptic weight SQE for neurons of type 
Q, and an “ambient” component with a smaller synaptic 
weight meant to represent all neurotransmitters not 
specifically modeled. The ambient component’s Poisson 
rate is assumed to be constant, whereas the synaptic 
component’s rates, �E and �I for E and I-neurons, are 
assumed to be low in background and to increase with 
drive.

In our simulations, the parameters above are chosen 
with guidance from realistic models of the visual cortex 
such as that in Chariker et al. (2016). Their exact values 
are unimportant for purposes of the present study, as 
long as they produce reasonable dynamics (including 
those depicted in Fig.  1). Since we are primarily 
interested in correlations between populations when 
the sending, also referred to as “source”, population is 
strongly driven, we use values of �E and �I that produce 
average E-firing rates of about 15 spikes/sec, which 
is consistent with the average stimulus-driven firing 
rates of local populations in realistic situations; see e.g. 
(Chariker et. al. 2020).

Fig. 1   Spiking statistics in a strongly driven regime. a Interspike 
interval plots showing spike firing statistics of individual neurons. We 
randomly chose 20 E neurons and for each, calculated a histogram of 
time between each spike with 10 ms bins. We then averaged the 20 
histograms. This was calculated using 8 seconds of simulation data. 
Simulations using a single neuron produced very similar outputs 
when sampled over a much longer time period. b Population statis-
tics: Raster showing half a second of the simulation. Red dots repre-

sent excitatory spikes and blue are inhibitory spikes. A rhythm in the 
gamma band is clearly visible. c Summed spike plot for the E neurons 
of plot b, showing the fraction of the E-population spiking within 
each time bin of 4 ms. d PSD for the regime in panels a, b, and c. e 
Number of E spikes within 4 ms overlapping windows, sliding every 
1 ms. Note the irregularity and occasional degradation of the spiking 
pattern
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This completes our description of the local population 
model; details of the LIF equations and exact parameters 
used are given in Supplemental Information.

2.2 � Relevant facts about gamma rhythms

We recall here some facts about the spiking patterns of the 
local population described in Sect. 2.1. The phenomena 
discussed in this subsection have been observed and 
documented in the real cortex (Gray & Singer, 1989; Henrie 
& Shapley, 2005; Cardin, 2016) and have been studied 
in other computational models (see Sect. 2.3). We recall 
these properties because they play important roles in the 
correlation studies to follow. We also wish to demonstrate 
that our model fairly realistically reproduces these known 
cortical phenomena.

Individual vs. collective spiking behaviors. In the 
real cortex, interspike intervals of individual neurons 
have long tail distributions that have been described 
as being exponential (Ostojic, 2011) or obeying power 
laws (Baddeley et al., 1997), and Fig. 1a shows that our 
model exhibits a similar behavior. These long tails show 
that individual neurons do not spike rhythmically. The 
resemblance to an exponential distribution indicates that  
the time intervals between spikes are close to being random  
with a fixed mean rate.

In contrast to the individual behavior depicted in Fig. 1a, 
we show in Fig. 1b rasters of the population over a time 
interval of 500 ms. Here one observes a tendency for the 
spikes to occur in clusters, leading to rises and falls in 
firing rates that produce a rhythm in the gamma band, a 
phenomenon well known to occur in many parts of the brain 
(Buzsaki, 2011; Cardin, 2016).

In our model, this rhythmic behavior was entirely 
self-organized: clustering of spikes was not implied by 
the LIF equation, and the presence of a rhythm was not 
apparent from ISI plots (Fig. 1a) or the PSDs of single 
neurons which do not display clear peaks or decay 
structures). Nor was it arranged through the wiring: 
connectivity among neurons in the local population 
was random and no grouping of neurons into clusters 
was programmed into the model. Lastly, gamma-band 
rhythms occurred for wide ranges of model parameters, 
and no specific engineering was needed to produce the 
rhythm shown, though different parameter choices led to 
rhythms with slightly different characteristics.

The production of a gamma-band rhythm is an example of 
an emergent phenomenon. A network phenomenon is called 
emergent if it does not originate from the laws governing 
individual network components, but occurs only as a result  
of the interaction among them. Here, the gamma-band  
rhythm is a product of the dynamical interaction among 

neurons. Mechanisms for its generation will be discussed in 
more detail in Sect. 6.

A few important properties of gamma-band rhythms. 
We highlight below a few properties of gamma rhythms that 
are important to recall for later on in this paper.

The clustering of spikes naturally leads to some 
amount of synchronization. We stress that in our model, 
as in the sensory areas of the real cortex (Henrie & 
Shapley, 2005; Xing et al., 2012), this synchronization 
is very partial and involves only a small fraction of the 
local population at any given time. In the summed spike 
plot of Fig. 1c, each bin in the histogram is 4 ms wide, 
and typically no more than 10% of the local population 
spikes within a 4 ms period. Occasionally the fraction is 
larger, but it seldom exceeds 20% . This is in contrast to 
the original picture of PING (Whittington et al., 2000; 
Börgers & Kopell, 2003), where the rhythm is produced 
by whole-population spikes.

A second important property of gamma-band activity is 
that it is broad-band (Henrie & Shapley, 2005; Jia et al., 
2011). In Fig. 1d, we show the power spectral density (PSD) 
of our model. One can see that spectral power is distributed 
between 50-70 Hz, which is narrower than in the real cortex 
because it is a small, isolated local population. Still, the PSD 
is far from a delta function, which would be the case had this 
rhythm been periodic. In earlier studies such as Brunel and 
Wang (2003), the authors assumed this rhythm was periodic 
and sought to identify the period, but that is not how gamma 
rhythms are in the real brain.

A third property of gamma-band activity in the real cortex 
is that it is irregular and episodic in nature Chariker et al. 
(2018); Burns et al. (2011); Xing et al. (2012), and Fig. 1e 
shows that our model produces a rhythm much like that:  
not only is there variability in the heights of the peaks and 
in the distances between peaks, the rhythm also degrades 
from time to time (as it did around 8200 ms). It is not at all  
a rigidly oscillating signal.

We will show in Sect. 5 that the naturally irregular nature 
of these rhythms enables them to synchronize source-target 
populations more effectively than rigidly oscillatory signals 
can.

2.3 � Comparison with existing models

Homogeneously connected neuronal populations have been 
studied by many theorists. Among the numerous papers on 
the topic, the following are two of the most influential sets 
of results.

Balanced state ideas, referring to the balancing of E- and 
I-currents in the limit where system size tends to infinity, 
were introduced in van Vreeswijk and Sompolinsky (1998). 
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While the infinite-size limit offers mathematical tractability, 
we have elected not to go that route because the real cortex 
does not support infinitely large, homogeneously connected 
groups of neurons.

Another much cited body of work is Brunel and Hakim 
(1999); Brunel (2000). In these papers, the authors 
considered homogeneously connected networks, also 
with system size N tending to infinity, with the additional 
assumption that

Because this assumption implies that for N large, the 
sets of neurons presynaptic to two distinct neurons are 
likely disjoint, the authors proposed that neurons in the 
population are effectively driven by a mean field quantity 
plus independent Gaussian noise. We do not make the 
sparse connectivity assumption in our model because in the 
visual cortex (as in many other parts of the real cortex), 
connectivity is not sparse: I-neurons, in particular, are quite 
densely connected to all nearby neurons (Holmgren et al., 
2003; Oswald and Reyes, 2011); E-to-E connectivity, while 
lower, is still at 10 − 15% . The fact that many neurons in the 
population have shared presynaptic neurons has dynamical 
consequences; shared inputs contribute to correlated 
behaviors.

Gamma-band rhythms have also been studied by a 
number of theorists, among them Börgers and Kopell 
(2003); Whittington et al. (2000); Brunel and Wang (2003), 
and others. These earlier models successfully captured the 
oscillatory aspect of the phenomenon but not the broad-
band, episodic nature of gamma-band activity. Irregularity 
of the rhythm was highlighted in Rangan and Young (2013a, 
b) and studied further in Chariker and Young (2015) and 
Chariker et al. (2018). This characteristic of gamma rhythms 
is crucial for the main purposes of the present study. As 
mentioned at the end of Sect. 2.2, it is not just the oscillatory 
nature of the activity but also the irregularity of it that is 
essential in synchronizing source-target populations.

3 � Preliminaries II: Correlations between two 
groups of neurons

This paper is about correlations in spiking activity on 
the population level. The present section is theoretical: a 
formal definition of population-level correlation is given 
in Sect. 3.1, and in Sect. 3.2 we compare this quantity to 
correlations between pairs of neurons, which have been 
studied in a number of theoretical and experimental papers.

1

N
(# connections per neuron) → 0 as N → ∞ .

3.1 � Formal definitions

The notion of correlation of interest here is the correlation 
between instantaneous firing rates from two groups of 
neurons (also used in Vogels & Abbot (2005)). We do not 
distinguish between spikes fired by different neurons from 
within each group, lumping them all together into a single 
spike train representing the collective output from the group.

Let G1 and G2 be two groups of neurons with sizes n1 and 
n2 respectively. To operationally define “instantaneous firing 
rate”, we have to fix a small time interval, which we take to 
be 4 ms. For the ith neuron in G1 , we let xi([t, t + 4)) denote 
the number of spikes fired by this neuron on the time interval 
[t, t + 4) , where t is in ms, and take

to be our definition of instantaneous firing rate of neuron i 
in spikes/sec at time t.

We further fix a large time interval, [0, T] for some 
integer T, and view Xi as a random variable defined on the 
probability space

with equal probability assigned to each sample point. The 
random variable Yj representing instantaneous firing rates of 
neuron j in G2 is defined analogously.

The choice of the 4 ms interval above reflects the time 
scales we find relevant for our purposes: we are not especially 
interested in pinpointing the exact timing of spikes, and 4 
ms is roughly the duration during which conductances in 
postsynaptic neurons are elevated. It is also short enough 
to reflect gamma-band activity, which dominates local-in-
time firing patterns. The use of overlapping windows was to 
further smooth out the statistics.

Next, we define two random variables

representing the firing rates of the two populations. The  
correlation between these two random variables, i.e.,

where �2(X) and �2(Y) are the variances of the random  
variables X and Y respectively, is what we will refer to as  
the correlation in spiking activity between populations G1 
and G2 . Notice that the correlation between pairs of neurons 
is a special case of the definition above, with n1 = n2 = 1.

Xi(t) =
1000

4
xi([t, t + 4))

{t = 0, 1, 2,⋯ , T − 4}

X =

n1∑

i=1

Xi , Y =

n2∑

j=1

Yj

(2)�(X, Y) =
�(XY) − �(X)�(Y)

√
�2(X)�2(Y)
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3.2 � Population‑level correlations versus paired 
correlations

We study correlations in spiking activity on the population 
level because we believe they more accurately describe the 
effectiveness of communication between local source and 
target populations. Bulk measurements on spiking activity 
have, however, been challenging to collect in the laboratory 
up until now, and many experimental results thus far have been 
for correlations between pairs of neurons (Roe & Ts’o, 1999; 
Nowak et al., 1999; Jia et al., 2013; Zandvakili & Kohn, 2015). 
A number of theoretical papers have also focused on single 
or averaged pairwise correlations between neurons within a 
single population (de la Rocha et al., 2007; Ostojic et al., 2009; 
Renart et al., 2010).

To clarify the difference between population-level 
correlation as defined in Eq. (2) and correlations between pairs 
of neurons, we let

denote the mean of the correlations between pairs of 
neurons, one from G1 and the other from G2 , averaged over 
all such pairs. The relation between �(X, Y) and ⟨�(Xi, Yj)⟩ is 
described in the following. To simplify the discussion, let us 
assume that Var (Xi) = �2

1
 for all the neurons in G1 ; likewise 

Var (Yj) = �2
2
 for all the neurons in G2 . Then

where Cov (⋅, ⋅) is the covariance of the two random 
variables. As for �(X, Y) , we have

where

and C2 is defined analogously with Yk, Yl and n2 in the place 
of Xk,Xl and n1.

From the formulas above, it is easy to glean the relation 
between �(X, Y) and ⟨�(Xi, Yj)⟩ in the following two situations:

(a) If both populations fire only whole-population spikes, 
i.e. Xi = Xj for all i, j, and Yi = Yj for all i, j, then one would 
expect �(X, Y) = ⟨�(Xi, Yj)⟩ , and the formulas above confirm 
this with �2(X) = n2

1
�2
1
 , �2(Y) = n2

2
�2
2
.

(b) On the other hand, if the spike trains from distinct 
neurons within G1 (respectively G2 ) are entirely uncorrelated, 

⟨�(Xi, Yj)⟩∶=
1

n1n2

�

i,j

�(Xi, Yj) ,

⟨�(Xi, Yj)⟩ =
1

n1n2

∑
i,j Cov(Xi, Yj)

�1�2

(3)�(X, Y) =

∑
i,j Cov(Xi, Yj)

�
(n1�

2
1
+ C1)(n2�

2
2
+ C2)

C1 =
∑

1≤k,l≤n1,k≠l

Cov(Xk,Xl) ,

i.e. if Cov (Xi,Xj) = 0 for all i ≠ j and similarly for Yi, Yj , then 
�2(X) = n1�

2
1
 , �2(Y) = n2�

2
2
 , and

If one assumes that correlations between neurons within 
each population are nonnegatively correlated (which 
generally seems to be the case), then the two cases above 
represent the two ends of the spectrum of possible values 
for �(X, Y):

Notice from Eq. (3) that �(X, Y) contains information about 
paired covariances within G1 and G2 . The more synchronized 
each network is, the closer �(X, Y) is to ⟨�(Xi, Yj)⟩ . At the 
other end of the spectrum, when spike firing within each 
network is close to being independent, �(X, Y) can be larger 
than ⟨�(Xi, Yj)⟩ by a factor comparable to network size. In a 
normal cortex, spike firing within local populations is not 
uncorrelated, but is also far from fully synchronized. Thus, 
the quantity �(X, Y) generally lies somewhere between the 
two bounds above.

4 � Time‑adjusted correlations 
between source and target networks

We are now ready to proceed to the computational part 
of our study, to investigate population-level correlations 
between source and target networks. The setup for the rest of 
this paper is described in Sect. 4.1. This is followed by some 
preliminary observations. The main results are presented in 
Sect. 5.1.

4.1 � A two‑component feedforward network model

Given two networks, N1 and N2 , of the type in Sect. 2.1, 
and a number p ∈ (0, 1) , we describe here how to construct 
a simple feedforward network with “connectivity” p, 
henceforth abbreviated as

Here, N1 is the source (sending) network, N2 is the target 
(receiving) network. Connections from N1 to N2 are 
excitatory only, and excitatory input from N1 targets both 
E and I-neurons in N2 . The meaning of the number p is as 
follows: Each neuron in N2 receives, on average, a fraction p 
of its total excitatory input from N1 . “Total excitatory input” 
includes synaptic input from E-neurons within N2 , the two 

�(X, Y) =

∑
i,j Cov(Xi, Yj)
√
n1n2 �1�2

.

⟨�(Xi, Yj)⟩ ≤ �(X, Y) ≤
√
n1n2 ⟨�(Xi, Yj)⟩ .

N1

p
�����→ N2 .
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external sources described in Sect. 2.1, and feedforward 
input from N1.

The values of p of interest are generally ≤ 0.1 . Given p, 
we modify the source of external input to N2 as follows: 
Assuming that the total excitatory input to N2 is the same as 
that to N1 , we first compute the amount of external synaptic 
input that corresponds to a fraction p of the total excitatory 
input. Let us refer to these amounts for E and I-neurons 
as xE = xE(p) and xI = xI(p) , respectively. Then for each 
E (respectively I) neuron in N2 , we remove xE (resp. xI ) 
amount of synaptic input from its external drive and add 
connections from N1 whose spikes will replace the lost 
input. Presynaptic neurons from N1 are chosen randomly, 
and we assume an additional 1 ms transmission time for 
spikes from N1 to N2.

Further details of the construction of N1

p
�����→ N2 are given 

in Supplementary Information.

4.2 � Intrinsic optimal delays

Having built the network N1

p
�����→ N2 , we now consider the 

correlation between the two E-populations. Using the 
notation of Sect. 3.1, we let G1 be the set of excitatory 
neurons in N1 , and G2 the set of excitatory neurons in 
N2 . Let X and Y be the random variables representing the 
instantaneous population firing rates of G1 and G2 , and 
�(X, Y) denote their correlation. To explore if the spiking 
events of the two populations would correlate better when 
measuring the spike times in the receiving network G2 with 
a delay, we considered also the quantities

for d > 0.

�(X, Yd) where Yd(t) = Y(t + d)

To locate the time delay that maximizes the correlations 
between G1 and G2 (if there is one), we computed �(X, Yd) 
for various values of d, at 0.5 increments from 0 to 30 ms 
with p = .075 , i.e., when 7.5% of the excitatory drive in N2 
comes from N1 . (Values of p in the real cortex obviously 
vary, but p ∼ 0.075 to 0.1 is thought to be fairly typical). 
Figure 2a shows the function d ↦ �(X, Yd) . The 10 graphs 
superimposed are for 10 different networks (constructed with 
the same connection probabilities) and 10 different sets of 
initial conditions. The results from the trials are remarkably 
similar, with the optimal time delays between 3.5 − 4 ms. In 
our simulations, convergence to �(X, Yd) for each d was very 
fast, allowing an approximate value of the optimal delay 
to emerge in less than a second, and the convergence to be 
complete in the next few seconds.

Note that the 3.5 − 4 ms optimal time delay observed 
is significantly longer than the 1 ms transmission time 
imposed on spikes from N1 to N2 . This is because spikes 
from N1 do not immediately cause spikes in N2 . They raise 
the excitatory conductance for neurons in N2 , bringing 
their membrane potentials closer to threshold, and that 
increases their susceptibility to spike in the presence of more 
excitatory input.

Figure  2b shows the functions X(t) and Y(t + d) as 
functions of t for d = 0 (top) and d = 3.5 (bottom). In the 
top plot with no time delay, N1 ’s activity (red) peaks a little 
ahead of N2 ’s most of the time. In the bottom plot where 
the delay is optimal, we observe an excellent alignment of 
the gamma peaks produced by N1 and N2 . Such alignments 
are not always present, however, because gamma rhythms 
degrade from time to time, as can be seen at the beginning 
of the time interval shown.

Fig. 2   Correlations with time delay in network activity for N1

p
�����→ N2 , 

p = 0.075 . a Computed are correlations between X(t) and Y(t + d) 
as functions of d (for 0.5 ms increments of d) for two networks con-
nected as in Sect. 4.1. Each color represents a different trial using a 
different network with the same connection probabilities. The loca-

tions of the first peaks, which occur at approximately 3.5 − 4 ms 
for all of the trials, are taken to be the response time of N2 to N1 . b 
shows the superimposed plots of X(t) and Y(t + d) for one of the trials 
in panel a, for d = 0 and 3.5 ms on the top and bottom, respectively; 
the graph of X(t) is in red, and that of Y(t + d) is in black
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The existence of an intrinsic optimal time delay is an 
emergent phenomenon. We stress that this is a much stronger 
statement than the existence of a time shift that maximizes 
correlations for each initial condition. The notion of optimal 
time-delay we have observed is independent of initial 
condition.

The presence of a response time or phase-shift between 
post-synaptic and pre-synaptic firing has been observed 
experimentally (Fries, 2005; Jia et  al., 2013; Bastos 
et  al., 2015; Fries, 2015; Zandvakili & Kohn, 2015). 
In particular, Zandvakili and Kohn (2015) reported an 
increased probability of a V2 spike 3 ms after a V1 spike. 
Though this result was computed using pairs of neurons, 
it was in the ballpark of the optimal time delays we have 
found. We are unaware of in-depth theoretical studies of 
this issue prior to the present work.

4.3 � Dependence on sample size

Although improvements in technology have enabled one 
to record from larger and larger neural samples and these 
capabilities are bound to improve further in the near 
future (see e.g. Steinmetz et al. (2018)), current recording 
technology cannot simultaneously record all spiking activity 
from local populations. An important question, therefore, is 
how many neurons are needed to obtain an accurate estimate 
of the population correlation and optimal time delays.

We studied this in the N1 → N2 network using samples 
G1 and G2 consisting of N E-neurons from each layer, 
where N varied from 1 to the size of the full population. 
The correlations, �N , for p = 0.075 computed with optimal 
time delays are shown in Fig. 3a, with 5 trials for each N. 
Ranges of the optimal time delays in the computation of �N 
are shown in Fig. 3b.

Here, N = 1 corresponds to correlations between pairs 
of neurons. We see that the numbers are very small, about 
a tenth of correlations between entire E-populations. In 
addition to having small correlations, the trial-to-trial 
variances are large, having the same order of magnitude 
as the correlations themselves. These observations are 
consistent with individual neuron spikes being almost 
“random”, as depicted in Fig. 1a.

We also see that as N increases from a small value, �N 
increases rapidly, starting to stabilize at about N = 100 and 
eventually asymptoting to the population value.

The effects of subsampling can be deduced from Eq. (3) 
as follows: Assuming that the covariances between neurons 
in G1 are identical, and the same is true for G2 , we let c1 and 
c2 denote these paired covariances. We also assume that the 
covariances between any two neurons, one from G1 and one 
from G2 , are identical and denote this value with c12 . Then it 
follows from Eq. (3) that

As �2
i
 is significantly larger than ci (confirmed in data from 

our simulations), �2
i
 is more dominant than (N − 1)ci for 

small N, so the right side of Eq. (4) is roughly proportional 
to N for N small, as can be seen in the inset in Fig 3a. But c1 
and c2 are not zero in part due to gamma-band activity within 
local populations (see Fig 1). This causes the expression on 
the right side of Eq. (4) to tend to a constant as N increases. 
The analysis above explains the shape of the plot in Fig 3a.

As an application to experimental neuroscience, Eq. 
(4) can be used to deduce the true values of population 
correlations from estimates of �i , ci , and c12.

(4)�N =
Nc12√

(�2
1
+ (N − 1)c1)(�

2
2
+ (N − 1)c2)

.

Fig. 3   Correlations and optimal delays as functions of sample 
size N. a Correlations between two samples of size N from N1 and 
N2 in a N1

p
�����→ N2 network with p = 0.075 . Results are based off 

of one, 8 second long simulation, with correlations computed for 
N = 1, 10, 20, 30, ..., 290 randomly selected E-neurons. Shown 
are results of 5 trials (a different sample for each trial) for each N. 

The population correlation using all 300 neurons is about 0.33 and 
is shown by the gray, dashed line. The inset shows more detail for 
smaller samples, with N = 1, 3, 6, 9, ..., 30 . b Maximum and mini-
mum optimal time delays as a function of N, for the same simula-
tion in panel a. The range of time delays was computed over 10 trials 
(using a different sample of neurons in each trial)
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Another noteworthy – and somewhat surprising – finding 
is that when using as few as five neurons from each layer, the 
optimal time delays already stabilized and were around 3.5-4 
ms, which was the optimal time delay for the full population 
found in Sect. 4.2; see Panel b in Fig. 3. Thus unlike population-
level correlations, which are strongly dependent on sample size, 
optimal delay measurements stabilize quickly at small N and 
can already be reasonably captured with present recording 
technology.

5 � Correlations: modeled neuronal 
populations vs periodic oscillations

Section  5.1 contains a more systematic study of 
correlations on the population level for the two-component 
feedforward networks constructed in Sect. 4.1. To explain 
the robust correlations observed, we examine an earlier 
proposal that firing rate oscillations in gamma rhythms 
may be responsible for synchronizing the two populations 
(Fries, 2005; Fries, 2015). In Sect. 5.2, we present results 
on correlations between source and target signals, both of 
which are assumed to be regular periodic oscillations, and 
compare them to our findings for the network N1

p
�����→ N2.

5.1 � Correlations in our 2‑component model: 
varying connectivity and gamma characteristics

To consolidate the results in Sect. 4.2, and to further analyze 
the relationships between correlation, network properties, 
and gamma characteristics, we carried out a systematic study 
consisting of three sets of simulations. All pertained to two-
component networks of the form N1

p
�����→ N2 . In each of the three 

sets, correlations were computed for p = 0.05, 0.075, 0.10 and 
0.15, a range thought to resemble connectivities in the real 
cortex. The local populations N1 and N2 were as described in 
Sect. 2.1. For all three sets, N1 and N2 had similar connectivities 
and firing rates, but gamma characteristics were varied.

The local  populat ions with dist inct  gamma 
characteristics were of two flavors, to be referred to as 
“normal” and “synched”. “Normal” regimes are those 
depicted in the simulations in Sect. 2, so-called because 
the parameters there were chosen to produce gamma-band 
activity that emulates those in the sensory cortices (Henrie 
& Shapley, 2005). “Synched” regimes are, as the name 
suggests, more synchronized. Different circumstances, 
such as at the onset of a stimulus presentation, increased 
attention (Buzsaki, 2011), or the effects of drugs (e.g. 
anesthesia or ketamine) (McCarthy et  al., 2012), may 
produce regimes that are more synchronized than our 
“normal” regimes. Our “synched” regimes have lower 
peak gamma frequencies, because when firing rates are 
maintained but more neurons participate in each spiking 
event – a definition of greater synchrony – there must be 

fewer of such events, causing them to be further apart 
in time. Systematic ways to produce such regimes were 
carried out following ideas in Chariker et al. (2018) and 
parameters are given in Supplementary Information.

The three sets of simulations performed were for 
(i) normal driving normal, i.e., both N1 and N2 were 
normal, (ii) synched driving normal, i.e., N1 was 
synched and N2 was normal, and (iii) normal driving 
synched. The results of this subsection are summarized 
in Fig. 4. Correlations adjusted for optimal delay are 
shown in Fig. 4a; PSD and rasters for a synched regime 
are shown in Fig. 4b and should be compared to the 
corresponding plots for the normal regime shown in 
Fig. 1. Firing rates of the receiving population N2 are 
shown in Fig. 4c.

As can be seen from Fig.  4a, the correlation values 
computed in each of the three studies showed a steady 
rise as functions of connectivity p, and for each value of 
p, correlation values for independently drawn networks 
(using the same connection probabilities) and independently 
drawn initial conditions produced results that varied only 
mildly. The consistency seen in over 100 runs confirmed that 
these numbers are representative of the type of populations 
presented in Sect. 2.1 and the feedforward construction of 
Sect. 4.1. The existence of an optimal delay for each value 
of p independent of the network drawn and independent of 
initial condition was also confirmed.

We identify the following observations from Fig. 4a as 
being notable and requiring explanation:

(a)	 The first point is the magnitudes of the correlations. 
That they increased with p in each study was  
expected, but values of correlations between 0.2 and 
0.6 are quite large when N1 supplied such a small 
fraction of the excitatory current to neurons in N2.

(b)	 The existence of optimal delays requires both an 
explanation and an interpretation.

(c)	 Our third observation is that correlations are much 
higher when the source network is synchronized,  
i.e., synchronized systems entrain the spiking in 
regions downstream more effectively. They are also 
less susceptible to entrainment by source systems 
that are less synchronized.

(d)	 The last item is about firing rates. Notice that for 
corresponding values of p, synchronized sources 
caused only a slight rise in firing rates in the  
target networks. They produced much stronger 
correlations, but not necessarily higher firing rates.

Some of the points above will be explained 
mechanistically in Sect. 6.2. As the oscillatory behavior 
of gamma-band activity clearly played a role in the results 
above (see Fig. 2b), we first have a look at the case of regular 
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periodic oscillations to better understand the conceptual 
differences, if any.

5.2 � Correlations between periodically oscillating 
systems

The robust correlations in Fig. 4a, which can be interpreted 
as effectiveness of communication between the two 
populations, together with item (c), the observation 
that synchronized networks better entrain populations 
downstream, are reminiscent of a body of work in the 
literature known by the name of communication through 
coherence (Fries, 2005; Fries, 2015).

In Fries (2005), the author proposed that communication 
between two neuronal groups mechanistically depended 
on coherence between them, and that the basis of this 

coherence was neuronal oscillations. The author pointed to 
oscillatory synchronization in the source network, together 
with phase-locking between source and target groups, as 
being essential for effective communication. They placed a 
great deal of importance on the regularity of the oscillatory 
behavior and remarked that the absence of a reliable 
phase relation between the oscillations in the sending and 
receiving groups would be detrimental to communication.

In this subsection, we examine numerically the role of 
oscillatory behavior, as suggested in Fries (2005), as the 
sole mechanism for producing correlations, and compare 
the results to those in Sect. 5.1.

The following setup is considered. We assume, for 
simplicity, that before the source and target networks are 
connected, their oscillatory behaviors are represented by 
functions f1 and f2 respectively, where fi has the form

Fig. 4   Correlations and firing rates as functions of connectivity and 
degree of synchrony. a Correlation of source and target networks as 
a function of connectivity. Shown are peak correlations as functions 
of p. The three different plots represent different source → target pair-
ings. For the black line representing a normal → normal system, the 
colored dots are results from 5 trials using 5 different networks drawn 
with the same parameters. Note the strong correlations, as well as 
the low trial-to-trial variability. The values for the other lines were 

also averaged over 5 trials. Ranges for optimal time-delays are writ-
ten above each correlation value. Note that the synched source regime 
produced higher correlations, while the synched target regime low-
ered correlations. b Raster and PSD of a synched regime. c Mean 
firing rates of N2 , the target network. x-axis is the percentage con-
nectivity, 100p. Bar graphs show the average of 5 trials, 8 sec each. 
Note that for p ≤ 0.1 , firing rate did not increase appreciably with the 
increased synchrony of the source network
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In analogy with the notion of connectivity between N1 and 
N2 , connectivity p here translates into modifying f2(t) so 
that it becomes

Correlations between f1(t) and f̃2(t) are then computed as 
before.

Figure 5a shows three simulations for which �1 = �2 
for various values of �i at p = 0.1 . Here we see that when 
f1 and f2 have compatible phases, such as when the two 
phases differ by 0.1� , oscillatory behavior can indeed be a 
powerful vehicle for promoting strong correlations, but the 
result is entirely dependent on the phase relation between the 
two oscillations at t = 0 , and �i can be chosen to produce 
positive or negative correlations — if we do not incorporate 
a time delay into the computation of correlations. If we allow 
for time delays, then trivially the optimal delay is the shift 
that makes the two phases coincide at t = 0 and is entirely 
dependent on initial condition.

Figure 5b shows a simulation where �1 = 0.91 × �2 . The 
unadjusted correlation was computed to be 0.11. As can be 
seen from the plot, f̃2(t) advances in phase by about 9% each 
cycle, so that in about 11 cycles, the picture is essentially 
repeated. During these 11 cycles, the relative phases will 
vary from nearly coinciding, to almost anti-phase, and 
then return to coinciding. It is a mathematical fact that if 
we run the system for a long enough time, correlations will 
be the same, i.e. ∼ 0.11 , independent of initial phases and 
independent of �1 and �2 as long as �1∕�2 is irrational. If we 
run it for a short time, then correlations can vary depending 
on which stretch of the phase sequence we sample.

fi(t) = sin(�it + �i), i = 1, 2 .

f̃2(t) = pf1(t) + (1 − p)f2(t) .

To summarize, for rigid oscillations phase-locking is 
impossible without the frequencies of the source and target 
being identical, and when they are identical, the phase 
relation without time adjustment can range from the two 
systems oscillating completely in phase or anti-phase (or 
anything in between). Time adjustments can align the 
phases but the amount of adjustment depends on the initial 
condition.

This picture differs substantially from what was observed 
in our simulations for N1

p
�����→ N2 as demonstrated in Sect. 5.1. 

For neuronal models, there is partial phase agreement  
(or alignment of gamma events) under a wide range of 
conditions: following a time adjustment that is intrinsic to 
the system, this alignment holds independently of initial 
conditions and without preconditions on the peak gamma 
frequencies of source and target. How this flexibility is 
achieved is the topic of the next section.

6 � Mechanistic explanation for the robust 
correlations between source and target 
populations

That gamma-band rhythms are implicated in the relatively 
high correlations between source and target networks is 
abundantly clear; it was proposed in Fries (2005, 2015) and 
we have also seen it in our own simulations in Fig. 2b. We 
have also seen in Sect.  5.2 that oscillations alone cannot 
explain the phenomena observed. The aim of this section is 
to provide mechanistic explanations for the results reported 
in Sect. 5.1 , and to do that, we need to first understand the 
mechanisms behind the generation of gamma-band activity 
in single populations, which we review in Sect. 6.1.

Fig. 5   Correlations between 
periodically oscillating signals; 
see text for definitions of f1 and 
f̃2 . a Three trials in a system 
in which the source and target 
have identical frequencies. 
Unadjusted correlations are 
dramatically different depending 
on the initial phase difference 
between them. b Correlation for 
a system where the source and 
target have different frequencies
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6.1 � Mechanistic explanation for the generation 
of gamma‑band rhythms in single populations

A widely accepted explanation for gamma-band activity 
proposed 20 years ago is PING (Whittington et al., 2000; 
Tiesinga et al., 2001; Börgers & Kopell, 2003; Börgers, 
2017). The original picture of PING (of which there 
are variants e.g. “weak PING” (Börgers et  al. (2005)), 
consists of a steady external drive together with E-to-I and 
I-to-E couplings within the local population: the external 
drive causes all of the E-neurons to spike essentially 
simultaneously; that causes all of the I-neurons to spike, 
which suppresses the entire population for a certain time 
period, until the external drive prevails, leading to an 
E-population spike and a repeat of the cycle.

PING produces population spikes that are periodic and 
highly regular. While this may be how gamma rhythms are 
in certain regions of the brain, we are primarily interested in 
the sensory cortices where experimental data do not support 
periodic population spikes.

The author of Brunel (2000) proposed to view gamma 
rhythms in terms of a Hopf bifurcation but that is for their 
reduced models, not the network. We do not know if the 
network regimes that motivated this reduction will support 
the gamma-band activity described in Sect.  2.2: to our 
knowledge, that has not been documented.

Another much cited theoretical paper on gamma rhythms 
is Brunel and Wang (2003), which had the theoretical 
focus of understanding the frequency understanding the 
frequency of the rhythm. The existence of a frequency is also 
inconsistent with sensory data, which showed that gamma 
rhythms are broad-band with wandering frequencies; see e.g. 
Xing et al. (2012). In any case, Brunel and Wang (2003) did 
not offer a mechanistic explanation.

A mechanistic depiction of neuronal behavior that lies 
behind gamma-band activity is the phenomenon of multiple 
firing events (MFEs) first proposed in Rangan and Young 
(2013a, b) and subsequently studied in Chariker and Young 
(2015). MFE refers to the precipitation of a spiking event 
initiated by the crossing of threshold by a few E-neurons due 
to external drive and/or normal current fluctuations. These 
first spikes lead to recurrent excitation, which may or may 
not cause other neurons to spike. When it leads to further 
spiking activity, both E- and I-neurons are activated and the 
firing event can last for 2 to 3 ms until activity is curtailed 
due to the suppressing effects of inhibition.

The idea that MFEs play an instrumental role in the 
generation of gamma-band rhythms was proposed in Rangan 
and Young (2013b) and Chariker and Young (2015), and 
re-examined against biological data in Chariker et al. (2018) 
using a previously constructed, realistic model of the visual 
cortex. The authors of Chariker et al. (2018) called this 
mechanism recurrent-excitation-inhibition (REI).

A mechanistic description of REI is as follows: When 
the crossing of threshold of some E-neurons leads to 
an MFE as described above, most of the neurons in the 
local population are left hyperpolarized in its aftermath 
because I-cells are activated along with E-cells, and they 
are quite densely connected. The decay of I-conductance 
and the depolarization of E-cells due to external input leads 
eventually to the next event. This explains the generation of 
a rhythm. The time constant for I-conductance decay in the 
LIF equations places the frequency of these spiking events 
in the gamma band.

A major difference between REI and PING is that in 
REI, when an MFE is precipitated, it can involve variable 
fractions of the population depending on the membrane 
potentials of the neurons postsynaptic to the ones that 
initiated the event, the E-I composition of the set of neurons 
activated, and the speed of I-neurons to activate and quell 
the barrage of spiking. Inter-event times are also variable: 
if many I-neurons are involved, I-conductance will build 
up, delaying the onset of the next event. Moreover, spiking 
events can degrade, as the initial spiking may not produce 
a substantial MFE. These types of variability lead to the 
irregular, episodic nature of gamma-band rhythms like those 
observed in the real cortex.

The single population models presented in Sect.  2.1 
successfully captured this variability. While more 
analytically tractable models of single populations, such as  
those in van Vreeswijk and Sompolinsky (1998); Brunel (2000),  
may be appealing, we have not used them in our study 
because of a priori concerns that the diminished recurrent 
excitation and inhibition in these regimes – properties 
known to be implicated in the production of gamma-band 
activity – may impact the transfer of gamma rhythms 
between populations.

6.2 � Explaining how gamma rhythms synchronize 
source and target populations

We now return to the two-component feedforward model 
N1

p
�����→ N2 , and offer mechanistic explanations for phenomena 

(a) – (c) observed in Sect.  5.1 (restated below).
Our working hypothesis, following the proposal in Fries 

(2005), is that the strong correlation between N1 and N2 
is in large measure derived from the synchronization of 
their gamma rhythms: the local-in-time firing rates of each 
population rise and fall with frequencies in the gamma band, 
and there is a tendency – considerably beyond pure chance 
– for the peaks of the firing rates in N1 to coincide with 
those in N2.

The hypothesis above leads immediately to a number 
of intriguing questions: (i) When unconnected, there is 
no reason for the gamma rhythms produced by N1 and 
N2 individually to be related in any way. How can a mere 
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7.5% connectivity cause the peaks to show such nontrivial 
alignment after a suitable time-delay adjustment? (ii) 
Why should there be a notion of intrinsic optimal time 
delay independent of initial condition? (iii) Why do more 
synchronized sources produce higher correlations, as in 
the “synched driving normal” case in Fig. 4a? Why is it 
that unlike rigid oscillations, two networks can produce 
high correlations even when they have incommensurate 
frequencies?

Below we propose answers to these questions. Our 
proposals are based on a combination of experimental data, 
known theoretical results, previous modeling work, and our 
own simulations.

With regard to question (i), observe first that though 
each local population generates a gamma rhythm through 
its internal dynamics in the sense that it produces waves 
of recurrent excitation followed by suppression, there is no 
intrinsic timing associated with this rhythm, i.e., there is 
no fixed clock to which the population must adhere. This 
is documented in the experimental literature; see Burns 
et al. (2011). By altering the external drive supplied to the 
local population, such as by increasing this drive during 
the depolarization phase, one can hasten the onset of the 
next MFE. Likewise, withdrawal of some of the drive can 
have the opposite effect. In other words, gamma rhythms are 
malleable – the timing of firing events are influenced by the 
input signals received by the local population.

As to why so low a connectivity from N1 can produce such 
a robust correlation, i.e., why spike times in N2 adapt readily 
to spiking from N1 when N1 provides only a small fraction 
of the total excitatory input to neurons in N2 , the answer has 
to do with the fact that the excitatory and inhibitory currents 
received by a neuron are well balanced, not just when averaged 
over time as proposed in the well known theory of balanced 
states (van Vreeswijk & Sompolinsky, 1998), but also moment 
by moment; see the experimental results of Okun and Lampl 
(2008), the modeling results of Chariker et al. (2018), Fig. 4, 
and Joglekar et al. (2019); an example of this balance in our 
models is shown in Supplementary Information. Because of 
this tight balance, any temporary excess in excitation increases 
the possibility of producing a spike, making a cell especially 
sensitive to pulses from external sources. This phenomenon was 
first pointed out in Chariker et al. (2018); the authors described 
it as “the unreasonable effectiveness of external inputs”. Strong 
sensitivity to external pulses contributes to the malleability of 
gamma rhythms.

The discussion above takes us naturally to question (ii), 
which asks why there should be an intrinsic time delay. 
During a spiking event in N1 , the synaptic input to neurons 
in N2 is increased, elevating the probability of a spiking 
event in N2 a few ms later. Not every spiking event in 
N1 will result in a spiking event in N2 ; it is just that the 
probability is increased. We propose that the intrinsic notion 

of optimal delay we have observed is the statistical mean of 
the response time of neurons in N2 , i.e., the average time 
that it takes for the membrane potentials of neurons in N2 
to build up following an upsurge of synaptic input. This 
proposal is supported by the fact that typical optimal delay 
times are on the order of 3 − 4 ms, while the additional delay 
in transmission from source to target that we have imposed 
is 1 ms, and 2 − 3 ms is roughly the build-up time for MFEs.

For each fixed delay time d, the almost-sure convergence 
of correlations is in fact not surprising. It is a consequence 
of the ergodic theorem; our neuronal model with its Poisson 
drive is almost for certain ergodic (whereas rigid oscillations 
with identical frequencies are not). On the intuitive level, 
the value of d at which the maximum of �(X, Yd) is attained 
can be seen as the statistical mean of response times, but to 
make that more precise, one will have to define “an event”, 
or what constitutes “a response” to an event – clarification 
of these concepts we leave to future work.

We wish to point out that implicit to the idea of responses 
and response times is a presumed connection between action 
and reaction: a presumption that the target population adjusts 
its spiking patterns to those of the source – and this is part 
of what we mean by malleability. Indeed, when connectivity 
tended to zero, we found that correlations also became very 
small with no clear optimal time delays at which a peak 
occurred, even though both populations possessed similar 
spectrum profiles. In other words, the response of the target 
population to the source’s firing weakens as connectivity 
decreases.

In our simulations much of the convergence in 
correlations including the emergence of an optimal delay 
occurs within the first second. Given that the dynamical 
system has O(1000) state variables, this is very fast. Since 
correlations come from the alignment of gamma events, 
rapid convergence speaks to the flexibility of gamma 
dynamics in the target population, and how readily it adjusts 
its firing events to align them with those of the source.

Coming now to question (iii), there are two ways in which 
synchronized source networks behave differently with regard 
to producing correlations. The first is that synchronized 
regimes in N1 produce larger MFEs, meaning the number 
of E and I-neurons participating in each spiking event is, 
on average, larger; equivalently, the peaks in local-in-time 
firing rates are taller. Larger MFEs also produce stronger 
pushback by I-cells, leading to longer lulls between MFEs. 
More clearly defined firing events and more concentrated 
synaptic output during such events makes synchronized 
source networks especially effective at entraining the spikes 
of their targets. This leads to higher correlations.

But as explained in Sect. 5.1, synchronized networks (with 
the same firing rates as those in “normal” regimes) have lower 
peak frequencies. This implies that when a synched network 
drives a normal one, we are necessarily in a situation of 
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incompatible frequencies. Indeed one can see in Fig. 6b, steady 
drifts from time to time in the relative phases between N1 and 
N2 , much like those in Fig. 5b, but the patterns are not as rigid; 
they are interrupted by irregular behaviors and sometimes 
self-adjust.

Thus in the case of a synchronized network driving a normal 
one, the size of the correlation is influenced by two competing 
forces. Other things being equal, incompatible frequencies 
probably do lower correlations, but here it appears that the 
opposing forces prevail: The synchronizing power of larger 
MFEs in N1 , aided by the malleability of the N2 ’s rhythm and 
its ability to reset occasionally to disengage from incompatible 
frequencies, leads to higher correlations than in the normal 
driving normal case in Fig. 4a.

This completes our answers to the three questions above. We 
mention in closing that unlike in systems with rigid oscillations, 
correlations attributable to the synchronization of gamma-
band rhythms in source and target populations can never rise 
to anything close to 1, i.e., source and target populations can 
never be perfectly correlated. This is because gamma rhythms 
suffer inevitable degradations from time to time, a fact well 
documented in the experimental literature (Xing et al. (2012)). 
It is interesting that this feature both prevents correlations 
from becoming too high, and helps to keep them from being 
too low by offering the opportunity to reset when faced with 
incompatible initial conditions and/or frequencies. This together 
with the malleability of gamma rhythms as explained in this 
section is what produces the correlation values of 0.2 − 0.6 seen 
in our simulations.

7 � Discussion

This is a theoretical paper studying communication between 
source (sending) and target (receiving) neuronal populations. 
We viewed the co-fluctuation in spiking activity between 

the two populations as an indicator of the effectiveness 
of communication, and proposed to capture this using a 
population-level correlation.

Our main results

Our primary results describe salient features of 
source-target correlations for which we offer mechanistic 
explanations. The amplification of population-level 
correlations through the malleability of gamma rhythms is 
one of our most exciting discoveries. Our secondary results 
relate population-level metrics to paired correlations and 
subsampling. We summarize below a few highlights of these 
two groups of results.

Three basic features of source-target correlations that we 
found can be summarized as follows. First, with connectivity 
between source and target networks as low as 7.5 − 10% , 
we found that correlations were robust and consistently 
within the range of 0.3 − 0.5 (for “normal driving normal”) 
after we adjusted for a delay in the spike times of the target 
network. Second, we identified an optimal delay insensitive 
to network details that maximizes correlations, and proposed 
to interpret it as the mean “response time” of the target to the 
source. A third observation is that synchronized networks 
are more effective than normal networks in entraining spike 
times downstream. These observations are recorded in 
Sect. 5.1.

The high population correlations are without a doubt 
mediated by gamma rhythms, as has been proposed in 
Fries (2005, 2015), i.e., these correlations are due in 
part to the alignment of the peaks and troughs of firing 
rates of the source and target populations. But rigid 
oscillations, which were used in Fries (2005,  2015) 
for illustration, cannot explain many of the phenomena 
observed (see Sect. 5.2), because they depend on exact 
frequency compatibility and alignment of initial phases 

Fig. 6   Optimal-delay shifted spike count plots and rasters of the 
N1

p
�����→ N2 network with p = 0.75 . Summed spikes of the source net-

work is in red; summed spikes of the target network is in black. Both 
summed spikes and rasters are time shifted by the optimal delay to 
show the best alignment. a Normal driving normal system. Note the 

matched frequencies of the source and target. b Synched driving nor-
mal system. Despite incompatible frequencies, the spiking events of 
the source and target match remarkably well, producing a correlation 
of 0.4 − 0.5 (Fig. 4a), which is significantly above those of rigid oscil-
latory systems with incompatible frequencies (Fig. 5b)
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– correlations between real brain regions could not 
depend so delicately on such quantities!

What we found was that the irregular, even episodic, 
nature of gamma rhythms, together with their malleability, 
greatly enabled the alignment of gamma peaks between the 
source and target. Gamma rhythms in our models, as in the 
real brain, are irregular and naturally degrade from time to 
time, allowing the rhythms to reset. The malleability of the 
rhythm in the target network then allows it to align itself to 
that of the source network. This alignment is achievable with 
a relatively small amount of input from the source because 
of the tight moment-by-moment balance between excita-
tory and inhibitory currents that renders external pulses 
extremely effective. These ideas, which we regard as among 
the most important points of this paper, are explained in 
detail in Sect. 6.2.

Turning to our second group of results, we have advocated 
in this paper for the use of population-level metrics on 
correlations, while most of the results on correlations in 
the literature pertain to pairs of neurons. We also note that 
other metrics, such as mutual information, have been used in 
the literature (Dayan & Abbot, 2001; Grün & Rotter, 2010). 
We chose to use correlations to describe both response 
and response times because the correlation carries explicit 
information on the simultaneous rise and fall of local-
in-time firing rates in the two populations. Quantitative 
relations between paired and population-level correlations 
are presented in Sect. 3.2, where it was revealed that hidden 
in the relationship is the degree of synchrony among neurons 
within the two networks. We discuss also in Sect. 4.2 the 
effects of subsampling, deriving a mathematical formula for 
the dependence of correlations on sample size.

Relation to existing literature

This work is related to a number of topics in the 
neuroscience literature. We discuss below three areas to 
which our results are most closely connected.

Closest to the present work is Fries (2005,  2015). 
Our study is along similar lines, but we used semi-
realistic neuronal networks (something not done in Fries 
(2005,  2015)) and a more accommodating measure 
of coherence. To the degree that neuronal oscillations 
contribute to increased correlations, we agree with 
his findings; we find also using our network models 
that synchronized sources produce larger correlations 
(Sect. 5.1). It has also been suggested that communication 
in Fries (2005, (2015)) referred to measurable increases in 
firing rates of target regions. Our findings do not support the 
idea that higher correlations are necessarily accompanied 
by higher target firing rates (Fig 4c). Our main contribution 
to this topic is to point out that unlike rigidly oscillating 
systems where source and target are either phase-locked or 

phase-incoherent, models with more realistic depictions of 
gamma activity reveal a more nuanced picture: coherence 
is never perfect but it is often significant, due to the absence 
of intrinsic clocks in gamma rhythms and the target 
population’s tendency to align its gamma events with those 
in the source.

A second topic to which this work is intricately related is 
that of gamma-band activity, the properties of which have 
been well documented in the experimental literature (Gray 
& Singer, 1989; Henrie & Shapley, 2005; Jia et al., 2011; 
Burns et al., 2011; Xing et al., 2012). While the oscillatory 
behaviors of gamma rhythms are well known and have 
been hypothesized (though not confirmed) to be related to 
various neural phenomena (Pesaran et al., 2002; Sederberg 
et al., 2003; Buzsaki, 2011), the irregularity, not to mention 
malleability, of these rhythms had, up until recently, not been 
connected to known neural phenomena. Besides our own 
work here, the only other paper we know of that exploited 
the broad-band nature of gamma rhythms is Palmigiano et al. 
(2017). The authors of Palmigiano et al. (2017) pointed to the 
non-rigidity of gamma rhythms as a possible advantage for 
information routing in multi-component networks. There is 
some degree of overlap between their conclusion and ours. A 
major difference is that we have supported our findings with 
an in-depth analysis of neural mechanisms. We have offered 
novel mechanistic explanations for how the irregularity and 
malleability of gamma rhythms enhances communication.

A third topic impacted by this work is the relationship 
between population and individual neuron activity. In part 
due to the use of electrophysiology, much of neuroscience 
(both experiments and theory) has focused on properties 
of single neurons, which is of course important in its 
own right (Kawaguchi & Kubota, 1997; Cardin et  al. , 
2007; Nowak et al., 2008). But neurons interact with one 
another, producing new emergent phenomena (Sect 2.2), 
and this collective behavior likely has greater influence 
on the dynamics downstream than individual neurons  
do (though there are exceptions). Indeed, the strong  
interest in correlations between pairs of neurons, both 
experimental and theoretical (Roe & Ts’o, 1999; Nowak 
et  al., 1999; de la Rocha et  al., 2007; Ostojic et  al., 
2009; Renart et  al., 2010; Jia et  al., 2013; Zandvakili  
& Kohn, 2015) i.e., the interest in how the behaviors  
of different neurons are related, is itself recognition  
from the neuroscience community of the importance of 
collective behavior. In this paper, we took this one step 
further, to promote the study of correlations between 
outputs of two populations. Under very mild assumptions, 
we were able to derive quantitative relations between 
correlations and sample size (Sect 4.2), a result that we 
hope will be relevant as improving technology enables 
experimentalists to simultaneously capture the spiking 
activity of larger and larger samples of local populations.
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