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Abstract
Transcranial Direct brain stimulation (tDCS) is commonly used in order to modulate cortical networks activity during physio-
logical processes through the application of weak electrical fields with scalp electrodes. Cathodal stimulation has been shown to
decrease brain excitability in the context of epilepsy, with variable success. However, the cellular mechanisms responsible for the
acute and the long-lasting effect of tDCS remain elusive. Using a novel approach of computational modeling that combines
detailed but functionally integrated neurons we built a physiologically-based thalamocortical column. This model comprises
10,000 individual neurons made of pyramidal cells, and 3 types of gamma-aminobutyric acid (GABA) -ergic cells (VIP, PV, and
SST) respecting the anatomy, layers, projection, connectivity and neurites orientation. Simulating realistic electric fields in term
of intensity, main results showed that 1) tDCS effects are best explained bymodulation of the presynaptic probability of release 2)
tDCS affects the dynamic of cortical network only if a sufficient number of neurons are modulated 3)VIP GABAergic interneu-
rons of the superficial layer of the cortex are especially affected by tDCS 4) Long lasting effect depends on glutamatergic synaptic
plasticity.
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1 Introduction

Transcranial direct Current stimulation (tDCS) is a widely
used neuromodulation technique based on the use of weak
electric currents (typically up to 2 mA) delivered at the level
of the scalp. tDCS has been tested in a large panel of neuro-
logic and psychiatric conditions such as stroke, Parkinson
disease, dystonia, AD, chronic neuropathic pain, primary
headache, tinnitus addiction, eating disorders, and Tourette’s
syndrome (Lefaucheur et al. 2017). Anodal stimulation (by
convention, induced by a positive electrode) has been shown
to enhance excitability of the targeted cortical networks and to
improve the clinical symptoms caused by a loss of cortical
function (Filmer et al. 2014; Krause et al. 2013; Nitsche and
Paulus 2001; Sellaro et al. 2015). In contrast, cathodal stimu-
lation has mainly inhibitory effects and could be useful in
conditions linked to a pathological hyperexcitability

(Biabani et al. 2018; Gschwind and Seeck 2016). In this re-
gard, cathodal tDCS has been used in various types of epilep-
sies in order to decrease the excitability of the seizure onset
zone (see review in XXXX) and subsequently the occurrence
of seizures. However, clinical results are variable but several
studies have reported a reduction of the seizure frequency and/
or a reduction of epileptiform activity, either on the short-term
(minutes to hours after cathodal tDCS) or on the long-term
(days after after cathodal tDCS) (San-juan et al. 2015).

While conflicting data exists in the literature on the consis-
tency of these effects(Lefaucheur et al. 2017), there is now
converging evidence that the weak electric fields induced by
tDCS (on the order of 1 V/m, i.e. subthreshold), can modulate
neuronal function. In particular, it is estimated that a tDCS
intensity of 1 mA generates electrical fields at the level of
cortical neurons in the 0.2–0.5 V/m range (Datta et al. 2009;
Modolo et al. 2018; Sadleir et al. 2010). The impact of tDCS
at an intensity of 2 mA on the neuronal resting membrane
potential is estimated on the order of 0.2 mV (Esmaeilpour
et al. 2018; Miranda et al. 2006). This depolarization value is
too small to reach the spiking threshold.

Unfortunately, the effects of such weak electric fields are
overlooked in the literature. Most in vitro studies investigating
cellular mechanisms make use of electric fields that are 10 to
100 times higher than those generated by actual tCS. This

Action Editor: Steven J. Schiff

* Fabrice Wendling
fabrice.wendling@inserm.fr

1 Univ Rennes, Inserm, LTSI (Laboratoire Traitement du Signal et de
l’Image) - UMR_S 1099, 35000 Rennes, France

Journal of Computational Neuroscience (2020) 48:161–176
https://doi.org/10.1007/s10827-020-00745-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s10827-020-00745-6&domain=pdf
https://orcid.org/0000-0002-1395-7341
https://orcid.org/0000-0003-2590-6848
https://orcid.org/0000-0003-2428-9665
https://orcid.org/0000-0003-0217-5886
mailto:fabrice.wendling@inserm.fr


limitation was addressed in a few in vitro studies which made
use of more realistic tDCS/tACS-level electric fields (0.5 to
1 V/m) stimulation. Results confirmed an average of 0.12 mV
depolarization of the cell bodies for each 1 V/m of applied
field (Jefferys et al. 2003), and simulated results predicted a
modulation of axon terminals polarization that are two–three
fold more sensitive than somas (Reato et al. 2010). While the
impact of electric fields of such magnitude on single neuron
activity is almost negligible, the situation might be different at
the level of local neural networks involving several thousand
neurons (Dayan et al. 2013).

We developed a novel computational model combining the
advantages of both cellular and neural mass levels. Indeed, the
model explicitly represents individual neurons that are synap-
tically connected. This approach differs from the classical HH
formalism as it implements physiology-based input/output
functions of neurons instead of transmembrane ionic currents
controlled by voltage-gated channels. It is worth noting that
the model accounts for basic rules of synaptic plasticity and
tDCS effects at the level thousands of synaptically-connected
physiologically-relevant individual neurons. Following this
approach, we simulated a cortical patch able to reproduce a
pathological condition of hyperexcitability, giving rise to in-
creased synchronization among neurons and ultimately to,
epileptic spikes. From the simulation of tDCS applied to this
network, insights could be gained into the multi-faceted - pos-
sibly synergetic - mechanisms of acute and long-lasting effects
of tDCS onto neurons and neural networks in general and into
the therapeutic effects on the epileptic cortex in particular.

2 Method

2.1 Model design principles

Experimental data suggest that neurons exposed to tDCS re-
main in a physiological functioning mode (Jackson et al. 2016),
and that network effects emerge from slight modifications in
many parameters linked to synaptic and membrane properties
exposed to tDCS (Rahman et al. 2017). Therefore, modeling
these effects, as well as modeling synaptic physiological plas-
ticity, requires that each synapse and soma can be represented
separately. This is usually achieved in the general framework of
microscopic models, on which this study is grounded.

Along this line, we developed a model of a neocortical
patch respecting the distinction of 5 layers and different cate-
gory of excitatory principal cells (PC) and inhibitory interneu-
rons (IN). The neocortical patch is targeted by thalamocortical
glutamatergic projections.

Since the effects of tDCS strongly depend on the orienta-
tion of neurites in the electric field (Bikson et al. 2004;
Kabakov et al. 2012), we took into account the location of cell
bodies and neurites relative to each other and to the electric

field assumed to be uniform at the level of a neocortical
column.

To account for long term changes of network activity, we
implemented two components of synaptic plasticity, namely
long term potentiation (LTP) and metaplasticity. Both refer to
the property of synaptic gains to change according to the ac-
tivity of the pre- and post-synaptic neuron(Abraham 2008;
Malenka and Bear 2004). LTP was implemented as an alter-
ation of the amplitude of post-synaptic potentials. For
metaplasticity, the theory proposed by Bienenstock, Cooper
and Munro (Cooper and Bear 2012), known as BCM plastic-
ity, was chosen. This choice was motivated by two advan-
tages. BCM plasticity is strongly related to physiology. It
takes into account the homeostatic property of plastic changes,
theoretically avoiding the neuronal activity to fall to zero or
diverge to infinity. In addition, it can be easily implemented in
neuron models (see section 2.3; plasticity, below).

2.2 Model structure

A cortical patch model approximately matching a cortical col-
umn size (Mountcastle 1997) was designed. It comprised
around 104 neurons and 500 synapses per neuron. The major-
ity of neuron-to-neuron connexions are underlied by several
synapses (Fauth et al. 2015; Hiratani and Fukai 2018). To
account for this redundancy, depending on the type of neuron,
their morphology and the distance between the source and the
target neuron, 2 to 100synapses arising from a source neuron
were considered as a single synapse on the target neuron.
Main features of the model architecture are summarized
hereafter.

2.2.1 Cell types

Four types of neurons were considered based on histological
studies (Tremblay et al. 2016). Their physiological and anatom-
ical characteristics were assumed uniform within each cortical
layer (Fig. 1a). In our model, glutamatergic excitatory principal
cells accounted for 70 to 80% of neurons among layers. In layer
4 they were represented by spiny stellate cells. In other layers
they were pyramidal cells. The remaining cells were gamma-
aminobutyric acid (GABA)-ergic interneurons, among which
we distinguished 3 subtypes, meant to represent nearly 100% of
GABAergic neurons (Rudy et al. 2011). These included 40 to
50% of parvalbumin expressing neurons (PV), represented by
basket cells, 30 to 40% of somatostatin expressing interneurons
(SST) represented by Martinotti cells, and 10 to 20% of
vasointestinal peptide expressing interneurons (VIP).

2.2.2 Anatomical structure

According to data on human (Harris and Shepherd 2015;
Jiang et al. 2015; Markram et al. 2004; Mohan et al. 2015;
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Spruston 2008) and mammalian (Braitenberg and Schüz
2013; Harris and Mrsic-Flogel 2013; Meyer et al. 2010;
Prönneke et al . 2015; Wang et al . 2004) cortex

cytoarchitecture, we definedthe cell type proportions, the cell
type axonal and dendritic tree shape, the mean connectivity
from a cell population to another, within each layer and among
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Fig. 1 Network anatomy (a): Simplified description of the cortical
architecture and connectivity. Distant thalamocortical and cortico-
cortical excitatory connections mainly project onto layer 4 and 2–3, re-
spectively. Glutamatergic principal cells (PC) from layer 4 project to
layers 2–3 and 5, 5 to 6 and 6 to 4. PC from layer i) 2–3 project to distant
cortex, ii) 6 to thalamus and iii) 5 to other subcortical structures. Gamma-
aminobutyric acid (GABA)-ergic cells include three main types of inter-
neurons. Dendritic-targeting, Somatostatin expressing (SST) GABAergic
interneurons (INs) predominate in lower layers and project to upper
layers. SST INs target PC and parvalbumin expressing (PV) interneurons.
PV INs are more uniformly distributed and have local inputs and outputs
achieving feed-forward inhibition (FFI) and feedback inhibition (FBI)

with PC; Vasointestinal peptide expressing (VIP) interneurons predomi-
nate in upper layers and mainly project to lower layers. b: Illustration of
a subset of neurons (n = 5000) in the simulated cortical patch: PC (in
red) and their apical dendrites varying in height among layers; SST (blue),
PV (green) and VIP (yellow). Thalamocortical projections are schema-
tized at the lower part. c: Network of a single PC (layer 2–3): grey lines
denote all the intracortical inputs (about 500 per cell). Colored dots rep-
resent target cells. The afferent connections are represented by polylines
converging to the cell, the middle vertex representing the spatial location
of the synapse (many of them are in layer 1, due to the apical dendrite that
is not represented)
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layers (Harris and Shepherd 2015; Purves et al. 2001; Squire
2013; Thomson and Bannister 2003; Thomson and Lamy
2007). Parameters are summarized in Table 1.

The model included five layers corresponding to layers 1,
2 + 3, 4, 5, and 6 (Fig. 1a). As layers 2 and 3 share close
properties in terms of connectivity and composition (Mohan
et al. 2015; Purves et al. 2001), they were considered as a
single layer. Indeed, in some non-human mammal brains
and in some human cortical areas layers 2 and 3 are not dis-
tinguished. Layer 1 consisted only of synapses and was empty
of neuron somas. The layers were stacked on a perpendicular
axis, called radial (relative to the center of the brain). The
structure was invariant with respect to orthoradial translation.
Every layer was composed by several populations of gluta-
matergic and GABAergic cells, statistically uniform in com-
position and connectivity with other intra- and extra-layer cell
populations.

2.2.3 Cell shapes and connectivity

The axonal and dendritic trees were assumed to be invariant
with respect to rotation on a radial axis. Thus, for a given
neuron, they are characterized by a 2D position and a radius
varying from 0 to 350 μm among cortical layers.

The connections between neurons were computed in each
layer according to the average total number of afferent con-
nections, to the overlap of dendritic and axonal trees in the
given layer (Packer et al. 2013) and to a connection specificity
between cell types (Fig. 1b). Every cell soma was spatially
localized. For each cortical layer L, given i) the type and layer
{Tpre, Lpre} of the presynaptic cell population, ii) the type and
layer {Tpost, Lpost} of the postsynaptic population, we

computed, the average number of afferent synapses from the
neurons of the {Tpre, Lpre} population towards one neuron of
the {Tpost, Lpost} population as follows. For each postsynaptic
neuron, presynaptic neurons in its vicinity were selected ac-
cording to a gaussian probability law. Each synapse was then
positioned in the vertical plane containing the pre- and post-
synaptic somas (Fig. 1c), at random height in layer L. In order
to obtain a connectivity scheme resembling that of the actual
neocortex, the radiuses of the axonal and dendritic trees of
each type of neuron among layers were scaled such that the
relative number of connections was realistic for each popula-
tionwere adjusted such that the total number of input synapses
was in the defined range (500 afferences in average) while
respecting the relative quantities of inputs from each popula-
tion in each layer.

2.2.4 Distant afferences

In order to simulate the input of distant regions to the cortical
patch, we integrated glutamatergic projections on layers 2, 3
and 4, which accounted for both thalamocortical afferences
and cortico-cortical inputs, as determined by a literature review
(Ji et al. 2016; Kuramoto et al. 2009; McGuire et al. 1984;
Meyer et al. 2010; Tlamsa and Brumberg 2010). A population
of principal cells (PC), called input cells, and representing 7%
of the cortical neurons, generated an autonomous excitatory
glutamatergic input onto the cortical patch (O’Kusky and
Colonnier 1982; Peters et al. 1994). The axonal tree of these
input cells was larger in the 4th(for thalamocortical input) and
in the 2nd -3rd (for cortico-cortical) layers. Incoming action
potentials were randomly distributed with a firing rate of 4 to
5 Hz. Consistently with physiology (Gil et al. 1999) the

Table 1 Main characteristics of the populations of neurons by type and location (layer), in terms of proportion (PC: glutamatergic principal cells; SST,
PV, VIP: GABAergic interneurons expressing somatostatin, parvalbumin, and vasointestinal peptide, respectively)

PC SST PV VIP

Global Proportion 75 10 10 5

Repartition among layers Homogenous More in lower layers Slightly more in upper layers More in upper layers

Axonal tree (local efferences) L2–3 - > L1
L4 - > L2–3 to 5
L5 - > L6
L6 - > L6

L2–3, 5, 6 - > all layers
L4 - > L1 to 4

Ipsi-layer more than adjacent layers L2–3 - > L1 to L2–3
L4 to 6 - > all layers

Dendritic tree L2–3 < − L1, 2–3
L4 < - L4
L5 < - L1 to 5
L6 < - L2–3 to 6

Ipsi-layer >
adjacent layers

Ipsi-layer >
adjacent layers

Ipsi-layer >
adjacent layers

Main excitatory afferences (PC) L2–3: L4 and distant cortex
L4: thalamus and L6
L5: L4 and L2–3
L6: L5

Mainly local
Ipsi layer >
other layers

Local > distant
Ipsi layer >
other layers

Distant and local

Main inhibitory afferences SST (apical dendrites)
PV (basal dendrites)

VIP SST SST
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weights of excitatory synapses from the input cells were 3 to 4
times larger than between local PCs.

2.3 Model function

The neuron function was based on a classic “integrate and fire”
principle: an action potential (AP) was emitted by a neuron,
outside a refractory period after a previous AP, whenever its
membrane potential was higher than its AP threshold (Fig. 2a,
left). Each AP was followed by a refractory period and a mem-
brane hyperpolarization. Due to this functioning, the firing rate of
a single neuron was related to its membrane potential by a hy-
perbolic tangent-like function, which is physiologically relevant
(Fig. 2amiddle). Each AP was transmitted to efferent synapses.

The activation of a synaptic terminal following the arrival
of an AP from the presynaptic neuron was dependent on a
probability of release (Branco and Staras 2009). Upon activa-
tion, glutamatergic or GABAergic postsynaptic potentials
were simulated with physiologically relevant kinetics and am-
plitude (Fig. 2a Right). The postsynaptic potential (PSP) was
characterized by Rise and Decay time constants, an amplitude
determined by the synaptic gain, and a positive (depolarizing,
excitatory synapse) or negative (hyperpolarizing, inhibitory
synapse) sign. A single PSP was shaped according to rise

and decay time constants used in exponential functions of

the type t−t0ð Þ:e−t−t0τ , if the incoming AP occurs at t0, which
is a simplified but physiologically relevant shape (Attwell and
Gibb 2005). The synapse transfer function was computed by
the Laplace transform of its impulse response (i.e. a PSP in
response to a unique AP) which is of the type 1

sþ1
τð Þ2, (where τ

denotes the rise and decay time constant values). As a result,
PSPs were obtained by solving a set of second order differen-
tial equations.

For each neuron, the membrane potential was calculated by
adding the postsynaptic potentials of the synapses to its resting
potential. AP threshold, refractory period, post-AP hyperpo-
larization, sign, probability of release, and PSP morphology
were specific to the type of presynaptic neuron. Synaptic gain
was synapse-specific. Each of those parameters was stored
individually for every neuron and synapse, so that they can
be separately modified, in our case through simulated tDCS.

Based on previous studies (Farrant and Nusser 2005;
Shamas et al. 2018; Zito and Scheuss 2009) PSPs were char-
acterized by the TPeak and TDecay constants. TDecay is de-
fined by the peak value divided by the constant e. The TPeak
values used in the model for PC, SST, PV, VIP were 6, 29, 1,
and 6 milliseconds respectively, and TDecay values were 32,
94, 19, and 32 milliseconds, respectively.
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Fig. 2 Synaptic and neuronal
dynamics (a): Functioning
features of a neuron: an action
potential occurs when the cell
membrane potential exceeds the
firing threshold, and is followed by
a hyperpolarization (left); The fir-
ing rate response curve to an in-
creasing afferent stimulation has
an initial hyperbolic tangent-like
shape (middle). Illustration of a
glutamatergic simulated post-
synaptic potential (PSP) that is a
sum of decreasing exponentials,
whose time constants have been
chosen to fit real PSP properties
(right). b: Plasticity induces syn-
aptic gain changes at the level of
each synapse, simulating long-
term Potentiation (LTP) or long-
term depression (LTD) adjusted by
the θm parameter. According to the
BCM principle this threshold pa-
rameter slowly moves proportion-
ally to the activity of the post syn-
aptic neuron, which results in ho-
meostatic plasticity. Abbreviation:
BCM: Binenstock, Cooper and
Moore plasticity rule; FR: firing
rate
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2.3.1 Plasticity

We implemented NMDA-dependent long term potentiation /
depression (LTP / LTD) and homeostatic BCM-like plasticity
(Fig. 2b). We applied plasticity to PC - > PC synapses exclu-
sively, as plasticity of IN remains largely unknown. BCM
Plasticity according to rules (Bienenstock et al. 1982;
Cooper and Bear 2012) relies on a function called φBCM(1),
that determines the variation of each synaptic weight.

dwj

dt
¼ φBCM y; θmð Þ:x j ð1Þ

where wi is the weight of an excitatory synapse; xi is the
activity of the presynaptic neuron; y represents the activity
of the postsynaptic neuron; θm is the moving threshold deter-
mining the switch between LTP and LTD; φBCM(y, θm) is de-
fined on positive real numbers by the following features:
φBCM(0, θm) = 0; y < θm ⇒ φBCM(y, θm) < 0, results in long
term depression. φBCM(θm, θm) = 0; y > θm ⇒ φBCM(y, θm) >
0, results in LTP.

In order to achieve homeostatic plasticity, the θm threshold
varies (2), according to y

θm tð Þ ∝
1

τ
∫t−∞y

2 t
0

� �
:e−

t−t
0

τ dt
0 ð2Þ

The more active the post-synaptic neuron, the larger θm,
resulting in a negative retroaction (homeostatic) on the activity
through a decrease of the afferent synaptic weights.

The function used the most frequently for φBCM is: dw j

dt ¼ y
: y−θmð Þ:x j=θm . However, in the case of the hyperexcitable
network described below the retroaction had to be strength-
ened to avoid divergence of the system. This was achieved by

introducing a coefficient dw j

dt ¼ y: y−θmð Þk :x j=θm, k > 1 (in
practice, k equals 1.8).

The time constants of plasticity were chosen at least one
order of magnitude higher than PSP time constants for the
LTP / LTD, and at least 100 times for the homeostatic
plasticity.

2.3.2 Normal vs. hyperexcitable network

The epileptogenic cortex is characterized by an impairment of
the excitation / inhibition balance, which is shifted towards
excitation (Fisher et al. 2005). Regarding interneurons, this
imbalance is mainly related to a decrease in the proportion
of SST positive interneuron and an increase of the size of their
axonal tree (Arain et al. 2012; Lopantsev et al. 2009), and an
increased activity of PV positive interneuron(Cossart et al.
2001). Regarding the PC, animal studies showed that gluta-
matergic synapses undergo pathological changes, including
an increase in the size of dendritic spines, which results in
abnormally high synaptic gains as shown by animal studies

(Avramescu and Timofeev 2008; Leite et al. 2005; Wong and
Guo 2013) and modeling (González et al. 2015).

With the aim of modeling a realistic pathological “epilep-
tic-like” condition, we designed an hyperexcitable network by
applying the following modifications from the normal physi-
ological condition: (1) a decrease in the proportion of SST
interneurons, (2) an increase in the size of their axonal tree,
(3) a slight increase in the proportion of PV interneurons, (4)
an increase in the synaptic gains of PC - > PC and PC - > PV
and (5) a slight decrease of PV - > PC gains.

2.4 Simulation of tDCS

DC stimulation can cause membrane potential variations at the
soma, dendrite and axon levels. Those variations, combined with
NMDA-dependent plasticity, have been proposed to account for
some long-lasting effects (Liebetanz et al. 2002; Nitsche et al.
2003). Simulating immediate tDCS effects can be achieved by
first approximating the variations of membrane potentials in-
duced by tDCS at somatic pre- and post-synaptic levels, and then
by modelling their impact on the neuronal function. This impact
should explain immediate effects and,when combinedwith phys-
iological plasticity, could account for some long-lasting effects.

In a studymodelling membrane potential variations in a static
electric field, it has been previously established that a low resis-
tivity cable in a uniform electric field tends to polarize exclusive-
ly at its extremities (Rahman et al. 2013). These authors predict-
ed that, although the inner part of an axon is not a perfect con-
ductor and the cell membrane not a perfect isolator, the cable
approximation is valid to a certain extent and tDCS preferentially
polarizes the neurite terminals. In our model, we considered that
a neurite directed towards the anode was hyperpolarized as in
(Rahman et al. 2013). This variation in membrane potential was
assumed to be related to i) the distance between the cell body and
the axonal end as well as ii) the direction of the electric field
generated by tDCS at the considered location. In practice, and as
illustrated in Fig. 3a, the electric field was presumed radial,
which corresponded to a cortical patch located on a gyrus con-
vexity. The variation in the membrane potential was approximat-
ed by the dot product between the field vector and the vector
pointing from the soma to the synapse (Fig. 3a).

2.4.1 Soma

Considered neurons were those with a dendrite strongly asym-
metrical with respect to the orthoradial plan. Principal cells in
layer 4 have no apical dendrite, neither do GABAergic inter-
neurons. We considered therefore that the membrane potential
of their soma was not modified by stimulation (Fig. 3a, left).
Only the somas of pyramids in layers 2–3, 5 and 6 were influ-
enced. In this case, anodal stimulation (apical dendrite directed
towards the positive electrode) depolarized the cell body while
cathodal stimulation had the opposite effect (Fig. 3a). We
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estimated the intensity of tDCS effects based on the work of
Rahman and Bikson (Rahman et al. 2013). The field induced
by stimulation ranged between 0.1 and 1 V.m−1 and resulting
membrane potential variations were lower than 1 mV.

per V.m−1. In the model those variations directly summed
up with the resting potential of the soma, and consequently
had an effect on the membrane threshold.

2.4.2 Neurites

According to Kabakov and collaborators (Kabakov et al.
2012), the effect of an electric field is marked on the pre-
synaptic compartment but not on the post-synaptic one.
Moreover, this effect depends on the AP propagation direction
with respect to the field. An AP propagating parallel to the
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Fig. 3 tDCS Simulation (a): Investigated cellular and synaptic
mechanisms. The simulated stimulation modifies the membrane
potential of 1/ cells whose body is non-symmetric regarding the
orthoradial plan, ie principal cells having apical dendrite; 2/ the axonal
presynaptic terminations, proportionally to the dot product between the
electric field E (blue arrow) and the [pre synaptic soma - > synapse]
vector (dash arrow); and 3/ the dendritic post-synaptic compartment, ac-
cording to the dot product between the electric field E and the [post
synaptic soma - > synapse] vector. b: Effects of tDCS induced mem-
brane potential variations on subcellular neurophysiological
mechanisms: Left, Top to bottom: basic condition. Action potentials

(AP) arrive on the presynaptic compartment; the neurotransmitter is re-
leased in the synaptic cleft and bounds to its receptors on the postsynaptic
compartment, generating a post synaptic potential (PSP). Right: with
simulated stimulation. The variation in the membrane potential is
subtracted from the AP threshold, thus modulating the neuron excitabil-
ity. The probability of neurotransmitter release at the axonal termination
varies, decreasing when the AP propagates towards the cathode. tDCS
effects are cell- and synapse-specific, depending on their relative location
in the electric field. Network effects emerge when small tDCS-induced
changes are repeated on a large set of interconnected cells (about n >
1000)
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field and towards a cathode generates a smaller local field
potential than without stimulation. An AP propagating to-
wards an anode generates a PSP of the same or slightly greater
amplitude. The effect is negligible for perpendicular fields.

Since the presynaptic effect is predominant and in accor-
dance with the “all or nothing”mode of function of a chemical
synapse, an action on the probability of release of the synapses
was assumed. The probability of release decreased when the
axonal end was depolarized (Fig. 3b).

The impact of tDCS-induced electric fields on post-
synaptic compartments is more ambiguous and has not been
demonstrated. However a hypothetical effect on the PSP am-
plitude has been tested in our model (Fig. 3b).

2.5 Evaluation of network effects

The large network comprised 104 neurons and 500 synapses
per neuron (not counting redundant synapses). To evaluate the
network effects of stimulation in the epileptic condition, the
size of the network was reduced, both in terms of number of
neurons and of synapses per neuron, while keeping the archi-
tecture and proportions of neurons. Hence, we built smaller
networks of 1000 neurons / 100 synapses per neuron, and 250
neurons / 40 synapses per neuron.

As compared to the large network, synaptic gains in small-
er networks (relative to the number of synapses) were slightly
adapted to obtain an hyperexcitable network that produced
epileptic spike-like events at an approximately similar
frequency.

2.6 Output variables

The measured outputs were the instantaneous firing rate and
membrane potentials of the neurons. The mean instantaneous
membrane potential of PC (most abundant cells of layers 2–3, 5
and 6), was used to simulate (approximate) local field poten-
tials. As PC of layer 4 are stellate cells which do not have an
apical dendrite, they contributed less to the LFP (Murakami and
Okada 2006) and were excluded from the LFP computation.

To measure the effects of stimulation on the hyperexcitable
network, we counted simulated epileptic spike-like events be-
fore, during and after stimulation. This count was performed
per unit of time by thresholding the instantaneous energy of
the signal.

2.7 Implementation in practice

For the time resolution, a 1/1000 s step was chosen as a good
compromise between computation time and the time scales of
inner and output variables variations. Indeed, the rise and de-
cay time constants of PSPs ranged from 1 to 30 ms. The
variables characterizing the states of individual synapses and
neurons at every time step could not be integrally stored for

the whole duration of the simulations, because of their size.
We only stored the mean membrane potential of each popula-
tion in order to compute the LFP.

The computation of PSPs for all the synapses is time-con-
suming. As it is intrinsically parallel, it can be run on a
graphics processing unit (GPU). We implemented an algo-
rithm to compute the value of every PSP in a couple of oper-
ations using an intermediate variable that is equivalent to the
neurotransmitter concentration in the synaptic cleft, as well as
rise and decay time constants.

To compute the PSP of a synapse, each time step requires
three multiplications and two additions.

SC tþ TSð Þ ¼ SC tð Þ þ APð Þ: 1–
TS

TR

� �
ð3Þ

PSP tþ TSð Þ ¼ PSP tð Þ þ SC tð Þ: TS
TR

� �
: 1–

TS

TD

� �
ð4Þ

In the above equations t stands for the time, TS for the
sampling step, and TR (rise) and TD (decay) for the time
constants (TD is assumed to be larger than TS, both are related
to the rise and decay of the PSP). AP represents the incoming
action potential, its value being set to 0 most of time, and to 1
when both an AP arrives and the neurotransmitter is released.
SC (synaptic cleft) is a variable representing the kinetic of
neurotransmitter concentration in the synaptic cleft and PSP
is the final variable to compute.

It is noteworthy that at every time step, the amount removed
from SC, is added to PSP, which is consistent with a chemical
reaction which, in our case, represents the binding of the neuro-
transmitter to its receptor on the postsynaptic compartment).

Passing to the limit,
dSC tð Þ
dt ¼ − TS

TR :SC tð Þwhich implies SC tð Þ ¼ exp − TS
TR :t

� �
up

to a constant multiplier.
This means that the neurotransmitter concentration de-

creases exponentially, which is consistent with a biochemical
binding process. Similarly,

dPSP tð Þ
dt

¼ −PSP tð Þ: 1−
TS

TD

� �

þ 1−
TR

TD

� �
:exp −

TS

TR
:t

� �
ð5Þ

which implies

PSP tð Þ ¼ C:
TD:TR

TS: TD−TRð Þ :exp − 1−
TS

TR

� �
:t

� �

− 1−
TS

TR

� �
:exp − 1−

TS

TR

� �
:t

� �
ð6Þ

As C accounts for an integration constant.
Thus, PSP is a sum of two decreasing exponentials. This is

consistent with physiological data (Attwell and Gibb 2005)
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and with the neural mass used to model epileptic activity
(Wendling et al. 2002). For each type of synapse different
TR and TD were chosen to fit at best real PSPs.

The algorithm can be run using large arrays, each of one
gathering the same variable for all the synapses, for instance:
SC, PSP or (1-TS/TR). The arrays were stored on a graphic
card’s Video RAM, to speed up the computing. In order to
ease the summation, 2D arrays were used, in which one col-
umn stores the same variable for all the afferent synapses of
one neuron. Overall, a time step represents five basic opera-
tions on single precision format arrays, plus a column sum-
mation to compute the soma membrane potential. The same
principle was used to compute variables associated with plas-
ticity, namely, x y and θm as defined in the Eqs. (1) and (2).

3 Results

3.1 Simulation time

One second of activity of a cortical patch comprising 104

neurons and 5.106 synapses can be simulated in about 30 real
seconds. In order to limit the duration of simulations, this ratio
of 30/1 forced us to lower plasticity time constants as much as
possible, while keeping them at least an order of magnitude
higher than the synapses time constants.

3.2 Network functioning in non-hyperexcitable
condition

After initiation, the synaptic gains were modified through
plasticity and the network converged towards a balance that
was reached approximately within one hundred-fold the time
constants of the homeostatic plasticity. LFPs produced by the
network varied in frequency according to the strength of the
input noise, mostly in the gamma band (Fig. 4a). The frequen-
cy slightly increased when the afferent excitation increased.
These gamma rhythms were mainly produced by oscillations
between PCs and PV interneurons in accordance with well-
established experimental results (Cardin et al. 2009; Sohal
et al. 2009; Traub et al. 1996), see section 4.

3.3 Network functioning in hyperexcitable condition

Following the application of plasticity, the hyperexcitable net-
work was less stable than the control network. Depending on
the strength of the retroactions between activation and inhibi-
tion, the application of plasticity may induce a divergence of
the synaptic gains towards a non-realistic condition (eg a few
gains approach infinity whereas the others decrease towards
zero). However, the anatomical and physiological parameters
could be tuned in order to have the network converge towards

an epileptic-like stable state, while respecting the characteris-
tics mentioned above.

As compared to the control network, gamma rhythms pro-
duced in the hyperexcitable network were less regular and less
modulated. In addition, epileptic spike-like events were also
generated in the hyperexcitable network. The positive retroac-
tion between PCs induced synchronous discharges of AP, pro-
voking the activation of SST interneurons which in turn
inhibited the whole network (Fig. 4b). This resulted in a sharp
decrease of the mean membrane potential. A simulated epi-
leptic spike-like event involved synchronized action potentials
generated by 8% of PCs, and by a much larger percentage of
IN (up to 27% PV, 44% SST, and 10% VIP) (Fig. 4c).

3.4 tDCS simulation

The effect of simulated cathodal stimulation on the hyperex-
citable network is depicted in Fig. 5a. Under cathodal tDCS
simulated stimulation the number of epileptic spikes in the
LFP decreased as well as the firing rate of pyramidal cells
and of GABAergic interneurons.

During cathodal tDCS the firing rate of PC and SST/PV
was decreased by 25 to 37%. VIPs, that normally inhibit SSTs
in the control network, were especially affected by tDCS as
the firing rate was decreased by 45% with respect to network
activity without stimulation. As illustrated in Fig. 5a, SST
interneuron activity was more regular during tDCS. In this
example, there is no epileptic spike-like event, which conse-
quently led to a more regular gamma band oscillatory activity
in the LFP.

3.5 Network effects

Cathodal tDCS induced both acute (time 0) and after (0 to
100 s) effects on the number of epileptic spikes generated by
the large 105 neuron network model (Fig. 6a). After the stimu-
lation, epileptic activity slowly reached back its pre-stimulation
level (Fig. 6a). During stimulation, the introduction of plasticity
induced a slow shift of synaptic gains. It is noteworthy that this
effect was obtained for a limited range of plasticity parameters
(mainly the enhancement of synaptic weight was limited to a
maximum of 3fold the initial values). Outside this range, syn-
aptic weights reached non-physiological values, falling to zero
or diverging towards infinity.

The same stimulation protocol for a network comprising
103 neurons and 100 synapses per neuron, caused immediate
effects but lasting effects were either shorter (0–20 s) or inex-
istent (Fig. 6b). On a smaller network of 250 neurons and 40
synapses per neuron, the stimulation protocol induced no last-
ing effects (Fig. 6c).

Expectedly, only immediate effects were induced by tDCS
when the mechanisms of plasticity were removed from the
large 10,000 neurons model. In this case the network went
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immediately back to its initial excitability level after stopping
the stimulation (Fig. 6d).

4 Discussion

In this study, a network model of a thalamocortical networks
comprising 10,000 individual neurons, based on physiological
data, was built in order to investigate and explain the potential
cellular mechanisms of tDCS on epileptic activity.

The individuation of every synapse provides the opportunity
to model the combined effects of neuromodulation and plastic-
ity, taking into account the microarchitecture and connectivity
of the cortex. The main results, discussed hereafter, logically
relate to the role of this architecture in the tDCS effects, and the
involvement of the main cell types, especially the VIP positive
interneurons. Finally, the link between immediate and after ef-
fects of tDSC through plasticity is addressed.

The network designed to simulate a normal cortical patch
in physiological condition produced gamma activities,
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and parvalbumin expressing
(PV+) Gamma-aminobutyric acid
(GABA)-ergic interneurons (INs)
produce gamma rhythms. b: in a
hyperexcitable network, the in-
creased positive retroaction be-
tween PC produces a synchro-
nized hyperactivity which in turn
activates Somatostatin expressing
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ables of the model in a hyperex-
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puted from the PC mean mem-
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170 J Comput Neurosci (2020) 48:161–176



resulting from the oscillations between PC and PV. This result
is in accordance with physiological data (Cardin et al. 2009;
Sohal et al. 2009; Traub et al. 1996).

The network designed to simulate a pathological ep-
ileptogenic cortical patch was obtained by applying ar-
chitectural modifications to the physiological patch, con-
sistently with biological data. Results showed that it
could produce epileptic spike-like events, involving
more GABAergic neurons than PC, as shown in exper-
imental data (Lévesque et al. 2016).

The model showed that it is possible to account for both
immediate and delayed effects of tDCS directly related to
membrane polarity variations of soma and axonal endings
and homeostatic plasticity. The simulated neurons remain in
a physiological operating range, which is coherent with
neuromodulation rather than stimulation. The simulated

effects mostly rely on a presynaptic modulation, in accordance
with literature (Kabakov et al. 2012).

It should be mentioned that non-synaptic mechanisms can
also be involved in the hyperactivity/hypersynchronization
present during epileptiform activity, as shown by different
in vitro/in vivo animal models, and that DC stimulation can
interfere with these mechanisms (Bikson et al. 1999; Ghai
et al. 2000). However, since the cellular and molecular targets
in this effect are not fully identified we chose to implement
only synaptic mechanisms.

Our results showed that the immediate effects of cathodal
tDCS include a decrease in the firing rate of all types of cells,
which is coherent with physiological data (Stagg et al. 2009) .

This effect is stronger on the VIP interneurons. This is
partly due to their predominance in the upper layers of cortex
(Prönneke et al. 2015). More generally, it suggests that the
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architecture of the cortex in terms of cell repartition among
layers, could be crucial to explain tDCS effects. These results
have also been suggested in previous work (Williams and
Holtmaat 2019).

Many studies have addressed the relationship between
brain stimulation and synaptic plasticity (Stagg et al. 2018).
The persistent effects of tDCS indicate an impact on plasticity,
but this impact is still poorly understood. Anodal tDCS has
been studied more than cathodal stimulation. Many molecular
andmorphological mechanisms have been invoked and would
be linked to changes in synaptic plasticity, such as BDNF
expression induced by tDCS (Fritsch et al. 2010; Pelletier
et al. 2015). tDCS modulates LTP and LTD (Márquez-Ruiz
et al. 2012) which is coherent with the hypothesis that long-
term effects partly rely on plastic changes due to immediate
effects (Liebetanz et al. 2002).

Lastly the model also suggests that tDCS long lasting ef-
fects partly rely on the network: they are weaker as the net-
work size and connectivity decrease. Neuromodulation relies
on slight changes in elementary neurophysiological parame-
ters at the cell level (i.e.membrane resting potential and prob-
ability of release), magnified by network effects (number of
neurons and plasticity of connections impacted by the weak
electric field) (Dayan et al. 2013; Reato et al. 2010).

The computation methods are a compromise between real-
ism and size of the network through the simulation time. Up to
an order of magnitude of 107 synapses, this time (30 s simu-
lation time for 1 s simulated activity) is reasonable on a main-
stream GPU. The size is not only limited by the number of
cores but also by the VRAMcapacity, since the variables (four
floating point formats for one PSP, idem for plasticity) are
stored on the graphic card. Any transfer between DRAM
and VRAM is time consuming, so that for small networks
(up to 105 synapses) the time of simulation is shorter on the
CPU, in which case it increases almost linearly with the num-
ber of synapses. When the network size increases the simula-
tion time on GPU remains almost constant up to 106 synapses
(mainly consisting of transfers) and then linearly increases
until the size of the network exceeds VRAM. The use of half
precision floating point format would spare memory while
probably keeping enough precision. The use of operations
from general-purpose computing on GPU such as “fused

�Fig. 6 Lasting effects of tDCS depending of the network’s size Count
of the epileptic-like spikes occurring by second in a hyperexcitable net-
work implementing homeostatic plasticity. A time unit represents 10 s
and 2.5 BCM time constants. The network is previously stable due to
plasticity application during 100 time units. Stimulation is applied for 2
time units then cut off. a: large network: When the stimulation occurs,
the occurrence rate of epileptic spikes drops during the stimulation time,
then progressively returns to pre-stimulation baseline. b and c: medium
and small networks: the occurrence rate of spike like events is more
irregular. The stimulation has the same instant effects but the lasting
effects are weaker. d: large network without plasticity: as expected,
the occurrence rate of epileptic spikes returns to its previous state imme-
diately after stimulation has been cut off, since without plasticity the
synaptic weights have not changed e:Duration of tDCS-induced decrease
of epileptiform activity in function of network size. Note that lasting
effects reach a maximum in large networks>10,000 neurons
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multiply-add” would also spare time. Matlab parallel toolbox,
which was used to code the model, doesn’t include those
features. A C or Python implementation would be longer to
achieve but could include those optimizations. As computing
power becomes more accessible it will be possible to test
larger networks.

4.1 Limitations

The size of the simulated cortical patch is small, resulting in
edge effects in inter-neuron connectivity, and difficulty in
making it work sustainably as afferent intensity decreases. A
larger patch, composed of several cortical columns alongside
one another, is likely to have a higher self-activation capacity,
which may help maintain a stable alpha rhythm (Lopes da
Silva et al. 1980; Naruse et al. 2010). The network is also
smaller than a human epileptogenic zone (Jehi 2018).
However, in spite of their limited size, either the physiological
or the epileptogenic network simulated activities consistent
with their design and with experimental data.

The drawback of modeling some of the cortical microanat-
omy and cellular neurophysiology parameters, is that data
from the literature are sometimes limited and ambiguous.
Most of the physiological data and some of the anatomical
data are not available in human but only in mammal (primate
or rodent). Moreover, these parameters vary among cortical
regions. For instance, BCM plasticity has only been described
in the visual cortex of the cat (Bienenstock et al. 1982).

Nevertheless, the basic neurophysiological features such as
synaptic probability of release and PSP, and integrate-and-fire
principles remain constant across mammalian species and
brain regions. Only the range of some parameters and time
constants may differ. BCM-like homeostatic plasticity is likely
to be linked to AMPA-R traffic and thus to operate in all PCs.
Along the same line, microanatomical data may vary in terms
of proportion of neurons, number of synapses, shape of the
axonal or dendritic tree, but the layer architecture and the
types of neurons are similar.

Regarding the clinical pathology considered, the hyperex-
citable network was supposed to represent an epileptognenic
cortical patch. Other types of epileptiform markers are ob-
served in the epileptic brain. Deficit of inhibition includes
KCC2 downregulation and depolarizing GABA that can be
modeled (Kurbatova et al. 2016). Although homeostatic plas-
ticity is still present in epileptic tissue (Swann and Rho 2014),
the interplay between physiological and pathological plastici-
ty, that might use distinct signaling pathways, (Leite et al.
2005; Meador 2007; Pitkänen and Engel 2014) were not im-
plemented here, since the tDCS effects on such pathological
features is largely unknown.

Lastly, the immediate effects of tDCS on neurites have
been studied in vitro on animal brain slices. The assumed
effects that have been tested, are extrapolated from those

studies and the effect is calculated through a simplified anat-
omy. All the parameters mentioned above were chosen here to
be plausible, if not strictly exact for a given type of cortex. The
point was to individualize synapses to point out null-average
and network effects of tDCS, interacting on a microscopic
scale with synaptic plasticity mechanisms.
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