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Abstract
In this paper a mean field model of spatio-temporal electroencephalographic activity in the neocortex is used to
computationally study the emergence of neocortical gamma oscillations as a result of neuronal response modulation. It is
shown using a numerical bifurcation analysis that gamma oscillations emerge robustly in the solutions of the model and
transition to beta oscillations through coordinated modulation of the responsiveness of inhibitory and excitatory neuronal
populations. The spatio-temporal pattern of the propagation of these oscillations across the neocortex is illustrated by solving
the equations of the model using a finite element software package. Thereby, it is shown that the gamma oscillations remain
localized to the regions of neuronal modulation. Moreover, it is discussed that the inherent spatial averaging effect of
commonly used electrocortical measurement techniques can significantly alter the amplitude and pattern of fast oscillations
in neocortical recordings, and hence can potentially affect physiological interpretations of these recordings.
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1 Introduction

Oscillatory patterns of electrical activity in the neocortex,
usually measured on the scalp by electroencephalography
(EEG) and magnetoencephalography (MEG), or measured
intracranially by electrocorticography (ECoG), correlate
with numerous states of the operation of the brain.
These oscillations can emerge as sustained rhythms, or
as transient bursts of fluctuations which last only for few
cycles. They are presumed to play a fundamental role in
cognition and overall functioning of the brain, possibly by
facilitating efficient coordination of neuronal activity across
the neocortex. Distinct distortions or disruption of these
oscillations can hence be used as a marker for specific
diseases. Despite their substantial importance, however,
the underlying physiological mechanism of the generation
of these cortical oscillations is not yet well-understood
(Buzsáki and Watson 2012; Jones 2016; van Ede et al. 2018;
Jia and Kohn 2011).

Action Editor: Ingo Bojak

� Farshad Shirani
farshad.shirani@georgetown.edu

1 Department of Mathematics and Statistics, Georgetown
University, Washington, DC 20057, USA

Gamma oscillations in the frequency range of 30 to
80 Hz are ubiquitous short-lasting oscillations which
usually arise locally in the neocortex and correlate with
the operational mode of the underlying cortical network,
providing a signature of the engagement of the network. It is
hypothesized that gamma oscillations may have a syntactic
function in the coordination of information flow across the
neocortex. Impaired or irregular gamma oscillations have
been observed in psychiatric diseases such as schizophrenia,
attention-deficit hyperactivity disorder (ADHD), bipolar
disorder, and autism spectrum disorder (ASD), as well as
in neurodegenerative diseases such as Alzheimer’s disease
(AD) and Parkinson’s disease (PD), and in neurological
disorders such as epilepsy (Buzsáki and Watson 2012; Jia
and Kohn 2011; Buzsáki and Wang 2012; Lee and Jones
2013; Knoblich et al. 2010; Kopell et al. 2000; Traub
et al. 1999; Cardin et al. 2009; Ray and Maunsell 2015).
Therefore, understanding the mechanism of the generation
of gamma oscillations can provide important information
about the healthy operation of the brain.

Dynamic modulation of the responsiveness of neuronal
populations is a fundamental property of cortical networks,
which is thought to mediate information flow in the neo-
cortex by rapidly altering the cortical excitability and sen-
sitivity. This dynamic control of the engagement of cortical
networks can transiently link local populations of neurons
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together over intervals of time ranging from milliseconds
to seconds. It is hence hypothesized that this adaptable
control of neuronal activity is a basis of diverse percep-
tual behaviors in the brain (Haider and McCormick 2009).
The responsiveness of neurons can be modulated in sev-
eral ways, through changes in ionic concentrations as well
as variations in postsynaptic parameters such as the mem-
brane conductance, the mean membrane potential, and the
variance of membrane potential. These modifications can
be made through the ongoing barrages of the synaptic
inputs that neurons receive from their surrounding network
when the network is involved in a sensory-driven activ-
ity (Haider and McCormick 2009; Cardin et al. 2008).
In addition, neuromodulators can also alter the respon-
siveness of neurons (McCormick et al. 1993; McCormick
1992). For example, serotonin and catecholamines such
as dopamine and noradrenaline are known to modulate
the gain of neurons in the prefrontal cortex (Thurley
et al. 2008). Furthermore, acetylcholine can multiplica-
tively modulate neuronal sensitivity in macaque area V1
neurons by acting on muscarinic and nicotinic receptors
(Herrero et al. 2017).

In this paper, the biophysical mean field model of elec-
troencephalographic activity proposed by Liley et al. (2002)
is used to demonstrate the emergence and propagation of
gamma oscillations in the neocortex as a result of neu-
ronal response modulation. This model has been widely
used in the literature to study brain rhythms (Bojak et al.
2004; Bojak and Liley 2007), general anesthesia (Wilson
et al. 2006a; Liley and Walsh 2013; Bojak et al. 2013; Fos-
ter et al. 2008; Bojak et al. 2015; Steyn-Ross et al. 2004),
epileptic seizures (Martinet et al. 2017; Kramer et al. 2012;
Kramer et al. 2006; Liley and Bojak 2005; Kramer et al.
2005), and sleep (Lopour et al. 2011; Wilson et al. 2006b;

SteynRoss et al. 2005). Tools for numerical implementation
of the model and computation of its equilibria and time-
periodic solutions are developed by Green and van Veen
(2014). Complexity of the dynamic behavior of the model,
including the existence of periodic and pseudo-periodic
solutions, chaotic behavior, multistability, and dynamic
bifurcations are widely studied (Frascoli et al. 2008, 2011;
van Veen and Green 2014; van Veen and Lily 2006; Dafilis
et al. 2001, 2013, 2015). Rigorous analytical results on well-
posedness, regularity, biophysical plausibility, and global
dynamics of this model are established by Shirani et al.
(2017). Specifically, it is shown that this model can have
a noncompact global attracting set and can present a rich
variety of spatially localized dynamic behavior.

This paper is organized as follows. In Section 2, the
mathematical structure of the model is presented and its
variables and parameters are described. In Section 3, it
is shown through a codimension-one bifurcation analysis
that gamma oscillations emerge robustly in the solutions
of the model when neuronal responsiveness is effectively
altered. In Section 4, the bifurcation analysis is extended
to codimension-two to demonstrate how the emerged
gamma oscillations can transition back to resting-state
beta oscillations through coordinated modulation of both
inhibitory and excitatory neuronal populations. In Section 5,
the equations of the model are solved using a finite-
element solver and the emergence, spatial propagation, and
transition of gamma oscillations are illustrated. Moreover,
potential effects of the size and location of electrocortical
measurement electrodes on the amplitude and temporal
pattern of gamma oscillation recordings are discussed.
Finally, the contribution of the results to the understanding
of transient gamma oscillations in neocortical activity in the
brain are discussed in Section 6.

(τE∂t + 1)vE(x, t) = VEE − vE(x, t)

|VEE| iEE(x, t) + VIE − vE(x, t)

|VIE| iIE(x, t),

(τI∂t + 1)vI(x, t) = VEI − vI(x, t)

|VEI| iEI(x, t) + VII − vI(x, t)

|VII| iII(x, t),

(∂t + γEE)
2iEE(x, t) = eϒEEγEE

[
NEEfE

(
vE(x, t)

) + wEE(x, t) + gEE(x, t)
]
,

(∂t + γEI)
2iEI(x, t) = eϒEIγEI

[
NEIfE

(
vE(x, t)

) + wEI(x, t) + gEI(x, t)
]
,

(∂t + γIE)
2iIE(x, t) = eϒIEγIE

[
NIEfI

(
vI(x, t)

) + gIE(x, t)
]
,

(∂t + γII)
2iII(x, t) = eϒIIγII

[
NIIfI

(
vI(x, t)

) + gII(x, t)
]
,

[
(∂t + ν�EE)

2 − 3

2
ν2�

]
wEE(x, t) = ν2�2

EEMEEfE

(
vE(x, t)

)
,

[
(∂t + ν�EI)

2 − 3

2
ν2�

]
wEI(x, t) = ν2�2

EIMEIfE

(
vE(x, t)

)
, (x, t) ∈ 	 × (0, T ], (1)

J Comput Neurosci (2020) 48:103–122104



2Model description

Local networks of cortical neurons are densely intercon-
nected. It is shown, for example, that local networks of
inhibitory interneurons within layers II and III in mouse
frontal cortex almost form a completely connected graph
without any distinct subnetworks (Fino and Yuste 2011;
Lee and Huguenard 2011). Such a locally dense structure
of the neocortex suggests mean field models as particu-
larly useful models for studying the mesoscopic activity of
neocortical neurons being monitored by EEG recordings.
The biophysical mean field model developed by Liley et al.
(2002) effectively connects the intracortical and cortico-
cortical neuronal activity to EEG measurements from the
scalp. For ease of reference, the mathematical structure and
description of variables and parameters of this model are
given below. Further details of the model are available in the
literature (Liley et al. 2002; Bojak and Liley 2005; Shirani
et al. 2017; Bojak et al. 2015; Liley and Walsh 2013).

Let 	 ⊂ R
2 be an open rectangle defining the

domain of the neocortex, so that each point x =
(x1, x2) ∈ 	 indicates the location of a local cortical
population. Let E and I denote populations of excitatory and
inhibitory neurons, respectively. Then, the system of partial
differential equations (PDEs) given by (1), with periodic
boundary conditions, provides a mean field model of
electroencephalographic activity in the neocortex, wherein
∂t denotes the partial derivative with respect to t , and �

denotes the Laplace operator. For X, Y ∈ {E, I}, the variable
vX(x, t) in (1) denotes the spatially mean soma membrane
potential of a population of type X located at x. Moreover,
iXY(x, t) denotes the spatially mean postsynaptic activation
of the synapses of a population of type X located at x, onto a
population of type Y located at the same point. In addition,
wEX(x, t) denotes the mean rate of corticocortical input
pulses that a population of type X located at x receives from
all other excitatory populations throughout the neocortex.
Finally, gXY(x, t) denotes the mean rate of subcortical input
pulses of type X received by a population of type Y located
at x. Note that vX and iXY are measured in mV, whereas
wEX and gXY are measured in s−1. Moreover, iXY, wEX, and
gXY are nonnegative quantities by definition. The constant
e in (1) is Napier’s constant, and the nonlinear function
fX(·) gives the mean firing rate of a population of type X

as a sigmoid function of the population’s mean membrane
potential, defined as

fX

(
vX

) := FX

1 + exp

(
−√

2
vX − μX

σX

) , X ∈ {E, I}. (2)

Definition of the biophysical parameters of the model and
their range of values are given in Table 1. As in Shirani
et al. (2017), in addition to the notational changes to the
original equations given by Liley et al. (2002), the reference
of electric potentials of each population is set at the resting

Table 1 Biophysical parameters of the mean field model (1). All electric potentials are given with respect to the mean resting soma membrane
potential vrest = −70 mV, Bojak and Liley (2005) and Shirani et al. (2017)

Parameter Definition Range Unit

τE Passive excitatory membrane decay time constant [0.005, 0.15] s

τI Passive inhibitory membrane decay time constant [0.005, 0.15] s

VEE, VEI Mean excitatory Nernst potentials [50, 80] mV

VIE, VII Mean inhibitory Nernst potentials [−20, −5] mV

γEE, γEI Excitatory postsynaptic potential rate constants [100, 1000] s−1

γIE, γII Inhibitory postsynaptic potential rate constants [10, 500] s−1

ϒEE, ϒEI Amplitude of excitatory postsynaptic potentials [0.1, 2.0] mV

ϒIE, ϒII Amplitude of inhibitory postsynaptic potentials [0.1, 2.0] mV

NEE, NEI Number of intracortical excitatory connections [2000, 5000] —

NIE, NII Number of intracortical inhibitory connections [100, 1000] —

ν Corticocortical conduction velocity [100, 1000] cm/s

�EE, �EI Decay scale of corticocortical excitatory connectivities [0.1, 1.0] cm−1

MEE, MEI Number of corticocortical excitatory connections [2000, 5000] —

FE Maximum mean excitatory firing rate [50, 500] s−1

FI Maximum mean inhibitory firing rate [50, 500] s−1

μE Excitatory firing threshold potential [15, 30] mV

μI Inhibitory firing threshold potential [15, 30] mV

σE Standard deviation of excitatory firing threshold potential [2, 7] mV

σI Standard deviation of inhibitory firing threshold potential [2, 7] mV
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potential of the population in order to avoid the constant
terms that would otherwise appear in (1).

The first two equations in (1) represent the first-order
dynamics of the resistive-capacitive membrane of space-
averaged neurons; see the details in Liley et al. (2002)
and Shirani et al. (2017). The next four critically damped
second-order equations generate postsynaptic α-functions
in response to impulse inputs. The last two telegraph
equations in (1) model the propagation of excitatory axonal
pulses along long-range corticocortical fibers. The key
variable in this model is the mean membrane potential of
excitatory populations vE. It is presumed in the literature
that vE is linearly proportional to EEG recordings from the
scalp (Liley et al. 2002; Liley and Walsh 2013). Therefore,
the spatio-temporal pattern of variations of vE is illustrated
throughout this paper as the predictions provided by the
model for EEG measurements.

3 Neuronal responsemodulation
and emergence of gamma oscillations

The input-output relationships that characterize neuronal
responsiveness in cortical networks usually follow sigmoid
curves, that is, changes in intermediate values of the input
result in large variations in the neuronal response, whereas
changes in the input values below a threshold level or
above a saturation level do not evoke substantial variations
in the response (Haider and McCormick 2009; Thurley
et al. 2008). Such characteristic response curves can be
modulated in different ways, resulting in different neuronal
behaviors. The sensitivity of a neuron is equally altered
at all input levels if its response curve is stretched or
shrunk along the output axis by a multiplicative factor
(Cardin et al. 2008; Ni et al. 2016; Haider and McCormick
2009). This neuronal gain modulation changes the slope and

maximum level of the curve while leaving the threshold
and saturation levels unchanged. Shifting the curve right or
left along the input axis alters the excitability of a neuron,
that is, its responsiveness to different levels of the input.
Although the shape of the curve remains unchanged in this
case, an input gain modulation is attained by shifts in the
threshold and saturation levels (Cardin et al. 2008; Haider
and McCormick 2009). Finally, the saliency of a neuron
can be altered by stretching or shrinking its response curve
along the input axis, which changes the maximum slope
of the curve and moves the threshold and saturation levels
in opposite directions (Herrero et al. 2017). A combination
of these modulatory effects can also result from the action
of neuromodulators. For example, it is shown by Thurley
et al. (2008) that, mediated by D1 receptors, dopamine can
increase the excitability of Layer V pyramidal neurons in rat
prefrontal cortex by shifting the firing rate-current response
curve of neurons to lower inputs. In addition, it increases
the maximum slope (saliency) of the curve at intermediate
values of current and decreases the maximum level of the
firing rate response.

As shown in Fig. 1, the different types of neuronal
gain modulation described above can be effectively
incorporated into the model (1) using the graph of the
sigmoid firing rate functions (2) as the characteristic
curves of neuronal responsiveness. In this section, the
characteristic curve of inhibitory populations is used to
predict the emergence of gamma oscillations in the solutions
of (1) when the parameters of the curve are changed
effectively. Inhibitory neuronal activity in cortical networks
is integral to network oscillations and rapid coordination
of functional connectivity across the cortex, (Cardin et al.
2009; Whittington et al. 2000; Haider and McCormick
2009; Buzsáki and Watson 2012; Buzsáki and Wang
2012; Ray and Maunsell 2015; Knoblich et al. 2010; Jia
and Kohn 2011). Moreover, neuronal modulations such

(a)

x
x

(b) (c)

Fig. 1 Neuronal gain modulation. Thick curves show the firing rate
function (2) for X = I and the nominal parameter values given in
Table 2. Other curves in each graph illustrate variations in the shape of

nominal curves as FX, μX and σX, X ∈ {E, I}, change over their range
of values given in Table 1. Arrows indicate variations corresponding to
incremental changes in parameter values
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as modulation through nicotinic and muscarinic receptors
occur predominately on inhibitory interneurons (Herrero
et al. 2017).

In this section, predictions on the emergence of gamma
oscillations are based on codimension-one bifurcation
analysis of a spatially homogeneous version of (1), that
is, the model with spatially homogeneous initial values
and subcortical inputs. Moreover, to effectively analyze
the internal dynamics of the model, the subcortical inputs
are assumed to be constant in time. This approximate
model is a system of ordinary differential equations (ODEs)
obtained from (1) by omitting the Laplacian terms − 3

2ν2�.
Bifurcations of equilibria and limit cycles of this system of
ODEs can be effectively analyzed using available numerical
continuation and bifurcation analysis tools. Moreover, the
dynamic behavior of this approximate model can be
interpreted as the dynamic behavior of a local cortical
network, since omitting the Laplacian terms in the equations
is equivalent to considering the corticocortical conduction
velocity of zero. Therefore, the possibility of the original
model (1) having highly localized dynamic activity, as
shown by Shirani et al. (2017), implies that the predictions
made by analyzing this approximate model can result
in meaningful predictions on the emergence of gamma
oscillations in the solutions of the original model. This
is demonstrated in Section 5, where the solutions of the
full system of PDEs given by (1) are computed using a
finite-element solver package.

In this section, as well as in Section 4, the numerical
analysis of the ODE system is performed using MatCont
(Dhooge et al. 2008) for the nominal parameters values
given in Table 2. Note that inhibitory inputs from subcortical
regions are rare. Therefore, gIE and gII are set equal to zero.
The excitatory subcortical inputs gEE and gEI are set to be
constant and, respectively, equal to ḡEE and ḡEI given in
Table 2. For this set of inputs and parameter values, the

ODE system possesses a single stable equilibrium in the
biophysically reasonable region of its phase space.

3.1 Neuronal sensitivity modulation

As shown in Fig. 1a, changes in FI results in multiplicative
changes of neuronal sensitivity in inhibitory populations.
To observe the effect of this response modulation on the
dynamic behavior of the spatially homogeneous system, the
equilibrium of the ODE system is continued in both forward
and backward directions when FI is free to change over
its range of values given in Table 1. The resulting curve
of equilibria is shown in Fig. 2a. The system undergoes
two Hopf bifurcations, denoted by H1 and H2, and two
fold bifurcations, denoted by F1 and F2. The limit cycles
originating from Hopf bifurcation points are also continued
and the curves of minimum and maximum values taken
by vE on the resulting cycles are shown in Fig. 2a. The
frequency of oscillations on these cycles are shown in
Fig. 3a. It is observed that, as FI decreases below the
value associated with the Hopf bifurcation point H1, the
stable equilibrium becomes unstable. Moreover, the limit
cycles originating from H1 are unstable, whereas those
originating from H2 are stable. At extremely large values
of FI, the curves of stable and unstable limit cycles collide
tangentially at a fold bifurcation of limit cycles. This
bifurcation is not made visible in Fig. 2a, since it occurs at
biophysically implausible values of FI.

The Hopf bifurcation H1 described above is of particular
interest. The frequency of unstable cycles originating from
this bifurcation point lies between 13 and 15 Hz, suggesting
that the damped oscillations around the stable equilibrium
at nominal parameter values are in the resting-state low
beta (alpha) frequency band. More importantly, as the stable
equilibrium switches to an unstable equilibrium at this
bifurcation point, orbits of the system depart the vicinity

Table 2 The set of biophysically plausible parameter values used as the nominal values for the computational analysis of Sections 3–5 (Bojak
and Liley 2005, Table V, col. 11). The parameters ḡEE, ḡEI, ḡIE, and ḡII are the mean values of the physiologically shaped random inputs gEE,
gEI, gIE, and gII used by Bojak and Liley (2005), respectively. Electric potentials are given with respect to the mean resting membrane potentials
vErest = −72.293 mV and vIrest = −67.261 mV
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F1

(a)
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FC1
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FC1

FC1

H1

(c)

Fig. 2 Codimension-one bifurcation diagrams of the ODE system
described in Section 3. Curves of equilibria are shown in blue. Curves
of the minimum and maximum values that vE takes on the limit cycles
are shown in red. The reference of electric potential for vE is the mean
resting soma membrane potential vErest = −72.293 mV. Solid lines
indicate stable equilibria and limit cycles. Dashed lines indicate unsta-
ble equilibria and limit cycles. Blue dots show the stable equilibrium
of the system for the nominal parameter values given in Table 2. Fold

and Hopf bifurcation points are indicated by F and H, respectively.
Fold bifurcations of limit cycles are indicated by FC. The Hopf bifur-
cation points and the fold bifurcation of limit cycles that occur at
biophysically implausible parameter values are not made visible. a the
bifurcation diagram for FI as a free parameter, b the bifurcation dia-
gram for μI as a free parameter, and c the bifurcation diagram for σI as
a free parameter

of the equilibrium and converge to a stable limit cycle
originated from the Hopf bifurcation H2. As shown in
Fig. 3a, stable oscillations on this cycle lie in the gamma
frequency band. This predicts that gamma oscillations
can emerge in cortical networks when the sensitivity of
inhibitory neuronal populations is reduced by modulatory
actions.

3.2 Neuronal excitability modulation

Figure 1b shows that changes in μI shifts the characteristic
curve of inhibitory neuronal populations along the horizon-
tal axis, thereby changing their excitability in response to
variations in the mean membrane potential. Continuation of
the equilibrium of the ODE system for the free parameter
μI gives the curve of equilibria shown in Fig. 2b. When
μI increases from its nominal value, the system undergoes

a Hopf bifurcation of equilibrium denoted by H1. The sta-
bility of the equilibrium switches at this bifurcation point.
Continuation of the limit cycles origination from H1 reveals
a fold bifurcation of limit cycles at low values of μI , which
is denoted by FC1. This further reveals the existence of a
curve of stable limit cycles. Therefore, when μI increases
above the bifurcation value, orbits of the system departing
the vicinity of the unstable equilibrium converge to a stable
limit cycle. As shown in Fig. 3b, the frequency of oscilla-
tions on stable cycles lies in the gamma band, and hence
this predicts the emergence of gamma oscillations in the
electrocortical activity when the neuromodulation decreases
the excitability of inhibitory populations by shifting their
response curve to higher input values. It should be noted
that if μI is free to increase to biophysically implausible val-
ues, a second Hopf bifurcation H2 is detected on the curve
of equilibria where the unstable equilibrium switches to a

(a) (b) (c)

Fig. 3 Frequency of the limit cycles in the bifurcation diagrams shown in Fig. 2
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stable equilibrium. A second fold bifurcation of limit cycles
FC2 is also detected on the curve of limit cycles. These
bifurcations are not made visible in Fig. 2b as they appear
at extremely large values of μI .

3.3 Neuronal saliencymodulation

The maximum slope of response curves can be altered by
changing σI , as shown in Fig. 1c. The bifurcation diagram
shown in Fig. 2c implies that a Hopf bifurcation at lower
values of σI makes the equilibrium unstable. Continuation
of the unstable limit cycles originating from this bifurcation
point reveals the existence of a stable limit cycle and a
fold bifurcation of limit cycles. The orbits of the system
converge to a stable limit cycle when σI decreases below the
Hopf bifurcation value. Figure 3c shows that the oscillations
on this stable cycle are in the gamma frequency band.
Therefore, it is predicted by these results that enhancement
of the saliency of inhibitory neuronal networks can induce
gamma oscillations in the network. Note that at implausibly
small values of σI the system undergoes a second Hopf
bifurcation and a fold bifurcation of limit cycles, which are
not made visible in Fig. 2c.

4 Transition to beta oscillations

Oscillatory patterns of electrocortical activity in the neu-
ronal networks that are involved in cognitive functions, such
as gamma oscillations, are usually transient phenomena
which emerge briefly in the underlying network and disap-
pear once the cognitive task is processed and the initial state
of the network is restored (Buzsáki and Watson 2012; Jones
2016; Traub et al. 1999). However, the bifurcation analysis
performed in Section 3 does not explain a biophysically rea-
sonable mechanism for transition from the emerged gamma
oscillations back to the resting-state low beta oscillations.
This can be seen through the bifurcation diagrams shown in
Fig. 2.

Once FI decreases below the value corresponding to
the first Hopf bifurcation in Fig. 2a, orbits of the system
converge to a stable limit cycle and oscillate at gamma
frequency. However, increasing FI back to its nominal
value cannot force the orbits to depart a stable cycle and
converge back to the equilibrium. Additional increments of
FI only shift the orbits to another stable cycle of larger vE-
amplitude along the curve of limit cycles. Although this
predicts significant robustness for the emergence of gamma
oscillations, it cannot explain their transitions back to the
initial state. As stated in Section 3.1, further continuation
of the limit cycles for larger values of FI identifies a
value at which a fold bifurcation of limit cycles occurs
as the curves of stable and unstable limit cycles collide.

Therefore, if FI increases beyond this bifurcation value, the
sustained oscillations are terminated and orbits converge
to a stable equilibrium. This further allows restoring the
initial state through a hysteresis loop. However, the fold
bifurcation value of FI involved in this loop is too large
to be biophysically plausible. Alternatively, the bifurcation
diagram shown in Fig. 2a also predicts the possibility of the
termination of gamma oscillations at very small values of FI,
below the value corresponding to the Hopf bifurcation point
H2. At this range of values of FI, however, the dynamics
of the system is extremely sensitive to small variations in
FI so that the orbits of the system can easily converge to
equilibrium values which are not biologically realistic.

When gamma oscillations arise through the modulation
of μI , the initial resting-state can be restored through a
hysteresis loop. This is shown in Fig. 4a. Stable oscillations
on limit cycles are terminated when μI decreases below the
value corresponding to the fold bifurcation of limit cycles
FC1. Orbits of the system converge to a stable equilibrium
which moves along the curve of equilibria as μI increases
back to its nominal value. Similar to the hysteresis loop

Fig. 4 Restoration of the initial state by modulation of the inhibitory
parameters through large hysteresis loops. Step 1: induction of gamma
oscillations, Step 2: termination of the gamma oscillations, and Step 3:
restoration of the initial parameter value. a modulatory actions on μI

and b modulatory actions on σI

J Comput Neurosci (2020) 48:103–122 109



described above for modulation of FI, this mechanism of
transition to initial beta oscillations may not be realistic as it
involves very small values of μI , corresponding to extreme
enhancement of neuronal excitability. Similarly, Fig. 4b
implies the possibility of restoring the initial state through
a hysteresis loop that involves drastic modulation of σI that
substantially diminishes the neuronal saliency.

The mechanisms of the emergence of gamma oscilla-
tions described in Section 3 and discussed above are based
only on the modulation of inhibitory neuronal populations.
However, gamma oscillations typically arise from coor-
dinated interaction of inhibitory and excitatory networks
(Buzsáki and Wang 2012; Haider and McCormick 2009).
In general, cortical networks remarkably maintain a bal-
ance of excitation and inhibition during their operation,
so that increases in the level of excitation in a cortical
region is often accompanied by increases in the level of
inhibition. Since long-range corticocortical connections are
predominantly excitatory, such an effective balancing of
excitation and inhibition must be controlled locally (Haider
and McCormick 2009; Dehghani et al. 2016). Due to this
locality, the approximate ODE system used in Section 3
can also be helpful in predicting the results of coordinated
modulation of both inhibitory and excitatory populations.
In what follows, the codimension-one bifurcation analysis
of Section 3 is extended to codimension two by addition-
ally considering the parameters of excitatory populations as

free parameters. The analysis provides a biologically rea-
sonable explanation for restoration of the initial state after
the emergence of gamma oscillations.

Two-parameter continuation of the codimension-one
bifurcation points shown in Fig. 2 results in the bifurcation
curves shown in Fig. 5. Specifically, continuation of the
adjacent fold and Hopf bifurcation points F1 and H2 shown
in Fig. 2a reveals a fold-Hopf (or zero-Hopf) codimension-
two bifurcation at low values of FE and FI, where the
resulting curves of fold and Hopf bifurcations intersect
each other. This is shown in Fig. 5a. No codimension-two
bifurcations are detected along the curve of bifurcations as
μE and μI change over their biophysically reasonable range
of values. Similarly, continuation of the bifurcation points
as σE and σI change over their biophysically plausible range
of values does not detect any codimension-two bifurcations.

The absence of codimension-two bifurcations along
nearly the entire extent of the bifurcation curves in
Fig. 5 implies that the overall picture of the codimension-
one bifurcation diagrams shown in Fig. 2 remains the
same when the characteristic parameters of the excitatory
populations are allowed to change freely. Moreover, the
moderate slope of the bifurcation curves suggest a fair level
of robustness for predictions made based on these diagrams.
Therefore, to illustrate a global picture of the dynamics
of the ODE system when both excitatory and inhibitory
characteristic parameters are free to change, a number of

Fig. 5 Two-parameter
continuation of the bifurcation
points shown in Fig. 2. The
starting bifurcation points are
indicated by dots with the same
colors as they appear in Fig. 2.
The curves shown in gray are
the result of the continuation of
the fold bifurcation of limit
cycles that are not made visible
in Fig. 2. a continuation for FI

and FE as free parameters. The
detected codimension-two
zero-Hopf bifurcation point is
indicated by ZH. b continuation
for μI and μE as free parameters.
The curve shown in purple is the
result of the continuation of the
Hopf bifurcation point H2 that is
not made visible in Fig. 2b. c
continuation for σI and σE as
free parameters

ZH

ZH

(a)

(b) (c)
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points are picked from the curves of Hopf bifurcations
in Fig. 5 and the equilibria and limit cycles originated
from these points are continued with respect to inhibitory
parameters. The resulting sequence of bifurcation diagrams
are shown in Fig. 6, and the frequency of oscillations
on the limit cycles are shown in Fig. 7. It is observed
that the frequency of stable cycles lies predominantly in
the gamma band for almost entire range of parameter
values of the characteristic curves, which further implies the
robustness of emergent gamma oscillations to perturbations
in parameters.

Although the bifurcation diagrams within each sequence
of diagrams shown in Fig. 6 generally resemble each other,
the location of the bifurcation points and, in particular, the
fold bifurcations of limit cycles changes significantly when
the parameters of excitatory populations change. As shown
in Fig. 6a, the fold bifurcation of limit cycles, which occurs
at nonphysiologically large values of FI when FE takes its
nominal value, moves to lower and biophysically plausible

values when FE is decreased. As a result, the curves of limit
cycles shrink significantly in size. Similarly, it is implied
from the sequence of diagrams shown in Fig. 6b that the
second Hopf bifurcation of equilibria H2 and the second fold
bifurcation of limit cycles FC2, which occur at extremely
large values of μI when μE takes its nominal value, move
to biophysically plausible values when μE is decreased.
Finally, Fig. 6c shows that the fold bifurcation of limit
cycles FC1 which occurs at the nominal value of σE moves
to biophysically more reasonable values of σI when σE is
increased.

The specific changes within each sequence of bifurcation
diagrams shown in Fig. 6 suggest biologically reasonable
mechanisms for transition between gamma and beta
oscillations through coordinated modulation of inhibitory
and excitatory neuronal responsiveness. The stepwise
parameter modulations shown in Fig. 8 demonstrate these
possible mechanisms. As shown in Fig. 8a, in Step 1,
decreasing FI from its nominal value below the value

Fig. 6 Sequences of
codimension-one bifurcation
diagrams for different values of
excitatory parameters. Inhibitory
parameters are used as free
parameters for generating each
diagram. The diagrams shown
by thick lines are the same
codimension-one diagrams
shown in Fig. 2 for the nominal
value of excitatory parameters. a
the sequence of diagrams for
different values of FE when FI is
used as the free parameter. b the
sequence of diagrams for
different values of μE when μI

is used as the free parameter. c
the sequence of diagrams for
different values of σE when σI is
used as the free parameter
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Fig. 7 Frequency of the limit cycles in the sequences of bifurcation diagrams shown in Fig. 6

corresponding to the Hopf bifurcation H1 results in the
emergence of gamma oscillations. This is the same result
predicted in Section 3. In Step 2, sufficient reduction in
FE to the level at which the curve of limit cycles shrinks
substantially results in termination of gamma oscillations
and transition to low beta oscillations. The initial resting-
state can then be restored by increasing FI back to its
nominal value in Step 3, followed by increasing FE to its
nominal value in Step 4. This coordinated modulation of
neuronal activity is consistent with the essential operational
property of cortical networks, that is, maintaining a balance
of excitation and inhibition. The decrement in FE in Step 2
is in the direction to compensate for the imbalance created
in the network by the decremental modulation of FI in
Step 1. Similarly, in Step 3, the balanced neuronal activity
is perturbed when the modulatory effect on FI vanishes and
FI increases back to its nominal value. This imbalance is
compensated by the increment in FE in Step 4, so that the
initial balanced state is restored. Figure 8b demonstrates a
similar mechanism of inducing transient gamma oscillations
through coordinated modulation of neuronal excitability
(μI and μE). As shown in Fig. 8c, transition of gamma

oscillations through modulation of neuronal saliency (σI

and σE), however, still requires modulation of σI through
a hysteresis loop. However, when coordinated with the
intermediate excitatory modulation shown in Fig. 8c, the
hysteresis loop is reduced in size and becomes biophysically
more reasonable.

The mechanisms described above are expressed as
stepwise procedures for simplicity of exposition. In fact,
there can be overlaps between the steps and the neuronal
modulation in each step is not necessitated to begin
after completion of modulatory actions in previous steps.
However, as implied by the bifurcation diagrams of Figs. 5
and 6, in order for these mechanisms to work properly, it is
necessary that the modulation of excitatory populations in
Step 2 sufficiently lags the initial modulation of inhibitory
populations in Step 1, so that the system undergoes the Hopf
bifurcation and gamma oscillations emerge. Otherwise,
the system simply exhibits damped oscillations of beta
frequency about the stable equilibrium which moves as the
neuronal parameters change.

The courses of modulatory actions described above
are initiated by the modulation of inhibitory populations

Fig. 8 Mechanisms of transient emergence of gamma oscillations
through coordinated modulation of inhibitory and excitatory neuronal
responsiveness. Step 1: induction of gamma oscillations by modu-
lation of inhibitory populations. Step 2: termination of the gamma
oscillations by modulation of excitatory populations. Steps 3 and 4:

restoration of the initial parameter values. a neuronal sensitivity modu-
lation through actions on FI and FE. b neuronal excitability modulation
through actions on μI and μE. c neuronal saliency modulation through
actions on σI and σE. An additional step of modulation of σI to larger
values is still necessary to terminate the oscillations in Step 2

J Comput Neurosci (2020) 48:103–122112



first, which results in a Hopf bifurcation and gives rise
to gamma oscillations. Likewise, the curves of Hopf
bifurcations shown in Fig. 5 also predict the emergence
of gamma oscillations induced by modulation of excitatory
populations. However, the bifurcation diagrams of Fig. 6
imply that, unlike the oscillations induced by inhibitory
modulations, transition to beta oscillations in this case
cannot analogously result from a subsequent modulation
of inhibitory populations that re-establishes the network
balance. In fact, modulation of the excitatory parameters
in the direction shown in Step 2 in Fig. 8 is necessary for
termination of the emerged oscillations, regardless of the
type of modulation (inhibitory or excitatory) used initially in
the first step to give rise to the gamma oscillations. This can
be best understood through the sequence of diagrams shown
in Fig. 6a. When FE increases sufficiently from its nominal
value, the system undergoes a Hopf bifurcation and gamma
oscillations emerge. However, subsequent modulation of
FI to a biophysically reasonable level, either incremental
or decremental, does not terminate the oscillations in
a way that allows for restoration of the initial state.
In order for this transition to be possible, FE must be
subsequently decreased to the level at which curves of limit
cycles shrink substantially in size, so that the oscillations
are terminated and orbits converge to a physiological
equilibrium. Therefore, when gamma oscillations are
induced by modulation of excitatory parameters, restoration
of the initial resting-state involves modulatory actions on
these parameters through large hysteresis loops.

5 Spatial propagation of gamma oscillations

The numerical analysis of Sections 3 and 4 is based on a
spatially homogeneous version of (1), which equivalently
represents the dynamics of local cortical networks as
a system of ODEs. In this section, the full system of
PDEs given by (1) is used to demonstrate the emergence
and spatial propagation of gamma oscillations across the
neocortex based on the mechanisms predicted in Sections 3
and 4. The computational results are presented only for
neuronal sensitivity modulation, that is, the multiplicative
modulation of neuronal responsiveness by changing FI and
FE. This type of response modulation which is often referred
to as neuronal gain modulation, as well as the neuronal
excitability modulation, is widely observed in experimental
studies of cortical networks (Cardin et al. 2008; Ni et al.
2016; Haider and McCormick 2009; Disney et al. 2007;
Herrero et al. 2017). Although not presented here, the
neuronal excitability and saliency modulations described in
Sections 3 and 4 yield similar results.

To perform the computations, the domain of the
neocortex is set as 	 = (0, 60) × (0, 60) mm2. This

is much smaller than the actual human neocortex, but
it is sufficiently large for the computational analysis of
this section due to the spatial locality of the emergent
activity. The time horizon of computations is set as T =
[0, 1100] ms. Neuronal gain modulation is assumed to be
attained, for example, by diffusion of neuromodulators into
two circular regions of radius R = 15 mm centered at
locations a = (15, 15) and b = (45, 45). These regions
are denoted as region A and region B, respectively. In both
regions, FI is decreased from its nominal value to F̃I =
275 s−1 at time tI1 = 50 ms, and is increased back to its
nominal value at tI2 = 700 ms. Note that F̃I is below the
bifurcation value shown in Fig. 2a, and hence the results
of Section 3 predict the emergence of gamma oscillations.
To show the necessity of subsequent decrease in FE for
transition to beta oscillations, FE is decreased only on region
A, from its nominal value to F̃E = 7 s−1 at tE1 = 500 ms,
and is increased back to its nominal value at tE2 = 1000
ms. Therefore, the modulatory actions in region A follow
the course of modulations shown in Fig. 8a and the initial
resting state is expected to be restored in this region.

To include these modulatory actions in the equations of
the model, let

η(t) := 1

1 + exp

(
− t

ρ

) ,

φ(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp

⎛

⎜
⎝1 + 1

∥
∥∥

x

R

∥
∥∥

2 − 1

⎞

⎟
⎠ , if ‖x‖ < R,

0, if ‖x‖ ≥ R,

where ρ adjusts the sharpness of transition from 0 to 1 in
η(t), and ‖·‖ denotes the Euclidean norm in R

2. Setting
ρ = 5 ms, the value of η(t) smoothly switches from 0 to 1
at t = 0 over an approximate transition interval of 6ρ = 30
ms. The function φ takes its maximum value 1 at x = 0 and
radially decreases to 0 as x approaches the boundary of the
disk ‖x‖ ≤ R. The neuronal gain modulations described
above are then incorporated into (1) by substituting the
following two smooth functions for parameters FI and FE,

FI(x, t) = F̊I + (F̃I − F̊I)
[
η(t − tI1) − η(t − tI2)

]
φ(x − a)

+(F̃I − F̊I)
[
η(t − tI1) − η(t − tI2)

]
φ(x − b),

FE(x, t) = F̊E + (F̃E − F̊E)
[
η(t − tE1)−η(t − tE2)

]
φ(x − a),

where F̊I and F̊E denote the nominal values of FI and FE

given in Table 2, respectively.
Depending on the specific purpose of numerical com-

putations, subcortical inputs are usually modeled as phys-
iologically shaped random inputs (Bojak and Liley 2005).
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However, for clearer illustration of the emergence and prop-
agation pattern of gamma oscillations, and for better com-
parison of the results with predictions of Sections 3 and 4,
in the computations of this section gEE, gEI, gIE, and gII

are set to take the same constant values as considered for
the approximate ODE system in Sections 3 and 4. More-
over, other than FI and FE which are modulated as described
above, the rest of the parameters of the model take their
nominal values given in Table 2, the same as that considered
for the analysis of Sections 3 and 4. For this set of inputs
and nominal parameters, the spatially homogeneous stable
equilibrium of (1) can be calculated as

(v∗
E, v∗

I ) = (12.6326, 13.319),

(i∗EE, i
∗
EI, i

∗
IE, i

∗
II) = (49.0506, 28.3164, 11.4371, 4.1846),

(w∗
EE, w

∗
EI) = (2245.7, 2057.1).

The initial values of the variables are assumed to be constant
over 	. The initial value of vE is set as vE0 = 1.2v∗

E , and the
rest of variables are initially set at their equilibrium given
above.

The solutions of the model are computed using the finite-
element-based software COMSOL Multiphysics® version

5.3a. As stated in Section 2, the boundary condition of the
problem is set to be periodic. A triangular mesh is generated
with maximum element size of 0.2 mm, which results in
387,436 domain elements and 1200 boundary elements.
Implicit backward difference formula (BDF) is chosen as
the time stepping method used by the solver, with order of
accuracy equal to 2. Time steps taken by solver are set to be
manual, and equal to 0.1 ms. Computations take about three
days to complete, using a mini workstation with a 3.30 GHz
quad-core Intel® Xeon® processor, 32 GB of 2133 MHz
RAM, and sufficient amount of solid state storage space.
The solver uses up to 30 GB of physical memory and up to
46 GB of virtual memory.

5.1 Spatio-temporal pattern of gamma oscillations

The computation results are shown in Fig. 9, in which
spatial propagation of the emerged gamma oscillations are
shown at every 100 ms. Measurements of vE at the center
of regions A and B are also shown in the upper panel of
Figs. 10 and 11. As predicted by the results of Section 3,
modulation of FI induces gamma oscillations in both
regions, which gradually emerge and become prominent

Fig. 9 Emergence and spatial
propagation of gamma
oscillations in the solutions of
the model (1). Each frame
illustrates the spatial profile of
vE over 	 at the time t shown on
the top of the frame. The
reference of electric potential
for vE is the mean resting soma
membrane potential
vErest = −72.293 mV. Insets in
the bottom of the frames show
the modulation state of
parameters, with FI shown on the
left and FE shown on the right.
The color bar only indicates the
value of vE and does not
correspond to the value of
parameters shown in the insets.
Transient oscillations on the
lower left corner of the frames
take place in region A. Sustained
oscillations on the upper right
corner of the frames take place
in region B, where the excitatory
modulation is not applied
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36 ms

57 ms 

Fig. 10 Measurements of vE in region A. Dashed lines indicate the
times of transitions in FI, and dotted lines indicate the times of tran-
sitions in FE. The reference of electric potential for vE is the mean
resting soma membrane potential vErest = −72.293 mV. Upper panel:

point-measurements at the center of the region. Lower panel: average
measurements over a disk of diameter 10 mm co-centered with the
region

approximately at t = 400 ms. This gradual emergence of
gamma oscillations, predicted by the results of Section 3 as
the time required by the orbits to converge to the stable limit
cycle, is usually observed during experimental studies (Ray
and Maunsell 2015). Moreover, as discussed in Section 4,
the emerged oscillations in region B do not vanish after FI

returns to its nominal value at tI2 = 700 ms. However, as
predicted by the mechanism described in Section 4, gamma
oscillations in region A gradually vanish after the level
of excitation is substantially reduced by decreasing FE at
tE1 = 500 ms. As a result, transient gamma oscillations are
observed in the measurements of region A for about three
cycles and the initial resting-state is approximately restored
at the end of the simulation.

Consistent with the spatial locality property of gamma
oscillations stated in Section 1, the gamma oscillations

appear locally within the regions where modulatory actions
are applied and do not propagate to other regions of the
neocortex. This is not an obvious observation, since the
cortical activity inside the regions of gain modulation is
also transmitted to other regions through the corticocortical
communications modeled by the telegraph equations in (1).
Although a rigorous mathematical proof of the existence of
this localized behavior can be very involved, the intuition
coming from the analysis of equilibrium sets of the model
(Shirani et al. 2017, sect. 7.2) implies that the coupling
between the telegraph equations and the rest of the equations
of the model is not very strong. As a result, the activity
propagating from the regions of gain modulation to the rest
of the neocortex is not sufficiently strong to induce phase
transitions in cortical networks of other regions, and hence
it cannot effectively engage them in gamma oscillations.

66 ms 

34 ms 

34 ms 

Fig. 11 Measurements of vE in region B. The same description as given in Fig. 10 holds for dashed and dotted lines, as well as measurements of
upper and lower panels
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This intuition also predicts that the model can present
a rich variety of localized oscillatory or non-oscillatory
behavior.

Note that, a ring of oscillations in region A is still visible
in Fig. 9 up to the end of the simulation. However, it can be
seen in the lower panel of Fig. 10 that these oscillations are
in beta band. Although the analysis of the ODE system in
Section 4 is not sufficient to predict the full spatio-temporal
behavior of the solutions of (1), it can provide meaningful
explanation for the existence of this ring of beta oscillations.
Since φ(x) decreases radially and smoothly as x approaches
the boundary of the disk, the modulatory action on FE is
not as effectively applied at peripheral regions of the disk
as it is applied at the central regions. Therefore, the curves
of limit cycles and their frequency shown in Figs. 6a and 7a
for low values of FE imply that the dynamics of the system
on the persistent ring of oscillations in region A may still
be trapped on stable cycles of beta frequency and lower vE-
amplitude. Alternatively, the slowly decreasing amplitude of
these beta oscillations can imply that the stable oscillations
are indeed terminated in this ring-shaped region as well, but
the resulting damped oscillations simply require more time
to vanish, possibly due to weak damping in the dynamics
of the system for the specific values that FE takes over
this region. Therefore, it is expected that these oscillations
will also fade away if an stronger modulation of FE to
a lower value F̃E is applied, φ(x) is reshaped to present
a sharper transition from 1 to 0, and the simulation time
horizon is extended. However, these modifications are not
carried out for the results presented here, to avoid excessive
computational cost and to additionally illustrate part of the
rich spatio-temporal behavior of the model predicted by the
analytical results established by Shirani et al. (2017).

5.2 Effect of electrode size and electrode location
onmeasurements of gamma oscillations

As shown in the upper panel of Figs. 10 and 11, the gamma
oscillations measured at the center of regions A and B
have relatively high amplitude. This may sound reasonable
since, as stated in Section 1, gamma oscillations usually
present engagement of cortical networks in cognitive
activity and hence higher levels of neuronal excitation.
However, compared with the high-amplitude oscillations of
low frequency that appear over a large region of neocortex
during deep sleep, electrocortical measurements of gamma
oscillations usually have low amplitude (Ray and Maunsell
2015; Buzsáki and Wang 2012; Jia and Kohn 2011; Ni et al.
2016). A possible explanation for this perhaps unexpected
observation can be provided by inspecting the propagation
pattern of the oscillations in Fig. 9 and including the
effect of electrode size on measurements. Note that the
signals shown in the upper panel of Figs. 10 and 11 are
point-measurements at the center of regions A and B.
However, EEG electrodes are, typically, disks of 5 − 10
mm in diameter. Therefore, they collectively measure the
activity of many adjacent cortical networks distributed over
the measurement range of the electrode. To approximately
incorporate the effect of this collective measurement, the
average value of vE over disks of diameter 10 mm co-
centered with regions A and B are shown in the lower panel
of Figs. 10 and 11. It is observed that, while the frequency
of gamma oscillations remains unchanged, their amplitude
is drastically reduced in the average measurements. This
is due to the propagation pattern of the oscillations within
the range of electrodes. The spatial pattern of oscillations
in region B in Fig. 9 shows that the gamma oscillations

34 ms 

62 ms

18 ms

71 ms 

Fig. 12 Measurements of vE associated with an electrode which is
dislocated from the center of region B. The reference of electric poten-
tial for vE is the mean resting soma membrane potential vErest =
−72.293 mV. Note the different scales used for the vertical axis of

the panels. Upper panel: point-measurements at c = (38, 45). Lower
panel: average measurements over a disk of diameter 10 mm centered
at c = (38, 45)
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emerging at the center of the region propagate radially to
peripheral areas forming spatial waves of very short length.
An electrode of diameter 10 mm collectively measures
the electrical activity over a number of these waves of
oscillations. Consequently, the effect of oscillatory activity
of a local network on overall measurement of the electrode
can effectively be canceled by the anti-phase oscillations of
an adjacent network, so that the amplitude of the overall
measurement is substantially reduced.

The spatial locality of gamma oscillations makes the
location of electrodes important. To observe this, the 10 mm
electrode centered at region B is relocated from the center to
the point c=(38, 45), so that it overlaps both with the regions
where gamma oscillations emerge and with the regions
where oscillations remain in beta band. Point-measurements
at c and average measurements of the electrode are shown
in Fig. 12. Comparing the average measurements before and
after relocating the electrode shows that a relatively wide
spectrum of low power oscillations, even in high gamma
band, are introduced into the measurements as a result of
dislocation of the electrode from the center of propagating
gamma oscillations. In particular, comparing the two panels
of Fig. 12 with each other identifies a time interval over
which the waves of gamma oscillations have not reached the
center of the electrode but are sufficiently overlapped by the
electrode so that they effectively introduce ripples of gamma
frequency into the measurements. This interval is marked
by a red square in Fig. 12. The measurements over this
interval present a ripple of gamma frequency superimposed
on a cycle of beta oscillations. This can be misinterpreted
as an implication of correlation between beta and gamma
oscillations, while it is in fact nothing but the result of
collective measurements from different networks, some of
which oscillating at beta frequency and others at gamma
frequency.

6 Discussion and conclusion

Using a spatio-temporal model of electrocortical activity,
the results presented above explain plausible mechanisms
for robust induction of transient gamma oscillations by
coordinated modulation of the responsiveness of neuronal
populations. The results confirm the locality of gamma
oscillations and demonstrate possible patterns of spatial
propagation of these oscillations across local regions of the
neocortex. Moreover, they predict potential impacts of the
size and location of electrocortical measurement electrodes
on the amplitude, temporal pattern, and frequency spectrum
of the oscillation measurements.

Specifically, the results of Sections 3 and 4 show that
sufficient decrease in sensitivity (gain) and excitability
(response threshold) of inhibitory populations, as well as

sufficient increase in their saliency, can robustly induce
gamma oscillations within the regions where the modulatory
actions are applied. Similarly, gamma oscillations can also
be induced by effectively increasing the sensitivity and
excitability of excitatory populations as well as decreasing
their saliency. In all these cases, the gamma oscillations
emerge as stable limit cycles when the dynamics of the
cortical networks presented by the model undergoes a
Hopf bifurcation. Regardless of the type of modulations
used to induce the gamma oscillation, either excitatory or
inhibitory, a subsequent modulation of excitatory population
for reduction in the level of excitation is necessary and
sufficient for termination of the emerged oscillations and
transition to low beta oscillations. This is consistent with
the observations available in the literature that identify the
excitatory activity of pyramidal cells as the driving force of
the oscillations (Buzsáki and Wang 2012; Kopell et al. 2000;
Cardin et al. 2009).

The results of this paper further emphasize the impor-
tance of developing detailed mechanistic models to unveil
the actual sequence of causal relations leading to the emer-
gence and termination of gamma oscillations. Electrophysi-
ological, behavioral, and optogenetic studies of cortical net-
works have shown that visually and optogenetically induced
gamma oscillations modulate neuronal gain (Ni et al. 2016;
Cardin et al. 2009). In the seemingly opposite causal direc-
tion, however, sensory-driven barrages of synaptic inputs
are shown to modulate neuronal gain (Cardin et al. 2008;
Haider and McCormick 2009), which consequently can
induce gamma oscillations according to the analysis of
Section 3. Moreover, termination of the emerged gamma
oscillations and their transition to beta oscillations—most
likely through substantial reduction in the level of network
excitation—is predicted by the results of Section 4 to require
specific modulation of excitatory populations. The mecha-
nism of this subsequent modulation and its direct cellular or
network causes require further investigation. In particular,
when gamma oscillations are initially induced by modu-
lation of inhibitory populations, the analysis of Section 4
shows that this subsequent modulation of excitatory popula-
tions is in the direction of restoring the balance of excitation
and inhibition in the network. Therefore, it can be postulated
that the modulatory actions that result in transition to beta
oscillations are the reaction of the cortical network to the
imbalance created by the initial, possibly stimulus-driven,
modulation. As a result, long-lasting gamma oscillations
in the absence of effective neuromodulators or streams of
synaptic activity may be assumed as the failure of the
network in re-establishing its balance, possibly due to a
neuronal disorder.

Propagating waves of gamma oscillations, as demon-
strated in Section 5, can be of very short length compared
with the diameter of a typical EEG electrode. As a result,
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the collective measurements of these waves of activity by
an electrode shows significantly lower amplitude oscilla-
tions compared with point-measurements. Low amplitude
of gamma oscillations has led to interpretations that gamma
oscillations are nothing but fluctuations at a resonance fre-
quency of cortical networks (Jia and Kohn 2011). The
results presented here, however, do not support such inter-
pretations. The gamma oscillations in the solutions of the
model emerge as a result of a phase transition in the dynam-
ics of local cortical networks, which is robustly evoked by
systematic modulation of neuronal responsiveness.

Due to the locality and propagation pattern of gamma
oscillations, the location of measurement electrodes relative
to the regions of gamma activity can significantly affect the
temporal pattern of measurements so that ripples in broad
range of frequency are introduced—even for the simple flat
geometry considered for the neocortex in the computational
results of Section 5. In particular, as shown in Section 5.2,
measurements of an electrode which overlaps with both
regions of beta and gamma oscillations can potentially result
in misinterpretations about the network dynamics of gamma
and beta rhythmic activity, possible correlations between
these oscillations, and mechanisms of frequency shifts from
gamma to beta in cortical oscillations (Traub et al. 1999;
Kopell et al. 2000). Taking further into consideration that
the neocortex has a convoluted geometry, these results
recommend that the interpretations made solely based on the
observation of specific temporal patterns in EEG recordings
should be reconsidered, and possibly be validated by using
other electrocortical measurement techniques, before being
used to establish physiological facts. Moreover, the results
discussed in Section 5.2 also demonstrate the limitations of
commonly used reduced-network models to fully describe
the patterns of rhythmic activity in EEG recordings. In
fact, not only cannot such systems of ordinary differential
equations explain spatial propagation of oscillatory waves,
but also they cannot completely predict the temporal
patterns of electrode measurements. Besides measurement
noise and other unknown sources of perturbations, the
amplitude and pattern of these temporal measurements can
be highly affected by the activity of nearby networks and
complicated geometry of the neocortex. Such impacts are
more significant on measurements of fast oscillations which
arise locally and develop waves of very short length.

The numerical analysis of Sections 3 and 4 are based on a
single set of biophysically plausible parameter values given
in Table 2. An automated search performed by Bojak and
Liley (2005) using a stability and spectral analysis of the
linearized version of the model has resulted in 73,454 sets
of plausible parameter values. However, further bifurcation
analysis performed by Frascoli et al. (2011) on a 405
randomly selected subset of these 73,454 parameter sets
has identified only two different families of topological

structures in the dynamics of the model resulting from
these different parameter sets. Moreover, these two families
of dynamic structures are shown to be transformable
from one family into the other by varying excitatory
subcortical inputs. The bifurcation analysis presented here
in Sections 3 and 4 involves numerous manual adjustments
of continuation parameters in MatCont; see the Appendix.
Therefore, an automated search within a large subset of
the available 73,454 parameter sets, aimed to identify
the parameter values that result in similar qualitative
behaviors as shown in Sections 3 and 4, requires specifically
developed numerical analysis tools and can be a topic
of future research. Instead, the bifurcation analysis of
Sections 3 and 4 is repeated here for several other parameter
sets, which are generated by randomly perturbing the values
given in Table 2 by a magnitude of 10 to 100 percent. The
results obtained for a sample of such sets are given in the
Appendix. Specifically, it is observed that the analysis is
very robust against changes in the membrane time constant
of the neurons, whereas it is relatively more sensitive to
changes in postsynaptic potential rate constants.

Finally, a note on the numerical computation of the
solutions of the model (1) can be of interest for future
studies using this model. As the computations of Section 5
proceed in time, the propagating waves in some components
of the solutions become exceedingly fine. Although the
discretization mesh used for the computation is extremely
fine, it still cannot result in completely accurate solutions
of these waves. As a result, some irregularities can be
observed in the shape of waves in Fig. 9 when the simulation
approaches its end. Therefore, more accurate solutions over
a longer time horizon requires significantly finer mesh
which substantially increases the computational cost of the
simulation. These irregularities are observed in the solution
components v = (vE, vI) and i = (iEE, iEI, iIE, iII), whereas
the solution component w = (wEE, wEI) does not develop
waves of very short length and evolves smoothly in time and
space. These observations are confirmed by the analytical
results developed by Shirani et al. (2017), which particularly
predict that v and i components of solutions can develop
drastic asymptotic discontinuities in space, regardless of the
smoothness of initial values and subcortical forcing terms.

Compliance with Ethical Standards

Conflict of interests The authors declare that they have no conflict of
interest.

Appendix: Bifurcation analysis results
for a different set of parameter values

To show the robustness of the results of Sections 3 and 4
against changes in parameter values, the bifurcation analysis
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Table 3 A set of parameter values generated by perturbations of magnitude 10 to 100 percent in the values given in Table 2. This set of values is
used as nominal parameter values for the computational results presented in the Appendix
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Fig. 13 Codimension-one bifurcation diagrams of the ODE system described in Section 3 for the nominal parameter values given in Table 3. The
same description as given in Fig. 2 holds for the curves of equilibria and limit cycles, as well as the detected bifurcation points

(a) (b) (c)

Fig. 14 Frequency of the limit cycles in the bifurcation diagrams shown in Fig. 13
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Fig. 15 Two-parameter continuation of the bifurcation points shown
in Fig. 13a. The starting bifurcation points are indicated by dots with
the same colors as they appear in Fig. 13a. The curve shown in gray is
the result of the continuation of a fold bifurcation of limit cycles that is
not made visible in Fig. 13a. The detected codimension-two zero-Hopf
bifurcation point is indicated by ZH. The detected codimension-two
generalized Hopf bifurcation point is indicated by GH

of these sections is repeated in this appendix for a different
set of parameter values as given in Table 3. These parameter
values are generated by randomly perturbing the values
used in Sections 3 and 4 by a magnitude of 10 to 100
percent. The codimension-one bifurcation diagrams and
the frequency of the limit cycles are shown in Figs. 13
and 14. These diagrams resemble the diagrams shown in
Figs. 2 and 3, respectively, and equivalently imply the
emergence of gamma oscillations as a result of a Hopf
bifurcation. The result of two-parameter continuation of
the bifurcation points detected in Fig. 13a for neuronal
sensitivity modulation is shown in Fig. 15. The bifurcation
diagrams for the nominal value of FE given in Table 3,
as well as the diagram for a modulated lower value of

Fig. 16 Mechanism of transient emergence of gamma oscillations
through coordinated modulation of inhibitory and excitatory neuronal
sensitivity. The diagrams are obtained using the parameter values
described in the Appendix. The description of the modulatory actions
and phase transitions in Steps 1 to 4 follows the same description as
given in Fig. 8

FE = 13 [s−1] are shown in Fig. 16, which illustrates
the coordinated transition from gamma oscillations to the
initial resting state. The results are highly comparable to
the results obtained in Section 4. Similarly, two-parameter
analysis of excitability (μE and μI) and saliency (σE and σI)
modulations leads to results very close to those obtained in
Section 4, and hence are not included here.

A note on using MatCont for the numerical bifurcation
analysis of this paper can be of interest for future
works on this model. The MatCont versions 6.6 and
7.1 were used to perform the computations. To achieve
convergence and obtain the full extent of the curves
presented in the bifurcation diagrams, the continuation
parameters are usually needed to be re-adjusted manually
for each diagram. These re-adjustments are especially
needed when continuing the curves of limit cycles and
their fold bifurcations. The convergence error typically
observed is ‘current step size too small’. The direction
of the continuation of limit cycles may occasionally be
reversed during the continuation, especially near the fold
bifurcations. No general rule was observed for adjusting
the continuation parameters so that these problems are
resolved. However, setting the number of mesh points
equal to 6 and the number of collocation points equal
to 5 usually results in smoother continuation of the limit
cycles. Adjustment of the initial amplitude can affect the
convergence of the continuations. A value between 0.1
to 5 was typically chosen for this parameter. Finally,
adjustment of the maximum step size MaxStepsize option
for continuation of the limit cycles is frequently needed
to resolve convergence errors or to avoid reversals in the
direction of continuation. Values as large as 50000 or larger
for MaxStepsize are needed in some cases.
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