
https://doi.org/10.1007/s10827-019-00735-3

Fast simulation of extracellular action potential signatures based
on amorphological filtering approximation

Harry Tran1 · Radu Ranta1 · Steven Le Cam1 · Valérie Louis-Dorr1

Received: 26 March 2019 / Revised: 6 November 2019 / Accepted: 11 November 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Simulating extracellular recordings of neuronal populations is an important and challenging task both for understanding the
nature and relationships between extracellular field potentials at different scales, and for the validation of methodological
tools for signal analysis such as spike detection and sorting algorithms. Detailed neuronal multicompartmental models
with active or passive compartments are commonly used in this objective. Although using such realistic NEURON models
could lead to realistic extracellular potentials, it may require a high computational burden making the simulation of large
populations difficult without a workstation. We propose in this paper a novel method to simulate extracellular potentials of
firing neurons, taking into account the NEURON geometry and the relative positions of the electrodes. The simulator takes
the form of a linear geometry based filter that models the shape of an action potential by taking into account its generation
in the cell body / axon hillock and its propagation along the axon. The validity of the approach for different NEURON
morphologies is assessed. We demonstrate that our method is able to reproduce realistic extracellular action potentials in a
given range of axon/dendrites surface ratio, with a time-efficient computational burden.

Keywords Extracellular action potential · LFP · Computational modelling

1 Introduction

The analysis of extracellular potentials at macroscopic
or microscopic scales is widely used to infer on the
functioning of the healthy and pathological brain. Such
electrophysiological signals reflect the spatio-temporal
neural activities (Buzsáki et al. 2012; Einevoll et al.
2013b) and are useful to characterize local activity in a
given population as well as large-scale brain dynamics
over several structures (Pesaran et al. 2018). We focus
in this paper on signals recorded at a microscopic scale,
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by sensors such as micro-wires, microelectrode array
(MEA) such as Utah arrays (Blackrock) or silicon probes
(Neuropixels), that we commonly denote in the following
as microelectrodes. Considering the signal recorded by a
microelectrode, two components are usually considered.
The first one is a high-frequency component thought to
reflect mainly the action potentials (APs) produced by
neurons in the vicinity of the electrode tip (up to 200μm
Buzsáki 2004; Hagen et al. 2016; Toth et al. 2016). The
second component is a low-frequencies component (usually
<300 Hz) known as the local field potential (LFP), which
mainly originates from synaptic activities of neuronal cells
relatively close the recording site (up to several millimeters
Nunez and Srinivasan 2006; Mitzdorf 1985; Kajikawa and
Schroeder 2011).

The relationships between those scales are far from being
fully understood (Peyrache et al. 2012; Destexhe et al.
1999), partly because of the electrophysiological dynamics
of the structures explored at these different scales. Besides,
the observed frequency dependence of the extracellular
recordings with the electrode-source relative positions is not
yet fully understood (resistive medium and complex source
dynamics (Einevoll et al. 2013b; Logothethis et al. 2007;
Ranta et al. 2017; Goto et al. 2010; Ness et al. 2015;
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Buccino et al. 2019) vs. complex medium and simpler
source dynamics (Bédard and Destexhe 2011; Gomes
et al. 2016). Computational models are thus needed to
enlighten how field potentials are generated by the activity
of large neuronal assemblies, as well as providing validation
ground-truth for the development of inverse problem
methodologies (e.g. spike sorting, relation analysis, etc) that
are required to analyze such large amount of data.

Many methods and tools have been developed over the
last decades to simulate realistic extracellular potentials
from single neurons and neuronal populations. Following
Mondragón-González and Burguière (2017) and Thorbergs-
son et al. (2012), one can distinguish between compartmen-
tal based models (Hines and Carnevale 1997; Gold et al.
2006, 2007; Lindén et al. 2014; Hagen et al. 2015; Para-
suram et al. 2016; Tomsett et al. 2015; Dura-Bernal et al.
2019), data-driven models (Lewicki 1994; Martinez et al.
2009) and hybrid ones (Camuñas-Mesa and Quiroga 2013;
Mondragón-González and Burguière 2017). The detailed
state of the art models, based on multicompartmental neuron
models (most based themselves on the NEURON envi-
ronment Hines and Carnevale 1997), compute the extra-
cellular potentials as a sum of monopolar current source
contributions placed within each passive or active compart-
ment (point current source model). An alternative is to use
the Linear Source Approximation (LSA), where the mem-
brane surfaces are reduced to a line source, resulting in a
tractable analytic expression of the extracellular potentials
(Holt and Koch 1999). Although these modelling tools pro-
vide accurate forward modelling, they can require a high
computational burden for large neuronal populations.

In this paper, we propose a simplified and computa-
tionally efficient approach for simulating the extracellular
action potential (EAP). Simplified modellings of EAP have
been previously proposed, mainly for inverse problem pur-
poses. The simplest one takes the form of a monopolar
source placed within the soma (Chelaru and Jog 2005;
Blanche et al. 2005), but do not accurately reproduce the
decrease of the potential with the square of the distance as
observed in experimental data (Gold et al. 2006; Pettersen
and Einevoll 2008), and does not respect the principle of
current conservation. In this perspective, the dipolar model
stands as a better approximation and has been used to solve
the inverse problem (Mechler and Victor 2012). Such sim-
ple point models are however not biophysically realistic in
all ways and lack in reproducing accurately the variabil-
ity of the waveforms at different recording sites around
the cell. A compromise is then to be find between detailed
compartmental models and point source models.

The method we propose aims to recover qualitatively
realistic spike waveforms by taking into account the
(simplified) morphology of the NEURON and the position
of the electrode tips. We do not claim to obtain highly

realistic extracellular potentials waveforms, as for example
in the highly detailed models from Gold et al. (2006, 2007),
but rather qualitatively similar EAPs using a simpler and
computationally efficient model. More precisely, we focus
on the axonal contribution and also include in our model the
propagation of the AP along the axon, as well as different
simplified axon / dendrites geometries. We show that the
EAPs generated by this model can be reduced to a linear
filtering of the EAP of a single dipole, with filters taking
into account different NEURON morphologies (varying
lengths and diameters of axons and dendrites) and electrode
positions. All along the paper, we consider that the medium
impedance is purely resistive (Buccino et al. 2019; Einevoll
et al. 2013b; Gold et al. 2007, 2010; Logothethis et al. 2007;
Ness et al. 2015; Ranta et al. 2017).

2Methods

2.1 Multicompartmental modeling

The computation of the extracellular potentials is based on
the volume conductor theory (Nunez and Srinivasan 2006).
To express the influence of the NEURON morphology on
the extracellular potential, we started from the classical
assumption that at every time instant t , the potential φ(t)

recorded by an electrode is a weighted sum of membrane
currents of all the NEURON compartments (Lindén et al.
2014; Einevoll et al. 2013a), the weights depending
on the medium conductivity (assumed homogeneous and
isotropic) and the geometry (relative position of the
compartments and the electrode).

The fundamental relationship between the potential
φre(t) recorded at position re given a single point current
source Ii(t) at a position ri is given by the following
equation:

φre(t) = 1

4πσ ‖re − ri‖Ii(t) (1)

with σ the conductivity of the extracellular medium.
Since contributions of N current sources add linearly, the
equation (1) generalizes to :

φre(t) =
N∑

k=1

1

4πσ ‖re − rk‖Ik(t) (2)

for k current sources.
If each NEURON compartment is approximated by a point

in space, equation (2) is called point source approximation
(PSA) (Holt and Koch 1999; Pettersen et al. 2008) and
yields the potential at re generated by the complete
NEURON. Note that if the compartment is approximated
by a line, one obtains the line-source approximation (LSA)
(Gold et al. 2006).
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Both methods give similar results when the electrode is
farther than about 100μm from the considered compartment
(Parasuram et al. 2016), and it was shown that LSA is very
close to the (more precise) cylindrical approximation of the
compartment for distances above 1μm (Holt and Koch
1999).

The time dynamics of Ik(t) depend on the modeling
choice of the considered compartment. Indeed, compart-
ments can be passive (i.e., their membrane is modeled as a
simple RC circuit) or active. In that case, ionic channels are
modeled (Hodgkin-Huxley dynamics for example Hodgkin
and Huxley 1952). The compartments of a NEURON are
interconnected and have interdependent time dynamics. The
complete set of Ik(t) currents for both passive and active
compartments is then computed using cable equations (Rall
and Shepherd 1968; Lindén et al. 2010; Pettersen et al.
2014). In addition, for the active compartments, one needs
to compute the Hodgkin-Huxley membrane dynamics. For
the multicompartmental neurons commonly used to model
complex morphologies, some of the compartments are set
as active (at least the soma, in general the axon) and others
passive (e.g. usually the dendrites). In any of these configu-
rations, a complete simulation of the extracellular potentials
requires to simulate hundreds of compartments and could
lead to a high computational burden, especially when pop-
ulations of neurons with multiple active compartments are
considered.

2.2 Morphological filtering

The EAP can be thus modeled as a sum of the contributions
of its different compartments, distributed over the three
main parts of a NEURON (soma, axon, dendrites). Of
course, because of the total electrical charge conservation,
the current sources from one compartment must be
compensated by current sinks, possibly located in other
compartments, implying that the currents originating in
different compartments are linked together. We start our
modelling by making some simplifying yet plausible
assumptions on the nature and relationships of these
sources/sinks:

– the soma and the axon are active, while the dendrites
are mostly passive.

– the active membrane mechanisms are roughly the same
all over the active compartments for a given NEURON
(all the ionic channels have the same dynamics and the
same densities).

– the active current sources (sinks) are mainly compen-
sated by passive sinks (sources) in nearby compart-
ments

Although the previous assumptions might seem over-
simplifying (especially the first two - see the much more

detailed models from e.g., Holt and Koch 1999; Gold et al.
2006, 2007; Thorbergsson et al. 2012), we have chosen here
to follow the simpler models from Einevoll et al. (2013a),
Lindén et al. (2011), Pettersen et al. (2008, 2011, 2012,
2014), which have shown that the modelled extracellular
potentials using passive neurons (or with active conduc-
tance only in the soma and the axon (Pettersen et al. 2008))
are qualitatively similar to the more detailed models cited
above. This assumption is also in agreement with (Kole
et al. 2008; Gold et al. 2006; Mainen and Sejnowski 1996),
which have shown that the concentration of the active chan-
nels responsible for the EAP generation is higher in the
axon/soma than in the dendrites.

With these three preliminary hypotheses in mind, we can
follow further the development as follows: such as in single
source models, the initiation site and the main contributor
to the AP is between the soma and the axon initial segment
(AIS) (Chelaru and Jog 2005; Blanche et al. 2005; Mechler
and Victor 2012; Teleńczuk et al. 2018). We model this
contribution as a dipole, as in Mechler and Victor (2012)
and we fix its origin in the soma and the orientation given by
the direction between the center of the soma and the center
of the AIS. Such simplified model lacks in reproducing the
variability of the EAP shape around the NEURON and in
particular on the axon side.

We assume then that the AP propagates along the axon
away from the soma and that two consecutive axonal
compartments act as pairs of source/sink, implying thus that
every pair of consecutive compartments can be modeled as
a current dipole. The axonal compartments being supposed
identical and active, the time course of the transmembrane
currents due to the AP is preserved while it propagates. We
thus model this contribution as a traveling dipole along the
axon.

Finally, the presence of dendrites is known to also impact
the EAP pattern (Gold et al. 2006; Pettersen and Einevoll
2008; Lindén et al. 2010). We assume that the passive
contribution of the dendrites can be modeled as small
dipoles between the soma and each dendritic compartment.1

Summing up, one can schematically split the EAP as
follows:

φEAP (t) = φS,AIS(t) +
∑

k

φAk
(t) +

∑

j

φS,Dj
(t) (3)

where φS,AIS is the potential generated by the pair soma-
AIS, modeled as a dipole between these two compartments,
φAk

are the potentials generated by the k-th pair of
neighbouring compartments on the axon and φS,Dj

are the
dipoles between the soma and the dendritic compartment j .
Because of their same origin, and because their time course

1This simplifying assumption lacks in reproducing the intrinsic
dendritic filtering shown in e.g., Lindén et al. (2010), as it will be
discussed further in the Results section.
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is given by the somatic transmembrane currents, we can sum
up the dendritic dipoles φS,Dj

in a single resultant dipole
φD (see Fig. 1).

The orientation and amplitude of this dipole then depend
on the particular shape of the dendritic tree. Moreover, the
same reasoning can be applied for the φS,AIS contributor
(origin in the soma, but different orientation and amplitude).
Therefore, Eq. 3 can be rewritten as:

φEAP (t) = w0CsI0(t) +
N∑

k=1

wkCaIk(t) (4)

where I0 is the somatic membrane current with amplitude
Cs (accounting for the soma, AIS and dendrites morpholo-
gies and relative positions) and Ik (k = 1 . . . N) are the
currents generated by the N axonal compartments with
identical contributions Ca .

Because we assumed dipoles between two successive
axonal compartments k and k + 1, the weights wk above
are not directly given by Eq. 2 but they result from the
propagation of a dipolar source in an infinite homogeneous
medium. More precisely, if we note rk the position of the
center of the compartment k and re the position of the
electrode, we can write:

wk = (re − rk)T (rk+1 − rk)

4πσ ‖re − rk‖3
(5)

Here, rk+1 − rk indicates the current dipole orientation.2

Regarding the soma weight w0, the same equation
applies:

w0 = (re − r0)T (rres − r0)

4πσ ‖re − r0‖3
(6)

Here, r0 is the soma position and rres − r0 gives the
resultant dipolar orientation (recall that we model the soma
originating dipole as a composition of the soma-dendrites
and soma-AIS dipoles, with a priori unknown orientation).
Without loss of generality, we can further consider that
(rres − r0) has a unit amplitude (its actual amplitude being
included in the Cs coefficient in Eq. 4),3 meaning that w0

depends on the orientation of the resultant vector between
the soma and the dendrites, thus (in the general 3D case),
on two azimuthal and polar angles θ and φ (in spherical
coordinates).

Next, we can normalize (4) by dividing by Ca (i.e., we
are not focusing on the actual amplitude of the EAP, but on
its shape). The soma amplitude coefficient CS = Cs/Ca

will stand further for the relative weight between the soma
based dipole and the axonal (traveling) dipole.

2In other words, the dipolar moment at time t will be defined as
j(t) = Ca(rk+1 − rk)Ik(t).
3The same reasoning could be applied for (rk+1 − rk) in Eq. 5 and Ca

coefficient.

Fig. 1 Sketch of a L5 pyramidal NEURON inspired from Mainen
and Sejnowski (1996) with the various dipoles modeled : in red, the
traveling dipole along the axon - in green, the soma-AIS dipole and in
blue the resulting dendrite dipole

Considering normalized transmembrane currents Ik , the
vector of weights corresponding to a specific electrode
position and NEURON morphology writes:

w̄ = [CSw0 w1 . . . wN−1wN ] (7)

Next, as we have supposed similar dynamics for all active
compartments (soma and axon), we can write the axonal
currents as time shifted versions of the soma current:

Ik(t) = I0(t − τk) (8)

and we can gather them in a length N + 1 vector

I(t) = [I0(t) I1(t) . . . IN (t)]
To sum up, using Eqs. 7 and 8, the extracellular signature

of the action potential writes as a dot product:

φEAP (t) = w̄I(t)T (9)

Finally, we make one last simplifying assumption: the
action potential propagates along the axon at a constant
velocity v. If the axonal compartments are identical, the
traveling time of the axonal dipole from one compartment
to another is constant:

τk = τ = ‖rk+1 − rk‖
v

(10)

and Eq. 8 becomes:

Ik(t) = I0(t − kτ) (11)

Consequently, the EAP potential can be written under an
computationally efficient form as the convolution between
the soma current (given by the HH like dynamics) and a
morphological filter w̄:

φEAP (t) =
N∑

k=0

w̄kI0(t − kτ) (12)

While in Eq. 12 the filter coefficients depend only on
the morphology and the AP velocity appears through τ ,
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the convolution is commutative and thus it can be as well
written as:

φEAP (t) =
N∑

k=0

h(t − kτ)I0(t), (13)

where h(t) is the impulse response of the filter having the
coefficients defined by Eq. 7 (h(kτ) = w̄k). This last
expression illustrates that the filtering coefficients depend
on four parameters (CS , θ , φ, v), that need to be fitted to the
particular morphology of the simulated NEURON.

2.3 Simulation

This section presents our simulation and evaluation proto-
col. The final aim is to evaluate the accuracy of our filtering
model when compared to state of the art compartmental
models (seen as ground truth), as well as with simple
fixed-dipole models. As mentioned above, we normalize
the obtained EAPs because we are interested in their shapes
recorded at different positions in space around different
types of neurons. Consequently, our main performance
criterion, used further on in the paper, is the correlation
coefficient between the ground truth given by the com-
partmental models and the morphological filtering results.

2.3.1 Compartmental modelling

The ground truth is assumed to be the compartmental
NEURON model. Several simulations were made:

1. As in other studies, we simulate the ball-and-stick (BS)
NEURON, commonly used to study the frequency and
spatial properties of NEURON extracellular potential
despite its simplicity (Pettersen and Einevoll 2008,
2014; Archie and Mel 2000; Brette and Destexhe 2012).
It consists of a lumped soma attached to an axon sub-
divided into fixed-length compartments. We set some
assumptions about the morphology: the diameter of the
axon is constant and the soma is assimilated to a cylin-
der with equal diameter and length. We considered the
presence of the dendrites by adding them to the classical
BS NEURON. The dendritic tree is reduced to a single
stick in the opposite direction of the axon, assuming that
the dendrites are well balanced around the soma with a
bias in the opposite direction of the axon. The resulting
dendrite is also subdivided into fixed-length compart-
ments with the same morphological characteristics as
the axonal compartments (lengths and distance inter-
compartments). We then simulate different morpholo-
gies by varying four parameters: length and diameter of
the axon and length and diameter of the resulting equiv-
alent dendrite. For the axon, the diameters are set to 1,
2 and 4μm, while the length varies in the set of values

{1000, 800, 600, 400, 200}μm. For the equivalent den-
drite stick, the diameters are set to 2 and 4μm and the
length varies in the set {200, 150, 100, 50, 0}μm. The
length and diameter of the soma are fixed to 25μm. In
all, 135 morphologies are considered (for 0μm length
dendrites, the diameter is not relevant). Figure 2 illus-
trates the used model and the different parameter val-
ues. With this simplified NEURON morphology, the
NEURON belongs to a plane defined by a Cartesian
system whose origin corresponds to the soma center
r0 = [0 0 0]T and with the x-axis aligned with the axon.
For this simulation setup, as the equivalent dendrite is
aligned with the axon and has thus a known orientation
(θ , φ) the morphological filter is only parametrized by
two coefficients (CS ,v).

2. A slightly more general situation appears when the
dendrites are biased and the equivalent dipole is not
oriented in the opposite direction to the axon. We
simulated thus a BS NEURON with a tilted equivalent
dendrite (dotted line in Fig. 2, with θ=20◦ and φ=90◦).
We do not consider all the varying length and diameters
for the axon and the equivalent dendrite, the role of this
simulation being to illustrate the performances of our
proposed method in a more general case. In particular,
we simulate BS NEURON with a 600μm length and
a diameter of 2μm (median values of axon length and
width with respect to the previous simulation). As we
are interested in the effect of the (tilted) dendritic stick
on the accuracy of our model, we consider the two
extreme cases for a 2μm diameter dendrite, that is
lengths of 50 and 200μm.

3. Finally, we evaluate our proposed modelling approach
on neurons with realistic morphologies. We consider
two types of cells, one with a highly biased and
important dendritic tree (the pyramidal L5 NEURON
from Mainen and Sejnowski (1996)) and the other one
with a rather symmetric disposition of the dendrites
(the spiny stellate L4 NEURON from Mainen and
Sejnowski 1996). As for the tilted dendrite simulation,
We have connected a 600μm length, 2μm diameter
axon to the somas of these two neurons.

These different morphologies were implemented in Neu-
ron (Hines and Carnevale 1997). In order to simulate
their electrophysiology, we need to define the electri-
cal characteristics of the membrane for each compart-
ment. In our simulations, we considered a combination
of active and passive channels (as in Gold et al. 2006).
More precisely, passive channels were implemented in
all compartments of the NEURON (default LFPy val-
ues, gpas= 1/30000 S/cm2, epas= -65mV), and active
channels were inserted in the soma and axon com-
partments (default NEURON values, see also Gerstner
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Fig. 2 Toy model of NEURON
used in this study. The stick of
the NEURON is aligned with
the x-axis and the center of the
soma is the origin of the
Cartesian system. The black
dots correspond to the positions
for a subset of the 65 electrodes.
The resulting dendrite (blue dot
line) has an angle of θ=20◦
compared to the axonal axis.

and Kistler 2002). The precision of the results of the
simulations obviously depend on the specific chosen chan-
nels and their parameters. For the purpose of this study, we
have limited ourselves to the default values and channels.

For obtaining the extracellular images of the action poten-
tials, the different NEURON models were called from the Py-
thon package for extracellular potential computation LFPy
(Lindén et al. 2014). An excitatory current was injected in the
somas, such as the neurons fire an isolated spike. The
extracellular potentials were computed at several positions
around the simulated neurons. Because of their axial sym-
metry, we considered a grid of 65 electrodes positioned in
the (x, y) plane, evenly spaced around the NEURON with
a step of 50μm along the y-axis and of 125μm along the
x-axis (Fig. 2). The only exception is the pyramidal L5
simulation, where the grid was extended on the apical
dendrites side (Fig. 10), resulting in 105 electrodes.

Note that the method implemented in LFPy to calculate the
extracellular potentials is a mix method between the PSA and
the LSA considering the soma as a point and the membrane
currents as evenly distributed along each compartment axis.

2.3.2 Morphological filter parametrization

As mentioned above, the proposed morphological filter has
four parameters: the amplitude and the orientation of the
somatic dipole (CS , θ , φ) determine the w0 coefficient
in Eq. 6, while the speed of the axonal propagation v

determines the convolution step τ in Eqs. 12 or 13. In
order to implement this convolution, these parameters need
to be determined. Their values are optimized with a brute
force method, that is the performances were evaluated on a
regular grid in the four dimensional parameter space. More
precisely, we have optimized the speed by exhaustively
looking for the optimal τk in a range of 1 to 40 samples (1 to
40 μs, corresponding to speeds between 0.25 and 10m/s),
and we generally optimized the soma coefficient Cs in the
range 0 to 20 (this range was extended only for the L5
compartmental model to 50). The angles θ and φ cover the
whole range of orientations (from an equivalent dendrite

opposed to the axon to one pointing in the same direction),
with a step of 10◦. Note that, for the first simulation (BS
with an equivalent dendrite pointing in an opposite direction
as the axon), the angles θ and φ were fixed and the
optimization was done in the two-dimensional space (v, Cs).

In all simulations, the membrane current I0(t) is obtained
by modeling only one single compartment having a
Hodgkin-Huxley dynamic (Hodgkin and Huxley 1952) with
the values given in Gerstner and Kistler (2002).

The optimized (maximized) criterion was the mean
correlation between the EAP produced by our convolutive
approach and the detailed compartmental approach over the
65 electrodes (105 for the L5, simulation 4).

3 Results and discussion

This section presents the results of our simulation method.
The EAP generated by morphological filtering of the mem-
brane current of a single compartment NEURON is compared
with the (ground-truth) LFPy/NEURON multicompartments
modelling and with a simple two compartment model4 model-
led as a fixed dipole. Most of the results presented here focus
on the first simulation (BS NEURON with an equivalent
dendrite pointing in the opposite direction as the axon). The
results of this simulation are described and analyzed in details
in the first two Sections 3.1 and 3.2. Although we have
simulated axons of three diameters (1, 2 and 4μm), we only
present here the results concerning the axon diameters 2 and
4μm. Comparative results for the 1μm diameter axon yields
similar conclusions and they are given in the Supplementary
Material.

The following Sections 3.3 and 3.4 are dedicated to
simulations 2 and 3, i.e., the tilted dendrite BS and the

4It is well known that a single compartment NEURON can not
generate any extracellular potential because the Kirchhoff’s current
law is not respected – the net transmembrane current must necessarily
be equal to zero. The simplest NEURON model able to generate an
LFP signature is then a two-compartment model where the membrane
current enter the NEURON at one compartment and leaves at the other
compartment.
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Fig. 3 Best fit results. The
heights of the bars represent the
mean correlation coefficient
(over 65 electrodes) for a given
morphology. The rows of the
figure are organized by axon
length (200μm to 1000μm),
while the columns are organized
by dendrite length (0μm to
200μm). The indices a to d

encode axon-dendrite diameter
pairs:
a : {�A = 2, �d = 2}μm;
b : {�A = 2, �d = 4}μm;
c : {�A = 4, �d = 2}μm;
d : {�A = 4, �d = 4}μm

realistic morphologies. Section 3.5 presents our first results
on simulating the EAPs contribution of a whole population
to the extracellular potentials, either recorded by micro or
macro electrodes. Finally, in the last subsection, we discuss
the performances and the limits of the proposed model.

3.1 Simulation 1: optimally parametrized
morphological filter

As mentioned earlier, the EAPs are obtained by a filtering
operation (see Eq. 13) and the filter coefficients depend on
the axonal propagation velocity v and on the somatic dipole
amplitude CS (for simulation 1). Consequently, the shape
of the generated EAP depends on these two parameters. We
present first (see Fig. 3) the best fits after tuning v and CS

in order to reproduce as accurately as possible the LFPy
ground-truth (by maximizing the correlation).

As it can be seen, the correlation coefficients are very
high, especially in the upper left corner of the figure,
for long axons and low influence of the dendritic tree
(according to our initial assumptions, this configuration
stands for dendrites distributed around the soma, yielding
a short equivalent dendrite stick). On the contrary, in the
lower right corner, when the axon is short and the dendrite
stick is long, the accuracy of the model decreases. The
model remains relatively accurate when the axon influence
is higher than that of the dendrites, for short axons and
short dendrites or long axons and long dendrites, although

in the latter case the diameter of the equivalent dendrite
needs to be also considered (if the dendrites are long and
thick, the accuracy is diminished). In summary, the quality
of our model is determined by the imbalance between
the importance of the axon and the dendrites: when the
influence of the dendrites becomes too important relatively
to the axon’s one, i.e., when the dendrites are long and
thick (e.g., bars b and d in the columns at the right),
the morphological filtering approach is less accurate in
reproducing the compartmental models.5

For comparison and further discussion, we present in
Fig. 4 the performances of a simple dipolar model having a
fixed origin in the soma. Note that in this case no filtering
of the membrane current is performed and the shapes of
the EAP are the same (except for the gain, which can be
negative depending on the orientation of the dipole with
respect to the electrode).

By construction, the fixed simple dipolar model does not
take into account the propagation of the action potential.
We can thus expect to obtain higher correlation coefficients
for the morphological filtering approach for long axons
and possibly similar performances for short axons. This
is partially confirmed by Fig. 4: the performances of the
fixed-soma dipole improve for shorter axons. Still, they
remain below our proposed approach, except for the shortest

5A similar figure comparing performances of 1μm and 2μm diameter
axons can be found in the Supplementary Material.
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Fig. 4 Best fit results for a
fixed-soma dipole. The heights
of the bars represent the mean
correlation coefficient (over 65
electrodes) for a given
morphology. The rows of the
figure are organized by axon
length (200μm to 1000μm),
while the columns are organized
by dendrite length (0μm to
200μm). The indices a to d

encode axon-dendrite diameter
pairs:
a : {�A = 2, �d = 2}μm;
b : {�A = 2, �d = 4}μm;
c : {�A = 4, �d = 2}μm;
d : {�A = 4, �d = 4}μm

considered axons (200μm, see explanations below in the
soma coefficient paragraph). In summary, as long as the
axon length decreases, its electric contribution to EAPs
becomes more and more insignificant (the somatic and
dendritic influence increase) and the NEURON can be more
and more assimilated to a point-neuron.

It is also interesting to notice that, for axon of length
400μm and above, the fixed dipole approach is higher in
correlation for thick axons (bars c and d) than for the thin
ones (a and b). In order to correctly interpret this observa-
tion, it is helpful to analyze the Fig. 5, giving the optimized
speeds of axonal propagation v which determines the con-
volution (10) to (13). A first observation is that the speeds
(recall that they were chosen for every morphology in order
to maximize the correlation coefficients) have consistent
values with the literature, at least for axons above 600μm
(or even above 400, for thin axons - 2μm), that is between
about 0.5 and 1m/s. Moreover, as reported in the literature,
the speed is higher for thicker axons than for thin ones
(approximately proportional to the diameter, Ritchie 1982;
Horowitz et al. 2015): bars c and d are twice as high as a

and b. How can this observation explain better results of
the fixed-soma dipole approximation for thick axons (bars
c and d Fig. 4)? Our interpretation is the following: as the
speed increases, the τk in Eq. 10 decreases, which is equiva-
lent to a morphological filter with a shorter time support and
thus with a less filtering important effect. In other words,
high axonal propagation speed yields EAP shapes less

distorted by filtering and thus closer to the membrane cur-
rent of a unique compartment (and thus to a fixed dipole).

The second parameter of our model is the weight of the
somatic dipole CS . As for the optimal speed figure, we
plot in Fig. 6 the optimal somatic coefficients (i.e., the one
maximizing the correlation coefficient and yielding the best
fits in Fig. 3).

As it can be seen, when the equivalent dendrite is
negligible (first column), the weight of the somatic dipole
is small. This is especially true when the axon is long and
thus the axonal travelling action potential dominates the
extracellular potentials. As the axon becomes shorter (still
in the first column), the importance of the soma increases.
One can notice a gap between 400 and 200μm (for the latter,
the soma coefficient saturates), indicating again that the
validity of our model is weak for short axons (or at least its
similarity with the LFPy model decreases). Note that the CS

coefficient saturation explains also why the morphological
filtering approach remains below the single dipole model
(Figs. 3 and 4, 200μm axon length).

As the length of the dendrites increases (columns from 2
to 5), the CS coefficient becomes more and more important
and more and more negative, supporting the intuition of a
fixed dipole oriented from the soma towards the dendrites.
This is even more clear when the surface of the equivalent
dendrite increases (i.e., for thick dendrites): bars b and d

have bigger (absolute) values than bars a and c. It is
interesting to notice that the value of the soma coefficient
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Fig. 5 Best fit results about the
propagation speedv (m/s) of the
action potential. The y axis is
saturated at 3 m/s. The indices a

to d encode axon-dendrite
diameter pairs:
a : {�A = 2, �d = 2}μm;
b : {�A = 2, �d = 4}μm;
c : {�A = 4, �d = 2}μm;
d : {�A = 4, �d = 4}μm

saturates quite rapidly as the length of the dendrite
increases, except for the thick axon / thin dendrite case (bars
c), where the relative weight of the axonal travelling dipole
remains important compared to the somatic dipole.

The previous analysis of the CS coefficient needs
nevertheless to be taken with care, because its importance
is far less significant than the speed v influence. Indeed,
for a given speed, the correlation coefficient between

Fig. 6 Best fit results about the
somatic dipole coefficient CS

(unitless). The y axis is
saturated at ±10. The indices a

to d encode axon-dendrite
diameter pairs:
a : {�A = 2, �d = 2}μm;
b : {�A = 2, �d = 4}μm;
c : {�A = 4, �d = 2}μm;
d : {�A = 4, �d = 4}μm
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the morphological filtering and the ground truth varies
little with CS . This could seem quite paradoxical, as we
argued that the Cs coefficient should be highly negative
for important dendrites. In fact, the performances are quite
similar for a large interval of negative values (see Fig. 19 in
the Supplementary Material). In our opinion, this is caused
by a deeper caveat of our model, that is the unique dipole
combining the dendrite and the AIS contributions. The price
to pay for this simplified model is a dipole having less
influence on the total performance (see also the discussion
below, when presenting simulations 2 and 3 for the tilted
dendrite and the realistic morphologies).

To sum up these analysis, we can conclude that our
morphological filtering approach is able to accurately
reproduce compartmental models for different simple (BS)
neural morphologies, except for weak axons to dendrite
surface ratios. Moreover, the parameters of the model have
biological interpretations and pertinent values, coherent
with the neurobiology for most of these morphologies
(especially for the axonal travelling speed v). For a more
detailed discussion on the limits of our model, see below,
Section 3.6.

3.2 Simulation 1: empirical model

According to the previous analysis, it is tempting to fix the
parameters of the morphological filter according to some
rules derived directly from the morphology of the simulated
neurons. In order to test this hypothesis, we have empirically
fixed the speeds depending on the axon diameter only, to
0.45 m/s (for a diameter of 2μm) and 0.83m/s (for 4μm).6

Next, once the speeds were fixed, we have tried to
obtain a rule for adjusting the CS coefficient depending on
the dendrites weights in the morphology. We have fitted
different curves Cs = f (�D, LD), with �D and LD

the diameter and the length of the equivalent dendrite (up
to second order). Finally, a very simple linear regression
explaining the somatic coefficient CS as a linear function of
the dendrite surface (�D × LD) gave the best results, being
consistent with our expectations:

CS = 2.9 − �DLD

37
(14)

The correlation coefficients obtained with these fixed
speeds (one per axon diameter) and the somatic coefficients
given by Eq. 14 are given Fig. 7.

6These values correspond in fact to τk equal to 21, respectively 12
samples, at a sampling frequency of 106Hz. These values are the
median speeds over the optimal speed values for all configurations
having a given axon diameter (for example, 0.45 is the medians of
optimal v for all BS models with an axon of 2μm diameter).

As it can be seen, the performances remain very high
(correlation coefficients above 0.8) for the first three rows
(axons above 600μm, regardless of the dendritic morphol-
ogy, except for the long thick dendrites and 600μm thick
axon, bar d or row 3, column 5, where the correlation
equals 0.75). High correlation values are also obtained
for 400μm thin axons up to dendrites of 100μm length
and even for 200μm axons with no equivalent dendrite
(recall that this configuration models an dendritic tree radi-
ally surrounding the soma). As a matter of fact, neurons
with thick short axons but no dendrites are also quite
well modelled by this empirically parametrized morpholog-
ical filtering (bars c and d in the lower part of the first
column of Fig. 7, with the lowest correlation value at 0.75).

To sum up, the proposed morphological filtering app-
roach, with empirically tuned parameters based on neuro-
biologically sound hypothesis, achieves good to very good
performances for an important number of ball-stick type
neural morphologies. Visual and quantitative performances
for a given NEURON morphology (BS with an axon hav-
ing a length of 1000μm and a diameter of 2μm, as well as
a 50μm length 2μm diameter equivalent dendrite) can be
seen on the Fig. 8.

It is also interesting to notice (Fig. 8), that the spectra
vary with the positions in space, with relatively higher
frequencies along the axon than near the soma. Note that a
dendritic influence on the spectra was shown in, for exam-
ple, (Lindén et al. 2010).

3.3 Simulation 2: tilted equivalent dendrite

Up to now, we considered an equivalent resulting dendrite
aligned with the axon and oriented in the opposite
direction. This case is an idealized configuration, as for
most neurons the dendrites are not perfectly symmetric
(Fiala and Harris 1999). This simulation aims to evaluate
the performances of the morphological filtering approach
for asymmetric configurations, but still supposing that
the dendritic ramifications can be approximated by a
unique equivalent (tilted) dendrite. Two extreme cases were
modelled and studied, namely a long and short equivalent
dendrite with lengths LD of 50μm and 200μm. The axon
length LA was set to 600μm (the mean length in the
previous simulations), its diameter �A to 2μm and the
diameter of the equivalent dendrite �D was set to 2μm.

It is important to notice that, if in the previous
simulations the orientation of the dipole accounting for the
equivalent dendrite was fixed in the opposite direction to
the axon, this orientation needs to be estimated for a tilted
dendrite. In other words, we have to estimate the rres or
more precisely its spherical coordinates, see Eq. 6. The
morphological filter then is configured using 4 parameters
and, as for the speed and the CS coefficient, we have
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Fig. 7 Correlation coefficients
between the LFPy ground truth
and the morphological filter
approach, with fixed speed per
axon diameter (see text). The
heights of the bars represent the
mean correlation coefficient
(over 65 electrodes) for a given
morphology, as in the previous
figures. The indices a to d

encode axon-dendrite diameter
pairs:
a : {�A = 2, �d = 2}μm;
b : {�A = 2, �d = 4}μm;
c : {�A = 4, �d = 2}μm;
d : {�A = 4, �d = 4}μm

performed an exhaustive research in order to determine the
optimal polar and azimuthal angles φ and θ .

Figure 9 shows the correlation values for each electrode
position around the NEURON for the two tested equivalent
dendrite lengths. It can be seen that, for a short equivalent
dendrite, the waveforms are very similar with the ones com-
puted with the multicompartmental model (ground-truth),
supporting the idea that the method can deal with asymmetric

dendritic ramifications as long as the asymmetry remains
low and the equivalent dendrite short. In fact, as indicated
by the small CS value (= 1), the contribution of the somatic
dipole is low and the φ and θ angles are not relevant (indeed,
practically the same mean correlation performances, within
a 10−2 precision, are obtained regardless of these angles).

For the long dendrite case, although the EAPs are
correctly modelled on the axon side, the proposed method

Fig. 8 Position-dependent EAPs waveforms (top) and spectra (bot-
tom) for a NEURON with a morphology given by LA = 1000μm,
�A = 2μm, LD = 50μm, �D = 2μm. Red curves are com-
puted using the compartmental model (LFPy+Neuron) while the blue
ones are computed with the proposed morphological filter. Not all

the electrode positions are displayed. Mean correlation value: 0.97,
minimum value: 0.80, maximum value: 0.99, median value : 0.98.
The colors of each electrode quantify the correlation between the
morphological filter and the ground truth (see colorbar)
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Fig. 9 Tilted dendrites results. The neurons illustrated here have an
axon with a length LA = 600μm and a diameter of �A = 2μm. The
equivalent dendrite lengths are LD = 50μm (top) and LD = 200μm,
both with a diameter �D = 2μm. The angle between the dendrite
axis and the axonal axis is π/9. For the top NEURON (LD = 50μm),
the mean correlation value is 0.97, with minimum value 0.79, maxi-
mum value 0.99 and median value 0.98. The optimal filter parameters

are CS = 1, v = 0.47 m/s, φ = π/2, θ = −π/18. For the bot-
tom NEURON (LD = 200μm), the mean correlation value is 0.78,
with minimum, maximum and median values of -0.15, 0.99 and 0.94
respectively. The optimal filter parameters are CS = 18, v = 0.45 m/s,
φ = π/2, θ = π/18

can not reproduce realistic waveforms on the dendrite side.
It is nevertheless interesting to notice that, unlike for the
short dendrite, the weight of the somatic dipole is important
and the angles become relevant. Indeed, the only θ angles
achieving correlations above 0.75 are between 0 and 2π/9,
i.e., around the actual tilted dendrite angle of π/9. Still,
despite the good angle estimation, the EAPs on the dendrite
side are not well modelled, pointing out the limits of our
model (in our opinion, this is at least partly due to the
inaccuracy of the dipolar estimation in the close field, see
also the Discussion section below).

3.4 Simulation 3: complexmorphologies

The next step in evaluating the performances of the proposed
morphological filter is to confront it with multicompartmen-
tal simulations of neurons having complex morphologies.
This section focuses on EAPs generated by two neurons:

– a modified L5 pyramidal NEURON based on Mainen
and Sejnowski (1996). More precisely, we have kept
the complete dendritic morphology (apical and basal
dendrites) and we have added a 600μm length axon of
2μm diameter, connected to the soma. The dendrites
were kept passive, while active channels (as above)
were included in the axon and the soma.

– a modified stellate inhibitory NEURON, also based on
Mainen and Sejnowski (1996). As for the L5, we have
kept the complete dendritic morphology (basal den-
drites only) and we have added a 600μm length axon of
2μm diameter, connected to the soma. The dendrites
were kept passive, while active channels (as above)
were included in the axon and the soma.

Considering the previously presented simulations, one would
expect better results for the stellate NEURON compared
to the pyramidal L5, because of their different dendritic
morphologies (symmetric basal for the stellate, highly
asymmetric and tilted for the L5). Moreover, for the latter,
the EAPs should be better reproduced on the axon side than
on the (apical) dendrite side. Indeed, these expectations are
confirmed by the quantitative results, presented in Fig. 10.

3.5 Simulating EAP contributions to the LFP
for large populations

It is well known that one of the main components of the
extracellular electric field (LFP) is generated by the mem-
brane currents of neurons situated in a volume around the
recording electrode (Buzsáki et al. 2012). The extent of this
volume is debated, but the LFP is usually known to reflect
the neural activity of populations within a few hundred
micrometers from the recording electrode (Toth et al. 2016;
Kajikawa and Schroeder 2011; Lindén et al. 2011).

The method we propose in this paper can be used
to quickly evaluate the contribution to the measured
extracellular potentials of the action potentials generated by
a whole population. Of course, in a real population or in a
realistic model (Traub et al. 2004), the variety of the neurons
yields contributions to the extracellular potential with
different shapes that our model cannot capture. We rather
follow the philosophy behind the populations simulators
from Mazzoni et al. (2015), where the aim was to obtain
approximations of (the synaptic contributions to) the LFP.
Still, unlike in Mazzoni et al. (2015), we focus on the EAP
contributions, which our model is able to reproduce to a
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Fig. 10 Position-dependent EAPs waveforms for a stellate interneu-
ron (top) and an L5 pyramidal NEURON (bottom). Red curves are
computed using the compartmental model (LFPy+Neuron) while the
blue ones are computed with the morphological filter method. Not all
the electrode positions are displayed. The color of the electrodes gives
the correlation level (negative values are saturated at 0). For the stel-
late cell, the performance indices are: mean correlation value: 0.94,

minimum value: 0.60, maximum value: 0.99, median value : 0.96.
The optimal filter parameters are CS = 6, v = 0.62 m/s, φ = 8π/9,
θ = −13π/18. For the L5 cell, the performances indices are: mean
correlation value: 0.39, minimum value: -0.24, maximum value: 0.98,
median value : 0.47. The optimal filter parameters are CS = 28, v = 1
m/s, φ = π/3, θ = 17π/18(170◦)

certain extent, especially considering the relative positions
of the electrodes and neurons.

If the previous simulations showed that the morpho-
logical filtering is able to yield varying EAP waveforms
depending on the NEURON positions with respect to the
electrode, we have not yet explored the EAPs variations
due to the morphologies themselves. Of course, the simple
BS models we propose cannot capture the variability of the
EAPs of realistic neurons, but an interesting question is if
it still can generate varying waveforms, for the same rela-
tive NEURON positions with respect to the electrode, but
for neurons with different simple morphologies.7

We have thus simulated two different (extreme) BS
morphologies:

– long axon (1000μm) - long dendrite (200μm) mor-
phologies, that we call further on pyramidal neurons
(long projecting axon and long apical dendrites, yield-
ing a long equivalent dendrite stick);

7Note that this would allow to create signals for training or evaluating
spike sorting algorithms (Lewicki 1998; Rey et al. 2015). Recall that
these algorithms are based on distinct features of the EAPs (amplitude,
width... etc), which our simulator is able to reproduce for varying
positions. Note that supplementary variability could be in principle
obtained by varying also the parameters of the HH model.

– short axons (200μm) - no dendrite, that we call
further on inhibitory neurons (short axon and radially
distributed dendrites).

All diameters are set to 2μm.
The simulated EAPs as seen by an electrode near the

soma (the closest on the dendrite side) are presented Fig. 11.
As it can be seen, the shapes respect basic features of
the inhibitory EAP (shorter duration) and excitatory EAP
(larger duration). These shapes are to be compared to
results from the literature (Barry 2015; Bieler et al.

Fig. 11 Examples of EAP simulated waveforms: the pyramidal cell
(blue) has a larger spike width than the inhibitory cell (dotted red). The
two horizontal dotted lines represent the half peak-to-peak width
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Fig. 12 Micro and macroelectrodes positions with respect to the neural
population (SEEG, electrodes 1 and 2, ECoG, electrode 3). Notice the
laminar electrodes inside the population

2017; Lewandowska et al. 2015; Robbins et al. 2013).
If the peak-to-peak width is quite similar for both types
of neurons (2.14 ms for the pyramidal NEURON and
2.19 ms for the inhibitory neuron), the half peak-to-peak
width is significantly shorter for the inhibitory NEURON
compared to the width of the excitatory (pyramidal) neuron
- respectively 0.26 ms (horizontal red line) and 0.41
ms (horizontal blue line). Without pretending to simulate
highly realistic waveforms as in Gold et al. (2006),
our simulations are qualitatively coherent with the basic
biological observations on the EAPs shapes.

With these considerations in mind, we simulated a
population of neurons, roughly implementing the same
setup as in Mazzoni et al. (2015). Our population consists
of 4000 pyramidal and 1000 inhibitory neurons having the
somas randomly and uniformly positioned in a cylinder with
250μm radius and 250μm height (z from 0 to -250μm)
– (Fig. 14A). These dimensions correspond to a neuronal
population which contributes the most to the LFP (Lindén
et al. 2011; Łėski et al. 2013; Einevoll et al. 2013a) and have
also been used in Mazzoni et al. (2015).

Pyramidal neurons are known for having a preferred
orientation, so they were z-oriented with a (small) random
angle, while inhibitory neurons do not have a specific
orientation for the axons, which were thus oriented
randomly, see Fig. 12.

Several measurement points (electrodes) were simulated,
with different positions and sizes. The activity was first
simulated at different depths along the z-axis by placing
three groups of three point electrodes in a linear manner (as
for a laminar electrode). The distance between electrodes

was set at 50μm, while the three groups were placed at
depths 150, -75 and -700μm (first electrode of each group).
These three depths correspond respectively to the influence
area of the dendrites (micro A), somas (micro B) and axons
(micro C), see Fig. 12. In order to evaluate the contribution
of the population EAPs to macro electrodes (intracerebral
SEEG or ECoG), we have also simulated finite surface
contacts, for which the potentials were computed by spatial
averaging (Lindén et al. 2014). These macro electrodes
were placed either parallel to the z-axis (and thus to the
population, more or less like SEEG electrodes passing
through the cortex) or perpendicular to the z-axis and
above the population (apical dendrites side, more or less
like an ECoG electrode). Their dimensions were set at
1200×600μm for the SEEG1 and SEEG2, while the circular
ECoG electrode radius was set at 250μm. The SEEG-
like electrodes were placed at 350μm and 550μm from
the population frontier (cylinder surface), while the ECoG-
like electrode was placed at 300μm from the somas (see
Fig. 12). The potentials recorded by these electrodes were
simulated by averaging over a regular grid of points on their
surfaces (153 points for the SEEG and 83 points for the
ECoG).

Modelling a realistic dynamics of this neural population
through realistic synaptic connectivity is beyond the scope
of this paper. We thus generated the spiking activity of
the simulated population using a random (Poisson) process
with variable intensity, the same for all neurons in order
to simulate phases of synchronous firing (see Fig. 13
bottom). A refractory phase of 10ms was considered for
all neurons. The resulting raster (3 seconds at a sampling
frequency of 32000Hz) is shown in Fig. 13. In order to
simulate the membrane currents and the spiking activity of
the population, the raster was convolved with Im(t), the
membrane currents generated by a Hodgkin-Huxley model.
For every NEURON and electrode, the corresponding
morphological filter was computed as described in the
previous sections, and the contribution of the population
action potentials to the extracellular potential were obtained,
for every point in space and thus every electrode, by adding
the contributions of the different neurons.

The signals seen by the micro electrodes inserted into
the simulated population are shown in Fig. 14. Previous
simulations and studies have shown that the extracellular
signature of the action potential can be recorded by several
electrodes (Einevoll et al. 2013b; Kajikawa and Schroeder
2011). The main key feature is that the shape and the
amplitude will change according to their relative positions
compared to the NEURON morphology as it can be seen
on the Fig. 14 (and as it was shown for a single NEURON
simulation in the previous sections).

Another feature of the simulation is that the electrodes
of group C (lower part of the cylinder) detect mainly
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Fig. 13 Spiking activity of the
excitatory (blue) and the
inhibitory neurons (red). The
black line corresponds to the
common firing rate

pyramidal neurons activity and more specifically axonal
action potentials (Fig. 14). The inhibitory contribution to
the extracellular potential is not significant because of
the size of the inhibitory neurons and their short axonal
influence area. However, when the electrodes are located
among the somas (micro B), it is clear that EAPs from
both neurons types can be seen (Fig. 14 - middle). Their
contribution to the global signal is no more negligible (red
parts in the circles on the right). It is noteworthy to mention
here that this decrease of the contribution of inhibitory

interneurons is also present when moving away radially
from the center of the population (perpendicular to z-
axis, not shown). Moreover, the inhibitory contribution rises
when the electrodes are located in the dendrites influence
area (micro A) and EAPs from both neurons types can
still been seen. These observations can be explained by
the intrinsic properties of the inhibitory neurons, having a
smaller morphology and no preference for axon orientation.
Consequently, it appears that the overall contribution of the
inhibitory EAPs to the spiking activity is much smaller and

Fig. 14 Signals recorded by the different electrodes located in the neu-
ronal population : in the dendrites area (Micro A - top), among the
inhibitory and pyramidal somas (Micro B - middle) and in the pyra-
midal axons area (Micro C - bottom). The colored spikes correspond
to the same neurons type (inhibitory in red, pyramidal in blue). Note

the different shapes of the EAP of the same NEURON, depending on
the electrode. The circles show the contribution (in terms of energy,
computed as the sum of squared magnitudes) of the excitatory neurons
(blue) and the inhibitory neurons (red) to the extracellular potentials
(the EAP contribution)
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more local than the excitatory EAPs contribution (the same
conclusions were drawn for synaptic contributions of the
post-synaptic pyramidal neurons, compared to the ones of
the inhibitory neurons Mazzoni et al. 2015). It also appears
that the shapes of the different EAPs show a high variability
(between neurons but also for the same NEURON recorded
on a given electrode depending on the background activity),
indicating that these signals could be in principle used for
spike sorting algorithms benchmarking or training - see
more detailed discussion below.

We finish this section by discussing the contribution of
the action potentials of the whole population to macroscopic
recordings, simulated by averaging the extracellular poten-
tials over the surface of the macro electrodes. We have
filtered the obtained signals in order to mimic a macroscopic
(clinical) EEG recording device. Here, the populations
activities have been bandpass-filtered with a 2nd-order But-
terworth filter between 0.15Hz and 480Hz (Micromed�,
Treviso, Italy, Technical Note). For each macro electrode,
we computed the recorded extracellular potential, as well
as the separate contributions of the the excitatory and
inhibitory neurons.8 For both types of macro electrodes, we
quantified the relation between the population firing rate
and the extracellular potentials by estimating the correlation
coefficient between them. The Fig. 15 illustrates the rela-
tion between this firing rate and both populations activities
on both types of electrodes.

It is clearly visible that the excitatory population con-
tributes more significantly to the global extracellular record-
ings than the inhibitory population. The most interesting
observation is that the action potentials of synchronous
firing pyramidal neurons seem to contribute to very low
frequencies in the extracellular signals and that this con-
tribution is correlated to the firing rate. Assuming that the
overall EAPs contribution to the LFP is significant (i.e., it
is not completely dominated by the synaptic contribution),
this would help to explain and justify the use of the firing
rate of a population as a proxy for the LFP, or at least as
a partial component. It is noteworthy that the ECoG elec-
trode seems to have a relatively stronger low-frequencies
component compared to the SEEG (the ECoG potential has
a higher correlation than the SEEG one with the firing rate,
0.61 compared to 0.46). This observation can be explained
by the predominant somatic and dendritic contribution to
the ECoG simulated signal, having lower-frequencies than
the axonal contribution that contributes more significantly
to the SEEG-like signals (see also spectra in Fig. 8).

8Only the part due to the EAP, no synaptic currents were taken into
account, see Aussel et al. (2019) for preliminary results on the relative
contributions of both synaptic and EAP currents to the extracellular
potential.

Fig. 15 Macro oscillations of both populations correspond to the firing
rate. A Simulated firing rate. B and C The activity of the excitatory
neurons (blue) is more significant than the activity of the inhibitory
neurons (red) for the SEEG1 electrode (B) and the EcoG electrode (C).
The correlation between the firing rate and the SEEG signal is about
0.46 and the correlation with the ECoG signal is 0.61. The circles
quantify the contribution of the excitatory (blue) and the inhibitory
(red) neurons to the extracellular potentials (relative energy, computed
as the sum of squared magnitudes)

3.6 Discussion

Simulating realistic EAP waveforms is a great challenge
because they depend on many parameters such as the
different ionic channels of the membrane, their density, the
detailed morphology and the electrode position (Gold et al.
2006; Pettersen and Einevoll 2008). The method that we
propose in this paper does not aim to reproduce these highly
realistic waveforms, but to compute qualitatively plausible
EAPs, especially of the axon contributions, with a very low
computational burden.

Indeed, the computation speed is significantly enhanced
with respect to more sophisticated simulation techniques,
as for example the LFPy/NEURON environment, that we
used as a ground-truth to evaluate the performances of our
approach. The computation time is decreased by at least
an order of magnitude. For example, on a personal laptop,
simulating the extracellular potential (in one point in space)
due to 1000 pyramidal neurons modelled as above (BS, with
an axon having 1000μm length and 2μm in diameter and
en equivalent dendrite of 200μm length and 2μm diameter),
during one action potential (10ms), takes 10s using the
morphological filter (implemented in Matlab) and 215s
using the multicompartmental approach (LFPy/NEURON -
in Python). The difference is even higher if we only compute
one single Hodgkin-Huxley model for all 1000 neurons, in
this case the simulation using the morphological filter only
lasts 400ms for the 1000 neurons (note that this last option
can be considered if all neurons are assumed to share exactly
the same dynamics, i.e., there is no difference among them
in surfaces or in conductances/capacities).

On the same laptop, for the complete population of
5000 neurons and the 3 seconds length signal presented
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in the previous Section 3.5, the simulation of the EAPs
contribution to the extracellular potential takes 17.5 s for
one point in space (slightly less than two hours for the
complete simulation on the almost 400 points in space
representing the set of laminar/SEEG/ECoG electrodes),9

while the LFPy/NEURON simulation takes more than 4
hours for a single point in space.

This increase in computation speed does not necessarily
alter the accuracy of the simulation for simple ball-stick
type neurons, in particular for those with a rather small
equivalent dendrite stick. Moreover, in these favourable
configurations, the parameters of the morphological filter
used in the simulation can be tuned using basic information
about the morphology of the simulated neurons (see
Section 3.2) and the resulting EAPs have qualitatively
realistic features: the axon propagation speed depends on
the diameter, waveform shapes and spectra depend on
the morphology of the NEURON (short/long axons and
dendrites) and on the position of the electrode.

On the other hand, the morphological filter approach has
its limits. Returning to Figs. 5 and 6, it seems that the model
parameters v and CS are less plausible and/or saturate for
the short axons/long dendrites configurations. For example,
Fig. 7 seems to indicate that our empirically/biologically
tuned model is physiologically valid for morphologies
limited to the first three rows (axons above 600μm) and
for shorter axons also as long as they remain thin (2μm) or
when the dendrites weight is low. Indeed, the yellow bars
(c and d) in the lower right corner of Fig. 5 are implausibly
high - the axonal speeds are too fast. Similarly, Fig. 6 shows
that in the lower right corner (and partially even in the upper
rows, for long dendrites) the CS coefficients are saturated
(as a matter of fact, we have tested values up to ±20, and
even if the figures are saturated to ±10, the obtained optimal
values of CS are actually saturated at ±20). In other words,
the best correlations between the LFPy ground truth and the
morphological filtering model are obtained for implausible
values of some of the filter coefficients. On the one hand,
even if they loose their physiological meaning, they still
might be simply interpreted as model coefficients necessary
for a good reproduction of the actual EAP shapes (this
reasoning might hold for 400μm axons and long dendrites,
for which higher speeds ensure higher correlations, see the
last three columns of the fourth row in Figs. 3 and 5). On
the other hand, these morphologies might simply be seen as
out of the reach of our model.

The accuracy of the method diminishes further for
more complex morphologies. Indeed, cells such as the L5
pyramidal neurons have good results only on the axon
side and this is the most critical issue (and future research
direction) of the model. Some possible explanations of these

9When a single HH compartment is simulated for all 5000 neurons.

weak performances could be linked to the (oversimplified)
dipolar approximation on the dendrite side: complex apical
dendrites cannot be modelled by a single equivalent dipole
having a somatic origin (in fact, the dipole approximation
of this configuration stems from two monopoles, one in the
soma and the other somewhere far in the apical dendrite: we
are thus in a near field situation, where the dipolar model
does not hold; in other words, only the potentials of the
electrodes situated far from the two monopoles model could
be modelled using a dipole approximation, meaning that
almost all electrodes on the dendrite side are affected by this
error). Of course, it is totally possible that a two monopole
approximation would not be sufficiently accurate neither
(although a qualitatively acceptable approximation seems to
hold Pettersen et al. 2012). In this case, multicompartmental
models and full cable theory need to be used. Even so,
as long as the dendrites models remain passive and the
soma and the axon active, one can imagine combining
the LFPy cable computations (for simulating the dendrites
contributions) with the morphological filter introduced in
this paper (for the axonal contribution) in order to obtain
fast and accurate EAPs for passive dendrites/active axon
NEURON models (as EAP computation is simply a linear
combination of the two). This would still imply only
one active compartment simulation (soma), instead of a
complete LFPy simulation of a full NEURON with passive
dendrites and active soma and axon.

We also have to note that the model and the results
proposed in this paper were validated on neurons having an
unmyelinated axons above 200μm. We might legitimately
ask if the model can be adapted to myelinated axon. In our
opinion, the myelin shield isolates the axon and the only
visible contributions to the EAPs are, in this case, those
generated by the initial unmyelinated part (the contributions
of the Ranvier nodes to the EAPs should be small, both
because they are situated in principle far from the recording
sites and because of their small surface). Still, unmyelinated
long axons or axons with long initial segments are not
uncommon. In the literature, unmyelinated 1mm axons were
reported for the (rat) CA3 pyramidal cells, as well as long
unmyelinated initial axonal segments, from 200μm the
(ferret) L5 pyramidal neurons to 1mm for the (rat) CA3
pyramidal cells or Dentate Gyrus granule cells, see Kress
and Mennerick (2009) and the references therein.

To sum up, our morphological filter model yields reliable
results (reproduces accurately the EAPs at different space
locations) for neurons having a rather radially distributed
dendritic tree around the soma (basal dendrites). Apical
(biased and/or tilted) dendritic ramifications diminish
the performances (although they remain correct if these
ramifications are not very important and can be modelled by
a short equivalent dendrite). For biased dendritic trees (i.e.,
non-null “equivalent dendrite”) the results are maintained as
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long as the axon is significant compared to the equivalent
dendrite assumed to account for the spatial bias of the
dendritic tree. The parameters of our filter are biologically
founded and depend on the NEURON morphology.

4 Conclusion

This paper introduces a new method to model extracellular
signatures of action potentials, starting from single-dipole
neurons and requiring thus only one computation of the
membrane dynamics.

We showed that the proposed method is able to fit accu-
rately a large variety of shapes of action potentials for
various neurons morphologies with a predominant axon
compared to the dendrite. For inhibitory neurons and mor-
phologies with a predominant axon, these EAPs shapes are
really similar to those produced by state of the art mul-
ticompartmental models such as LFPy/NEURON (Lindén
et al. 2014), while the gain in computational speed is
shown to be of one to two order of magnitude.10 Moreover,
they are qualitatively comparable to those found in experi-
mental extracellular recordings from the literature (Robbins
et al. 2013). The main novelty is the rewriting of the poten-
tials generated by a travelling action potential (along the
axon) as a convolution with a morphological filter whose
coefficients can be estimated from the NEURON morphol-
ogy and the relative position of the recording electrode with
respect to this NEURON. The parameters of the morpholog-
ical filter have biophysical justifications and interpretations
(traveling speed along the axons, total dendrite surface).
Choosing adequately these coefficients, it should be possi-
ble to simulate neurons morphologies producing different
EAPs shapes. Despite the use of such simple modeling, our
results provide evidence that the proposed model is indeed
able to reproduce features of the EAPs already observed
in recent studies, such as the time/frequency variability at
different positions around the neurons.

We have also shown that with this simulation setup we
are able to rapidly compute the EAP contributions from a
whole population of neurons with different morphologies
(yielding waveforms qualitatively comparable to inhibitory
and excitatory EAP shapes). Using as input a realistic
rasterplot, the method proposed in this paper could be seen
as a computationally efficient alternative to HybridLFPy
(Hagen et al. 2016).

The simulated population signal could be in princi-
ple used for preliminarily testing signal processing meth-
ods such as spike sorting algorithms. Other spike sorting

10Other detailed simulation techniques such as Thorbergsson et al.
(2012) and Dura-Bernal et al. (2019) are also based on NEURON,
having thus more or less the same advantages (in terms of precision)
and caveats (computing time).

benchmark signals simulators were proposed in the litera-
ture, either multicompartmental based methods (Camuñas-
Mesa and Quiroga 2013) or including real spikes (Martinez
et al. 2009). Unlike these methods, the approach described
here can handle a complete population simulation, includ-
ing (close) single and (far) multi-units as well as (farther)
population contributions. It is true that, in our approach,
the variability among the simulated EAPs does not stem
mainly from the morphology, but from the relative posi-
tions of the electrodes with respect to the neurons. Still,
enriched with a more accurate model of the dendritic contri-
bution, with variable HH dynamics per NEURON and with
synaptic contributions (using for example the methods pro-
posed in Mazzoni et al. (2015) and Aussel et al. (2018),
see preliminary results in Aussel et al. 2019), our approach
might become an all-in-one simulation method of extracel-
lular potentials, potentially able to compete with (state of
the art) hybrid methods combining real signals, simulated
noise and detailed multicompartmental models.

To conclude, our method could become a valuable tool
to generate qualitatively realistic extracellular potentials of
neuronal populations being done on any computer. It also
shows that the variability of the obtained EAPs shapes
due to relative position changes of a NEURON with res-
pect to the electrodes is important, indicating that the
spatial configuration is a strong factor influencing for
example spike sorting algorithms. We believe that the tool
we propose here can be a starting point for a more complete
simulator useful to validate, train or benchmark neural
signal processing methods such as spike sorting algorithms.
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