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Abstract
Acute hepatic encephalopathy (AHE) due to acute liver failure is a common form of delirium, a state of confusion, impaired
attention, and decreased arousal. The electroencephalogram (EEG) in AHE often exhibits a striking abnormal pattern of brain
activity, which epileptiform discharges repeat in a regular repeating pattern. This pattern is known as generalized periodic
discharges, or triphasic-waves (TPWs). While much is known about the neurophysiological mechanisms underlying AHE,
how these mechanisms relate to TPWs is poorly understood. In order to develop hypotheses how TPWs arise, our work builds
a computational model of AHE (AHE-CM), based on three modifications of the well-studied Liley model which emulate
mechanisms believed central to brain dysfunction in AHE: increased neuronal excitability, impaired synaptic transmission,
and enhanced postsynaptic inhibition. To relate our AHE-CM to clinical EEG data from patients with AHE, we design a
model parameter optimization method based on particle filtering (PF-POM). Based on results from 7 AHE patients, we find
that the proposed AHE-CM not only performs well in reproducing important aspects of the EEG, namely the periodicity of
triphasic waves (TPWs), but is also helpful in suggesting mechanisms underlying variation in EEG patterns seen in AHE. In
particular, our model helps explain what conditions lead to increased frequency of TPWs. In this way, our model represents
a starting point for exploring the underlying mechanisms of brain dynamics in delirium by relating microscopic mechanisms
to EEG patterns.

Keywords Acute hepatic encephalopathy (AHE) · Neural computational model · Liley model ·
Generalized periodic discharges · Electroencephalogram (EEG) · Particle filtering

1 Introduction

Acute hepatic encephalopathy (AHE) is a common con-
dition, occurring in 30-45% of cirrhotic patients (Amodio
et al. 2001). AHE is associated with decreased quality
of life, increased hospitalization and increased mortal-
ity (D’amico et al. 1986). It is defined as a reversible
clinical syndrome of impaired brain function occurring
in patients with acute liver failure (ALF), and clini-
cally leads to impaired attention, confusion and decreased
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arousal (Wijdicks 2016). Many patients with AHE exhibit
a strikingly abnormal pattern of brain activity in the elec-
troencephalogram (EEG), in which epileptiform discharges
repeat in a regular repeating pattern. This pattern is known
as generalized periodic discharges (Hirsch et al. 2013), or
triphasic-waves (TPWs) (Agrawal et al. 2015).

Neural computational modeling is a well-established
and rapidly increasing research area, which has been
successfully applied to the biomedical field to analyze and
understand the observed EEG phenomena, test mechanistic
hypotheses, and predict system behaviors in space and/or
time (Shayegh et al. 2013). Various computational models
have been developed to simulate neuronal dynamics and
shed light on the mechanisms underlying EEG patterns in
healthy and pathological states, including epilepsy, sleep
disorders, and other neurological conditions. These neural
computational models can be categorized into two main
families according to the level of biological organization
they aim to represent: microscopic model and mesoscopic
model. The former one describes interconnected neurons

Journal of Computational Neuroscience (2019) 47:109–124

/ Published online: 11 September 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10827-019-00727-3&domain=pdf
https://doi.org/10.1007/s10827-019-00727-3
mailto: mwestover@mgh.harvard.edu


with each single neuron represented in detail by multiple
compartments to model their structural components and
functional properties (Wilson and Cowan 1972; Beurle
1956; Nunez 1974; Hutt and Buhry 2014; Fröhlich
and Jezernik 2004). Although such models can reflect
brain dynamics more realistically, they are challenging to
implement on a large scale due to the high computational
cost and complexity. In contrast, mesoscopic models study
spatially averaged activity to characterize the collective
behavior of neural populations instead of modeling the
dynamic properties of individual neurons (Jansen et al.
1993; Jansen and Rit 1995; Wendling et al. 2000; Babajani-
Feremi and Soltanian-zadeh 2010; Zavaglia et al. 2006; RJ
et al. 2007; Zandt et al. 2014). Since mesoscopic models
are able to capture certain brain dynamics in a simple
and biologically explanative way, there has been increasing
interest in the study of mesoscopic models to explore
physiological or pathological phenomenon.

In 1952, Beurle modelled the cortex as a spatially uni-
form and continuous network with a fixed firing threshold
(Beurle 1956), which broke new ground in characterizing
brain dynamics from the “neural population” point of view.
This work allowed researchers to more effectively tackle
important and clinically-relevant open questions in neuro-
science, including the origin of oscillations in the mam-
malian EEGs (Wilson and Cowan 1972), including the alpha
(8-13 Hz) rhythm (Nunez 1974; Rotterdam et al. 1982) and
EEG patterns during epileptic seizures in the olfactory sys-
tem (Freeman 1987), among others. However, these early
computational models had a number of limitations, such as
(1) inaccurate representation of the post-synaptic response;
(2) poorly defined neural sub-populations; (3) incomplete
local or global connectivity; and (4) difficulties in obtaining
independent estimates of model parameters (Liley 1997). In
an effort to overcome some of these limitations, a variety
of improved computational models have been developed.
Among these, the model proposed by Liley in 1997 has
been successful in clarifying the genesis of alpha rhythms
in the mammalian brain (Liley 1997). In this model, two
neural populations (excitatory and inhibitory) are connected
via local feedforward and feedback excitatory and inhibitory
couplings, and synaptic reversal potentials are incorporated
in each population so that conductance-based neurons are
defined. In Liley et al. (1999), Liley et al. further proposed
an improved form of this model with more generalized
mathematical formulations which could be applied if the
proposed nine assumptions were achieved. For convenience,
we refer to this model as the “Liley model” in what follows.

Recent work on patients with anoxic brain injury has
shown that a modification of the Liley model can reproduce
generalized periodic discharges, which are similar to the
TPW EEG patterns seen in AHE patients (Ruijter et al.

2017). Building on this work, we study a modified Liley
model in order to relate observed EEG patterns (TPWs)
to mechanisms believed to be important in generating
the neurological manifestations of delirium in AHE. To
achieve this goal, a new computational model of AHE
(AHE-CM) will be first proposed by integrating three
known mechanisms underlying AHE into the Liley model:
(1) impaired synaptic transmission secondary to impaired
cellular metabolism; (2) increased neuronal excitability;
and (3) enhanced postsynaptic inhibition. Then, to match
this model to features of actual EEGs from patients with
AHE, a parameter optimization method based on particle
filtering (PF-POM) will be designed. In this work, we
focus specifically on tuning the model to approximately
reproduce the distribution of inter-TPW intervals. Finally,
through combining AHE-CM with PF-POM, we study the
model behaviours in response to changes in key parameters,
as well as the relation between the frequency of TPWs
in real AHE-EEGs and the mechanisms underlying AHE
in our computational model. Performance of the proposed
model will be verified on seven AHE patients hospitalized
at Massachusetts General Hospital (MGH).

This paper is organized as follows. In Section 2, we
introduce the proposed approach, including the neural
computational model of AHE (AHE-CM) together with
the mechanisms underlying AHE, and the model parameter
optimization method PF-POM. In Section 3, we analyze
the model performance on EEGs from 7 patients who were
hospitalized at the Massachusetts General Hospital.

2Methods

This section introduces our neural computational model
of AHE (AHE-CM), and a model parameter optimization
method based on particle filtering (PF-POM).

2.1 Neural computational model of AHE

In this subsection, we first give a brief overview of “Liley
model”, including its topological structure and the dynamics
of each neural population. Then we summarize three key
neuropathological alterations believed to underlie delirium
in AHE. Finally, a new neural computational model of AHE
(AHE-CM) is proposed by integrating the three mechanisms
into the Liley model.

A1) Overview of the Liley model
The Liley model comprises two neural populations: an

excitatory population (represented by E) and an inhibitory
population (represented by I), which are functionally
distinct but synaptically coupled. The model includes two
inter-connections (weighted by Nie and Nei) and two intra-
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connections (weighted by Nee and Nii). External input from
thalamus to E and I are presented by pee and pei . Figure 1
illustrates the topological structure.

The dynamics of each population are described by two
state variables, the soma membrane potential and the post-
synaptic potential. The soma membrane potential V is
modeled according to conductance-based rules (Ermentrout
1994), specifically,

τ V̇ (x, t) = V r − V (x, t) +
∑

ψ(V (x, t))I (x, t) (1)

where

ψ(V (x, t)) = [V eq − V (x, t)]
|V eq − V r | . (2)

Here, V r is the resting membrane potential and V eq

represents the reversal potential. On the other hand,
post-synaptic potential I is modeled according to the
convolution-based rules, specifically,

I (x, t) = h(t) ⊗ m(x, t) (3)

where

m(x, t) = S(V (x, t))

= Qmax

1 + e−√
2(V (x,t)−V0)/σ

, (4)

h(t) = Γ γ te1−γ t (t ≥ 0). (5)

Note that m(x, t) and h(t) denote the firing rate and impulse
response of a population where t represents time and x

corresponds to the spatial position of the population in
the brain. In Eq. (4), S(·) is a sigmoid function, Qmax is
the maximum population firing rate, σ is the steepness of
the sigmoidal transformation, and V0 is firing threshold.
In Eq. (5), Γ represents the peak amplitude of the post-
synaptic potential and γ characterizes the exponential decay
time scale of the post-synaptic potential. For convenience
in calculating the convolution ⊗ in Eq. (3), further taking
the Laplace transformation on it, then Eq. (3) can be re-
expressed by a non-linear partial differential equation as

Ï (x, t) = −2γ İ (x, t) − γ 2I (x, t) + Γ γ e · m(x, t). (6)

Fig. 1 Sketch of Liley model

Details of the transformations of electrical activities
in the Liley model are shown in Fig. 2. Blue lines
represent intra-connected loops and the green dotted lines
represent inter-connected loops. In each loop, the post-
synaptic potential I can be obtained from the soma
membrane potential V by Eq. (3), which is completed
by two computational blocks (see sub-figure in Fig. 2): a
potential-to-rate block (represented by “S”) and a rate-to-
potential block (represented by “h”). Specifically, the soma
membrane potentials V is transformed into firing rate m by
Eq. (4) in the first block, and the firing rate m is converted
into the post-synaptic potential I by Eq. (5) in the second
block. After that, the post-synaptic potential I is further
transferred into the soma membrane potential V according
to Eqs. (1)-(2).

A2) Neuropathological alterations of AHE

In acute liver failure, there is a systemic build-up of
toxic substances from the gut, including ammonia, that are
normally metabolized and excreted by the liver (Wijdicks
2016). These toxins travel via the bloodstream to the
brain, ultimately leading to development of AHE. Among
numerous cellular and neurophysiological mechanisms
underlying AHE, we we focus here on three for which there
is clear evidence for a role in development of AHE. These
are (1) impaired synaptic transmission secondary to reduced
cellular metabolism; (2) increased neuronal excitability; and
(3) enhanced postsynaptic inhibition.

Brain concentrations of ATP are significantly reduced
in experimental animal models of AHE (Kosenko et al.
1994; Dhanda et al. 2018). This is thought to result
from hyperammonia-induced mitochondrial dysfunction,
systemic ischemia and hypoxia and increased ATP con-
sumption (Kosenko et al. 1994; Monfort et al. 2002). The
latter process may be secondary to hyperammonia-induced
glutamate N-methyl-D-aspartate (NMDA) receptor hyper-
activation and concomitant compensatory excessive acti-
vation of the sodium/potassium ATPase pump to maintain
cellular sodium levels within the normal range (Kosenko
et al. 1994; Monfort et al. 2002). Given that synaptic neu-
rotransmission is a highly metabolically expensive process,
accounting for 30% of the brain’s adenosine triphosphate
(ATP) usage (Back et al. 1998), it is likely that ATP deple-
tion observed in AHE is associated with impaired synaptic
signaling. Supporting this claim, studies have shown that
the reduction in brain ATP levels coincides with the onset
of AHE-associated behavioral impairment and EEG abnor-
malities (Kosenko et al. 1994; Dhanda et al. 2018).

Increased neuronal excitability is another key mecha-
nism underlying AHE. Increased neuronal excitability in
AHE appears to arise from two processes: hyperactivation
of glutamate NMDA receptors and anoxic long-term poten-
tiation. Ammonia levels are significantly increased in AHE
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Fig. 2 The detailed transformation of electrical activities in Liley model

patients (Weiss et al. 2016), and elevated ammonia levels in
acute liver failure (ALF) animal models lead to overactiva-
tion of NMDA glutamate receptors (Marcaida et al. 1992).
Enhanced NMDA-mediated neuronal excitability is also
supported by studies which demonstrate decreased expres-
sion of astrocytic glutamate transporters (EAAT-2) (Knecht
et al. 1997) and astrocytic glycine transporters (GLYT-1)
(Wendling et al. 2000), corresponding to increased levels
of synaptic glutamate and glycine, agonists and co-agonists
of NMDA receptors respectively, in ALF rat models and
AHE patients. The resultant overactivation of glutamate
NDMA receptors is followed by excessive formation of
nitric oxide and cyclic guanosine monophosphate (cGMP),
and ultimately increased neuronal excitability (Marcaida
et al. 1992). In addition, anoxic long-term potentiation, the
phenomenon of increased excitatory postsynaptic poten-
tial (EPSP) amplitudes following exposure to ischemia or
anoxia, may also contribute to increased neuronal excitabil-
ity in AHE. Indeed, AHE is often accompanied by a variety
of other medical processes which may lead to decreased
brain oxygenation, such as gastrointestinal bleeding, sepsis,
or the effects of cytokines and other toxins released from
necrotic liver tissue (Fauci et al. 1998; Saija et al. 1995).

Finally, a growing body of evidence suggests that
enhanced gamma-aminobutyric acid (GABA)- and glycine-
mediated postsynaptic inhibition may also be central to the
pathophysiology of AHE. Levels of pregnenolone-derived
neurosteroids (e.g. allopregnanolone), potent selective
positive allosteric modulators of the GABAA receptor, are

significantly increased in experimental ALF models and
in brains of hepatic coma patients (Butterworth 2016).
Additionally, a study in a rabbit model of ALF has
shown greatly increased levels of GABA-like activity in
peripheral blood plasma just before the onset of AHE
(Ferenci 1987). As with ammonia, this finding may be
partially due to impaired hepatic extraction of gut derived
GABA from portal venous blood (Ferenci 1987). The
same study also showed that the blood-brain barrier
becomes abnormally permeable to an isomer of GABA
before the onset of AHE, and that hepatic coma is
associated with an increase in the brain density of GABA
receptors (Ferenci 1987), thereby increasing the sensitivity
of the brain to GABA-ergic neural inhibition. Another
study showed that treatment with flumazenil, a GABA-
benzodiazepine receptor antagonist, appears to result in
clinical and electroencephalographic improvements in AHE
patients (Barbaro et al. 1998). Further, increased levels of
synaptic glycine, an inhibitory neurotransmitter observed
in AHE, may lead to overactivation of glycine receptors,
which together with the hyperactivation of GABA receptors
result in post-synaptic inhibition through chloride-channel
opening.

A3) Neural computational model of AHE

To begin building our neural computational model of
AHE (AHE-CM), we mathematically augment the Liley
model to capture the three pathophysiologic mechanisms
described above for AHE. We consider only temporal
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dynamics; we do not model spatio-temporal dynamics in
this work.

First, the postsynaptic potential amplitude Γ in Eq. (6)
is taken as a variable satisfying the slow dynamics of itself
coupled to the presynaptic firing rate S(·) as in the work of
Bojak et al. (2015), which can be expressed by

Γ̇k(t) = Γ rest
k − Γk(t)

τ rec
k

− p
dep
k S(Ve(t))Γk(t). (7)

Here, p
dep
k is the depletion constant reflecting the impaired

synaptic transmission, Γ rest
k is the resting value of the

maximum amplitude of the postsynaptic potential (PSP),
and τ rec

k is the recovery time for activity dependent
synaptic depression, subscript k ∈ {e, i} indicate excitatory
and inhibitory populations, respectively. Note that this
mechanism applies to both excitatory and inhibitory
populations.

Next, to model the effect of increased neuronal
excitability, we modify the Liley model to amplify
the resting value of maximum amplitude Γ rest of the
excitatory postsynaptic potential (EPSP) in Eq. (7). This is
accomplished by setting,

Γ rest
e = Γ

equ
e ∗ (1 + Fam) (8)

where Γ
equ
e is the equilibrium voltage of the EPSP and Fam

is the amplification factor. This mechanism applies only to
the excitatory population.

We last model enhanced postsynaptic inhibition, caused
by the increased GABAergic neural transmission. To do
this, we prolong the duration of the inhibitory postsynaptic

potential (IPSP) by altering the decay rate constant γi in
Eq. (6) according to Bojak and Liley (2005), so that the
inhibitory post-synaptic potential is given by

Ïi (t) = − (γi + γ̃i )İi (t) − γi γ̃iIi(t) + Γi(t)γ̃ie

γi

γ 0
i m(t) (9)

where

γi = γ 0
i /λi,

γ̃i = ρiγi,

λi = (eεi − 1)/εi,

ρi = eεi . (10)

Here, γ 0
i is the baseline synaptic time constant, εi is the

control parameter relating to the decay time of the IPSP.
This mechanism applies only to the inhibitory population.

On the basis of the dynamics of each population
and detailed transformation of electrical activities in
Liley model, the proposed neural computational model
of AHE (AHE-CM) can be formulated by combining
the mathematical expressions (7)-(9) of three mechanisms.
Equation (11) presents the mathematical model of AHE-
CM. The Euler-Maruyama method with a time step of
0.1ms is applied to solve the Eq. (11) and the soma
membrane potential of the excitatory population (i.e. Ve)
is taken to represent the EEG signal. We denote by Θ the
set of parameters in AHE-CM. A detailed explanation of
the biological interpretation of these parameters and their
default values, which we adopt, can be found in Bojak and
Liley (2005).

τeV̇e(x, t) = V rest
e − Ve(x, t) + ψee(Ve(x, t))Iee(x, t) + ψie(Ve(x, t))Iie(x, t),

τi V̇i(x, t) = V rest
i − Vi(x, t) + ψei(Vi(x, t))Iei(x, t) + ψii(Vi(x, t))Iii(x, t),

Ïee(x, t) = −2γeİee(x, t) − γ 2
e Iee(x, t) + �e(t)γee(N

β
eeS(Ve(x, t) + pee(t))),

Ïei(x, t) = −2γeİei(x, t) − γ 2
e Iei(x, t) + �e(t)γee(N

β
eiS(Ve(x, t) + pei(t))),

Ïie(x, t) = −(γi + γ̃i )İie(x, t) − γi γ̃iIie(x, t) + �i(t)γ̃ie
γi/γ

0
i (N

β
ieS(Vi(x, t)),

Ïii (x, t) = −(γi + γ̃i )İii (x, t) − γi γ̃iIii (x, t) + �i(t)γ̃ie
γi/γ

0
i (N

β
iiS(Vi(x, t)),

�̇e(t) = �rest
e − �e(t)

τ rec
e

− p
dep
e S(Ve(x, t))�e(t),

�̇i(t) = �rest
i − �i(t)

τ rec
i

− p
dep
i S(Vi(x, t))�i(t),

ψlk(Vk(x, t)) = [V eq
lk − Vk(x, t)]
|V eq

lk − V r
k | , k = e, i; l = e, i. (11)

2.2 Parameter values

In this subsection, we give some illustrations about how to
set the newly introduced parameters (Fam, γi, τ rec

e , τ rec
i ) in

our work.

Modeling impaired synaptic transmission To characterize
impaired synaptic transmission in AHE, we follow the idea
in the bursting Liley model of including synaptic depression
(Bojak et al. 2015), which means that the postsynaptic peak
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amplitudes �e and �i decrease as a function of presynaptic
firing rates and recover with time constants τ rec

e and τ rec
i

(i.e. Eq. (7)). We set baseline values of τ rec
e to 500ms

and τ rec
i to 250ms, in agreement with the physiological

range of 250ms to 1000ms (Tsodyks and Markram 1997).
According to the work of Ruijter et al. (2017), the impaired
synaptic transmission will induce τ rec

e and τ rec
i that are

dramatically increased. Therefore, τ rec
e and τ rec

i are varied
from their baseline to their maximum value. When varying
these parameters in our experiments, because excitatory
synapses are believed to recover more slowly than inhibitory
synapses (Khazipov et al. 1995), we allow a larger range
for τ rec

e [500 20000]ms than for τ rec
i [250 2500]ms, as in

Ruijter et al. (2017).

Modeling elevated neuronal excitability and enhanced
postsynaptic inhibition To model the effect of elevated
neuronal excitability, we increased the resting value of
maximum EPSP (�rest

e ) through the parameter “Fam”.
Note that, as shown in Eq. (7), �e is reduced because of
the impaired synaptic transmission and may recover with
time constant τ rec

e to its baseline value. While through
the parameter Fam, it may increase above its baseline
value, reflecting increased neuronal excitability. We set the
magnitude order of Fam to the same values used in the work
of Ruijter et al. (2017) in modeling HIE.

To model enhanced gamma-aminobutyric acid and
glycine-mediated postsynaptic inhibition, we followed the
approach of Bojak and Liley (2005), which modeled
effects of anesthesia with GABAA agonists (e.g. propofol).

The baseline value of the synaptic rate constant (γ 0
i ) is

0.065ms−1, which agrees with the physiological range of
0.01ms−1 to 0.5ms−1 (Ruijter et al. 2017). The magnitude
order of εi is chosen according to Izumi et al. (2013). The
postsynaptic potential decay rate γi can be calculated by
Eq. (10).

2.3 Particle-filter-based parameter optimization
method

In order to verify that the proposed model is able to
match some characteristics of EEGs in AHE patients
(AHE-EEGs), we developed a procedure for tuning the
model parameter values. Therefore, with the constructed
AHE-CM, this subsection introduces a model parameter
optimization method based on particle filtering (PF-POM),
which aims to help the model reproduce a key feature of
clinical AHE-EEGs, namely the distribution of inter-TPW
intervals (ITIs).

First, we describe the feature that we extract from
AHE-EEGs. Triphasic waves (TPWs), also known as
generalized periodic discharges, are a common pattern of
brain activity in AHE-EEGs, consisting of epileptiform
discharges repeating at relatively regular intervals. Figure 3a
illustrates a 30s EEG segment recorded from a patient with
AHE. The pink columns correspond to TPWs annotated
by a semi-automatic annotation tool, Neurobroswer (Jing
et al. 2016). The rate at which specified events occur (i.e.
frequency) is of interest clinically, because the patterns of
periodic discharges that occur at higher frequencies are
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believed to be potentially harmful to patients and may
warrant treatment with anti-seizure drugs (O’Rourke et al.
2016). The intervals between consecutive TPWs can be used
to characterize the occurring rate of TPWs: the rate is the
inverse of the interval between TPWs. Given J TPWs in
an AHE-EEG signal S, we can obtain a sequence of inter-
TPWs intervals, denoted I = {I1, I2, · · · , IJ−1}, where Ij

represents the interval (in seconds) between the kth and the
(j + 1)th TPWs. Then the frequency histogram of I with
M equally sized bins is defined as the extracted feature,
denoted by

F1 = (P1, P2, · · · , PM) (12)

where Pi denotes the probability of I in the ith bin.
Figure 3b shows the frequency histogram of ITIs from the
EEG of Fig. 3a.

In the following, we present the model parameter
optimization method based on particle filtering (PF-POM)
to match the extracted feature F1. Let S be an AHE-
EEG signal and V (Θ) be the output of AHE-CM given
the parameter vector Θ . Denote by F1(S), F1(V ) the
corresponding extracted feature vectors, We then define the
fitness function in terms of F1 as follows:

L = 1√
2πσ0

e
− d2

2σ0 (13)

where d represents the Bhattacharyya distance between
F1(S) and F1(V ) (Kailath 1967). Next, we apply particle

filtering (PF) (Salmond and Birch 2001) to find the optimal
solution Θ∗ of the optimization problem

max
Θ

L. (14)

Next, suppose that there are N particles in the PF (that
is, Θ1, · · · , ΘN ), then we define the measurement at the kth
iteration as

Ck = log(

N∑

n=1

L(Θn)), (15)

and apply

|Ck+1 − Ck| < ε (16)

as the stopping criterion. Here, ε is a given threshold.
Furthermore, in our proposed method, all the parameters
are initialized based on a uniform distribution in a large
range since there is no prior knowledge. Therefore, a large
amount of particles have to be supposed in PF, and hence,
the computation cost becomes huge. Under such situation,
we propose an improved approach to initialize parameter
vector Θ so as to improve the efficiency of PF. Specifically,
the parameter space is first separated into a number of sub-
spaces, and one subspace is selected on which the feature of
model output is close enough to the feature of given EEG
signal. Then all the parameters are initialized on the selected
subspace. With this approach, a much smaller number of
particles is needed in the optimization.

Fig. 4 The procedure of particle-filter-based parameter estimation method
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The whole procedure of PF-POM procedure is illustrated
in Fig. 4.

3 Experiments and results

This section explores the behaviors of our proposed model
AHE-CM in 7 AHE patients.

3.1 AHE-EEG Data

The patients whose data were analyzed in this study were
hospitalized at the Massachusetts General Hospital (MGH),
and were encephalopathic during the EEG recordings. We
selected 30-min scalp EEGs from seven AHE patients.
These were selected from longer recordings to be relatively
free of non-physiological artifacts. Moreover, they were
chosen to coincide with times of maximal alertness. That
is, as part of routine medical care, the EEG technologist
stimulated each patient in attempt to ensure the patient was
as awake as possible (although TPW EEG patterns are not
compatible with normal levels of consciousness, i.e. these
patients were all encephalopathic). Each of EEG segment
contains 18 channels with a sampling rate of 128Hz. Details
of AHE-EEGs are shown in Table 1, including gender,
age and diagnosis. In our simulation, 0.5Hz high-pass and
60Hz notch filters are applied to de-noise the data before
further analysis. All triphasic waves in each AHE-EEG
were annotated manually in NeuroBroswer. Of note, TPWs
are generally synchronous between hemispheres, and to a
good approximation appear in all channels simultaneously.
Therefore in annotating the timing of TPWs, we assigned a
single time to each TPW across all channels.

3.2 Performance verification

In this subsection, we study the behaviours of our AHE-CM
in response to changes in key parameters. We then present

Table 1 The details of AHE-EEGs

Patients Gender Age Diagnosis information

1 M 73 4,11

2 F 80 4,11

3 M 69 4,11

4 M 61 4,11

5 M 77 4,11

6 F 64 4,11

7 F 82 4,11

Liver disorders =4; Toxic metabolic encephalopathy=11;

Table 2 The parameters and their nominal values in AHE-NCM

Parameter Nominal value Unit

V r
e , V r

i -70 mV

Γ rest
i 0.71 mV

V
eq
ee , V

eq
ei 45 mV

V
eq
ie , V

eq
ii -90 mV

τe 94 ms

τi 42 ms

V0 -50 mV

σ 5 mV

γe 300 s−1

γ 0
i 65 s−1

Qmax 500 s−1

N
β
ee, N

β
ei 3000 /

N
β
ie, N

β
ii 500 /

p
dep
e , p

dep
i 0.003 /

results of tuning the AHE-CM parameters using PF-POM to
model the observed periodicity in AHE EEGs.

B1) Performance verification of three added mechanisms

Here we study model behaviors in response to changes
of key parameters, and illustrate the effects of three
extra mechanisms added to the Liley model. The four
parameters τ rec

e , τ rec
i , Fam, γi , which are employed in the

three mechanisms are considered the key parameters in
the proposed AHE-CM. All other parameters in the model
are set to their nominal values in Liley and Bojak (2005),
summarized in Table 2. The external input pee is generated
randomly based following prior literature, by sampling from
a Gaussian distribution with mean 3460s−1 and standard
deviation 1000s−1; pei is constant (5070s−1) (Ruijter et al.
2017). We first focus on studying qualitatively what kind
of model outputs are produced by different combination
of key parameters. In all simulations, EEG signals of
50s duration were generated; the first 10s were ignored
to exclude transient effects. The Matlab code used for
the model simulations is provided in https://github.com/
jill-Song/AHE-code.

The 7 types of simulated signals of AHE-CM are
categorized according to the mean value of the inter-TPWs
intervals (M-ITIs) in the simulated EEG segment (shown
in Table 3). In Fig. 5a, we define a contrast between
the 7 types of model outputs and their labels. The model
output with label 1 represents a “low voltage” pattern.
Labels 2 to 7 exhibit periodic discharges of increasing
frequencies. Figure 5b illustrates the results under 9
different parameter settings, where each pair (Fam, γi) is
taken from (3, 1.5, 0.8) × (0.065, 0.032, 0.014). In each
case, τ rec

e varies from 500 to 20000 with step-size 100,
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Table 3 Determination of
labels M-ITIs ≥2.5 (1.5 2.5] (0.7 1.5] (0.4 0.7] (0.2 0.4] ≤ 0.2

Label 2 3 4 5 6 7

and τ rec
i varies from 250 to 2500 with step-size 50. That

is, each graph depicts 195 × 45 labels of model outputs.
From Fig. 5b, it can be seen that higher frequency periodic
discharges occur for larger values of (Fam, γi), and smaller
frequency discharges occur in the plots in the right panels
with lower values of these parameters. On the other hand,
in a graph with fixed Fam and γi , the discharges increase in
frequency (label numbers increase) as τ rec

e decreases and as
τ rec
i increases. These trends emerges very clearly in “graph

(3)” where almost all patterns/labels occur.
We next examine one special case (as shown in Fig. 6d)

in detail to illustrate the effects of adding three extra
mechanisms added to the baseline Liley model. Fig. 6
illustrates the outputs of four different models, each with
one of the additional mechanism added in. In Fig. 6a, the
output of the baseline Liley model is shown, where all
parameters are set to their nominal values (see Table 2).
Figure 6b illustrates the output of Liley model with the
first mechanism added, where the postsynaptic potential
amplitude Γ is determined by Eq. (7) with Γ rest

k =
0.71(k ∈ {e, i}), τ rec

e = 6000, τ rec
i = 1000. We see that

periodic waves begin to appear. The periodicity becomes
more evident in Fig. 6c, as the second mechanism is added,
that is, when Γ is determined by both (7) and (8); in
this illustration Fam = 0.8. Finally, the output of AHE-
CM is obtained by adding all of three mechanisms, shown
in Fig. 6d. Here, except for the estimated value of Γ

as mentioned above, the decay rate constant γi is further
calculated by Eq. (10). Interestingly, although reproducing
the morphology of TPWs was not a goal of our modeling
work, the close up in Fig. 6d shows that the output
of the AHE-CM does provide an approximation of the
morphology of TPWs. Each of the three red dots in close up
of the waveform corresponds to one of the three phases of a
TPW.

B2) Performance verification of AHE-CM combining
with PF-POM

Next, we verify the ability of the proposed PF-POM
method to infer the parameters of AHE-CM. We do this
in simulated EEGs (generated by the AHE-CM model),
because for these we know the true values for the underlying
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Fig. 5 a A contrast between 7 types of model outputs and their labels;
b the distribution of model output labels under 9 different cases where
(Fam, γi) ∈ (3, 1.5, 0.8) × (0.065, 0.032, 0.014) (here, τ rec

e (500 :
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outputs
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Fig. 6 The effects of adding
three extra mechanisms added to
the baseline Liley model

(a)

(c)

(b)

(d)

parameters. These true values can be served as a ground
truth.

For simplicity, we consider only two key parameters
τ rec
e , τ rec

i . We set Fam = 0.8, γi = 0.032, and all
other parameters are set to their be nominal values in
Table 2. According to the mentioned previously, the ranges
of τ rec

e and τ rec
i are suggested to be [500, 20000]ms and

[250, 2500]ms. We first divide the parameter space into 5
sub-spaces by segmenting the interval of τ rec

e and keeping
the interval of τ rec

i whole (see Table 4). Given an AHE-EEG
signal S, we calculate the sequence of inter-TPW intervals
I(S) as well as its mean, denoted by mean(I(S)). The sub-

space related to S is then selected according to the value
of mean(I(S)) shown as in Table 4. With the selected sub-
space, the total number of particles is set to be N = 35 in
our simulations.

In our PF-POM, the feature F1 is defined to be the
frequency of TPWs in AHE-EEGs. To illustrate this feature,
Fig. 7 shows the frequency histogram of I with respect to
two signals (Sf ast and Sslow) with different frequencies (fast
and slow) of TPWs. In Fig. 7b, the frequency histogram
of I(Sf ast ) is left-skewed normal distribution toward lower
inter-TPW intervals, reflecting the higher average frequency
of simulated TPWs in signal Sf ast . By contrast, the

Table 4 Division and selection rule of subspaces

Parameters [0.5, 6] × [0.25, 2.5] [6, 8] × [0.25, 2.5] [8, 11] × [0.25, 2.5] [11, 15] × [0.25, 2.5] [15, 20] × [0.25, 2.5]
(τ rec

e , τ rec
i ) (s)

Sub-spaces 1 2 3 4 5

Mean(I(S)) (s) ≤ 0.5 (0.5, 0.7] (0.7, 0.9] (0.9, 1.1] > 1.1
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Fig. 7 The feature F1 of two AHE-EEG signals (Sf ast and Sslow)

histogram of I(Sslow) are more uniformly distributed and
are concentrated at higher inter-TPW intervals, reflecting
the slower average rate of TPWs in Sslow.

We next verify the ability of PF-POM to estimate model
parameters from simulated EEG data. Given parameters
values (τ rec

e , τ rec
i ) = (1100, 600), the model output

(“simulated EEG”) is computed according to Eqs. (11).
Applying the PF-POM yields estimates (τ rec

e )∗ and (τ rec
i )∗.

Figure 8 illustrates the results for 50 trials, where the mean
and standard variation of them are shown. To further verify
the performance of PF-POM, we compare model output
with the true underlying parameters to the model output
using the estimated parameter values. In Fig. 9, the red
curve shows the original simulated EEG signal (labeled as
“ground truth”), and the green curve shows the model output
with the optimal values determined by PF-POM (here, one
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Fig. 8 The optimized values of τ rec
e and τ rec

i in 50 trails
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Fig. 9 Comparison between the
original simulated EEG signal
(labeled as “ground truth”) and
the model output with the
optimal values determined by
PF-POM (labeled as
“simulated”)

0 1 2 3 4 5 6 7 8 9 10

time (t)
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0.2

0.3

0.4

0.5

ground truth
simulated

of the results in 50 trials is randomly selected to create the
green curve and labeled as “simulated”). The comparison
illustrates that effectiveness of the proposed PF-POM.

B3) Relation between features of AHE-EEGs and the
mechanistic model of AHE

In this section, we focus on the relation between the
frequency of TPWs in real AHE-EEGs and the mechanisms
underlying AHE in our computational model. We have seen
in Fig. 5 that variation in TPWs’ rate depends mainly on
τ rec
e and τ rec

i . Especially, when Fam = 0.8, γi = 0.065,
the much more clear variation in all TPW patterns can be
observed. Therefore in what follows, we use PF-POM to
optimize only τ rec

e and τ rec
i (Fam = 0.8, γi = 0.065), in the

AHE-CM, and leave the values of the other variables at their
nominal values.

In our analysis of AHE-EEG data from patients, each
signal is divided into 20s EEG segments. Then given each
AHE-EEG segment, we use PF-POM to estimate the values
τ rec
e , τ rec

i of an AHE-CM model that best match the data.
We then use the estimated AHE-CM model generate a
simulated EEG segment (i.e., output of AHE-CM). Table 5
shows the number of TPWs in AHE-EEGs (TA) and
simulated EEGs (TS), the mean of ITIs in AHE-EEGs (MA)
and simulated EEGs (MS), as well as the corresponding
“errors” / differences. Comparing “No. of TPWs” in 30min-
long AHE-EEGs and simulated EEGs, the maximum error
is 0.0734 and the minimum error is 0.0322, obtained by
|T A−T S|

T A
. Moreover, the errors between “mean of ITIs” in

Table 5 Comparison results between AHE-EEG and simulated EEG

Patient AHE-EEG Simulated EEG Error

No. of TPWs (TA) mean of ITIs (MA) No. of TPWs (TS) mean of ITIs (MS) No. of TPWs mean of ITIs

1 1710 0.9065 1765 0.8824 0.0322 0.0241

2 1924 0.9343 1816 0.9539 0.0561 0.0196

3 1705 1.0557 1799 1.0126 0.0551 0.0431

4 1701 1.0583 1621 1.1145 0.0471 0.0562

5 1374 1.3093 1466 1.2642 0.0669 0.0451

6 1639 1.0981 1522 1.1568 0.0714 0.0587

7 1513 1.1888 1402 1.2159 0.0734 0.0271
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(a) AHE EEG 

(b) simulated EEG 

Fig. 10 An AHE-EEG segment (20s) from “patient 1” and the simulated EEG segment by the proposed approach “AHE-NCM + PF-POM”

AHE-EEGs and simulated EEGs, |MA − MS|, fall inside
the range [0.01, 0.06]. We thus conclude that the simulated
EEGs resulting from our proposed approach “AHE-CM
+ PF-POM” have similar properties to AHE-EEGs with
respect to periodicity of TPWs. Figure 10 illustrates a 20s
AHE-EEG segment from “patient 1” and the simulated
EEG segment from the corresponding AHE-CM model after
parameter optimization. The pink columns correspond to the
annotated TPWs. We observe that 30 TPWs are included
in the AHE-EEG segment, whose mean of ITI is 0.6442
(Fig. 10a). The model with estimated parameters produces
29 TPWs with mean ITI 0.6679 (Fig. 10b). These results
suggest that optimizing τ rec

e and τ rec
i indeed is able to

qualitatively match the periodic discharge behavior of real
AHE EEGs.

We next focus on characterizing the relation between
the rate of TPWs in AHE-EEGs and the mechanisms
underlying AHE. From the above experimental results, we
select 9 out of 90 segments for each patient (shown in
the Supplementary Material), and the corresponding mean
IEI values and optimal parameter settings (τ rec

e , τ rec
i )

estimated for each segment. In Fig. 11, 63 points (9 ×
7) are marked whose position corresponds to the optimal
parameters determined by PF-POM and whose value is the
mean of its ITIs (M-ITIs). We observe that EEG segments
having comparatively small values of M-ITIs (i.e. high
frequency of TPWs) locate at the bottom right corner of
the graph (corresponding to small τ rec

e and large τ rec
i ), and

EEG segments are located at the upper-left of the graph
having comparatively high values of M-ITIs (corresponding
to small τ rec

i and large τ rec
e ).

These results are plausible from a physiological point of
view. Here, parameters τ rec

e and τ rec
i represent the recovery

times for excitatory and inhibitory activities respectively.
Therefore, the less the value of τ rec

e is, the more quickly

recovery of excitatory activity will be, thus the faster
the excitatory activity can resume - leading to higher
frequency discharges. Similarly, the excitatory activity can
also recover more quickly if the value of τ rec

i is larger.
On the basis of the above analysis, we hypothesize that
the discharge rate of TPWs in real AHE-EEGs is related
to recovery times of excitatory and inhibitory neural
populations.

4 Discussion

In this study we built a computational model that accounts,
at least in part, for generalized periodic epileptiform
discharges in the EEG of patients with acute hepatic
encephalopathy (AHE), an EEG pattern known as “tripha-
sic waves” (TPWs). Our model is based on the Liley model,
augmented with three mathematically characterized mecha-
nisms known to play a role in the encephalopathy that occurs
in AHE, namely increased excitability, impaired synaptic
transmission, and enhanced postsynaptic inhibition. We also
proposed an approach to identify model parameter values that
are able to quantitatively match a key characteristic of real
EEGs in AHE patients, namely the periodicity of TPWs.

Generalized periodic discharges, including triphasic
waves, also occur in contexts other than AHE. These include
uremia, severe sepsis, baclofen toxicity, anoxic brain injyry,
and other “toxic metabolic encephalopathies” (Kaplan and
Sutter 2015; O’Rourke et al. 2016; Foreman et al. 2016).
However, with one exception, the underlying physiology
/ pathophysiology of most of these conditions is more
poorly understood than AHE. The exception is hypoxic
ischemic encephalopathy (HIE). HIE has been modeled
previously by Rujiter et.al., using the same modified Liley
model. Ruijter et al identified three key mechanisms in
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Fig. 11 a) The distribution of mean of ITIs in a parameter space τ rec
e × τ rec

i ; b) color bar of 7 types of model outputs

acute HIE captured by the modified Liley model, namely:
short-term synaptic depression, potentiation of excitatory
neurotransmission, and altered synaptic inhibition (due
to effect of propofol) into the “Bursting liley model”.
We can see that these pathophysiological alterations are
similar to the mechanisms that we have invoked for
AHE: elevated neuronal excitability, impaired synaptic
transmission secondary to reduced cellular bioenergetics
and enhanced postsynaptic inhibition. Given the strong
similarities between generalized periodic discharges in
other forms of severe encephalopathy, we hypothesize that
similar mechanisms will also be discovered to be in play in
those conditions.

Note that the proposed model AHE-CM is a kind
of mesoscopic model, which is a typical over-simplified
method to characterize the brain discharge. And the AHE-
EEGs applied in our work are recorded with the noninvasive
electrodes placed along the scalp, where electrical potentials
are smeared due to the existence of cerebrospinal fluid,
skull and scalp, as well as contaminated due to a significant
presence of environmental noise and artifacts. Under such
situation, there must exist a big gap between the details of
EEG waveforms in real AHE-EEGs and the model output
themselves. Alternatively, our work accounts only for some,
but not all, aspects of the EEG in patients with AHE. In
particular, our aim was to account for certain properties
of generalized periodic discharges seen in AHE, known as
triphasic waves, specifically their frequency.

It is necessary to clarify that our model does not include
spatial aspects of TPWs. In fact, we only simulated a single
EEG channel. This is justified in part by the fact that EEG
patterns in hepatic encephalopathy are typically spatially
homogeneous. However, particular phenomena, such as
bilateral synchronization of TPWs, anterior-posterior lag
or gradient are not explained by our model. In order
to illustrate these spatial characteristics of TPWs, the
network-level neural computational models need to be
constructed, which represent the interaction of multiple
neural populations located in different cortical areas.
Therefore, in the future study, the network-level neural
computational modeling is a research frontier we are going
to follow. It may not only be helpful to simulate morphology
of TPWs similar to the real TPWs, but also may provide
novel insight for understanding the arising of TPWs in
AHE-EEGs.

5 Conclusion

The computational model proposed herein provides a mech-
anistic account, albeit partial, of the generalized periodic
discharges seen in AHE, known as triphasic waves. Our
model is based on three modifications of the well-studied
Liley model that are believed central to brain dysfunction
in AHE: increased neuronal excitability, impaired synaptic
transmission, and enhanced postsynaptic inhibition. Then
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we introduced a model parameter optimization method
based on particle filtering (PF-POM), by combining the
feature extracted from AHE-EEGs, namely the distribution
of inter-TPW intervals. Finally, we applied the proposed
approach to EEG data from AHE patients, performing the
following investigations: (1) verification of the ability of the
three mechanisms added to the Liley model to produce peri-
odic discharges of various frequencies; (2) performance of
the ability of the PF-POM method to estimate the param-
eters of simulated EEGs generated by AHE-CMs; and (3)
investigation of how features of real AHE EEGs relate to
mechanistic processes and parameter values in the compu-
tational model. By combining model-driven and data-driven
approaches, our approach not only reproduces important
aspects of the EEG, but also suggests mechanisms under-
lying variation in EEG patterns in AHE. In particular, our
model provides a mechanistic explanation for why more
severe AHE results in TPWs of higher frequency.
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