
Journal of Computational Neuroscience (2019) 46:169–195
https://doi.org/10.1007/s10827-019-00710-y

Membrane potential resonance in non-oscillatory neurons interacts
with synaptic connectivity to produce network oscillations

Andrea Bel1,2 ·Horacio G. Rotstein3,4,5

Received: 2 October 2018 / Revised: 21 January 2019 / Accepted: 25 January 2019 / Published online: 20 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Several neuron types have been shown to exhibit (subthreshold) membrane potential resonance (MPR), defined as the
occurrence of a peak in their voltage amplitude response to oscillatory input currents at a preferred (resonant) frequency.
MPR has been investigated both experimentally and theoretically. However, whether MPR is simply an epiphenomenon
or it plays a functional role for the generation of neuronal network oscillations and how the latent time scales present
in individual, non-oscillatory cells affect the properties of the oscillatory networks in which they are embedded are open
questions. We address these issues by investigating a minimal network model consisting of (i) a non-oscillatory linear
resonator (band-pass filter) with 2D dynamics, (ii) a passive cell (low-pass filter) with 1D linear dynamics, and (iii) nonlinear
graded synaptic connections (excitatory or inhibitory) with instantaneous dynamics. We demonstrate that (i) the network
oscillations crucially depend on the presence of MPR in the resonator, (ii) they are amplified by the network connectivity, (iii)
they develop relaxation oscillations for high enough levels of mutual inhibition/excitation, and (iv) the network frequency
monotonically depends on the resonators resonant frequency. We explain these phenomena using a reduced adapted version
of the classical phase-plane analysis that helps uncovering the type of effective network nonlinearities that contribute to the
generation of network oscillations. We extend our results to networks having cells with 2D dynamics. Our results have direct
implications for network models of firing rate type and other biological oscillatory networks (e.g, biochemical, genetic).
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1 Introduction

Neuronal network oscillations emerge from the cooperative
activity of the participating neurons and the network
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connectivity and involve the interplay of the nonlinearities
and time scales present in the ionic and synaptic currents.
In some cases, the network time scales directly reflect the
time scales of the individual neurons. This class includes
the synchronized activity of population of oscillators where
the frequency band of both the network and the individual
oscillators coincides.

There are other cases where the oscillatory time scales are
latent (or hidden) at the individual neuron level and become
apparent only at the network level. This class includes the oscil-
latory networks of non-oscillatory neurons that are the focus
of this paper. More specifically, we investigate oscillatory net-
works where at least one of the participating (non-oscillatory)
cells exhibits (subthreshold) membrane potential resonance
(MPR), defined as the occurrence of a peak in the cell’s voltage
amplitude response to oscillatory input currents at a preferred
(resonant) frequency (Hutcheon and Yarom 2000; Richard-
son et al. 2003; Rotstein and Nadim 2014b, 2015). Because
the individual cells are intrinsically non-oscillatory, the reso-
nant frequency reflects an oscillatory latent time scale that
can be uncovered in the presence of oscillatory input currents,
but not by direct observation of their spontaneous behavior.
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The mechanisms of generation of sustained (limit
cycle) oscillations in single neurons are reasonably well
understood (Ermentrout and Terman 2010; Borgers 2017;
Izhikevich 2006; Dayan and Abbott 2001). They require the
interplay of negative and positive feedback effects mediated
by the ionic current gating variables or related processes.
Resonant ionic processes (e.g., hyperpolarization-activated
mixed-cation Ih current, M-type slow-potassium current
IKs and T-type calcium inactivation ICaT ) oppose changes
in voltage, while amplifying ionic processes (e.g., persistent
sodium current INap, T-type calcium activation) favor these
changes.

From the oscillatory dynamics point of view, there is
a hierarchy of phenomena that requires the presence of a
resonant process and whose degree complexity increases
with the levels of the amplifying current (Hutcheon and
Yarom 2000; Rotstein 2017b) in system where sustained
oscillations (subthreshold or spikes) are generated by Hopf
bifurcation mechanisms (Ermentrout and Terman 2010;
Borgers 2017; Izhikevich 2006). At the bottom of this hier-
archy are the overshoot type of responses to square-pulse
perturbations (Fig. 1, green curves) in neurons that exhibit
MPR (Hutcheon and Yarom 2000; Richardson et al. 2003;
Rotstein and Nadim 2014b, 2015), but not subthreshold
oscillations (STOs). We refer to them as resonators. For
higher amplification levels the neuron may display damped
subthreshold oscillations (Fig. 1, red curves). In these
two cases the underlying systems may be quasi-linear in
large enough vicinities of the resting potential (fixed-point)

(Rotstein 2017b). (Damped oscillators may also exhibit res-
onance, but we do not refer to them as resonators.) At the top
of the hierarchy are the sustained (limit cycle) oscillations
(Fig. 1, blue curves) that require high enough amplification
levels for the development of the nonlinearities necessary
for the existence of limit cycles (Rotstein 2017b). If these
limit cycles represent STOs, additional amplification lev-
els can produce spikes or depolarization block. Examples
of models exhibiting this type of behavior are the Morris-
Lecar model (Morris and Lecar 1981) and the Ih + INap

or IKs + INap models studied in Rotstein (2017b) (see also
Rotstein 2017c).

MPR has been investigated in many neuron types both
experimentally and theoretically (Hutcheon and Yarom
2000; Richardson et al. 2003; Lampl and Yarom 1997;
Llinás and Yarom 1986; Erchova et al. 2004; Schreiber et al.
2004; Hutcheon et al. 1996; Gastrein et al. 2011; Hu et al.
2002, 2009; Narayanan and Johnston 2007, 2008; Marcelin
et al. 2009; D’angelo et al. 2001, 2009; Pike et al. 2000;
Tseng and Nadim 2010; Tohidi and Nadim 2009; Solinas
et al. 2007; Wu et al. 2001; Muresan and Savin 2007;
Heys et al. 2010, 2012; Zemankovics et al. 2010; Nolan
et al. 2007; Engel et al. 2008; Boehlen et al. 2010, 2013;
Rathour and Narayanan 2012, 2014; Fox et al. 2017; Chen
et al. 2016; Beatty et al. 2015; Song et al. 2016; Art et al.
1986; Remme et al. 2014; Higgs and Spain 2009; Yang
et al. 2009; Mikiel-Hunter et al. 2016; Rau et al. 2015;
Sciamanna and Wilson 2011; Lau and Zochowski 2011;
van Brederode and Berger 2008; Rotstein 2014a, b, 2015,

Fig. 1 Response of Ih+INap and IKs+INap models to negative square
pulses of current: representative dynamic scenarios. a Ih+INap model.
It includes three ionic currents: hyperpolarization-activated (h-), per-
sistent sodium and leak (see Section 2.4 in Methods). b IKs+INap

model. It includes three ionic currents: M-type slow potassium, persis-
tent sodium and leak (see Section 2.4 Methods). Both Ih and IKs are
resonant and INap is amplifying. Increasing the levels of INap causes
a transition from overshoot responses (green) to damped oscillations

(red) to persistent (limit cycle) oscillations (blue) in both models. The
gray curve is a caricature of the square wave input deflected from zero
with amplitude 1. We used the following parameter values: C = 1,
ENa = 42, EL = −75, Eh = −26, GL = 0.3, Gh = 1.5,
Iapp = 0.55, Vhlf,p = −54.7, Vslp,p = 4.4, Vhlf,q = −80.2 and
Vslp,q = 7.2 (Ih+INap model) and C = 1, ENa = 42, EL = −75,
EKs = −96, GL = 0.3, GKs = 1.5 and Iapp = 4, Vhlf,p = −54.7,
Vslp,p = 4.4, Vhlf,q = −28, Vslp,q = 8 (IKs+INap model)
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2017a; Szucs et al. 2017). However, in contrast to single
cell intrinsic oscillations, the consequences of cellular MPR
on network oscillations are not well understood. Only a
few studies have addressed these issues in networks having
neurons that exhibit MPR (Chen et al. 2016; Stark et al.
2013; Tikidji-Hamburyan et al. 2015; Tchumatchenko and
Clopath 2014; Schmidt et al. 2016; Moca et al. 2014;
Baroni et al. 2014; Rotstein et al. 2017d) or have resonant
gating variables (Wang and Rinzel 1992; Manor et al. 1997;
Torben-Nielsen et al. 2012). To our knowledge, no study to
date has examined the detailed mechanisms of generation
of oscillations in networks of non-oscillatory resonators and
how the network oscillations reflect the latent time scale
provided by the resonant frequency.

From the mechanistic point of view, we seek to under-
stand how the resonant properties of individual nodes inter-
act with the network connectivity to produce oscillations
in reciprocally connected networks. We reasoned that if
oscillations are to be generated in networks where the par-
ticipating neurons only provide the resonant properties, then
the amplification effects should result from the network
connectivity. According to this hypothesis, oscillations
should be generated in self-excited (Fig. 2a), but not self-
inhibited (Fig. 2b) resonators and in two-cell networks of
mutually inhibited or mutually excited cells that include one
resonator (Figs. 2d, e and f), but not in mutually inhibited
non-resonant cells (low-pass filters) (Fig. 2c). Moreover,
the resonant frequency of the individual resonators should
control, or at least have a direct effect, on the network
frequency. Analogously to single cell oscillations, the mech-
anism of generation of network oscillations should involve
a Hopf bifurcation and the dynamic hierarchy described

above. Some of these patterns have been observed for sim-
ilar systems (Manor et al. 1999) and for network models
using the Wilson-Cowan formalism (Beer 1995; Ermentrout
and Terman 2010; Wilson and Cowan 1972). However, the
role that the filtering properties of the individual nodes (pre-
ferred frequency responses to oscillatory inputs) play in the
generation of network oscillations has not been investigated.

We test these ideas using the simplest types of oscillatory
networks of non-oscillatory neurons, consisting of a linear
resonator reciprocally connected to a linear cell (either
a low-pass filter showing no resonance or another res-
onator) with instantaneous graded synapses (see the motif
diagrams in Fig. 2). We use linear (linearized conductance-
based) models for the individual neurons to isolate the
resonant (negative feedback) effects from the nonlinear
amplifications that may lead to sustained oscillations.

These linearized models capture the quasi-linear dynam-
ics of models having the passive currents and Ih or IKs ,
but no amplifying currents (e.g., INap) (Rotstein 2017b).
They also capture the dynamics of uncoupled components
of the firing rate models of Wilson-Cowan type (Wilson
and Cowan 1972) with adaptation (Curtu and Rubin 2011;
Shpiro et al. 2009; Tabak et al. 2011).

Finally, we use graded synapses because of the sub-
threshold range of voltages in which they operate and
because it is the type of nonlinearities used in firing rate
models. They are assumed to be instantaneously fast and
to have no dynamics (Wang and Rinzel 1992; Manor et al.
1997, 1999; Ambrosio-Mouser et al. 2006; Brea et al. 2009;
David et al. 2015; Curtu and Rubin 2011; Shpiro et al.
2009; Tabak et al. 2011 ) to strip them from any additional
dynamic effects.

Fig. 2 Network diagrams. a Self-excited resonator (2D). b Self-
inhibited resonator (2D). c Mutually inhibited passive cell network
(1D/1D). d Mutually excited resonator - passive cell network (2D/1D).

e Mutually inhibited resonator - passive cell network (2D/1D). f
Mutually inhibited resonator network (2D/2D)
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The questions we ask in this paper aim to conceptually
address the mechanisms by which neuronal frequency filters
interact within a network. Our results in conjunction with
the results of previous, complementary studies (Manor et al.
1997, 1999; Wang and Rinzel 1992; Ambrosio-Mouser
et al. 2006; Chen et al. 2016) have implications not only
for the understanding of neuronal oscillations, but also for
the understanding how frequency-dependent information
is communicated across neurons and networks and the
phenomenon of network resonance (Ledoux and Brunel
2011; Stark et al. 2013).

The overview of the paper is as follows. In Section 3.1
we review the frequency response properties of individual
neurons with one- and two-dimensional linear dynamics. In
the subsequent sections we combine resonators (2D band-
pass filters) and passive cells (1D low-pass filters) to analyze
the circumstances under which network oscillations are
generated for the various circuit motifs shown in Fig. 2 and
their properties. In Section 3.2 we discuss the oscillatory
properties of self-excited resonators (Fig. 2b) and show that
the limit cycle oscillations monotonically depend on the
resonator’s resonant frequency. In Section 3.3 we show that
mutually inhibitory networks consisting of one resonator
and a passive cell (Fig. 2e) are able to generate limit
cycle oscillations, discuss their properties and show that
their frequency monotonically depends on the resonator’s
resonant frequency. In Sections 3.4 and 3.5 we extend
these results to mutually excitatory networks consisting of
one resonator and a passive cell (Fig. 2d) and a mutually
inhibitory network consisting of two resonators (Fig. 2f).
The “negative results” are discussed in the Appendix. There
we show that self-inhibited resonators (Fig. 2a) and two-cell
networks of passive cells (e.g., Fig. 2c), that do not include
resonators, do not show sustained (limit cycle) oscillations.
In addition to network oscillations, the two-cell networks we
consider in this paper have non-oscillatory regimes (stable
fixed-points) that may show linear and nonlinear resonance
in response to oscillatory inputs, and could be functional
in the generation of oscillations in larger networks. The
investigation of these more general scenarios is outside the
scope of this paper. Finally, in Section 4 we discuss our
results and their implications for network dynamics.

2Methods

2.1 Networks of linearized cells with graded
synapses

We used linearized biophysical (conductance-based) models
for the individual cells and (nonlinear) graded synaptic
connections. The linearization process for conductance-
based models for single cells has been previously described

in Richardson et al. (2003) and Rotstein and Nadim (2014b).
We refer the reader to these references for details.

The dynamics of a two-cell network are described by

Ck

dvk

dt
= −gL,k vk − gk wk − Isyn,k, (1)

τk

dwk

dt
= vk − wk, (2)

for k = 1, 2. In Equations (1)-(2) t is time, vk is the
voltage (mV) relative to the voltage coordinate of the fixed-
point (equilibrium potential) V̄k , wk is the gating variable
relative to the gating variable coordinate of the fixed-point
w̄k and normalized by the derivative of the corresponding
activation curve, Ck is the capacitance, gL,k is the linearized
leak maximal conductance, gk is the ionic current linearized
conductance, τk is the linearized time constant and Isyn,k

is the graded synaptic current from the other neuron in the
network and given by

Isyn,k =Gsyn,jk S∞(vj)(vk−Esyn,k), j, k=1, 2, j �=k,

(3)

where Gsyn,k is the maximal synaptic conductance, Esyn,k

is the synaptic reversal potential relative to V̄k and

S∞(v) =
(

1 + e
− v−vhlf

vslp

)−1

, (4)

where the half-activation point vhlf is also relative to V̄k .
We use the following units: mV for voltage, ms for time,

μF/cm2 for capacitance, μA/cm2 for current and mS/cm2

for the maximal conductances. Unless stated otherwise, we
used the following parameter values: C = 1, Vhlf = 0,
Vslp = 1, Ein = −20, Eex = 60.

Note that the heterogeneity due to different values of
the DC current Iapp,k and other biophysical parameters in
the original conductance-based model is translated into the
reversal potentials Esyn,k and the functions Sk,∞(v) through
the fixed-point (V̄1, V̄2). Specifically, if Esyn and Vhlf are
the synaptic reversal potential and synaptic half-activation
point of the original (not rescaled) model, then Esyn,k =
Esyn − V̄k and vhlf = Vhlf − V̄k .

2.2 Phase-space diagrams: nullclines
and hyper-nullclines

2.2.1 Graded network of two 1D passive cells: nullclines

These are 2D networks consisting of system (1) with gk = 0
(k = 1, 2). The v1- and v2-nullclines are given by

v2 = S−1∞
( −gL,1v1

Gsyn,2,1(v1 − Esyn,1)

)
, (5)
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and

v2 = Gsyn,1,2 S∞(v1)Esyn,2

gL,2 + Gsyn,1,2 S∞(v1)
, (6)

respectively, where

S−1∞ (v) = vhlf + vslp ln
v

1 − v
. (7)

2.2.2 Self-connected graded networks of a 2D resonant cell:
nullclines

These networks are given by system (1)-(2) where v2 is
substituted by v1 in Isyn,1 given by Eq. (3). The phase-plane
diagram is 2D. Because there is only one cell involved,
we omit the subscript in the notation of the participating
variables and parameters. The v- and w-nullclines are given,
respectively, by

w = −gLv + GsynS∞(v)(v − Esyn)

g
(8)

and

w = v. (9)

2.2.3 Graded network of two 2D cells: hyper-nullclines,
fixed-points and dynamic phase-plane analysis

These networks are given by system (1)-(4). The phase-
space diagram is 4D. The v1- and v2-nullsurfaces (obtained
by making the current-balance equation for the correspond-
ing nodes equal to zero) depend on different variables (the
v1-nullsurface depends on w1 and v2 and the v2-nullsurface
depends on v1 and w2). The w1- and w2-nullsurfaces are
planes given by w1 = v1 and w2 = v2, respectively. By sub-
stituting into the corresponding current-balance equations
and rearranging terms we obtain the following equations
describing curves in the v1-v2 plane

v2 = N1(v1) = S−1∞
(

− (gL,1 + g1) v1

Gsyn,2,1(v1 − Esyn,1)

)
(10)

and

v2 = N2(v1) = Gsyn,1,2 S∞(v1)Esyn,2

gL,2 + g2 + Gsyn,1,2 S∞(v1)
. (11)

These are extensions of the nullclines (5) and (6) for
the networks of 1D passive cells. Their intersection (v̄1, v̄2)

give the v1- and v2-coordinates of the 4D fixed-points
(v̄1, v̄2, w̄1, w̄2) = (v̄1, v̄2, v̄1, v̄2). However, they are not
nullclines, but projections of hyper-nullsurfaces onto the
v1-v2 plane. We refer to them as hyper-nullclines. For the

hybrid networks having one 2D and one 1D cell we set
g2 = 0 in Eq. (11).

2.3 Bifurcation diagrams

As we mentioned in the previous section, the fixed-points
are the intersections between the nullclines (for 2D systems)
or the hyper-nullclines (for 3D and 4D systems). To
determine the stability of the fixed-points we calculate the
eigenvalues of the corresponding linearized system. For the
2D system of two 1D passive cells, the eigenvalues are
easily calculated (see Appendix A). The expressions of the
eigenvalues for the other considered networks (3D or 4D)
are much more extensive and we will not show them in this
work.

In all systems we can study the eigenvalue expressions
when the parameter values vary, and we determine the exis-
tence of static bifurcations (such as, pitchfork and saddle-
node) and dynamic bifurcations (for example, Hopf bifurca-
tion) (Guckenheimer and Holmes 1983). If a Hopf bifurca-
tion exists, we calculate the first Lyapunov coefficient with
the MATLAB package MatCont (Dhooge et al. 2003), to
determine the direction and stability of the emerging branch
of cycles.

Considering the bifurcations of the fixed-points, we
construct bifurcation diagrams in several parameter spaces
determining regions with different dynamical scenarios. In
particular, we can determine parameter values in which
stable limit cycles exist.

2.4 Conductance-basedmodels

Primarily for illustrative purposes, in some of our simu-
lations we used biophysical (conductance-based) models
(Skinner 2006; Hodgkin and Huxley 1952) to describe the
subthreshold dynamics of neurons having one resonant and
one fast amplifying currents. The current balance equation
is given by

C
dV

dt
= −IL −I1 −I2 −Isyn(t)+Iapp +Iin(t), (12)

where V is the membrane potential (mV), t is time (ms), C

is the membrane capacitance (μF/cm2), Iapp is the applied
bias (DC) current (μA/cm2), Iin(t) is a time-dependent
input current (μA/cm2), IL = GL (V − EL) is the leak
current, and Ij = Gj xj (V − Ej) are generic expressions
for ionic currents (j = 1, 2) with maximal conductance Gj

(mS/cm2) and reversal potentials Ej (mV) respectively. The
gating variables obey kinetic equations of the form

dx

dt
= x∞(V ) − x

τx(V )
. (13)
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where xj,∞(V ) and τj,x(V ) are the voltage-dependent acti-
vation/inactivation curves and time constants respectively.
The former are given by

x∞(V ) =
(

1 + e
σx

V −Vhlf,x
Vslp,x

)−1

, (14)

where Vhlf,x and Vslp,x > 0 are constants and the sign of σx

indicates whether the curve describes an activation (σx < 0)
or inactivation (σx > 0) process. In this paper we use
voltage-independent time constants τj,x . This assumption
is mostly for simplicity since we are focusing on the
subthreshold voltage regime where the time constants are
typically slowly varying functions of V .

The ionic currents Ij we consider here are persistent
sodium, INap =GNap p∞(V ) (V−ENa), hyperpolarization-
activated, mixed-cation, inward (or h-), Ih = Gh r (V −Eh)

and slow-potassium (M-type) IKs = GKs q (V − Ek).

2.5 Numerical simulations

The numerical solutions were computed by using the
modified Euler method (Runge-Kutta, order 2) (Burden and
Faires 1980) with a time step �t = 0.1 ms in MATLAB
(The Mathworks, Natick, MA). Smaller values of �t have
been used to check the accuracy of the results.

3 Results

3.1 Frequency preference response of individual
cells revisited: resonators and passive cells /
low-pass and band-pass filters

In this paper we consider individual cells with 1D and 2D
linear dynamics having a stable fixed-point. The dynamics
are described by Eqs. (1)-(2) with Isyn,k = 0 (for cells
with 1D dynamics gk = 0). The response of linear cells to
oscillatory inputs at different frequencies f (e.g., sinusoidal
functions of t) is captured by the impedance Z(f ), which
is complex function with amplitude and phase. Following
other authors we use the term impedance (and we write
Z(f )) to refer to the impedance amplitude |Z(f )| and we
refer to the corresponding curve as the impedance profile
(Fig. 3). In this paper we focus on the impedance amplitude.

Linear 1D (passive) cells are low-pass filters (Fig. 3,
red curve), while linear 2D cells can be either low-pass
filters (not shown) or band-pass filters (Fig. 3, blue curve).
Resonance refers to the ability of a cell to exhibit a peak in
their amplitude response (impedance profile) at a preferred
(resonant) frequency fres (Hutcheon and Yarom 2000;
Richardson et al. 2003; Rotstein and Nadim 2014b). The
corresponding unforced cells can have either a node, and
exhibit an overshoot (as in Fig. 1, green curves), or a focus,

0 20 40 60 80 100

f  [Hz]

1

2

3

4
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6

Z

Impedance profiles

f
res

Z
max

band-pass filter  -  resonance

low-pass filter    -  no resonance

Fig. 3 Response of the individual cells to oscillatory inputs for
representative parameter values. Impedance profile for a resonator
(band-pass filter, blue) and a passive-cell (low-pass filter, red). The
parameters Zmax and fres are the maximal impedance and the resonant
frequency, respectively

and display damped oscillations (as in Fig. 1, red curves).
We use the term resonator to refer to cells that exhibit
resonance, but not damped oscillations.

The resonant properties of 2D linear systems, including
their relationship between the intrinsic properties of
the unforced cells (e.g, eigenvalues, intrinsic oscillatory
frequencies) and the dynamic mechanism of generation of
resonance have been investigated extensively by us and
other authors (Richardson et al. 2003; Rotstein 2014a, b).
We refer the readers to these references for details.

3.2 Self-excited resonators can produce limit cycle
oscillations and their frequencymonotonically
depends on the resonator’s resonant frequency

The self-excited resonator model is given by system (1)-
(2) where vk = vj in Isyn,k (3). Because there is only
one cell involved, we omit the subscripts in the notation of
the variables and parameters. The nullclines of the phase-
plane diagrams are given by Eqs. (8) and (9). The individual
resonator does not oscillate.

Self-excitation is the simplest mechanism of network
oscillation amplification of a resonator. Mathematically, a
self-excited resonator has the same structure as individual
resonator+amplifying current models (e.g., Ih+ INap or
IKs+INap), which are able to produce sustained oscillations
for large enough amplification levels (Fig. 1) (Rotstein
2017b). In both types of models the activation of the
amplifying component (Isyn and INap) is instantaneous (or
very fast), the shapes of their activation curves are similar,
and the reversal potentials (ENa and Eex) are above the
resting potential. Models having Ih or IKs as the only
active ionic currents are quasi-linear resonators (Rotstein
2017b). Therefore, it is not surprising that self-excited
linear resonators are able to produce oscillations given that
resonant+amplifying models can do so. However, since
resonance and amplification belong to different levels of
organization in self-excited resonators, we can dissociate
these two effects and investigate the effects of the resonant
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Fig. 4 Self-excited (linear) resonators can produce sustained (limit
cycle) oscillations, while self-excited damped-oscillators may fail to
produce sustained oscillations. Phase-plane diagrams for representa-
tive parameter values. The v- and w-nullclines are given by (8) and
(9), respectively. The fixed-point for the uncoupled (linear) system is

a stable node (fnat = 0) in panels a and b and a stable focus in panels
c (fnat ∼ 48.9). a fres ∼ 17.6 for gL = 0.25, g = 1 and τ = 100.
b fres ∼ 10.4 for gL = 0.25, g = 0.25 and τ = 100. c fres ∼ 55.2
for gL = 0.25, g = 1 and τ = 10. We used the following additional
parameter values: , Eex = 60, vhlf = 0, vslp = 1
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frequency of the individual neurons on the oscillation
frequency, which we cannot do in individual cells.

3.2.1 Self-excited resonators can produce sustained
(limit cycle) oscillations for appropriate balances among
the resonance, amplification and excitation levels

Geometrically, increasing values of the excitatory maximal
conductance Gex create nonlinearities of cubic type in the
phase-plane diagram (Fig. 4). In single neurons this type
of nonlinearities are typically created by amplifying gating
variables (e.g., INap) in the presence of resonant gating
variables (e.g., Ih or IKs) (Rotstein 2017b; c) (see also
Ermentrout and Terman 2010; Izhikevich 2006).

Fig. 4-a illustrates the effects of increasing values of
Gex when the linearized resonant conductance g (= 1) is
much larger than the linearized leak conductance gL (=
0.25) for a resonator (with no intrinsic damped oscillations
when Gex = 0). For low values of Gex , the coupled cell
shows damped oscillations as the cubic-like nonlinearities
of the v-nullcline begin to develop (panel a1). Limit cycle
oscillations emerge as Gex increases further (panel a2)
and disappear when the fixed-point moves to the right
branch of the cubic-like v-nullcline for larger values of Gex

and regains stability (panel a3). As Gex increases within
the oscillatory range the amplitude increases and a time
scale separation between the participating becomes more
prominent, generating, for large enough values of Gex ,
oscillations of relaxation type (Fig. 5a).

Figure 4-b illustrates that oscillations are not generated
when the g (= 0.25) to gL (= 0.25) ratios are relatively
low. The cubic-like nonlinearities are still developed for
high enough values of Gex (panels b2 and b3), but the
fixed-point is located on the right branch of the v-nullcline
where the fixed-point is stable, and moves further away
from the knee as Gex increases. The amplification still
happens, but it leads directly to depolarization block without

oscillations. Similar behavior was observed when the fixed-
point of the isolated cell is a stable focus instead of a stable
node. However, oscillations can be restored by increasing
the value of vhlf , which moves the fixed-point to the middle
branch where it loses stability (not shown).

The transition of a resonator to a damped oscillator
can be achieved by decreasing the value of τ (Rotstein
and Nadim 2014b). Contrary to intuition, the presence of
damped oscillations in the cell does not necessarily generate
sustained oscillations in the self-excited network (Fig. 4c).
When it happens, the time scale separation is smaller than
for the resonator and therefore relaxation oscillations are
more difficult to obtain (Fig. 5b).

3.2.2 The intrinsic resonant frequency controls the network
oscillations frequency

Self-excited resonators are the simplest models where we
can investigate the effects that changes on the resonant
frequency (fres) of the individual non-oscillatory cells have
on the network oscillation frequency (fntw). The resonator
parameters that control fres (28) also control the values of
other attributes of the impedance profile Z(f ) such as the
maximal impedance Zmax (29). In order to establish the
effects of fres on fntw it is necessary change the model
parameters in such a way as to cause the minimal possible
changes on the shape of Z(f ) (Chen et al. 2016). In the
ideal situation, changes in fres would be accompanied only
by a translation of Z(f ). This is not possible for 2D linear
models, but it is possible to change the model parameters in
a balanced way so that fres changes, but Zmax remains con-
stant (Chen et al. 2016). In this way the impedance profiles
are displaced with minimal changes in their shape (Fig. 6a).

Figure 6b and c show that increasing values of fres

directly affect fntw (Fig. 6b1 and c1) with minimal changes
in the oscillation amplitude (Fig. 6b2 and c2). The onset of
oscillations occurs for lower values of fres the lower gL

Fig. 5 Development of relaxation oscillations in self-excited res-
onators Parameter values are as in Fig. 4a: fres ∼ 17.6 and fnat = 0
for gL = 0.25, g = 1 and τ = 100. Oscillations are gener-
ated/terminated by Hopf bifurcations for low (supercritical) and high

(subcritical) values of Gex . a fntw = 15.5 for Gex = 0.021. b
fntw = 11.1 for Gex = 0.04. c fntw = 8.5 for Gex = 0.05. We
used the following additional parameter values: , Eex = 60, vhlf = 0,
vslp = 1
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Fig. 6 Oscillations in
self-excited resonators: the
intrinsic resonant frequency
controls the network frequency.
a Representative resonator
impedance profiles with
different resonant frequencies
(fres ) and the same maximal
impedance: Zmax ∼ 9.5 (a1)
and Zmax = 3.9 (a2). b Network
oscillation frequency (b1) and
amplitude (b2) as a function of
fres for representative values of
gL. c Network oscillation
frequency (c1) and amplitude
(c2) as a function of fres for
representative values of Gex . We
used the following parameter
values: Eex = 60, vhlf = 0,
vslp = 1
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(Fig. 6b1) and Gex (Fig. 6c1). As expected, the oscillations
are more amplified the lower gL (Fig. 6b2) (Rotstein and
Nadim 2014b, 2017b) and the higher Gex (Fig. 6c2).

3.2.3 Sustained (limit cycle) oscillations are lost
in self-excited 2D cells as the transition from resonators
to low-pass filter

Resonance can be lost by various mechanisms (Rotstein and
Nadim 2014b). One of them is having low enough values
of the resonant conductance g (in the limit of g = 0
the coupled cell is 1D and therefore oscillations are not
possible). Another one is having low-enough values of the
time constant τ . Figure 7a illustrates how oscillations are
lost as τ decreases. Note that the location of the fixed-
point is independent of τ . Figure 7b anc c illustrate that
oscillations cannot be recovered by decreasing Gex (panel
b) or increasing vhlf (panel c) for the same value of τ as in

panel a3. In both cases, these changes move the fixed-point
to the middle branch of the v-nullcline, but it remains stable.

3.3 Mutually inhibitory 2D/1D hybrid networks
can generate sustained (limit cycle) oscillations
and their frequencymonotonically depends
on the intrinsic resonant frequency

The hybrid networks we consider here consist of a linear
resonator (2D, cell 1) and a passive cell (1D, cell 2) recip-
rocally inhibited through graded synapses. We use system
(1)-(2) with g1 > 0 and g2 = 0 and the additional descrip-
tion of the synaptic connectivity presented in Section 2.

These networks can be thought of as two “overlapping”
circuits, non of each able to produce oscillations on their
own: the linear 2D resonator used in the Appendix B
and the reciprocally inhibited passive cells discussed in
Appendix A. The oscillations result from the combined

Fig. 7 Self-excited 2D cells: phase-plane diagrams for representa-
tive parameter values. The v- and w-nullclines are given by (8) and
(9), respectively. The quantities fnat and fres refer to the natural and
resonant frequencies of the uncoupled cells. The fixed-point for the

uncoupled system is a stable focus. a Gex = 0.04 and vhlf = 0. b
Gex = 0.015 and vhlf = 0. c Gex = 0.04 and vhlf = 1. We used the
following parameter values: gL = 0.25, g = 1, Eex = 60, vslp = 1
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activity of these two “sub-circuits” where the mutually-
inhibitory component acts as an amplifier of the resonant
component.

For our analysis we represent the dynamics of these 3D
networks using projections of the 3D phase-space (for v1,
w1 and v2) onto the v1 − v2 plane and use the hyper-
nullclines (10)-(11) (g2 = 0) defined in Section 2.2 (e.g.,
Fig. 8, left columns). In order to relate the dynamics of the
hybrid networks to these of the mutually inhibitory passive
cells we include in the phase-plane diagrams the v-nullcline
for cell 1 (dashed-red curve) for g1 = 0 (no resonant gating
variable).

3.3.1 Oscillations can be generated in 2D/1D hybrid
networks and are amplified by increasing levels of mutual
inhibition

Figure 8 shows the oscillations generated in these networks
for values of Gin (= Gin,1,2 = Gin,2,1) that increase from
top to bottom. Because the networks are mutually inhibited,
these oscillations are not synchronized in-phase. They are
created in a supercritical Hopf bifurcation (Fig. 11a1) and
therefore they have small amplitude and are sinusoidal-like
for small enough values of Gin (Fig. 8a). The effect of
the resonant gating variable w1 is to bring the fixed-point
of the mutually inhibitory (non-oscillatory) 1D/1D system
(intersection between the dashed-red and green curves) to
the oscillatory region where the v2 hyper-nullcline (green
curve) is non-linear.

The oscillations amplitude increases with increasing
values of Gin as the limit cycle trajectories evolve in
small vicinities of the v2 hyper-nullcline (Fig. 8b and c).
This amplification is accompanied by the development of a
separation of time scales. For large enough values of Gin the
oscillations are of relaxation-type (Fig. 8c). This partially
reflects the time constant of the resonators, which needs to
be slow enough, but it is a network effect since linear models
do not display sustained oscillations.

For low values of Gin within the oscillatory regime,
the network has only one fixed-point. As Gin increases,
additional fixed-points are created (Figs. 8c1 and 11c1)
in a Pitchfork bifurcation (Fig. 11a1), but they are not
stable and they do not obstruct the presence of oscillations.
However, as Gin increase further, these new fixed-points
become stable by subcritical Hopf bifurcations and coexist
as attractors with the limit cycle (Fig. 11a1). The oscillations
are abruptly terminated when the stable limit cycle
collides with an unstable limit cycle generated in one of
the mentioned subcritical Hopf bifurcations (Fig. 11c1).
Without oscillations the attractors that remain in the network
are the fixed-points corresponding to one of the cells
inhibited (Fig. 11a1 and c1).

Similarly to the mutually inhibited passive cells dis-
cussed above, for other parameter regimes the pitchfork
bifurcation can be transformed into a saddle-node bifur-
cation (Fig. 11a2) without causing significant qualitative
changes to the network dynamics (Fig. 11c2).

Figure 11b illustrates that existence of network oscilla-
tions requires balanced combinations of Gin and g1.

The generation of oscillations requires certain hetero-
geneity in the underlying mutually inhibitory 1D/1D sys-
tem. For the oscillations in Fig. 8, gL,1 = 0.25, gL,2 = 0.5.
This has been observed also for the related system studied
in Manor et al. (1999). Oscillations are not possible for the
hybrid 2D/1D network when gL,1 = gL,2 and C1 = C2

unless there is heterogeneity in the synaptic connectivity
(Gin,2,1 > Gin,1,2) (not shown).

3.3.2 Development of relaxation oscillations for large
mutual inhibition levels

In order to understand the mechanisms of generation of
network oscillations and their properties in terms of the
model parameters it is useful to consider the v1-nullsurface

v2 = N1,w1(v1, w1) = S−1∞
(

− gL,1v1 + g1w1

Gsyn,2,1(v1 − Esyn,1)

)

(15)

parametrized by constant values of w1, N1c(v1) =
N1c(v1, c), and track the motion of the trajectory as time
progresses and the values of w1 change. This will cause
the v1-hyper-nullclines in Fig. 8 to move as the trajectory
evolves following the dynamics of w1. For the second cell
the curve (10) for g2 = 0 is time-independent and therefore
remains fixed. Note that Eq. (15) is Eq. (10) before w1 is
substituted by v1.

In order to uncover the presence of nonlinearities of
cubic type and to further capture the effect of the model’s
geometric properties that give rise to the different types of
oscillations we use an adapted version (Fig. 9) of the phase-
plane diagram discussed in Fig. 8 where the hyper-nullclines
and trajectories are plotted relative to the v2-hyper-nullcline.
In the adapted phase-plane diagram, the v2 hyper-nullcline
(green curve) is the zero-level line and the v1-hyper-
nullclines (red curves) are cubic-like. The dashed-red curves
represent the maximum (lower curve) and minimum (upper
curve) levels of w1 during the oscillations. The red curve
moves in between these two dashed-red curves as the
oscillation progresses. The intersections between the green
line and the moving red curve generated “transient fixed-
points”, which are not fixed-points of the 3D system, but
they serve as targets for the evolution of the trajectories.
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Fig. 8 Oscillations generated in
mutually inhibited hybrid
2D-1D networks. Cell 1 is a
resonator with fres = 10.4
(fnat = 0) and cell 2 is a passive
cell. Left. Phase-plane diagrams.
The v1- and v2-hyper-nullclines
are given by Eqs. (10) and (11),
respectively. Black dots indicate
stable nodes and gray dots
indicate unstable foci. The
dashed red curve represents the
v1 nullcline for cell 1 for g1 = 0
(no resonant gating variable).
Right. Voltage traces (curves of
v1 and v2 as a function of t). a
Gin,1,2 = Gin,2,1 = 0.112. The
network frequency is
fntw = 6.1. b
Gin,1,2 = Gin,2,1 = 0.14. The
network frequency is
fntw = 5.4. c
Gin,1,2 = Gin,2,1 = 0.22. The
network frequency is
fntw = 2.4. We used the
following parameter values:
g1 = 0.25, gL,1 = 0.25,
gL,2 = 0.5, τ = 100,
Ein = −20, vhlf = 0, vslp = 1
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Fig. 9 Development of
relaxation oscillations for large
mutual inhibition levels in
hybrid 2D-1D networks. The
parameter values correspond to
Fig. 8. Cell 1 is a resonator with
fres = 10.4 (fnat = 0) and cell
2 is a passive cell. The values of
Gin,1,2 = Gin,2,1 are
represented by Gin. Left.
Adapted phase-plane diagrams
relative to the v2-hyper-nullcline
N2c(v1) (green curve in the
phase-plane diagrams in Fig. 8,
left panels). The red lines are the
differences between the v1- and
v2-hyper-nullclines in Fig. 8
(left panels) parametrized by
constant values of w1. The
solid-red curve corresponds to
the fixed-point w1 = w̄1. The
dashed-red curves correspond to
the maximal w1,max (lower) and
minimal w1,min (upper) values
of w1. The trajectories (blue
curves) are also plotted relative
to the v2-hyper-nullcline
N2c(v1). Right. Voltage traces
for v1, v2 and w1. a Relaxation
oscillations for
Gin,1,2 = Gin,2,1 = 0.22. The
network frequency is
fntw = 2.4. b Oscillations with
a uniform time scale for
Gin,1,2 = Gin,2,1 = 0.112. The
network frequency is fntw = 6.1
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Specifically, in the v1-v2 plane presented in Fig. 9 (left
panels), trajectories move towards the transient fixed-points
with negative slope and their speed depends on the distance
between the moving red curve and the green line. The
existence of oscillations imply that the local extrema of the
dashed-red curves do not intersect the zero-level reference
green line. We emphasize that this is not a standard phase-
plane diagram and it captures only specific aspects of the
dynamics.

Similarly the self-excited resonator discussed above,
increasing amplification levels are characterized by more
pronounced cubic-like nonlinearities. Here the amplifica-
tion levels are provided by the levels of mutual inhibition
that are measured in terms of the values of Gin (compare
panels a1 and b1 in Fig. 9).

When w1 = w1,min the red curve is at its highest level
and the trajectory moves to the right (F1), towards the only
transient fixed-point with relatively high speed (jump up).

As this happens w1 increases, causing the red curve to shift
down with the consequent motion of the transient fixed-
point to the left. The variable v1 reaches its maximum when
the trajectory crosses the transient fixed point and is forced
to reverse direction (S1). As the red curve continues to shifts
down, the stable and unstable transient fixed-points collide
and disappear leaving only one transient fixed-point (on the
leftmost side, for lower values of v1), which becomes the
new target for the trajectory. The trajectory moves towards
this target fixed-point, but it does so on a very slow time
scale (S1) due to the ghost effect of the “defunct” fixed-
points until it reaches the (jump down) region of fast motion
(F2). The process repeats to complete the cycle through.

Relaxation oscillations are created when difference
between the two local extrema on each dashed-red curve is
large enough (well separated). This occus in Fig. 9a, but not
in Fig. 9b, where the oscillations do not show any separation
of time scales.
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3.3.3 The resonator’s intrinsic resonant frequency controls
the network oscillations frequency

Similarly to the self-excited resonator networks discussed
above, the functional role of cellular resonance is to
determine the frequency of the network oscillations. This is
illustrated in Fig. 10 for various representative parameter set
values. We followed the same protocol as in Section 3.2.2
(Fig. 6): for each value of fres , the values of g1 and τ1 are
balanced so to maintain Zmax constant. In all cases, fntw

increases with increasing values of fres (left panels). The
oscillation amplitude increases with increasing values of
Gin (= Gin,1,2 = Gin,2,1) and is more variable than for the
self-excited resonator (Fig. 11).

The oscillatory active fres band (the range of values
of fres for which network oscillations are possible) is
relatively small as compared to the self-excited resonator
network and it depends on the value of Zmax and gL,1. All
other parameters fixed, decreasing values of Zmax (from
Fig. 10a-b) causes the oscillatory active resonant frequency
band to slide to the right. Figure 10c shows that the size
active frequency band can be increased by decreasing gL,1

and increasing Zmax . A proper comparison would involve
changing one parameter at the time, but decreasing values of
gL,1 require increasing values of Zmax for the oscillations
to be present.

3.4 Mutually excitatory 2D/1D hybrid networks
can generate limit cycle oscillations
and their frequencymonotonically depends
on the intrinsic resonant frequency

In Section 3.2 we showed that self-excited resonators
can produce limit cycle oscillations, their frequency
monotonically depends on the resonator’s resonant fre-
quency, and relaxation oscillations develop for high enough
levels of self excitation. Here we extend our results to
include two-cell networks. Because self-excited resonators
may be thought of as representing a population of syn-
chronized in phase cells, we expect our results from
Section 3.2 to hold of these networks. However, the pres-
ence of nonlinearities of cubic type are not apparent from
either the model equations or the phase-space diagrams
and need to be uncovered using the method developed
in Section 3.3.

3.4.1 Oscillations can be generated in 2D/1D hybrid
networks and are amplified with increasing levels
of mutual excitation

Figure 12a1 show the small amplitude oscillations generated
in a Hopf bifurcation (Fig. 14) for low enough values of
Gex (Gex,1,2 = Gex,2,1). This oscillations are not identical,

because the cells are not identical, but they are synchronized
in phase. Figure 12b1 shows that increasing values of
Gex lead to oscillations of relaxation type. The dynamic
mechanisms of oscillation amplification (Fig. 12a2 and b2)
as well as the cubic-based mechanisms of generation of
relaxation oscillations (Fig. 12a3 and b3) are analogous to
the mutually inhibitory networks discussed in Section 3.3.

3.4.2 The resonator’s intrinsic frequency controls
the network oscillations frequency

Our results are presented in Fig. 13 for (i) values of Z1,max

that increase from panel a to b (for a fixed-value of gL,1),
and (ii) values of gL,1 that decrease from panel b to c
(for a fixed values of Z1,max). In contrast to the mutually
inhibitory networks, by increasing Z1,max , the oscillatory
active resonant frequency band is increased, while the onset
of oscillations occurs for lower values of fres , similarly
to mutually inhibitory networks. The opposite behavior is
observed for decreasing gL,1 with all the other parameters
fixed. The behavior of the oscillations amplitude is similar
to the mutually inhibitory networks (Fig. 14).

3.5 Gradedmutually inhibitory or excitatory 2D/2D
resonator networks generate sustained (limit cycle)
oscillations and their frequency interact to control
the network frequency

Here we extend our results from Sections 3.3 and
3.4 to networks having two mutually connected 2D
resonators (that are not damped oscillators). We consider
heterogeneous networks of non-identical resonator in order
to test the effects of the interaction band-pass filters with
different frequency bands. Because the mechanisms of
generation of oscillations are similar to those discussed in
Sections 3.3 and 3.4, we focus on the effects of the resonant
frequencies of the participating resonators on the network
oscillation frequency. Our results are presented in Fig. 15.
The gray curves corresponds to networks of resonators with
the same frequency band. The network model is given by
system (1)-(4) with g1, g2 > 0.

Figure 15 shows the dependence of the network
frequency on f1,res for representative values of f2,res and
other model parameters for mutually inhibitory (panels a
and b) and mutually excitatory (panels c) networks. As
expected, in all cases the network frequency monotonically
depends on the resonant frequency of both oscillators.

The range of values of f1,res for which network
oscillations are possible increase with increasing values of
f2,res as does the network frequency. However, the network
frequency and the resonant frequency of the oscillators is no
longer one-to-one, as was the case for the 2D/1D networks
investigated in Sections 3.3 and 3.4, but it depends on the
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Fig. 10 Oscillations in mutually
inhibitory resonator-passive cell
networks (2D/1D): the intrinsic
resonant frequency controls the
network frequency. Left
columns. Network oscillation
frequency as a function of fres .
Right columns. Network
oscillation amplitude (oscillator
1) as a function of fres . The
synaptic conductances
Gin,1,2 = Gin,2,1 are equal to
the values reported in the figure.
a gL,1 = 0.25, Z1,max = 3.9.
b gL,1 = 0.25, Z1,max = 3.7.
c gL,1 = 0.1, Z1,max = 6. We
used the following parameter
values: gL,2 = 0.5, Ein = −20,
vhlf = 0, vslp = 1
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Fig. 11 Bifurcation diagrams for mutually inhibitory resonator-
passive cell networks (2D/1D) for representative parameter values. The
shadowed region corresponds the existence of sustained (limit cycle)
oscillations. The green-lined region corresponds to multistability (limit
cycle and/or fixed-points). The inset trajectory diagrams indicated the
dynamics within the regions bounded by the solid and dashed curves
(except the solid green curve): stable nodes, stable foci, unstable foci
and unstable nodes (from left to right). The inset diagrams corre-
spond to the 3D linearized system for the fixed-point before the static
bifurcation. H0, H1 and H2 note the Hopf bifurcation branches, PF

notes the pitchfork bifurcation branch and SN notes the saddle-node

branch. a Bifurcation diagram in Gin-τ1 parameter space. Cell 1 is
a resonator for values of τ1 > τ1,res (dashed-black horizontal line).
a1 gL,1 = 0.25 and g1 = 0.25. a2 gL,1 = 0.25 and g1 = 0.3.
b Bifurcation diagram in Gin-g1 parameter space for gL,1 = 0.25
and τ1 = 100. c Bifurcation diagram with Gin as bifurcation param-
eter. The solid- and dashed-blue curves represent stable and unstable
fixed-points, respectively. The solid- and dashed-black curves repre-
sent the stable and unstable limit cycle branches created at the Hopf
bifurcations (red dots). c1 gL,1 = 0.25, g1 = 0.25 and τ1 = 40. c2
gL,1 = 0.25, g1 = 0.3 and τ1 = 40. We used the following parameter
values: gL,2 = 0.5, Ein = −20, vhlf = 0, vslp = 1

complex interaction between the two resonators. The one-
to-one dependence between the network frequency and the
resonant frequencies of the individual oscillators occurs
when the two resonators have the same resonant frequency
(black dots). The slopes of the network frequency curves
for non-identical resonators are smaller than for identical
resonators indicating that the network frequency is larger
(smaller) than the resonant frequency to the left (right) of
the black dot. This is independent of the mechanisms of
amplification (mutual inhibition or mutual excitation).

Increasing values of Z2,max for fixed values of Z1,max

and f2,res causes the range of values of f1,res for which

oscillations exist increase, but the slope of the network
frequency curves remains almost unchanged, independently
of the value of gL,1 used and whether the mechanisms
of amplification is based on mutual excitation or mutual
inhibition (not shown).

4 Discussion

Network oscillations emerge from the cooperative activ-
ity of the intrinsic properties of the participating neurons
(e.g., ionic currents) and the synaptic connectivity. Their
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Fig. 12 Oscillations generated in mutually excited hybrid 2D-1D net-
works. Cell 1 is a resonator with fres = 8 (fnat = 0) and cell
2 is a passive cell. Left. Voltage traces (curves of v1 and v2 as a
function of t ). Middle. Phase-plane diagrams. The v1- and v2-hyper-
nullclines are given by Eqs. (10) and (11), respectively. The dashed
red curve represents the v1 nullcline for cell 1 for g1 = 0 (no res-
onant gating variable). Right. Adapted phase-plane diagrams relative
to the v2-hyper-nullcline N2c(v1) (green curve in the phase-plane dia-
grams in the left panels). The red lines are the differences between

the v1- and v2-hyper-nullclines in the left panels parametrized by
constant values of w1. The solid-red curve corresponds to an interme-
diate value of w1. The dashed-red curves correspond to the maximal
w1,max (lower) and minimal w1,min (upper) values of w1. The trajec-
tories (blue curves) are also plotted relative to the v2-hyper-nullcline
N2c(v1). a Gex,1,2 = Gex,2,1 = 0.032. The network frequency is
fntw ∼ 7.1. b Gex,1,2 = Gex,2,1 = 0.04. The network frequency
is fntw ∼ 4.3. We used the following parameter values: g1 = 1.8,
gL,1 = 0.1, gL,2 = 1, τ = 750, Eex = 60, vhlf = 0, vslp = 1

generation and dynamics involve the nonlinearities and
time scales present in the circuit components and the time
scales that emerge from their interplay. Several neuron types
have the intrinsic ability to generated membrane poten-
tial oscillations under blockade of all synaptic connectivity.
Other neuron types do not show intrinsic membrane poten-
tial oscillations, but exhibit membrane potential resonance
(MPR).

MPR is a property of the interaction between oscillatory
inputs and the intrinsic neuronal properties (intrinsic
resonant and amplifying processes) that uncovers a circuit
latent time scale associated to the resonant frequency

(MPR can be observed in the absence of intrinsic damped
oscillations Richardson et al. 2003; Rotstein and Nadim
2014b). This hidden time scale (provided by the resonant
frequency) is encoded in this impedance profile, and
therefore, the impedance profile is the object of study for a
non-oscillatory resonant neurons.

MPR has been investigated both experimentally and
theoretically in many neuron types (Hutcheon et al. 1996,
2000; Richardson et al. 2003; Lampl and Yarom 1997;
Llinás and Yarom 1986; Gutfreund et al. 1995; Erchova
et al. 2004; Schreiber et al. 2004; Gastrein et al. 2011; Hu
et al. 2002, 2009; Narayanan and Johnston 2007, 2008;
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Fig. 13 Oscillations in mutually
excited hybrid 2D-1D networks:
the intrinsic resonant frequency
controls the network frequency.
Left columns. Network
oscillation frequency as a
function of fres . Right
columns. Network oscillation
amplitude (oscillator 1) as a
function of fres . The synaptic
conductances Gex,1,2 = Gex,2,1
are equal to the values reported
in the figure. a gL,1 = 0.1,
Z1,max = 9.2. b gL,1 = 0.1,
Z1,max = 9.87. c gL,1 = 0.08,
Z1,max = 9.87. We used the
parameter value gL,2 = 1,
Eex = 60, vhlf = 0, vslp = 1

Marcelin et al. 2009; D’angelo et al. 2001, 2009; Pike et al.
2000; Tseng and Nadim 2010; Tohidi and Nadim 2009;
Solinas et al. 2007; Wu et al. 2001; Muresan and Savin
2007; Heys et al. 2010, 2012; Zemankovics et al. 2010;
Nolan et al. 2007; Engel et al. 2008; Boehlen et al. 2010,
2013; Rathour and Narayanan 2012, 2014; Fox et al. 2017;

Chen et al. 2016; Beatty et al. 2015; Song et al. 2016; Art
et al. 1986; Remme et al. 2014; Higgs and Spain 2009;
Yang et al. 2009; Mikiel-Hunter et al. 2016; Rau et al. 2015;
Sciamanna and Wilson 2011; Lau and Zochowski 2011;
van Brederode and Berger 2008; Rotstein 2014a, b, 2015,
2017a; Szucs et al. 2017). However, whether MPR plays
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Fig. 14 Bifurcation diagrams for mutually excitatory resonator-
passive cell networks (2D/1D) for representative parameter values. The
shadowed region corresponds the existence of sustained (limit cycle)
oscillations. The green-lined region corresponds to multistability (limit
cycle and/or fixed-points). The inset trajectory diagrams indicated the
dynamics within the regions bounded by the solid and dashed curves

(except the solid green curve): stable and unstable foci. H0 and H1
note the Hopf bifurcation branches. a Bifurcation diagram in Gex -τ1
parameter space for gL,1 = 0.1 and g1 = 2. Cell 1 is a resonator
for values of τ1 > τ1,res ∼ 0.205: b Bifurcation diagram in Gex -g1
parameter space for gL,1 = 0.1 and τ1 = 100. We used the following
parameter values: gL,2 = 1.2, Eex = 60, vhlf = 0, vslp = 1

any functional role for network oscillations or is simply an
epiphenomenon is largely an open question. A few studies
have investigated the oscillatory properties of networks
including neurons that exhibit MPR (Chen et al. 2016; Stark
et al. 2013; Tikidji-Hamburyan et al. 2015; Tchumatchenko
and Clopath 2014; Schmidt et al. 2016; Moca et al. 2014;
Baroni et al. 2014; Rotstein et al. 2017d) or have resonant
gating variables (Wang and Rinzel 1992; Manor et al. 1997;
Torben-Nielsen et al. 2012). But the role that MPR plays
in the generation of network oscillations and how the latent
time scales affect the properties of the oscillatory networks
in which they are embedded remained to be understood.

Addressing these questions is not straightforward. The
concept of a hidden (latent) time scale is somehow abstract
in the sense that it is the response the neuron would have
in the presence of an externally imposed oscillatory input
and not a property directly measurable in the individual
neurons as, say, intrinsic membrane potential oscillations.
It is also difficult to manipulate, because, as we discuss in
the paper (see also Chen et al. 2016), a proper comparison
between the effects of different resonant frequencies would
require sliding the impedance profile along the resonant
frequency line while keeping the impedance profile shape
unchanged (or as unchanged as possible), and this requires
changing more than one model parameter, contrary to the
standard mechanistic approach of changing one parameter
at the time, while keep the remaining ones unchanged. Far
from being simply a theoretical issue disconnected from the
biological reality, the same approach and method should
be used for the experimental determination of the role
of resonance for network oscillations (Chen et al. 2016),

particularly to experimentally test the predictions of our
work (e.g., using the dynamic clamp technique).

In this paper we set out to investigate these issues
using minimal network models consisting of non-oscillatory
resonators mutually coupled to either a low-pass filter
neuron or another band-pass filter (resonator). In this way
we could separate the different effects that give rise to
network oscillations in two different levels of organization
that can be manipulated separately. The resonator provides
the negative feedback and the network connectivity provides
the amplification. Because we leave out resonators that
can be also damped-oscillators, the network oscillations are
not inherited from the individual cell level, but are created
by the combination of the individual cell and connectivity
properties.

We showed that oscillations can be generated in net-
works of increasing complexity: (i) self-excited band-pass
filters, (ii) mutually inhibited band- and low-pass filters,
(iii) mutually excited band- and low-pass filters, (iv) mutu-
ally inhibited band-pass filters, and (v) mutually excited
band-pass filters. The presence of a resonator is necessary to
generate oscillations in these networks; if the resonators are
substituted by low-pass filters, network oscillations are not
possible. However, what characterizes the oscillatory activ-
ity of a resonator is the resonant frequency, which cannot
be assessed in the absence of oscillatory inputs. By show-
ing that the network frequency monotonically depends on
the resonant frequency of the individual band-pass filters,
we provide a direct link between MPR and the generation
of network oscillations. To our knowledge, this is the first
time such a link is provided. A similar result was obtained in
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Fig. 15 Oscillations in mutually
inhibitory or excitatory
resonator cell networks
(2D-2D): the intrinsic resonant
frequencies interact to control
the network frequency. Left
columns. Network oscillation
frequency as a function of fres .
Right columns. Network
oscillation amplitude (oscillator
1) as a function of fres . The
gray curves correspond to a
network of identical cells for
fixed values of gL,1 = gL,2 and
Z1,max = Z2,max . The colored
curves correspond to a fixed cell
2 with the resonance frequency
f2,res indicated in the figure. a
gL = 0.1, Zmax = 6, Gin = 0.1.
b gL = 0.25, Zmax = 3.7,
Gin = 0.1. c gL = 0.1,
Zmax = 9.2, Gex = 0.03

electrically coupled networks (Chen et al. 2016), but in these
cases, the network oscillations were driven by one of the
nodes that was a sustained oscillator. Network oscillations
have been shown to emerge as the result of the interaction

of damped oscillators (Torben-Nielsen et al. 2012; Loewen-
stein et al. 2001; Manor et al. 1997), but in these cases,
the network oscillations are inherited from the oscillatory
activity of the individual intrinsically oscillatory nodes.
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The existence of sustained oscillations in networks
of non-oscillatory neurons is not without precedent. The
inferior olive oscillatory network studied in Manor et al.
(1997) is composed of electrically coupled neurons that,
when isolated, are damped oscillators. In this case, the
individual neurons are nonlinear and include both resonant
and amplifying effects, but the connectivity is linear.
The model investigated in Wang and Rinzel (1992)
involves nonlinear neurons reciprocally inhibited with
graded synapses. For baseline values of the DC input
current, the neurons are quasi-linear and are at most damped
oscillators. The nonlinearities developed for negative input
current values combined with the dynamics resulting
from the mutual synaptic inhibition result in the post-
inhibitory rebound mechanism underlying the observed
network oscillations. Post-inhibitory rebound (PIR) and
subthreshold resonance are closely related phenomena since
both require the presence of a negative feedback effect, but
they are different in nature. The mechanisms investigated in
Wang and Rinzel (1992) depend crucially on the effective
pulsatile nature resulting from the dynamic interaction
between cells and synaptic connectivity. Models having
an h-current also show PIR. Even in the presence of
an (additive) amplifying current, such as the Ih + INap

model, the functional connectivity in these models is not
PIR-based, but rather resonance-based as we show in this
paper (unpublished observation). In Manor et al. (1999)
and Ambrosio-Mouser et al. (2006) oscillations emerge
in two reciprocally inhibited passive cells where one of
them is self-excited, thus providing additional dynamics
to the network. The model studied in Chen et al. (2016)
consists of an oscillator electrically coupled to a follower
resonator whose intrinsic resonant frequency directly affects
the network frequency while the shape of the impedance
profile remains almost unchanged.

The minimal models we used in this paper serve the
purpose of establishing the role of MPR for the generation
of network oscillations. Other types of models could
include resonant properties at the network level. Moreover,
there are alternative possible scenarios where, for example,
amplification occurs at the single cell level and the negative
feedback effect occurs at the network level. These types
of networks are beyond the scope of this paper. The
understanding of the oscillatory properties of such networks
requires more research.

The types of models we used could be argued to be too
simplistic and not realistic. We used these models precisely
because of their simplicity in order to understand some
conceptual points that can be generalized and applied to
more realistic networks. However, one should note that
the type of models we used are very close to the firing
rate models of Wilson-Cowan type (Wilson and Cowan
1972) with adaptation (Curtu and Rubin 2011; Shpiro et al.

2009; Tabak et al. 2011), which are essentially resonators
(unpublished observation). In this models, the nonlinearity
is similar to the one we used (sigmoid type, instantaneously
fast). Therefore, our results can be easily generalized to
these models. One example are the networks of OLM cells
and fast spiking (PV+) interneurons (INT) that have been
shown to be able to produce network oscillations (Gillies
et al. 2002; Rotstein et al. 2005). OLM cells show MPR
(Zemankovics et al. 2010), while the presence of MPR in
INT is debated (Pike et al. 2000; Zemankovics et al. 2010).
Although our models are simplistic, they make predictions
that can be tested using the dynamic clamp technique (Sharp
et al. 1993; Prinz et al. 2004).

The results presented in this paper advance the con-
ceptual understanding of the oscillatory interaction among
nodes in a network, particularly when there are hidden time
scales, and proposes ideas to understand the dynamics of
these networks. We open several questions regarding the
ability of networks of band-pass filters to generate oscilla-
tory patterns and how the properties of these patterns depend
on the properties of these filters. More research is required
to address these issues.

Acknowledgments This work was partially supported by the National
Science Foundation grant DMS-1608077 (HGR) and the Universidad
Nacional del Sur grant PGI 24/L096 (AB). The authors thank
Eran Stark for useful comments and discussions. HGR is grateful
to the Courant Institute of Mathematical Sciences at NYU and
the Department of Mathematics at Universidad Nacional del Sur,
Argentina.

Appendix A: Two-cell networks of passive
cells do not produce limit cycle oscillations

Here we consider system (1) with gk = 0 (k = 1, 2) and
Isyn,k given by (3) and (4).

A.1 Linearization and eigenvalues

The linearization of system (1) with gk = 0 (k = 1, 2) and
Isyn,k given by Eqs. (3) and (4) reads

dv1

dt
= Fv1(v1 − v̄1) + Fv2(v2 − v̄2), (16)

dv2

dt
= Gv1(v1 − v̄1) + Gv2(v2 − v̄2), (17)

where

C1 Fv1 = −gL,1 − Gsyn,2,1S∞(v̄2), (18)

C1 Fv2 = −Gsyn,2,1S
′∞(v̄2)(v̄1 − Esyn,1), (19)

C2 Gv1 = −Gsyn,1,2S
′∞(v̄1)(v̄2 − Esyn,2), (20)



190 J Comput Neurosci (2019) 46:169–195

C2 Gv2 = −gL,2 − Gsyn,1,2S∞(v̄1), (21)

The eigenvalues (r1 and r2) are given by

2 r1,2 = Fv1 + Gv2 ±
√

(Fv1 − Gv2)
2 + 4Fv2Gv1 . (22)

The first two terms in Eq. (22) are always negative (pro-
vided gL,1 > 0 and gL,2 > 0). The second term in the radi-
cand is positive if Fv2 and Gv1 have the same sign and nega-
tive if Fv2 and Gv1 have different signs. Therefore, the fixed-
point for networks with the same type of connections (both
excitatory or both inhibitory) can be either stable nodes
or saddles, while the fixed-points for excitatory-inhibitory

networks can be either stable nodes or stable foci (e.g.,
Fig. 16).

A.2 Absence of limit cycles

We compute

U = ∂

∂v1

(
dv1

dt

)
+ ∂

∂v2

(
dv2

dt

)

= −
(

1

C1
[ gL,1 + Gsyn,2,1 S∞(v2) ]

+ 1

C2
[ gL,2 + Gsyn,1,2 S∞(v1) ]

)
. (23)

Fig. 16 Two-cell networks of passive cells: phase-plane diagrams for
representative parameter values. (a) Mutually inhibitory networks
of passive cells. The v1- and v2-nullclines are given by Eqs. (5) and
(6), respectively. Black dots indicate stable fixed-points (nodes) and
gray dots indicate unstable fixed-points (saddles). Cells and connec-
tivity are identical. The parameter Gin represents Gin,1,2 = Gin,2,1.
As Gin increases (from a1 to a3), the v1- and v2-nullclines transition
from quasi-linear to nonlinear and the system undergoes a pitchfork
bifurcation as a stable fixed-point (a1) looses stability and two addi-
tional stable fixed-points are created (a3). Heterogeneous networks

have non-symmetric phase-plane diagrams and show a qualitatively
similar behavior, but bistability results from saddle-node bifurcations.
We used the following parameter values: gL,1 = gL,2 = 0.25, Ein,1 =
Ein,2 = −20, vhlf = 0, vslp = 1. Excitatory-inhibitory networks of
passive cells. The v1- and v2-nullclines are given by Eqs. (5) and (6),
respectively. Black dots indicate stable nodes and gray dots indicate
stable foci. The parameter Gex,1,2 = 0.01 is fixed. As Gin,2,1 increases
(from b1 to b3), the fixed-point transitions from stable nodes to stable
foci and back to stable nodes. We used the following parameter values:
gL,1 = gL,2 = 0.25, Ein,1 = −20, Eex,2 = 60, vhlf = 0, vslp = 1
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Since U < 0 for all v1 and v2 (provided gL,1 > 0 and
gL,2 > 0), then by the Bendixson-Dulac theorem (Guck-
enheimer and Holmes 1983), there are no limit cycles in
the (v1, v2)-plane. This argument breaks down when either
gL,1 < 0 or gL,2 < 0 and small enough, indicating a strong
positive feedback effect generated by an ionic process.

Appendix B: Dynamics of autonomous
and forced 2D cells

We consider the following system

C
dv

dt
= −gL v − g w + Ain sin (2πf t/1000), (24)

τ
dw

dt
= v − w, (25)

where the parameters gL, g, C and τ are as in system (1)-(2)
by omitting the subindex (k), Ain is the input amplitude, and
f is the input frequency. We assume here that all intrinsic
parameters (gL, g, C and τ ) are positive. The constraint g >

0 indicates that the ionic current that the term g w linearizes
is a resonant process (negative feedback) (Richardson et al.
2003; Rotstein and Nadim 2014b). The linearized parameter
gL captures the effects of the biophysical leak current
and possibly another ionic amplifying process (positive
feedback) provided by an additional current. Strong enough
amplifying processes may cause gL to be negative.

B.1 Autonomous 2D cells

The eigenvalues for system (24)-(25) are given by

r1,2 = 1

2 τ C

[
−(gL τ + C) ±

√
(gL τ − C)2 − 4 g τ C

]
.

(26)

System (1)-(2) (Ain = 0) has a uniquefixed-point
(v̄, w̄) = (0, 0). This fixed-point is stable provided gL τ +
C > 0. It is a stable node if the radicand in Eq. (26) is non-
negative and a stable focus otherwise. We refer the reader
for details on the dependence of the fixed-point type (node
or focus) with the model parameters to Rotstein and Nadim
(2014b).

B.2 Forced 2D cells: impedance profiles
and resonant frequencies

The impedance profile for system (24)-(25) is given by
Richardson et al. (2003) and Rotstein and Nadim (2014b)

Z(ω) =
√

1 + τ 2 ω2

(gL + g − τ C ω2)2 + (gL τ + C)2 ω2
, (27)

where ω = 2πf/1000. The resonant frequency is given by

ωres = 1

τ

√
−1 + τ

√
g2 + 2 gL g + 2

g

τ
, (28)

where for simplicity C = 1. The impedance peak Zmax is
given by

Z2
max = Z2(ωres)

=
(

g2
L− 1

τ 2
−2

g

τ
+ 2

τ

√
g (2 + g τ + 2 gL τ)

τ
,

)−1

.

(29)

The resonant properties of 2D linear systems, including
their relationship between the intrinsic properties of
the unforced cells (e.g, eigenvalues, intrinsic oscillatory
frequencies) and the dynamic mechanism of generation of
resonance have been investigated extensively by us and
other authors (Richardson et al. 2003; Rotstein 2014a; b).

An important aspect to note, relevant for this paper, is that
resonance can occur in the absence of damped oscillations;
i.e., when the fixed-point is a stable node. In this paper we
focus on resonators that do not show damped oscillations.

B.3 Quasi-displacement of impedance profiles: fixed
peak values and changing resonant frequencies

From Eq. (29) we can compute the value of g as a function
of Zmax and the other model parameters

g = (Z2
max + τ 2 − Z2

max g2
L τ 2)2

4 Z2
max τ (−τ 2 + Z2

max (1 + gL τ)2)
. (30)

Equation (30) relates the model parameters of a forced
2D linear system of the form (24)-(25) for which the
impedance peak Zmax is constant. In order to calculate
the balanced values of g and τ , if they exist, for given
values of Zmax and gL (fixed) we proceed as follows. First
we take values of τ within certain range and compute the
corresponding values of g using Eq. (30). For these values
of gL, g and τ we compute ωres using (28) and C = 1. In
this way we have g = g(τ) and ωres = ωres(τ ) for a given
value of Zmax .

Appendix C: Self-inhibited 2D cells do not
produce sustained (limit cycle) oscillations

We consider system (1)-(2) with vk = vj , Esyn,k = Ein

and Gsyn,jk = Gin in Isyn,k (3). For simplicity we omit the
subindex.

Our discussion below is based on the values for the
synaptic parameters we use in this paper (Ein = −20,
vhlf = 0 and vslp = 1) for which S∞(v = Ein) ∼ 0. The
results we present are valid for a larger range of parameter
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values provided S∞(v = Ein) is small enough (the
sigmoid function S∞ changes fast enough around vhlf and
is negligible at v = Ein).

From our discussion above (Section B.1), the uncoupled
system (Gin = 0) has a stable fixed-point. We expect this to
persist for small enough values of Gin.

C.1 Fixed point

The fixed-points of the self-inhibited 2D system are the
zeros of

H(v) = −(gL + g) v − GinS∞(v)(v − Ein) (31)

whose derivative is given by

H ′(v) = −(gL+g)−GinS∞(v)−GinS
′∞(v)(v−Ein). (32)

The first two terms in Eq. (32) are negative, while the third
one is negative provided v > Ein. However, for v < Ein

this third term is negligible. Therefore, H(v) is a decreasing
function for all v. Because H(v) < 0 for large enough
values of v, a fixed-point exists if H(v) > 0 for some v.
The first term in Eq. (31) is positive for negative values of v

and so is the second term provided v < Ein. Therefore, the
self-inhibited cell has a unique fixed-point (v̄∗, v̄∗). Since
H(0) = GinS∞(0)Ein < 0 and H(Ein) = −(gL +
g)Ein > 0, then Ein < v̄∗ < 0.

The stability properties of the fixed-point (v̄∗, v̄∗) are
determined by looking at the equation for the eigen-
values (26) with gL substituted by g∗

L = gL +
GinS

′∞(v̄∗)(v̄∗ − Ein) + Gin S∞(v̄∗) > gL. Therefore, the
stability of the fixed-point is preserved. If (v̄, v̄) is a stable
node, then (v̄∗, v̄∗) is a node for all values of Gin (Fig. 17a).
In contrast, if (v̄, v̄) is a stable focus, then (v̄∗, v̄∗)
remains a stable focus for small enough values of Gin,
but it transitions to a stable node for large enough values
of Gin (Fig. 17b).

Fig. 17 Self-inhibited resonator:
phase-plane diagrams for
representative parameter values.
The v- and w-nullclines are
given by (8) and (9),
respectively. Black dots indicate
stable nodes and gray dots
indicate stable foci. a
gL = 0.25. The fixed-point for
the uncoupled system is a stable
node. b gL = 0.01. The
fixed-point for the uncoupled
system is a stable focus. We
used the following parameter
values: g = 0.25, τ = 100,
Ein = −20, vhlf = 0, vslp = 1
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C.2 Absence of limit cycles

Because the self-inhibited 2D systems is relatively simple
we do not expect the existence of limit cycles. We address
this in the region R = {(v, w) ∈ R2 : v > Ein}. We
compute

U = ∂

∂v

(
dv

dt

)
+ ∂

∂w

(
dw

dt

)

= −gL

C
− Gin

C
S∞(v) − Gin

C
S′∞(v)(v−Ein)− 1

τ
. (33)

By substituting S′∞(v) = S∞(v)(1 − S∞(v)) > 0 where
S∞, given by Eq. (4), we obtain

U = ∂

∂v

(
dv

dt

)
+ ∂

∂w

(
dw

dt

)

= − 1

C

(
gL + 1

τ
+ GinS∞(v)

+Gin

vslp

S∞(v) (1 − S∞(v))

)
. (34)

If v > Ein (assuming gL > 0), then U < 0. Thus,
by the Bendixson-Dulac theorem (Guckenheimer and
Holmes 1983), there are no limit cycles lying entirely in the
region R.
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