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Abstract
Even though it has long been felt that psychological state influences the performance of brain-computer interfaces (BCI),
formal analysis to support this hypothesis has been scant. This study investigates the inter-relationship between motor
imagery (MI) and mental fatigue using EEG: a. whether prolonged sequences of MI produce mental fatigue and b. whether
mental fatigue affects MI EEG class separability. Eleven participants participated in the MI experiment, 5 of which quit
in the middle because of experiencing high fatigue. The growth of fatigue was monitored using the Kernel Partial Least
Square (KPLS) algorithm on the remaining 6 participants which shows that MI induces substantial mental fatigue. Statistical
analysis of the effect of fatigue on motor imagery performance shows that high fatigue level significantly decreases MI
EEG separability. Collectively, these results portray an MI-fatigue inter-connection, emphasizing the necessity of developing
adaptive MI BCI by tracking mental fatigue.

Keywords Motor imagery · Mental fatigue · Brain Computer Interface · EEG

1 Introduction

Mental fatigue is a feeling of weariness and exhaustion with
reduced energy, activeness and declined cognitive compe-
tence (Borghini et al. 2014). Even though there is no precise
definition of mental fatigue, it can be best understood as
a feeling of tiredness, low arousal and low energy level.
Motor imagery (MI) is the process of mental simulation

Action Editor: Sridevi Sarma

� Upasana Talukdar
upat123@tezu.ernet.in

Shyamanta M. Hazarika
s.m.hazarika@iitg.ernet.in

John Q. Gan
jqgan@essex.ac.uk

1 Biomimetic and Cognitive Robotics Lab, Department
of Computer Science and Engineering, Tezpur University,
Tezpur, India

2 Mechatronics and Robotics Lab, Department of Mechanical
Engineering, Indian Institute of Technology, Guwahati,
India

3 School of Computer Science and Electronic Engineering,
University of Essex, Essex, UK

of movement without actually performing the movement or
without even stimulating the muscles. Such tasks, if carried
out repeatedly for a longer period, become monotonous and
require much cognitive effort to maintain the vigilance level.
In MI Brain Computer Interfaces (BCIs), significant cogni-
tive effort is required to concentrate on motor imagery tasks
and hence the signal features are heavily affected by mental
states, attention level, fatigue and arousal. Loss of atten-
tion and declined arousal level due to mental fatigue can
significantly degrade the signal features and consequently
decrease the BCI system performance (Cao et al. 2014).
Therefore investigation of the inter-relationship between
mental fatigue and motor imagery is substantial for MI
based BCI.

The literature has discussed various means to analyse and
estimate mental fatigue with the simplest and most conve-
nient being self report ratings (Pomer-Escher et al. 2014).
Various questionnaires and scales are used to estimate men-
tal fatigue. Additionally, observed behaviour while perform-
ing a particular task, response time and response accuracy
can also be used to estimate mental fatigue (Trejo et al.
2015). Response time implies the period of time taken
to react to a given stimulus/event. Response accuracy is
the degree of proximity of measurement of a response to
the response’s accurate value. These measures can assess
mental fatigue subjectively. There is a need for objective
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measures that can evaluate, monitor and predict the growth
of fatigue with time.

Mental fatigue is known to alter brain activity. With the
increase in mental fatigue, EEG spectral power increases in
delta (δ), theta (θ ), alpha (α) and beta (β) bands (Cao et al.
2014). Increased theta power signifies the decrement of
arousal level, information encoding and working memory;
while alpha and beta power increases with the increase
in effortful attention and alertness of the participants
while experiencing fatigue to maintain the vigilance level.
When a participant experiences fatigue, the drowsiness and
decreased arousal level elevates the delta power (Cao et al.
2014). Borghini et al. (2014) summarised the correlation
of different neurological signals: EEG, electrocculogram
(EOG) and heart rate with three different cognitive states:
mental workload, mental fatigue and situational awareness.
They illustrated how these different neurological signals
can be associated in estimating the aforesaid cognitive
states. Cao et al. (2014) presented a method to estimate
mental fatigue in steady state visually evoked potentials
(SSVEP) based BCIs. They explored the correlation of EEG
indices (amplitudes in δ, θ , α and β frequency bands),
their ratio indices (θ/α, (θ + α)/β) and SSVEP properties
(amplitudes and signal to noise ratio changes) with growth
of mental fatigue. EEG spectral features (power in δ, θ ,
α1, α2 and β bands) were also analysed by Craig et al.
(2012) to estimate mental fatigue in different areas of the
scalp during simulated driving. Liu et al. (2010) employed
two EEG features: approximate entropy and kolgomorov
complexity to estimate and evaluate mental fatigue during
three different cognitive tasks. Pomer-Escher et al. (2014)
presented 14 different EEG spectral indices to estimate
mental fatigue. Chai et al. (2016) also presented their
approach based on power spectral density and Bayesian
classifier. Roy et al. (2014) used common spatial pattern
filter with Fisher linear discriminant classifier to estimate
mental fatigue. Auto regression model (Zhao et al. 2011;
Chai et al. 2017a, b) and wavelet transform (Kar et al.
2010) have also been used to estimate mental fatigue. The
aforesaid studies analyzed the difference in fatigue levels
before the beginning and after completion of the desired
task instead of tracking the growth of fatigue with time.
The study reported here monitors the growth of fatigue with
time using spectral powers and spectral entropy as features.
Spectral entropy is used here to investigate the change in the
regularity of EEG signal with the rise in fatigue level.

The literature has reported a number of approaches to
track the growth of fatigue with time. Jap et al. (2009)
and Borghini et al. (2012) put forward approaches by
showing the increasing and decreasing trends of different
EEG spectral indices. However, in both cases, they did
not quantitatively relate these indices to levels of mental
fatigue (Charbonnier et al. 2016). Charbonnier et al. (2016)

proposed an EEG index to monitor fatigue level, which
compares the current EEG spectral content to the EEG
spectral content recorded in an initial state when the
participant was not fatigued. Trejo et al. (2015) presented a
method to estimate the growth of fatigue using non-linear
Kernel Partial Least Square (KPLS) algorithm. The method
tracked the rise in fatigue using two spectral powers: theta
power at Fz and alpha power at Pz. KPLS took as input these
two spectral power and computed a fatigue score. Higher
value of the score implies the growth of fatigue.

Monitoring the growth of fatigue with time holds promise
as it would be helpful in better understanding the fatigue
problem, based on which its influence on vigilance task
can be investigated. This may eventually lead to the design
of adaptive BCIs that are more robust to changes in
fatigue level. Our study presents an approach to analyze the
inter-relationship between fatigue and motor imagery using
EEG, aiming to test whether a prolonged motor imagery
session induces mental fatigue and whether mental fatigue
affects motor imagery EEG separability. To the best of
our knowledge, such analysis has been rarely done in the
literature. Myrden and Chau (2015) investigated the effects
of three mental states, i.e., fatigue, frustration and attention
on BCI performance and depicted that moderate fatigue and
moderate frustration improves BCI performance. The three
mental states were estimated through self report. Another
work by Rozand et al. (2016) presented an approach using
EMG to investigate whether motor imagery induces mental
fatigue which results in increasing the imagined movement
duration. Mental fatigue was estimated through self report
while EMG activities of the biceps brachii and triceps
brachii muscles of the right arm were analysed at rest and
during motor imagery.

Our study aims to monitor how the level of fatigue
changes while performing motor imagery which in turn
affects the motor imagery performance. The fatigue analysis
has been carried out in five different areas of the scalp:
frontal, parietal, temporal, central and occipital. The aim is
to investigate the regional brain activity changes associated
with fatigue during motor imagery. Statistically significant
features that showed significant changes between first
and last runs were then picked up for analysing mental
fatigue. The advantage is that it examines where and what
changes have occurred with the rise in fatigue level, i.e,
which features from what part of the brain were affected
by the growth of fatigue. Picking up different features
from different areas of the scalp is very important and
informative for exploring EEG correlation with the rise in
fatigue level and may improve the monitoring of a person’s
fatigue level. The growth of fatigue was monitored using
Kernel Partial Least Square (KPLS) algorithm (Rosipal
and Trejo 2001). Analysis of the effect of fatigue on
motor imagery performance has been carried out from
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signal feature perspective. Common spatial patterns were
used to extract features and KPLS-mRMR (Talukdar et al.
2018) to select features. The performance was measured in
terms of class separability of motor imagery EEG features.
Four different class separability metrics were used: Davies
Bouldin Index (DBI) (Davies and Bouldin 1979), Dunn’s
index (DI) (Dunn 1973), Fisher score (FS)(Duda et al. 1973)
and Mutual information (mi) (Cover and Thomas 2012).
Higher class separability was considered as better motor
imagery performance.

The rest of the paper is organized as follows. Experimen-
tal protocol and methods for EEG analysis are described in
Sections 2 and 3 respectively. Section 4 presents experimen-
tal results while Section 5 discusses the findings. Finally,
Section 6 concludes the paper.

2 Experimental protocol

2.1 Participants

Data was collected from 11 individuals at University of
Essex, England. All the participants were either students
or staff of the aforesaid university. The participants gave
their informed consent using a form approved by the Ethics
Committee of University of Essex and were paid for their
participation. The sample included 5 males and 6 females
with a mean age of 29.3 years (SD = 7.4, range = 20–
42 years, male mean age = 33 years and female mean age
= 26.2 years). The participants were asked to have a good
sleep before the experiment. As reported by them, the mean
hours of sleep was found to be 6.8 h and none of them had
any sleep disorder.

2.2 Experimental procedure

At the beginning of the experiment, the participants were
a) given an orientation to the study; b) asked to read
and sign an informed consent form; c) asked to complete
a brief demographic questionnaire (name, age, gender,
employment status, hours of sleep) and assigned an ID to
each of them; d) asked to practice the motor imagery tasks
for 5 min.

Short break was provided before the experiment and
then the participants were prepared for data collection. The
participants were asked to complete the pre-test self report
measures: Visual Analogue Scale - Fatigue (VAS-F) (Lee
et al. 1991) and Chalder Fatigue Scale (CFS) (Cella and
Chalder 2010). The 13 items of VAS-F (item no: 1, 2, 3, 4, 5,
11, 12, 13, 14, 15, 16, 17, 18) and 6 items of CFS (item no:2,
3, 5, 7, 8, 10) that relates to the subjective experience of
fatigue were used in this study. Thereafter, the participants
were asked to perform the motor imagery tasks for one

complete session. Each session comprises 8 runs and each
run is 12 min in length comprising 80 trials. No extra breaks
were provided between the runs. At the end of each run,
the fatigue state was rated by using a continuous “fatigue
scale” (See Appendix A.3). The “fatigue scale” has been
introduced as a subjective scale with a value from 1 to 5
that extends between two extremes (1 = “Least fatigued”
and 5 = “Most fatigued”). The participant circled a number
along the scale that best represents how they felt regarding
fatigue. The circled number was taken as the fatigue score
of that particular run. Finally, the experiment termination
was followed by completion of the post-test self report using
VAS-F and CFS.

2.3 Motor imagery tasks

The participants were asked to perform 4 different motor
imagery tasks: left hand movement (Class 1), right hand
movement (Class 2), both feet movement (Class 3) and
tongue movement (Class 4). During each trial, a fixation
cross appeared on the computer screen at the beginning (t
= 0 s) along with a short acoustic warning tone that asked
the participants to get ready for the task. After 2 s, a cue in
the form of a circle appeared either left, right, down or up of
the fixation cross (indicating the imagination of left hand,
right hand, both feet and tongue movement respectively)
which instructed the participant what motor imagery task
to perform. The participants accomplished the desired task
until the cue and the fixation cross disappeared from the
screen at t = 6. Thereafter, each trial included a break for
3 s.

The paradigm is illustrated in Fig. 1.
The participants carried out the experiment until either

they quit due to extreme fatigue or they completed all the 8
runs. Five out of the 11 participants could not complete the
whole experiment. As depicted in Table 1 all the participants
completed at least 5 runs out of the 8 runs and 6 participants
completed all the 8 runs.

2.4 EEG recording

The participants were seated at approximately 80 cm from
an LCD screen where the stimuli for the motor imagery task
was presented. The Biosemi Active Two System was used to
record the EEG data. 64 EEG channels were used to record
the data (Fig. 2, electrodes marked in grey were used in this
study) following 10–20 international montage system, with
a sampling frequency of 256 Hz. The artefacts from the EEG
data were removed by EAWICA (Mammone and Morabito
2014). The EEG data were then low-pass filtered (40 Hz)
and subtracted by common average reference. The EEG data
was processed from instant t = 0 to t = 6 from the 9 s epoch
excluding the last 3 s break.
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Fig. 1 The experimental
paradigm

3Methods for EEG analysis

The framework to analyse mental fatigue-motor imagery
inter-relationship using EEG is portrayed in Fig. 3. The first
block “Fatigue analysis during MI” carries out optimization
to get the best feature vector for fatigue analysis, followed
by monitoring the growth of fatigue using the optimized
feature vector and finally estimating the trends of the growth
of fatigue. The other two blocks analyze the effect of
fatigue on motor imagery. The block “Training phase to
extract optimal spatio-temporal patterns and then to select
the best features” acts on the training data to extract the
optimal spatio-temporal patterns and then carry out feature
selection to identify the best features of motor imagery. The
block “Evaluation phase to analyse the effect of fatigue on
motor imagery” evaluates the effect of fatigue on motor
imagery class distributions. The approach for analyzing
MI-fatigue inter-relationship consists of four key phases:
a. Optimization to get the best feature vector for fatigue
analysis, b. Monitoring the change in fatigue level using
KPLS algorithm, c. Estimation of trends of growth of
fatigue and d. Analysing the effect of mental fatigue on
motor imagery from signal feature perspective.

Table 1 Number of participants in each run

Runs 1 2 3 4 5 6 7 8

No. of Participants 11 11 11 11 11 8 7 6

3.1 Optimization to get the best feature vector
for fatigue analysis

Optimization of feature vector to get the best features was
carried out on the first and last runs. The EEG data collected
was subjected to Fast Fourier Transform (using Hanning
window) to obtain the spectral power and spectral entropy

Fig. 2 EEG channels used in the study following the 10–20 international
montage system
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Fig. 3 Framework for analyzing inter-relationship between MI and mental fatigue

in the following frequency bands: delta (0.1–3.5 Hz), theta
(4–7.5 Hz), alpha (8–12 Hz) and beta (13–35 Hz) from five
different areas of the scalp: frontal (F1, F3, F5, F7, Fz, F2,
F4, F6, AFz, AF3, AF4 and FPz), parietal (P1, P3, P5, P7,
Pz, P2, P4, P6, POz, PO3, PO4 and CPz), temporal (FT8,
T8, TP8, FT7, T7 and TP7), central (C1, C3, C5, Cz, C2,
C4,C6) and occipital (O1, O2, Oz). EEG indices used as
features for analysing mental fatigue were spectral power
and spectral entropy. Spectral entropy can be defined as
a generic measure of system disorganization (Ekštein and
Pavelka 2004). These two types of features computed in all
the four bands during the first and last runs were averaged
across all the 11 participants and the average values obtained
were compared. Statistically significant features that show
significant changes between the first and last run were then
picked up for analysing mental fatigue.

3.2 Monitoring the change in fatigue level using
Kernel Partial Least Square (KPLS)

The optimized feature vector was used to track the growth
of fatigue while performing motor imagery. Monitoring of
fatigue level was then conducted using KPLS algorithm
that provided a score of mental fatigue (Talukdar and
Hazarika 2016). KPLS is a non-linear regression method
based on the projection of input (explanatory) variables to
the latent vectors (components) (Rosipal and Trejo 2001).
It is the non-linear variant of Partial Least Square (PLS)
that computes uncorrelated latent vectors, the combinations
of the original regressors (Rosipal and Trejo 2001). A least
square regression is then performed that gives the regression
coefficients.

In this study, KPLS takes as input two matrices X and
Y with X being the set of predictors and Y being the set of

response variables. Y is a vector of −1 or +1 representing
two classes—active state and fatigue state. X is an n ×
m matrix where n is the number of observations and m
is the size of optimized feature vector. The approach of
using KPLS to track the growth of fatigue was employed
on the 6 participants (out of 11) who completed all the 8
runs. KPLS consists of two key phases: model selection
and model prediction. During model selection, the optimal
number of KPLS components were investigated while
during model prediction fatigue scores for each trial was
estimated. The scores are the estimates/predictions of Y
which are computed by projecting X onto the KPLS
regression coefficients. This study termed these scores as
KPLS scores. For each of the 6 participants, for each run,
the mean of the KPLS scores was computed which was
interpreted as fatigue score of that particular run. The idea
of using KPLS to track the growth of fatigue is closely
followed from Trejo et al. (2015).

3.3 Estimation of trends of growth of fatigue

The subjective scores rated by the participants at the end
of each run using the “fatigue scale” were used to validate
the growth of fatigue obtained by the KPLS algorithm. The
trends of KPLS scores and subjective scores were estimated
using the Centered Moving Average algorithm and the
similarity between the estimated trends were measured by
Pearson Correlation Coefficient.

3.4 Analysing the effect of mental fatigue onmotor
imagery from signal feature perspective

The analysis of the effect of mental fatigue on motor
imagery from signal feature perspective was then carried
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out to investigate how motor imagery signal features vary
with the rise in fatigue level which consists of two key
phases: a) training phase (last block of Fig. 3) to get the
optimal spatio-temporal patterns and then optimal features
of motor imagery data and b) evaluation phase (middle
block of Fig. 3) to analyse the effect of fatigue on motor
imagery class separability. The evaluation phase of MI EEG
separability change with rise in fatigue level was carried out
in two different scenarios: First, the score of mental fatigue
obtained for each run was quantized to two levels: low
fatigue and high fatigue using K-means clustering. K-means
takes as input the highest fatigue score for the high fatigue
level class and the lowest fatigue score for the low fatigue
level class along with the number of classes. Each run of the
evaluation data was then categorised as either high or low
fatigue state. The separability of the MI EEG was analysed
at each fatigue level. Second, the separability of MI EEG
was examined for each run and then the correlation between
MI EEG separability and mental fatigue over various runs
was established.

In both cases, MI performance was evaluated in terms
of class separability. Higher class separability was con-
sidered as better motor imagery performance. Separability
of extracted features can be measured directly by certain
metrics like DBI, FS etc. or indirectly by the accuracy
of the classifiers (Hasan 2010). Higher the separability of
extracted features, better would be the classification accu-
racy (Hasan 2010). This study examines the separability
of features in terms of signal-feature perspective using
four class separability metrics DBI, FS, DI and mi. All
the four metrics computes the relevance of features with
respect to the class and thus measures the separation
between classes/clusters. Unlike classifiers, no pre-training
is required. They are independent of the number of group-
ings and grouping algorithm used (Adel et al. 2015) and
hence are simple, feasible and time saving (Löster 2016).
Further, this study aims to show the decrease in class sepa-
rability of MI EEG features with rise in fatigue level which
can be described by these four separability metrics.

These aforesaid metrics are the most widely used to
measure class separability. The computation of DBI is
much less complex as compared to that of most class
separability metrics like Silhoutte index (Petrovic 2006).
FS is known for its simplicity, feasibility and time saving
(Zhou 2016). As portrayed by Löster (2016), DI gives better
performance as compared to DBI as well as other different
class separability metrics. However, DBI, DI and FS are
linear separability metrics and hence it cannot capture non-
linear relationship. For this, the study also used another
metric ‘mi’ as it is the most widely used metric to capture
the non-linear relationship between the features and their
classes.

3.4.1 Davies Bouldin Index (DBI)

Davies Bouldin Index (DBI) is computed as follows:

Mij =
{

n∑
k=1

|μik − μjk|q
}1/q

(1)

Si =
⎧⎨
⎩ 1

Ti

Ti∑
l=1

n∑
k=1

|xlk − μik|q
⎫⎬
⎭

1/q

(2)

RIij = (Si + Sj )

Mij

(3)

DBI = 1

m

m∑
i=1

(
max
j �=i

RIij

)
(4)

where Mij is a measure of separation between class i and
class j, Si is a measure of scatter within class i, μi is the
centroid of class i, xl is a feature vector of size n, Ti is the
number of feature vectors in class i, m is the number of
classes, and the value of q is usually 2. Since DBI is the ratio
of within-class scatter to between-class distance, a smaller
DBI value implies better class separation.

3.4.2 Dunn’s Index (DI)

Dunn’s index is a measure to evaluate class separability and
is defined as follows:

DI =
min

1≤i<j≤m
δ(μi, μj )

max
1≤k≤m

�k

(5)

where m is the number of classes, δ(μi, μj ) is the distance
between the centroids of class i and j and �k computes the
intra-class distance, i.e., distance of all the points from their
centroid μ.

�k =
∑

x∈Ci
d(x, μ)

|Ci | (6)

where Ci represents class i. |Ci | is the number of samples of
a particular class. A larger value of DI implies better class
separability.

3.4.3 Fisher Score (FS)

Fisher Score is computed as follows:

FS = |μ1 − μ2|2
σ 2

1 − σ 2
2

(7)

where μ1 and μ2 represent the centroids of class 1 and
2 while σ1 and σ2 represent the variance of class 1 and
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class 2 respectively. Higher value of FS implies better class
separability.

3.4.4 Mutual information (mi)

Mutual information gives the mutual dependence between
two variables and is defined as follows:

mi =
∑
y∈Y

∑
x∈X

p(x, y)log
p(x, y)

p(x)p(y)
(8)

where X is a set of feature vectors and Y is a set of class
labels, p(x,y) is the joint probability functions of x and y
while p(x),p(y) are the marginal probability functions of
x and y respectively. Higher value of mi implies higher
relevance of a feature with its class and hence better class
separability.

4 Experimental results

4.1 Subjective evaluation of fatigue

Two scales Chalder Fatigue Scale (CFS) and Visual
Analogue Scale - Fatigue (VAS-F) were used to assess
the fatigue level of the participants before and after the
experiment. These two scales reveal that all the participants
experienced fatigue after completing several runs of motor
imagery tasks. The individual subjective scores were
averaged across all the 11 participants and shown in Fig. 4.
Friedman statistical test was conducted on the averaged
subjective scores obtained before and after the experiment.
Compared to the averaged subjective scores on mental
fatigue obtained before the experiment (pre-task), there is
a significant increase in subjective scores on mental fatigue
after the experiment (post-task) as shown in Table 2.

4.1.1 Evaluation of CFS

The obtained CFS scales reveal that all the participants
experienced drowsiness and difficulty in concentrating after
the completion the experiment. The CFS questionnaire is
given in Appendix A.2. Mann Whitney t-test was conducted

Fig. 4 Comparison of subjective scores on mental fatigue averaged
across all participants between two sessions: before and after the
experiment

Table 2 Statistical test on the subjective scores

CFS VAS-F

p = 0.001565402 (p<0.05) p = 0.001565402 (p < 0.05)

on the subjective scores obtained before and after the
experiment for each of 6 items used in the study. The results
are shown in Table 3. The first column shows the item
number and the second column shows the p-value on the
subjective scores of that particular item before and after
the experiment (� indicates statistically significant while ×
indicates insignificant difference).

4.1.2 Evaluation of VAS-F

The obtained VAS-F scales reveal that all the participants
experienced drowsiness, fatigue, difficulty in concentrating
and difficulty in keeping eyes open after the completion
of the experiment. The VAS-F questionnaire is given in
Appendix A.1. Mann Whitney t-test was conducted on the
subjective scores obtained before and after the experiment
of each of the 13 items used in the study. The results are
shown in Table 4. The first column shows the item number
and the second column shows the p-value on the subjective
scores on that particular question before and after the exper-
iment (� indicates statistically significant while × indicates
insignificant difference).

The results collectively show that after completion of
motor imagery tasks for a long period of time without
any break between the runs, the participants felt drowsy,
difficulty in concentrating, worn out and fatigued. Other
different factors like room temperature, sitting in EEG room
could also be the possible reasons for experiencing fatigue,
but the participants if given break in the middle of the
experiment might not experience the same level of fatigue
as they experienced while accomplishing the experiment
without any break. This is because motor imagery is
a quite monotonous task and a participant needs much
cognitive effort to maintain his/her vigilance level. Hence,

Table 3 Statistical test on the subjective scores on the questions of
CFS

Item no. p-value

2 0.03 (�)

3 0.0004 (�)

5 0.05 (×)

7 0.16 (×)

8 0.014(�)

10 0.11 (×)
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Table 4 Statistical test on the subjective scores on the questions of
VAS-F

Questions p-value

1 0.0005 (�)

2 0.001 (�)

3 0.002 (�)

4 0.001 (�)

5 0.0005 (�)

11 0.004 (�)

12 0.011 (�)

13 0.001 (�)

14 0.011 (�)

15 0.0007 (�)

16 0.023 (�)

17 0.0007 (�)

18 0.04 (�)

they experience cognitive fatigue while accomplishing such
cognitive tasks.

4.2 Optimization to get the best feature vector
for fatigue analysis

Spectral power and spectral entropy computed in all the four
aforesaid bands during the first and last runs in five different
areas of the scalp: frontal, central, parietal, occipital and
temporal were averaged across all the 11 participants and
the average values obtained were compared. For each
band average spectral power and average spectral entropy
were recorded in Tables 5, 6, 7, 8, 9, 10, 11 and 12.
Friedman statistical test was conducted on the obtained
average values. The 2nd and 3rd columns in the tables
show the average values obtained for the 1st and the last
runs. The p values obtained are shown in the 4th column.
Significant difference in the average values between the first
and the last runs is indicated by � whereas × is used to
show insignificant difference. The last column shows the
direction of change of the computed mean values. ↑ shows
the significant increase while - shows insignificant change.

A. Delta wave results
Tables 5 and 6 show average spectral power and

average spectral entropy respectively for the delta
activity.

No significant changes occur in average spectral
entropy between the first and last runs in all the five areas.
Average spectral power increases significantly in the
frontal and temporal areas during the last run. The peak
amplitudes of delta activity in frontal lobe during the first
and last runs are: 0.0653 (SD = 0.1208, SE = 0.0364)
and 0.1029 (SD = 0.242 and SE = 0.0729) respectively;
while in the temporal lobe the peak amplitudes during
the first and last runs are: 0.0340 (SD = 0.0174, SE
= 0.00524) and 0.04732 (SD = 0.0474, SE = 0.0143)
respectively.
B. Theta wave results

Tables 7 and 8 show the results for average spectral
power and average spectral entropy in the theta band
respectively.

No significant changes occur in average spectral
entropy between the first and last runs in all the five areas.
Average spectral power increases significantly in the
frontal, temporal and occipital areas during the last run.
The peak amplitudes of the theta activity in frontal lobe
during the first and last runs are: 0.0773 (SD = 0.139,
SE = 0.0419) and 0.093 (SD = 0.157, SE = 0.0474)
respectively; in occipital lobe the peak amplitudes are
0.040361 (SD = 0.0209, SE = 0.00632) and 0.0517
(SD = 0.03302, SE = 0.01014) during first and last
runs respectively; while in the temporal lobe the peak
amplitudes during the first and last runs are: 0.0371 (SD
= 0.0209, SE = 0.00631) and 0.0511 (SD = 0.0334, SE
= 0.0101) respectively.
C. Alpha wave results

Tables 9 and 10 show the results for average spectral
power and average spectral entropy in the alpha band
respectively.

No significant changes occur in average spectral
entropy between the first and last runs in all the five areas.
Average spectral power increases significantly in frontal,
parietal and temporal areas during the last run. The peak
amplitudes of alpha activity in frontal lobe during the first

Table 5 Comparison of the
average spectral power for
delta activity obtained during
first and last runs for all the 11
participants

Area Average spectral power(SD;SE) p value Direction of change

First Run Last Run

Frontal 0.050(0.0983;0.0297) 0.060 (0.105;0.0318) 0.0114 � ↑
Parietal 0.0224 (0.0145;0.0044) 0.0329 (0.02963;0.00893) 0.2059 × –

Temporal 0.0223 (0.0158;0.0047) 0.0332 (0.02807;0.00846) 0.0114 � ↑
Central 0.0177 (0.0149;0.0045) 0.0241 (0.02761;0.00832) 0.2059 × –

Occipital 0.0250 (0.0151;0.0045) 0.0351 (0.0276;0.0083) 0.2059 × –
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Table 6 Comparison of the
average spectral entropy for
delta activity obtained during
first and last runs for all the 11
participants

Area Average spectral entropy (SD;SE) p value Direction of change

First Run Last Run

Frontal 0.934 (0.0018;0.00054) 0.9351 (0.00149;0.000451) 0.2059 × –

Parietal 0.933 (0.0017;0.00053) 0.934 (0.00152;0.00046) 0.2059 × –

Temporal 0.935 (0.0012;0.00036) 0.934 (0.00156;0.00047) 1 × –

Central 0.934 (0.0014; 0.00042) 0.935 (0.00172;0.00052) 1 × –

Occipital 0.932 (0.0025; 0.00075) 0.933 (0.00164;0.000496) 1 × –

Table 7 Comparison of the
average spectral power for
theta activity obtained during
first and last runs for all the 11
participants

Area Average spectral power(SD;SE) p value Direction of change

First Run Last Run

Frontal 0.034 (0.0572;0.0172) 0.0426 (0.069;0.0208) 0.00157 � ↑
Parietal 0.0168 (0.00809; 0.00244) 0.0226 (0.0157;0.00475) 0.058 × –

Temporal 0.0172 (0.0088;0.00267) 0.0240 (0.0154;0.00464) 0.0114 � ↑
Central 0.01342 (0.0084;0.00252) 0.0182 (0.0154;0.00464) 0.2059 × –

Occipital 0.01882 (0.00885;0.00267) 0.0244 (0.0153;0.0046) 0.00156 � ↑

Table 8 Comparison of the
average spectral entropy for
theta activity obtained during
first and last runs for all the 11
participants

Area Average spectral entropy (SD;SE) p value Direction of change

First Run Last Run

Frontal 0.961 (0.0014;0.00044) 0.960 (0.00116;0.00035) 0.2059 × –

Parietal 0.960 (0.0021;0.00064) 0.961 (0.00088;0.000264) 1 × –

Temporal 0.960 (0.0021;0.00063) 0.961 (0.00085;0.00025) 0.527 × –

Central 0.960 (0.00197; 0.00059) 0.961 (0.00089;0.00027) 1 × –

Occipital 0.960 (0.00172; 0.00012) 0.961 (0.00081;0.000424) 1 × –

Table 9 Comparison of the
average spectral power for
alpha activity obtained during
first and last runs for all the 11
participants

Area Average spectral power(SD;SE) p value Direction of change

First Run Last Run

Frontal 0.0249 (0.0331;0.0099) 0.0316 (0.0468;0.0141) 0.00156 � ↑
Parietal 0.0161 (0.00626;0.00189) 0.0198 (0.01048;0.00316) 0.0114 � ↑
Temporal 0.0168 (0.00673;0.00203) 0.0208 (0.0108;0.00325) 0.0114 � ↑
Central 0.0074 (0.0018;0.0136) 0.01621 (0.00307;0.01621) 0.5778 × –

Occipital 0.0181 (0.00811;0.00244) 0.0207 (0.0105;0.00317) 0.2059 × –

Table 10 Comparison of the
average spectral entropy for
alpha activity obtained during
first and last runs for all the 11
participants

Area Average spectral entropy (SD;SE) p value Direction of change

First Run Last Run

Frontal 0.961 (0.00186;0.000562) 0.9603 (0.0022;0.00065) 0.205 × –

Parietal 0.959 (0.0035;0.00105) 0.958 (0.0038;0.00116) 0.206 × –

Temporal 0.960 (0.0034;0.00102) 0.959 (0.00397;0.00119) 0.528 × –

Central 0.960 (0.00034; 0.00101) 0.959 (0.00329;0.00099) 0.528 × –

Occipital 0.961 (0.0014; 0.000441) 0.959 (0.002126;0.000641) 0.528 × –
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Table 11 Comparison of the
average spectral power for beta
activity obtained during first
and last runs for all the 11
participants

Area Average spectral power(SD;SE) p value Direction of change

First Run Last Run

Frontal 0.0154 (0.021;0.0063) 0.0229 (0.0452;0.0136) 0.5778 × –

Parietal 0.0081 (0.00323;0.000972) 0.0105 (0.00922;0.00278) 0.0577 × ↑
Temporal 0.0103 (0.0036;0.00109) 0.0132 (0.00895;0.00269) 0.0578 × ↑
Central 0.00743 (0.00329;0.00009) 0.00961 (0.00931;0.0028) 0.5778 × –

Occipital 0.00969 (0.00483;0.00147) 0.01212 (0.00935;0.00282) 0.5778 × –

and last runs are 0.116 (SD = 0.218, SE = 0.0657) and
0.139 (SD = 0.236, SE = 0.0711) respectively; in the
parietal lobe 0.0542 (SD = 0.033, SE = 0.00987) and
0.0783 (SD = 0.068, SE = 0.0205) while in the temporal
lobe the peak amplitudes during the first and the last runs
are 0.0527 (SD = 0.0349,SE = 0.0105) and 0.079 (SD =
0.065, SE = 0.0197) respectively.
D. Beta wave results

Tables 11 and 12 show the results for average spectral
power and average spectral entropy in the beta band
respectively. No significant changes occur in average
spectral entropy and average spectral power between the
first and last runs in all the five areas.
E. The topographic plots

The topographic plots to depict the marked increase in
delta, theta and alpha power between the first, interme-
diate and last runs are shown in Fig. 5. The maps show
the plots of the electrodes as mentioned in Section 3.1
and hence depict the rise in the delta, theta and alpha
power at only those aforesaid electrodes. Beta power is
not shown in the plots as no significant change in the beta
power is found between the first and last runs in all the
five areas of the scalp. The dark red color in the topo-
graphic maps indicates the increase in delta, alpha and
theta power. The color scales of the topographic maps are
in the unit of dB and range from blue (minimum) to red
(maximum) with green as the midrange. The green zones
encompass those electrodes which were not used for this
analysis. The dark red colour depicts the highest value

of delta, theta and alpha. The green zones appear rect-
angular here as it encompasses those electrodes whose
position forms a rectangular area. The limits of the color
scales used to plot the topographic maps is (-0.06 to
0.06). The figure clearly portrays the increase in delta,
theta and alpha power from the first to last run, with
fatigue reaching the highest level during the last run as
compared to the first and intermediate runs. Frontal area
is found to be mostly effected with the rise in fatigue
level as compared to the other four. Delta power is found
to be more prominent during the experiment as compared
to theta and alpha power. This shows that motor imagery
produces increased level of drowsiness and decreased
level of arousal.

4.3 Kernel partial least squares to track the growth
of fatigue duringmotor imagery

In the study by Montgomery et al. (1995) and Trejo et al.
(2015), the first 15 min of a cognitive task did not produce
substantial mental fatigue while mental fatigue became
prominent in the final 15 min. In our study, the analysis of
EEG spectral power and entropy from different frequency
bands in different areas of the scalp also showed that
spectral power increases during the last run as compared to
that of the first run. δ, θ and α power from frontal region, α

power from parietal lobe, δ, θ and α power from temporal
lobe and θ power from occipital lobe show significant
increase during the last run as compared to that of the first

Table 12 Comparison of the
average spectral entropy for
beta activity obtained during
first and last runs for all the 11
participants

Area Average spectral entropy (SD;SE) p value Direction of change

First Run Last Run

Frontal 0.9661 (0.00342;0.00103) 0.9652 (0.0027;0.00082) 205 × –

Parietal 0.962 (0.0052;0.00157) 0.961 (0.00492;0.00149) 0.206× –

Temporal 0.966 (0.00446;0.00134) 0.965 (0.00428;0.00129) 0.206 × –

Central 0.963 (0.0044; 0.00134) 0.964 (0.00416;0.001255) 0.527 × –

Occipital 0.964 (0.00603; 0.00182) 0.963 (0.0057;0.00172) 0.527 × –
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Fig. 5 Scalp topographic maps
of delta, theta and alpha band
power

run; while β power from all the lobes shows insignificant
change between the first and last runs. Since the increase
in mental fatigue can be associated with increase in δ, θ

and α power as discussed in Section 1, we can conclude
that the last run of the experiment produced substantial
mental fatigue as compared to that of the first run. Further,
the subjective evaluation through pretest and post-test
measures: CFS and VAS-F as discussed in Section 4.1
also shows that the level of fatigue experienced by the
participants is higher after the experiment as compared to
that at the beginning of the experiment. Hence, the first
run and the last run were taken as cornerstones of mental
fatigue, i.e., first run as active state and last run as fatigue
state.

The set of response variables is a vector of −1 or +1
representing two classes—the active state and the fatigue
state for training while the set of predictors is an n × 8
matrix where n is the number of observations with columns
consisting of 8 features i.e. frontal δ, θ and α power, parietal
α power, occipital θ power and temporal δ, θ and α power.

A. KPLS model selection
The first and last runs were considered as both

training as well as testing data for selecting the
optimal KPLS model. KPLS scores were estimated
for each trial of the training and testing data. Linear
Discriminant Analysis (LDA) was trained and tested
on the computed KPLS scores to find the optimal
number of KPLS components. The number of KPLS
components were checked in the range of 1 to 10. The
optimal number of KPLS components was determined
by maximum classification accuracy of LDA. Table 13
portrays the optimal number of KPLS components

for each participant. Figure 6 shows the classification
accuracy obtained for each participant with the optimal
number of KPLS components.

B. KPLS model prediction
The predictive validity of the KPLS model was

examined with the EEG epochs from all the runs. The
KPLS model obtained by the KPLS model selection
provides KPLS regression coefficients. KPLS scores
which are the estimates/predictions were computed by
projecting explanatory variables from each run on the
KPLS regression coefficients. Since −1 and +1 are
taken as class labels used for training, the KPLS scores
of each trial ranges from −1 to +1. −1 and +1 are
used as class labels so that it helps to identify the alert
and fatigue state clearly; negative scores as alert state
and positive scores as fatigue state. The mean of the
KPLS scores for each run was then computed which
was interpreted as fatigue score. It has a value between
−1 and +1. For each of the 6 participants, for each
run, the fatigue scores were plotted in a graph as shown

Table 13 Optimal number of KPLS components for individual
participants

Participant # ID Optimal no. of KPLS components

S1 6

S2 10

S3 9

S5 10

S6 10

S11 1
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Fig. 6 Classification accuracy with the optimal number of KPLS
components

in Fig. 7. The figure shows the orderly progression
from active to fatigue state with some intermittent
reversals. This is because fatigue may not have a
perfect monotonic increase over time and sometimes
waxing and waning behaviours can be observed.

4.4 Estimation of trends of the growth of fatigue
for validation of the EEG-KPLSmodel

The fatigue scores estimated through EEG based on KPLS
model ranges from −1 to 1 while the values of fatigue
based on self-reported subjective scores through “fatigue
scale” are normalized in the range from 0 to 1. The trend
for KPLS scores and subjective scores were estimated using
the Centered Moving Average algorithm. A trend can be
defined as a flow or direction in which a particular thing
is changing or developing. The trend for fatigue scores
estimated through EEG shows the rate of change of KPLS
score w.r.t. time while the trend for fatigue scores obtained
through subjective scores portrays the rate of change of
subjective scores w.r.t time. The reason of estimating trends
of KPLS scores and subjective scores instead of taking both
scores directly for identifying correlation is that KPLS gives
the fatigue score during a particular run while subjective
evaluation gives the fatigue score at the end of a particular
run for which it cannot be correlated directly.

To estimate the trends, the Centered Moving Average
algorithm takes as input the fatigue scores of all the 8
runs as it aims to estimate the trends of growth of fatigue.

Fig. 7 Means of KPLS scores for each run with 6 participants

The predictive validity of the KPLS model during model
prediction was investigated with the EEG epochs from all
the 8 runs which shows the growth of fatigue from 1st to last
run. Also the study aims to correlate the growth of fatigue
obtained through KPLS model with that obtained through
subjective scores and hence it estimates the trends taking all
the 8 runs into account. Further, since runs 1 and 8 were
used for training the KPLS model, training may find some
combination of input features to maximise the separability
between runs 1 and 8. Hence, trends were also computed
using Centered Moving Average algorithm taking runs 2–
7 into account to examine the predictive validity of KPLS
model without runs 1 and 8.

4.4.1 Centered moving average algorithm

The centered moving average algorithm computes the
unweighted mean of the previous n data points. The mean
is taken from an equal number of data points on either side
of a central value which ensures that variations in the mean
are aligned with the variations in the data rather than being
shifted in time.1 Given a window length of n and data points
= y1, y2, y3,....,yn1, the centered moving average is defined
as

avg = 1

n

n∑
i=1

yi (9)

When calculating successive values, a new value comes
into the sum and an old value drops out, i.e

avgnew = avg + yj

n
− yj−n

n
(10)

where j > n.
This study first examined with different sliding window

length in the range of [1 6] and then selected the best one.
Finally the similarity between the estimated trends were

measured by Pearson Correlation Coefficient. The results
are shown in Table 14. In the table, the 1st column shows
the Participant id. Coulmns 2 and 3 show the correlation
coefficient and statistical analysis of the estimated trends
computed taking all the 8 runs while fourth and fifth column
show the correlation coefficient and statistical analysis of
the trends computed taking runs 2–7. Plots of the trends are
shown in Appendix A.4 and A.5 respectively.

The result conveys that for 5 participants there is a
strong correlation (>0.5) between the KPLS scores and the
subjective scores. However, in case of Participant 11 no
correlation is found since the subjective score was same
throughout the whole experiment while the fatigue score
based on KPLS model shows orderly progression towards
fatigue state.

1https://en.wikipedia.org/wiki/Moving average

https://en.wikipedia.org/wiki/Moving_average
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Table 14 Correlation between the trends of KPLS scores and
Subjective scores

ID Runs 1–8 Runs 2–7

Corr. Coeff p-value Corr. Coeff p-value

S1 0.9825 1.32e−5 � 0.92 0.025 �
S2 0.891065 0.001418 � 0.66 0.21 ×
S3 0.917 0.0004 � 0.88 0.048 �
S5 0.960346 0.29e−5 � 0.95 0.005 �
S6 0.89 0.0032 � 0.82 0.065 ×
S11 0 1 × 0 1 ×

4.5 Evaluation of MI EEG separability change
with rise in fatigue level

4.5.1 Training and testing sessions

The KPLS model predicts the fatigue scores of all the 8 runs.
The first two runs (i.e. 160 trials) were used for training
to compute the spatial filter for extraction of CSP features.
Evaluation of the class separability of MI EEG features was
then carried out on the testing data. The testing data has
been considered in two ways: a. the remaining 6 runs i.e
runs 3–8 were used for evaluation of MI EEG separability
and b. Excluding the 8th run i.e runs 3–7 were used for
evaluation of MI EEG separability. Six out of 11 participants
completed all the 8 runs of the experiment. However, out
of these 6 participants, the fatigue estimated using EEG for
Participant S11 showed no correlation with the fatigue based
on self-reported subjective scores. Hence, the following
analysis was carried out on the remaining 5 participants.
For each of these 5 participants, the evaluation of MI EEG
separability change with the rise in fatigue level was carried
out in two different scenarios: First, based on the fatigue
score, each run was quantized to two levels: low fatigue and
high fatigue using K-means clustering. The separability of
the MI EEG was analysed at each fatigue level. Second, the
separability of MI EEG was examined for each run and then
the correlation between MI EEG separability and mental
fatigue over various runs was established.

4.5.2 Feature extraction and selection

Common spatial pattern (CSP) was used for extracting
features. The literature reports that CSP performs best with
a lot of channels, for instance, 55 channels (Blankertz et al.
2008), 56 (Ramoser et al. 2000), 118 (Lu et al. 2009) or 127
(Ge et al. 2014). CSP may not perform well with a small
number of channels (Górski 2014). This analysis employed
all the 64 electrodes. One of the approach to analyse MI
EEG data is to split the data into different time windows

and select the optimal temporal segment. Optimal temporal
segment refers to the segment that contains the most
discriminative information based on a predefined criterion.
This study uses optimal spatio-temporal filtering to extract
the optimal spatial-temporal patterns and was carried out
by employing ADSWIN (Talukdar and Hazarika 2017), an
adaptive temporal segmentation of EEG trial. ADSWIN
is an adaptive sliding window approach that automatically
segments EEG trials and then selects the best segments
to produce the optimal spatio-temporal patterns. ADSWIN
is portrayed as an enhancement to classic sliding window
methodology which

– increases the class separability,
– dynamically adapts the two parameters window size

and overlapping region on which a sliding window
approach relies.

– can be applicable to online learning algorithm.

CSP was employed to extract features of each segment
obtained through segmentation. DBI is used as a cost
function to identify the optimal segment. The EEG segment
with minimum DBI is then selected as optimal EEG
segment. CSP projection matrix is computed based on the
selected optimal time segment to create a spatio-temporal
profile. Our motivation to use such a filter is driven by
two factors (Talukdar and Hazarika 2017): a. constructing a
reduced representation of the original time series of training
data and b. consolidating spatial analysis with temporal
study, to extract spatio-temporal patterns. It is feasible to
process the whole trial, but extraction of optimal time
segment has the benefit in computing results with much
shorter time segments. Detailed formulation of the method
can be found in Talukdar and Hazarika (2017). The training
data was used to build up the optimal spatio-temporal
filter. The parameters that have been employed for the
filtering are shown in Table 15. ADSWIN requires two
parameters, default segment length (ωd ) and sliding window
overlapping region (δ). It adapts these two parameters
to generate the optimal spatio-temporal filter. This study
investigates segments with two different sets of ωd and δ.
With the trial being 6 s in length this study uses two different
ωd keeping in mind that lower value than 2.99 s would
be too small to find the optimum number of time points
and higher value than 3.99 s may create larger ωd . δ was
selected in such a way that it maintains even distributions
along the trial. Also it is set keeping in mind that the larger
value of δ would keep more historic information rather than
new information. The study investigated the effect of MI
EEG separabilty with different frequency bands and hence
examined 6 different bandpass filter banks (4–7 Hz, 8–
13 Hz, 13–30 Hz, 30–40 Hz; 4–9 Hz, 9–15 Hz, 15–30 Hz,
30–40 Hz; 4–9 Hz, 9–16 Hz, 15–30 Hz, 30–40 Hz; 4–9 Hz,
9–16 Hz, 15–32 Hz, 30–40 Hz; 4–9 Hz, 9–16 Hz, 15–32 Hz,
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Table 15 Parameters used by ADSWIN

Parameters Alias Parameters

Filter Bank FB1 4–9 Hz, 9–17 Hz, 15–30 Hz, 30–40 Hz

FB2 4–9 Hz, 9–16 Hz, 15–32 Hz, 30–40 Hz

Default segment ωd1 2.99 s (767 time points)

length ωd2 3.99 s (1023 time points)

Overlapping region δ1 0.5 s (128 time points)

δ2 1 s (256 time points)

No. of selected features 25

30–40 Hz; 4–9 Hz, 9–16 Hz, 15–32 Hz, 30–40 Hz). The
best two bandpass filter banks were selected for this study.
Four segments were then selected based on the different
combinations of ωd and δ for each filter bank as shown in
Table 16. Hence, a total of eighth different segments were
investigated. KPLS-mRMR (Talukdar et al. 2018), a KPLS
based feature selection method was used to select a set of
discriminative features. The method selects the maximum
relevant and minimum redundant features. The number of
selected features was set to 25.

4.5.3 Effect of mental state on class distributions

(A) Evaluation of MI EEG separability during low and
high fatigue level

Table 17 shows the runs that have been categorized
as low or high fatigue level. The first column shows
the participant id while the second and third columns
portrays the runs categorized as low or high fatigue
level respectively.

The class separability of the MI EEG at each level
using runs 3–8 as evaluation data was then estimated
by means of four evaluation metrics: DBI, FS, DI
and mi. The average DBI and FS across all the 5
participants during low fatigue and high fatigue are
shown in Figs. 8 and 9 respectively. Figures 10 and
11 portray the average mi and DI during low and
high fatigue across all the 5 participants. Similarly,
the MI EEG separability at both fatigue levels using

Table 16 Segments investigated for analysis of effect of fatigue on
motor imagery

Segments Alias

ωd1 and δ1 Seg1

ωd1 and δ2 Seg2

ωd2 and δ1 Seg3

ωd2 and δ2 Seg4

Table 17 Runs categorized as low or high fatigue level

Participant Low fatigue High fatigue

S1 3,4 5,6,7,8

S2 6,7 3,4,5,8

S3 3,5,6 4,7,8

S5 3,4,7 5,6,8

S6 3,7 4,5,6,8

runs 3–7 as the evaluation data were also estimated.
The average DBI and FS across all the 5 participants
during low fatigue and high fatigue are shown in
Figs. 12 and 13 respectively. Figures 14 and 15 portray
the average mi and DI during low and high fatigue
across all the 5 participants. The figures show that the
class separability during high fatigue level was lower
than that during low fatigue level in terms of all the
four evaluation metrics. Friedman statistical test was
carried out to examine its statistical difference. The
results are shown in Table 18. The first and second
columns show filter banks (abbreviated as FB in the
table) and its corresponding segments respectively
while the p-values for the evaluation metrics DBI,
FS, mi and DI for runs 3–8 are shown in the third,
fourth, fifth and sixth columns respectively. The p-
values for the evaluation metrics DBI, FS, mi and
DI for runs 3–7 are shown in seventh, eighth, ninth
and tenth columns respectively. Significant difference
in class separability between low and high fatigue
is indicated by � while × indicates insignificant
difference. These findings collectively show distinct
relationship between motor imagery performance and
mental fatigue.

(B) MI EEG separability over various runs
For each of the 5 participants the separability of

MI EEG over various runs are estimated in terms
of DBI, FS, DI and mi. The correlation between the
estimated separability and the fatigue score obtained
through KPLS model was computed using Pearson
correlation coefficient and are shown in Table 19. The
first, second and third columns show the Participant
id, filter banks (abbreviated as FB in the table)
and its corresponding segments respectively while
the correlation values of the fatigue score with the
evaluation metrics DBI, FS, DI and mi for runs 3–
8 are shown in the fourth, fifth, sixth and seventh
columns respectively. The correlation values of the
fatigue score with the evaluation metrics DBI, FS, DI
and mi for runs 3–7 are shown in the eighth, ninth,
tenth and eleventh columns respectively. Participants
S1, S2, S5 and S6 show negative correlation between
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Fig. 8 Average DBI values
across all the 5 participants
during low fatigue and high
fatigue level using runs 3–8 as
evaluation data

Fig. 9 Average Fisher scores
across all the 5 participants
during low fatigue and high
fatigue level using runs 3–8 as
evaluation data

Fig. 10 Average mutual
information values across all the
5 participants during low fatigue
and high fatigue level using runs
3–8 as evaluation data

Fig. 11 Average Dunn’s index
values across all the 5
participants during low fatigue
and high fatigue level using runs
3–8 as evaluation data

Fig. 12 Average DBI values
across all the 5 participants
during low fatigue and high
fatigue level using runs 3–7 as
the evaluation data
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Fig. 13 Average Fisher scores
across all the 5 participants
during low fatigue and high
fatigue level using runs 3–7 as
the evaluation data

Fig. 14 Average mutual
information values across all the
5 participants during low fatigue
and high fatigue level using runs
3–7 as the evaluation data

Fig. 15 Average Dunn’s index
values across all the 5
participants during low fatigue
and high fatigue level using runs
3–7 as the evaluation data

Table 18 Statistical test on the class separability of low and high fatigue

FB Segment runs 3–8 runs 3–7

DBI FS mi DI DBI FS mi DI

FB1 Seg1 0.617 (×) 0.317 (×) 0.045 (�) 1 (×) 1 (×) 0.32 (×) 1 (×) 0.32 (×)

Seg2 0.045 (�) 0.03 (�) 0.317 (×) 0.133 (×) 0.62 (×) 0.045 (�) 1 (×) 0.045 (�)

Seg3 0.317 (×) 0.317 (×) 0.317 (×) 0.133 (×) 0.317 (×) 1 (×) 1 (×) 0.317 (×)

Seg4 0.045 (�) 0.317 (×) 0.045 (�) 0.045 (�) 0.62 (×) 1 (×) 1 (×) 0.62 (×)

FB2 Seg1 0.045 (�) 0.317 (×) 0.045 (�) 0.045 (�) 0.317 (×) 0.317 (×) 0.045 (�) 0.045 (�)

Seg2 0.133 (×) 0.317 (×) 0.045 (�) 0.317 (×) 0.045 (�) 1 (×) 0.045 (�) 0.045 (�)

Seg3 0.045 (�) 0.317 (×) 0.045 (�) 0.045 (�) 0.045 (�) 0.32 (×) 1 (×) 0.045 (�)

Seg4 0.045 (�) 0.317 (×) 0.317 (×) 0.045 (�) 0.045 (�) 0.32 (×) 0.045 (�) 0.045 (�)
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Table 19 Correlation of MI EEG separability with fatigue score over various runs

Participant FB Segments runs 3–8 runs 3–7

DBI FS DI mi DBI FS DI mi

S1 FB1 Seg1 −0.6 −0.013 −0.6 −0.051 −0.32 0.28 −0.49 −0.03

Seg2 −0.19 −0.84 −0.005 −0.82 0.27 −0.85 0.45 −0.61

Seg3 −0.29 −0.91 −0.064 −0.37 −0.26 −0.98 −0.27 −0.38

Seg4 −0.86 −0.68 −0.81 −0.47 −0.73 −0.64 −0.62 −0.48

FB2 Seg1 −0.064 −0.85 −0.19 −0.63 0.23 −0.91 0.37 −0.72

Seg2 −0.21 −0.88 −0.79 −0.56 0.18 −0.92 −0.84 −0.32

Seg3 −0.52 −0.65 −0.66 −0.44 −0.03 −0.51 −0.16 −0.19

Seg4 −0.89 −0.62 −0.49 −0.44 −0.76 −0.54 −0.45 −0.61

S2 FB1 Seg1 0.04 0.39 0.49 −0.66 0.41 0.83 0.21 −0.69

Seg2 −0.42 0.4 −0.69 −0.52 −0.21 0.82 −0.72 0.26

Seg3 −0.03 −0.16 0.52 −0.51 0.045 0.16 0.47 −0.55

Seg4 −0.03 −0.16 0.52 −0.51 0.045 0.16 0.47 −0.55

FB2 Seg1 0.15 0.04 0.03 −0.37 −0.16 0.64 −0.61 −0.24

Seg2 −0.81 −0.08 −0.88 0.02 −0.72 0.52 −0.86 0.31

Seg3 0.55 −0.12 −0.14 −0.46 0.33 0.25 0.28 −0.69

Seg4 0.55 −0.12 −0.14 −0.46 0.33 0.25 0.28 −0.69

S3 FB1 Seg1 0.37 0.38 0.46 0.56 0.56 0.54 0.76 −0.12

Seg2 0.63 0.73 0.31 −0.27 0.68 0.47 0.67 −0.004

Seg3 0.72 0.33 0.89 −0.49 0.73 0.52 0.79 −0.19

Seg4 0.59 0.76 0.76 −0.63 0.73 0.52 0.79 −0.19

FB2 Seg1 0.65 0.47 0.58 −0.51 0.62 0.77 0.55 −0.34

Seg2 −0.24 0.36 0.30 −0.50 0.06 0.51 −0.04 −0.24

Seg3 0.58 0.64 0.61 0.31 0.71 0.72 0.86 −0.27

Seg4 0.58 0.39 0.61 −0.53 0.71 0.72 0.86 −0.27

S5 FB1 Seg1 −0.80 −0.73 −0.35 −0.88 −0.65 −0.58 −0.08 −0.95

Seg2 −0.74 −0.49 −0.62 −0.97 −0.51 −0.23 −0.42 −0.52

Seg3 −0.80 −0.73 −0.35 −0.88 −0.65 −0.58 −0.08 −0.95

Seg4 −0.49 −0.81 −0.05 0.2 0.19 −0.67 0.81 −0.12

FB2 Seg1 0.02 −0.59 0.29 −0.04 0.25 −0.52 0.51 0.35

Seg2 −0.87 −0.72 −0.76 0.097 −0.78 −0.67 −0.71 −0.95

Seg3 0.02 −0.59 0.29 −0.04 0.25 −0.52 0.51 0.35

Seg4 0.49 0.39 0.16 −0.01 0.64 0.39 0.37 −0.68

S6 FB1 Seg1 −0.97 −0.5 −0.55 −0.28 −0.95 −0.32 −0.33 0.24

Seg2 −0.40 −0.45 −0.04 0.44 −0.3 −0.31 −0.14 0.29

Seg3 −0.25 0.48 0.02 −0.06 0.59 0.43 0.47 0.55

Seg4 −0.25 0.48 0.02 −0.06 0.59 0.43 0.47 0.55

FB2 Seg1 −0.62 −0.56 −0.14 −0.32 −0.75 −0.45 −0.34 −0.53

Seg2 −0.65 −0.65 −0.34 0.35 −0.41 −0.52 0.12 0.44

Seg3 −0.56 −0.53 −0.49 −0.44 −0.25 −0.39 −0.21 −0.67

Seg4 −0.56 −0.53 −0.49 −0.44 −0.25 −0.39 −0.21 −0.67

MI EEG separability and fatigue score in most cases,
although in some cases, it shows positive correlation
but most of the value is not greater than 0.55. This
clearly indicates the decrease in class separability

with rise in fatigue, supporting the assertion that high
fatigue level decreases MI EEG separability. However,
Participant S3 shows strong positive correlation with
rise in fatigue level in most cases.
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5 Discussion

5.1 MI andmental fatigue: inter-relationship

This study aims to investigate the inter-relationship between
MI and mental fatigue, i.e, whether a prolonged sequence
of motor imagery tasks induces mental fatigue and whether
mental fatigue affects MI performance. The subjective
scores evaluated by means of CFS and VAS-F support
that prolonged motor imagery induces substantial mental
fatigue. Our KPLS model based on EEG spectral powers
showed an orderly progression towards high fatigue. It was
then confirmed with the subjective scores obtained through
fatigue scale reported after each run.

The EEG analysis during motor imagery presents the
change in EEG spectral power with increase in fatigue.
However, the change in spectral power was found to be
most significant in the range of 0.1–12 Hz. No significant
indication of fatigue was found above 13 Hz or in the
beta band. As reported by Craig et al. (2012), out of five
studies, beta activity was not found significant in two studies
(Caldwell et al. 2002; Papadelis et al. 2006), significant
increase in two studies and decrease in one study. Beta
activity in relation to fatigue is not properly understood
and its functional role remains unclear (Jensen et al.
2005). Some literature reports that increased beta activity
indicates slowed motor behaviour (Craig et al. 2012; Zhang
et al. 2008), while some findings presents slowed cognitive
performance decreases the beta power (Jensen et al. 2005).
Many studies have not reported the activity in the beta band
but mainly concentrated on the hypothesised fatigue related
increase in delta, theta and alpha powers. In compliance
with the findings of Trejo et al. (2015), Cao et al. (2014),
Pomer-Escher et al. (2014) and Jap et al. (2009), our study
also demonstrates that with the increase in fatigue, theta,
alpha and delta activities increase. In the literature, delta
activity has received quite little attention as it is a low
frequency signal and mainly influenced by artifacts like
breathing or movement (Lal and Craig 2002). However,
with advanced artifact removal technique, changes in delta
activity can be reported reliably (Lal and Craig 2002).

Cognitive fatigue manifests itself as the changes in
spectral power distribution (Kar et al. 2010). And spectral
entropy captures the dissemination in broader context.
However, no significant change in spectral entropy is found
in this study.

This study analysed the changes in EEG spectral power
and spectral entropy in different scalp areas over the entire
period of motor imagery tasks aiming to investigate how
they change with time and with varying fatigue level. The
study was carried out in five different areas of the cortex:
frontal, parietal, central, occipital and temporal. The EEG
analysis shows how much these areas are affected by fatigue

while performing motor imagery. The study shows that
delta activity was more prominent in temporal area while
theta and alpha activities were more prominent in frontal
area. Parietal area shows significant change before and
after the experiment in alpha activity only while frontal
and temporal area show significant changes in all the three
spectral powers. Occipital lobe shows significant change in
theta power.

The trends of the growth of fatigue estimated based on
subjective scores reported by the participants after each
run and the EEG spectral power estimated based on KPLS
model show a strong correlation between them. For the
6 participants, who completed the whole experiment, the
KPLS model shows an orderly growth towards fatigue state
from active state. It can be seen from the results that the
participants experienced fatigue at different rates. Most of
the participants entered the fatigue region (positive KPLS
scores) during the 4th run of the experiment while during the
5th run all the participants entered into the region of fatigue.
Participant S6 entered the fatigue region the earliest.

The analysis of the effect of mental fatigue on motor
imagery portrays the distinct relationship between motor
imagery performance and mental fatigue. The evaluation
of MI EEG separability during low and high fatigue
levels shows that MI EEG separability decreases during
high fatigue level as compared to that during low fatigue
level. The evaluation of MI EEG separability over various
runs shows a negative correlation or small positive
correlation with the fatigue score obtained through KPLS
for Participants S1,S2,S5 and S6 in terms of all the four
evaluation metrics. However, for Participant S3, the analysis
shows a strong positive correlation between the MI EEG
separability and mental fatigue in most cases. Although
there exists no BCI literature for comparison of mental
fatigue and MI EEG separability, the literature from other
disciplines may be used for comparison. Jackson et al.
(2001) identified psychological flow as a key requirement
for excellent performances. The flow is defined by Romero
and Calvillo-Gámez (2013) as effortless attention, where a
person can concentrate deeply without much effort. This is
contrasted to effortful attention. However, on maintaining
effortful attention, participants may sometime excel in their
performances which presents a challenge in developing
adaptive MI EEG BCI.

5.2 Implications: towards adaptivemotor imagery
BCI by trackingmental fatigue

Mental fatigue is related to other different cognitive states
like drowsiness, loss of attention, decreased arousal, lower
focus level, which can also be called as symptoms of men-
tal fatigue (Cao et al. 2014). Regardless of which symptom
is most responsible for the relationship between mental
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fatigue and motor imagery performance, the findings of
this study strongly suggest that distinct relationship between
mental fatigue and motor imagery performance exists. This
necessitates the designing of adaptive BCI systems that
are more robust to changes in fatigue level. Moreover, the
decrease in class separability of motor imagery signal fea-
tures with the rise in fatigue level depicts that mental fatigue
can be used as a metric to design such adaptive MI-BCI.

One of the ubiquitous hurdle in developing an adaptive
BCI based on mental fatigue is the accurate detection of
the point where the rise in fatigue level needs adaptation.
It may happen that slight increase in mental fatigue may
sometimes increase the MI-EEG separability as discussed in
Section 5.1. Hence, it is vital that the control systems must
be able to distinguish between “when to adapt” and “when
not”. Another substantial concern is whether it is correct
to refer mental fatigue as “cognitive state” or “cognitive
process”. It is always seen that when a person experiences
fatigue, his level of fatigue keeps on changing. Or in other
words, one can refer mental fatigue as “cognitive process”.
In such cases, instead of adapting during high fatigue and
low fatigue or during alert and fatigue, adapting the system
based on the level of fatigue holds promise. This would
suggest what level of fatigue needs how much adaptation of
the system.

6 Conclusion

This study investigates the inter-relationship between MI
and mental fatigue based on EEG analysis. It is observed
that prolonged sequences of motor imagery induce mental
fatigue. Moreover, the rise in fatigue level affects the motor
imagery signal features, indicating the need of BCI adaptation.
Future work should consider designing an adaptive MI-BCI
that is more robust to the changes in fatigue level.

A limitation of this study is in the size of the sample
set. The sample consists of 11 participants out of which
only 6 participants could complete the whole experiment.
Another limitation is the use of self-reported scores as
the validation measure. Although self-report is the most
convenient method for estimating fatigue, a combination of
self-report ratings along with other measures like response
accuracy or behavioral activity would reinforce the study.
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Appendix A

A.1 Visual Analogue Scale- Fatigue

Table 20 Visual Analogue Scale-Fatigue

1 not at all tired 0 1 2 3 4 5 6 7 8 9 10 extremely tired

2 not at all sleepy 0 1 2 3 4 5 6 7 8 9 10 extremely sleepy

3 not at all drowsy 0 1 2 3 4 5 6 7 8 9 10 extremely drowsy

4 not at all fatigued 0 1 2 3 4 5 6 7 8 9 10 extremely fatigued

5 not at all worn out 0 1 2 3 4 5 6 7 8 9 10 extremely worn out

6 not at all energetic 0 1 2 3 4 5 6 7 8 9 10 extremely energetic

7 not at all active 0 1 2 3 4 5 6 7 8 9 10 extremely active

8 not at all vigorous 0 1 2 3 4 5 6 7 8 9 10 extremely vigorous

9 not at all efficient 0 1 2 3 4 5 6 7 8 9 10 extremely efficient

10 not at all lively 0 1 2 3 4 5 6 7 8 9 10 extremely lively

11 not at all bushed 0 1 2 3 4 5 6 7 8 9 10 totally bushed

12 not at all exhausted 0 1 2 3 4 5 6 7 8 9 10 totally exhausted

13 keeping my eyes
open is no effort
at all

0 1 2 3 4 5 6 7 8 9 10 keeping my eyes
open is a tremen-
dous chore

14 moving my body is
no effort at all

0 1 2 3 4 5 6 7 8 9 10 moving my body is a
tremendous chore

15 concentrating is no
effort at all

0 1 2 3 4 5 6 7 8 9 10 concentrating is a
tremendous chore

16 carrying on a
conversation is
no effort at all

0 1 2 3 4 5 6 7 8 9 10 carrying on a
conversation is a
tremendous chore

17 I have absolutely
no desire to close
my eyes

0 1 2 3 4 5 6 7 8 9 10 I have a tremen-
dous desire to
close my eyes

18 I have absolutely
no desire to lie
down

0 1 2 3 4 5 6 7 8 9 10 I have a tremen-
dous desire to lie
down

A.2 Chalder Fatigue Scale

Table 21 Chalder Fatigue Scale
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A.3 Fatigue Scale (FS) at the end of each run

Table 22 Fatigue Scale (FS) at the end of each run

1 Least fatigued 1 2 3 4 5 Most fatigued

2 Least fatigued 1 2 3 4 5 Most fatigued

3 Least fatigued 1 2 3 4 5 Most fatigued

4 Least fatigued 1 2 3 4 5 Most fatigued

5 Least fatigued 1 2 3 4 5 Most fatigued

6 Least fatigued 1 2 3 4 5 Most fatigued

7 Least fatigued 1 2 3 4 5 Most fatigued

8 Least fatigued 1 2 3 4 5 Most fatigued

A.4 Plot of the trends of KPLS scores and subjective
scores for runs 1–8

Fig. 16 Fatigue scores estimated through EEG vs fatigue scores self reported by participants using “fatigue scale” for runs 1–8
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A.5 Plot of the trends of KPLS scores and subjective
scores for runs 2–7

Fig. 17 Fatigue scores estimated through EEG vs fatigue scores self reported by participants using “fatigue scale” on runs 2–7
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