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Abstract
Spike timing is believed to be a key factor in sensory information encoding and computations performed by the neurons
and neuronal circuits. However, the considerable noise and variability, arising from the inherently stochastic mechanisms
that exist in the neurons and the synapses, degrade spike timing precision. Computational modeling can help decipher the
mechanisms utilized by the neuronal circuits in order to regulate timing precision. In this paper, we utilize semi-analytical
techniques, which were adapted from previously developed methods for electronic circuits, for the stochastic characterization
of neuronal circuits. These techniques, which are orders of magnitude faster than traditional Monte Carlo type simulations,
can be used to directly compute the spike timing jitter variance, power spectral densities, correlation functions, and other
stochastic characterizations of neuronal circuit operation. We consider three distinct neuronal circuit motifs: Feedback
inhibition, synaptic integration, and synaptic coupling. First, we show that both the spike timing precision and the energy
efficiency of a spiking neuron are improved with feedback inhibition. We unveil the underlying mechanism through which
this is achieved. Then, we demonstrate that a neuron can improve on the timing precision of its synaptic inputs, coming from
multiple sources, via synaptic integration: The phase of the output spikes of the integrator neuron has the same variance
as that of the sample average of the phases of its inputs. Finally, we reveal that weak synaptic coupling among neurons,
in a fully connected network, enables them to behave like a single neuron with a larger membrane area, resulting in an
improvement in the timing precision through cooperation.

Keywords Spike timing precision · Semi-analytical methods · Non Monte Carlo analysis · Feedback inhibition · Synaptic
coupling · Synaptic integration

1 Introduction

The neurons and the synapses exhibit considerable vari-
ability and noise due to the inherent stochastic behavior
of the ion channels and the neurotransmitter release pro-
cesses. This makes them noisy, unreliable analog devices
that process electro-chemical signals (White et al. 2000;
Faisal et al. 2008). On the other hand, neuronal circuits in the
brain, composed of neurons interconnected via synapses,
are extremely robust in processing sensory data and in
performing the subsequent computations that are crucial
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for behavioral and cognitive functions (Sharpeshkar 2010;
Lennie 2003; Attwell and Laughlin 2001; Tank and Hop-
field 1987).

A sensory neuron transmits information to multiple
neurons via its axon terminals. The sensory information is
ultimately delivered to the cortical neurons and integrated
via their dendrites. The spike timing precision of the
neurons in the cerebral cortex receiving multiple synaptic
inputs is a key factor for accurate sensory data encoding,
especially for the auditory and visual systems (Mainen and
Sejnowski 1995; VanRullen et al. 2005; Grothe and Klump
2000). Experimental studies have revealed that cortical
neuronal circuits possess several mechanisms that enable
them to modulate and improve their spike timing precision.
For example, the results presented in Mainen and Sejnowski
(1995) and Nowak et al. (1997) show that neocortical
neurons generate spikes with better timing precision when
they receive a fluctuating stimulus as opposed to an
unnatural constant input. The spiking mechanism in neurons
is naturally designed to respond more reliably to fluctuating
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inputs. Another phenomenon observed in Hasenstaub et al.
(2005) and Bacci and Huguenard (2006) is that the timing
reliability of neocortical spiking neurons is improved when
they receive feedback inhibition via recurrent networks
of local GABAergic (GABA-releasing) inhibitory neurons.
Feedforward inhibition is another mechanism utilized in
the cortex in order to enhance spike timing reliability
of neurons (Isaacson and Scanziani 2011; Pouille and
Scanziani 2001). However, the underlying mechanisms for
these phenomena have not been completely deciphered yet.

The rhythmic spiking of neuronal circuits in the neocortex
has been observed experimentally (Buzsáki and Draguhn
2004; Destexhe et al. 1998a). Neurons are synchronized
with each other due to the synaptic inputs from the other
neurons so that the neuronal circuit overall generates
robust rhythmic oscillations. In Esfahani et al. (2016), the
authors show that the synaptic coupling delay between
the neurons plays a crucial role in the transition between
the synchronous and asynchronous states of a neuronal
circuit. The spike timing precision of the neurons may play
an important role in the synchronization of the neuronal
circuits that generate persistent rhythms in the brain, which
has not been investigated yet.

Computational modeling and simulation is a powerful
tool that can help us gain insight into the spike timing
regulation mechanisms of neuronal circuits in the brain.
A deep understanding and computational models can
help in the investigation, diagnosis and treatment of
nervous system diseases arising from the deficient control
and modulation of spike timing precision. In our recent
work (Kilinc and Demir 2015, 2017), we have developed
a general modeling framework for biological neuronal
circuits that systematically captures the nonstationary
stochastic behavior of the ion channels and the synaptic
processes. In this framework, fine-grained, discrete-state,
continuous-time Markov Chain (MC) models of both
ion channels and synaptic processes are employed in a
unified manner. Our modeling framework can automatically
generate the corresponding coarse-grained, continuous-
state, continuous-time Stochastic Differential Equation
(SDE) models. In the computational neuroscience literature,
both MC and SDE models have been used only in
Monte Carlo type stochastic simulations for noise analysis,
where an ensemble of sample paths are generated by
simulating the neuronal circuit many times. This makes
Monte Carlo based simulation techniques computationally
expensive. In Kilinc and Demir (2017), for the stochastic
characterization of neuronal variability and noise, we
have adapted and repurposed semi-analytical analysis
techniques that work both in time and frequency domains,
which were previously developed for analog electronic
circuits. In these semi-analytical noise evaluation schemes,

(differential) equations that directly govern probabilistic
characterizations in the form of correlation functions (time
domain) or spectral densities (frequency domain) are first
derived analytically, starting from the SDEs that model
the noisy dynamics of the system. However, these derived
equations for the probabilistic characteristics still need
to be solved numerically. This numerical computation
directly produces the stochastic characterizations needed,
without the use of random number generators, and
without the need to compute ensemble averages or
perform spectral estimation from time series data as in
Monte Carlo techniques. Therefore, these semi-analytical
methods are regarded as non Monte Carlo analysis
techniques, which are orders of magnitude faster than
Monte Carlo type simulations. In Kilinc and Demir (2017),
we have verified that these semi-analytical noise analysis
techniques correctly and accurately capture the second
order statistics (mean, variance, autocorrelation, and power
spectral density) of the underlying neuronal processes as
compared with Monte Carlo simulations. In particular, the
spike timing jitter of noisy, spiking neuronal circuits can
be accurately characterized based on these semi-analytical
methods (Kilinc and Demir 2017; Demir et al. 2000). Thus,
we can avoid costly repeated and long duration simulations
of neuronal circuits in a Monte Carlo manner. In this paper,
we utilize these efficient and robust techniques in order to
investigate the timing reliability of various neuronal circuit
architectures.

The paper is organized as follows. In Section 2, we
provide a brief background on neurons and neuronal circuits
and summarize our general modeling framework, leading
to the facilitation of the semi-analytical techniques. In
Section 3, we present a review of the semi-analytical noise
evaluation methods that are used for the computation of
the timing jitter variance of spiking neuronal circuits. In
Section 4, we consider a spiking neuron with feedback
inhibition. We use the timing jitter variance of the
neuron in order to quantify its spike timing precision. We
quantitatively investigate the effect of feedback inhibition
on the energy efficiency and the spike timing precision of
a neuron. We elucidate the underlying mechanism through
which feedback inhibition improves spike timing precision.
In Section 5, we consider a neuron with multiple excitatory
synaptic inputs coming from spiking neurons. We analyze
the effect of the integration of multiple afferent synaptic
inputs, originating from the same sensory source, on the
timing precision of the output neuron. In Section 6, we
consider fully connected neuronal circuits where neurons
are coupled with each other via synapses. We investigate
the effect of the excitatory and inhibitory synapses on
the synchronization time and the timing precision of the
neuronal circuit.
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2 Stochastic modeling framework

In a neuronal circuit, information is represented by sequences
of membrane potential spikes, i.e., action potentials, of
neurons in various temporal patterns (Dayan and Abbott
2001). Ion channels located in the membrane of a neuron
play a fundamental role in the generation and propagation
of action potentials. More specifically, ion channels allow
or inhibit the passage of ions through the membrane. This
causes depolarization and repolarization of the membrane,
which eventually enables the generation of an action
potential. The potential difference across the membrane,
V (t), satisfies the following current-balance equation

Cm

dV (t)

dt
= −

∑

i

Gion,i[V (t) − Eion,i] + Iext(t) (1)

where Cm is the membrane capacitance, Gion,i and Eion,i

are the total conductance and the reversal potential of the
collection of type i ion channels, respectively, and Iext(t)

is an externally applied current (Dayan and Abbott 2001).
The total ion channel conductances are given by Gion,i =
gion,iN

O
ion,i where gion,i is the conductance of a single type

i channel, and NO
ion,i is the number of type i channels in the

open state.
There are two main types of ion channels: Voltage-Gated

(VG) and Ligand-Gated (LG), for which the opening and
closure rates depend on the membrane potential and the
concentration of the ligand molecules, respectively. The
random behavior of the ion channels causes variability
and noise in the ion channel conductance and hence the
membrane voltage. Moreover, since membrane potential
and molecule concentrations naturally vary with time in
neuronal computing, the opening and closure rates of ion
channels are also time-varying. The details of the kinetic
models of the ion channels used in the analysis of neuronal
circuits in this work are presented in the Appendix.

In order to describe and present the flow of the mod-
eling framework, a simplified illustration of the neuronal
interaction through a synapse is shown in Fig. 1a. Neu-
rotransmitters are stored in the synaptic vesicles of the
presynaptic neuron, and released into the synaptic cleft upon
the arrival of an action potential. Subsequently, they are cap-
tured by the receptor sites of the LG ion channels located
on the postsynaptic neuron. The schematic representation
of these neuronal processes is given in Fig. 1b. The mem-
brane potential of presynaptic and postsynaptic neurons are
coupled with the dynamics of the VG ion channels. Dur-
ing the neurotransmitter release process in the synapse, a set
of chemical reactions take place. These reactions are cou-
pled with the dynamics of the LG ion channels. Finally, all
of these are coupled with each other due to the synaptic
connection between the two neurons.
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Fig. 1 a A simplified illustration of presynaptic and postsynaptic
neurons, VG and LG ion channels, synapse, and neurotransmitter
release mechanism. b A schematic representation of the interactions
between the neuronal circuit components shown in a. Figure adapted
from Kilinc and Demir (2017)

Fairly general and accurate models that were proposed for
capturing the stochastic behavior of ion channels are based
on fine-grained, discrete-state, continuous-time, inhomo-
geneous MC models, where the states of the MC model
directly correspond to the distinct forms of these special
protein molecules (Dayan and Abbott 2001; Fitzhugh 1965;
Fox and Lu 1994). The chemical processes that take place
in the synaptic connections are also modeled by Markovian
kinetic schemes (Destexhe et al. 1994). For the computation
of the time-varying membrane voltages of the neurons in a
neuronal circuit, the membrane current-balance equations,
which are coupled with the MC models of ion channels and
synapses, need to be solved (Kilinc and Demir 2017; Gille-
spie 2007; Higham 2008). In this modeling paradigm, the
noise sources are captured in an implicit manner, since their
dynamics are intertwined with the dynamics of the neu-
ronal circuit. Therefore, it is necessary to use special Monte
Carlo type stochastic simulation techniques involving ran-
dom number generators, which can be computationally
prohibitive for a neuronal circuit with a large number of
neurons. In order to reduce the computational cost of the
analysis, approximate models for the stochastic simulation
of ion channels based on coarse-grained, continuous-state,
continuous-time SDE models, i.e., Langevin equations,
have been proposed (Kilinc and Demir 2017; Goldwyn et al.
2011; Linaro et al. 2011; Orio and Soudry 2012). A unified
SDE model for neuronal circuits, with both ion channels
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and synaptic connections, can be constructed directly, in
an automated manner, from the corresponding discrete-
state MC and chemical reaction models (Kilinc and Demir
2017). Although both MC and SDE models have been used
in Monte Carlo type stochastic simulations in the com-
putational neuroscience literature, we exploit the special
mathematical structure of the SDE formalism in order to
enable semi-analytical stochastic characterizations of neu-
ronal circuits (Kilinc and Demir 2017). These methods are
reviewed in the next section.

3Methods

With the semi-analytical (non Monte Carlo) techniques
presented in Kilinc and Demir (2017), stochastic charac-
terizations of neuronal circuits can be directly computed,
without the need to generate a large ensemble of simulated
sample paths for the membrane voltages. Even though these
techniques still require carefully devised numerical com-
putations, they do not require computationally expensive,
repeated simulations using random number generators. A
consistent, reproducible and detailed stochastic characteri-
zation of neuronal circuits can be obtained efficiently. In this
paper, we utilize these semi-analytical methods in order to
compute nonstationary stochastic characterizations, which
are then processed and distilled in order to arrive at suc-
cinct conclusions regarding the timing precision of spiking
neuronal circuits.

The unified SDE model for a neuronal circuit consists
of the collection of the current-balance equations for the
membranes of the neurons coupled with the system of Itô
SDEs for the ion channels and the chemical reactions, as
given below

∂
∂t
q(v(t),Nc

t ) + f(v(t),Nc
t ) + b(t) = 0

dNc
t = μ(v(t),Nc

t )dt + σ (v(t),Nc
t ) dWt

(2)

where v ∈ R
M is the vector of the membrane voltages of

M neurons, the nonlinear vector functions q and f ∈ R
M

represent the charge storage (in the membrane capacitance)
and the ion channel currents, respectively, b(t) ∈ R

M

captures any external stimulus applied to the neuronal
circuit. That is, v(t) = [V1(t), . . . , VM(t)]T and

q(v(t),Nc
t ) =

⎡

⎢⎣
Cm,1V1(t)

...
Cm,MVM(t)

⎤

⎥⎦ , b(t) =
⎡

⎢⎣
Iext,1(t)

...
Iext,M(t)

⎤

⎥⎦ ,

f(v(t),Nc
t ) =

⎡

⎢⎣
− ∑

i Gion,i[V1(t) − Eion,i,1]
...

− ∑
i Gion,i[VM(t) − Eion,i,M ]

⎤

⎥⎦ ,

(3)

where the current balance equations of the neurons defined
by Eq. (1) are concatenated. μ(v(t),Nc

t ) and σ (v(t),Nc
t )

in Eq. (2) are the drift and diffusion parts of the system of
SDEs, respectively, obtained from the MC models of the
ion channels, as described in the Appendix and in Kilinc
and Demir (2017). Nc

t ∈ R
P represents the concatenated

state vectors of the ion channels and the synaptic chemical
reactions, where P is the total number of ion channel state
variables and chemical species. The subscript t and the
superscript c are used to signify that Nc

t is a continuous-time
and continuous-state stochastic process, respectively. Wt ∈
R

T is a vector of independent Wiener processes, where T

is the total number of state transitions in the MC models
of the ion channels and the synaptic chemical reactions.
We note that both q and f depend on the state variable
vector Nc

t , since the conductances and hence other electrical
characteristics of the neurons depend on the states of the ion
channels and the concentration of the ligand molecules.

The combination of the two coupled equations in Eq. (2)
as a single set of nonlinear SDEs is given by

∂

∂t
Q(x(t)) + F(x(t)) + B(t) + D(x(t))ηt = 0 (4)

where x(t) = [v(t), Nc
t ]T, and Q,F,B ∈ R

M+P and
D ∈ R

(M+P)×T with entries given by

Q(x(t)) =
[
q(v(t),Nc

t )

Nc
t

]
, F(x(t)) =

[
f(v(t),Nc

t )

−μ(v(t),Nc
t )

]
,

B(t) =
[
b(t)

0R

]
, D(x(t)) =

[
0M×T

−σ (v(t),Nc
t )

]
, (5)

and ηt is a column vector of T independent standard white
Gaussian noise processes.

All of the neuronal circuit setups we consider in this
paper spike periodically, i.e., possess periodic steady-state
solutions. In order to represent spike timing jitter for
the spiking neurons, we express the solution of Eq. (4)
as (Demir et al. 2000)

x(t) = xs(t + α(t)) + xn(t) (6)

where xs(t) is the periodic, deterministic neuronal circuit
response. xs(t) is the steady-state solution of the set of
differential equations obtained by removing the diffusion
(noise) part of the original SDE model in Eq. (4) as below

∂

∂t
Q(xs(t)) + F(xs(t)) + B(t) = 0. (7)

The noiseless xs(t) is deterministic and it captures the
mean but time-varying behavior of the membrane voltages,
ion channels and the synapses. In Eq. (6), α(t) is the
stochastic timing jitter (phase deviation) in xs(t +α(t)), and
xn(t) represents the stochastic amplitude deviation added to
xs(t +α(t)), both arising from noise. Since xs(t) is periodic
with a period Tc, it defines a limit cycle (a closed orbit
that is parametrized by t) in the state-space of the neuronal
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variables. xs(t + α(t)) traces exactly the same limit cycle
(orbit) that corresponds to xs(t), but with a random time
deviation. On the other hand, xn(t) represents an orbital
deviation, i.e., an additive noise component. That is, the
trajectory traced by xs(t+α(t))+xn(t) (in the state-space of
the neuronal variables) deviates from the limit cycle defined
by xs(t) or xs(t+α(t)), due to the additive noise component
xn(t) (Demir et al. 2000). To sum up, α(t) represents the
timing noise or timing jitter for a spiking neuronal circuit,
whereas, xn(t) captures the additive amplitude noise in the
neuronal circuit response. The decomposition of the noisy
neuronal circuit variable into the time-shifted xs(t + α(t))

and the additive xn(t) is performed in such a way so that
xn(t) stays small and bounded, whereas the time deviation
α(t) may grow large (Demir et al. 2000), to values possibly
exceeding the spiking period Tc.

Autonomously oscillating systems, that determine their
own rhythm based on their internal dynamics, posses a
timing noise α(t) that freely diffuses due to lack of a perfect
timing reference. This behavior is unlike that of systems that
are forced to oscillate at a frequency imposed by an external
periodic stimulus. Thus, the variance of α(t), in general,
increases with time even if the noise sources, ηt , in Eq. (4)
are always small. On the other hand, the orbital deviation
xn(t) remains small as compared to xs(t + α(t)). In Demir
et al. (2000), the stochastic characterization of the timing
jitter (noise) α(t) was rigorously derived. It was shown
that, asymptotically with time, α(t) becomes a Gaussian
random process with zero-mean and a variance given by
Var[α(t)] = E[α(t)2] = css t . The asymptotic (steady-state)
slope of the timing jitter variance is constant and represented
by css . It is important to note that α(t) represents the total
accumulated timing noise of the noisy output xs(t + α(t))

at time t with respect to the noiseless output xs(t). That is,
Var[α(kTc)] is the timing jitter variance of the kth spike,
where Tc is the spiking period, with respect to a trigger
(reference) set at the first spike. On the other hand, spike-
to-spike accumulated jitter (for the timing of the k + 1th
spike, with the trigger set at the previous kth spike) is
constant and given by css Tc, that is, it is independent of
k. Therefore, the slope of the timing jitter variance css and
the spiking period Tc are two important parameters that can
be used to characterize the timing precision of a spiking
neuronal circuit. The period Tc and the noiseless response
xs(t) for an autonomously oscillating neuronal circuit can
be computed by finding the periodic steady-state solution of
Eq. (7) via well-established numerical methods, e.g., time-
domain shooting methods and frequency-domain Fourier
spectral collocation based methods (Kundert et al. 1990).
Then, the asymptotic timing jitter variance slope css can
be directly computed based on a specialized perturbation
analysis. On the other hand, the time it takes for the timing
jitter variance to settle to its asymptotic linear form, i.e.,

Var[α(t)] = css t , is also an important parameter in
characterizing the timing noise performance of oscillatory
systems. We next review both a direct (steady-state)
technique (Demir et al. 2000) that produces the asymptotic
timing jitter variance slope, as well as a transient, time-
domain technique (Demir and Sangiovanni-Vincentelli
1998) which enables also the computation of the settling
time.

In order to formulate the perturbation analysis for noise,
we linearize (4) around xs(t) to obtain

d

dt
(C(t)xn(t)) + G(t)xn(t) + H(t)ηt = 0 (8)

where H(t) = D(xs(t)) and the Jacobian matrices C,G,∈
R

(M+P )×(M+P ) have the block forms given by

C(t) = ∂

∂x
Q(x)

∣∣∣∣∣∣x=xs (t)

=
⎡

⎣
∂q
∂v

∂q
∂Nc

t

0P×M IP

⎤

⎦

x=xs (t)

,

G(t) = ∂

∂x
F(x)

∣∣∣∣∣∣x=xs (t)

=

⎡

⎢⎢⎣

∂f
∂v

∂f
∂Nc

t

−∂μ

∂v
− ∂μ

∂Nc
t

⎤

⎥⎥⎦

x=xs (t)

,

(9)

where 0P×M is the P × M matrix with all zero entries and
IP is the P × P identity matrix. Equation (8) is a system
of linear (but with time-varying coefficients) SDEs. As a
result, in this perturbation analysis, the computation of the
“noiseless” solution xs(t) via (7) and the characterization
of noise xn(t) via (8) are separated. However, xs(t) needs
to be computed first, or concurrently with xn(t), since the
Jacobian and the diffusion matrices in Eq. (8) depend on it.

The transient, time-domain analysis technique (Demir
and Sangiovanni-Vincentelli 1998) to be outlined next is
not restricted to neuronal circuits operating in some sort
of steady-state (e.g., tonic firing). It can be applied in
more general time-varying scenarios, e.g., for transient
bursting conditions. In this technique, differential equations
for the auto- and cross-correlation functions of the noisy
neuronal circuit are first derived analytically and then solved
with specialized numerical methods. More specifically, the
solution of the system of linear SDEs in Eq. (8), i.e., xn(t),
is known as a multivariate Ornstein-Uhlenbeck process,
which in fact is a nonstationary, multivariate Gaussian
process (Demir and Sangiovanni-Vincentelli 1998; Gardiner
1983). Since xn(t) is Gaussian, it can be completely
characterized by its mean and correlation function. The
mean of xn(t) is given by E[xn(t)] = 0. The correlation
matrix of the components of xn(t) as a function of t is
defined by

K(t) = E[xn(t)xn(t)
T] (10)
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where K ∈ R
(M+P)×(M+P). In Demir and Sangiovanni-

Vincentelli (1998), it was shown that K(t) satisfies the
following system of ODEs

d

dt
K(t) = E(t)K(t) + K(t)E(t)T + F(t)F(t)T (11)

where

E(t) = −C(t)−1
[

d

dt
C(t) + G(t)

]

F(t) = −C(t)−1H(t). (12)

E(t) and F(t) are computed by using xs(t), which is
the solution of Eq. (7). Equation (11) is known as the
differential Lyapunov matrix equation (Gajic and Qureshi
2008). In order to compute K(t), we solve (11) by using
a specialized numerical method (Subrahmanyam 1986).
K(t) represents the noise correlation matrix of the neuronal
circuit variables as a function of time. The time-varying
noise variances of the neuronal circuit variables, or the noise
correlations between these variables at a given time point
are captured by K(t). The spike timing jitter variance of
noisy neurons at spike times kTc (coinciding with the rising
or falling edge of the kth action potential where the slope is
the highest) can be directly computed by

Var[α(kTc)] = Kii (kTc)
(

dxs,i (t)

dt

)2
∣∣∣∣∣∣
t=kTc

(13)

as discussed in Demir and Sangiovanni-Vincentelli (1998),
where i selects the membrane voltage of one of the
spiking neurons in the circuit. It was shown in Demir and
Sangiovanni-Vincentelli (1998) that Var[α(kTc)] is the same
for all of the neurons in the circuit if they oscillate in a
locked manner. By computing Var[α(kTc)] via (11) and
(13), one can reveal its transient behavior before and as it
settles to the asymptotic linear form given by Var[α(kTc)] =
css kTc.

The steady-state method, to be reviewed next, can be
used for neuronal circuits that are in periodic steady-state
operation, e.g., for tonic firing conditions (Kilinc and Demir
2017; Demir et al. 2000; Mahmutoglu and Demir 2014). In
this case, the slope css of the asymptotic form of the timing
jitter variance, i.e., Var[α(t)] = css t , can be computed
directly with a very efficient numerical technique. It was
shown in Demir et al. (2000) that

css = 1

Tc

∫ Tc

0
vT(τ )H(τ )HT(τ )v(τ )dτ (14)

where v(t) is the periodic steady-state solution of the so-
called adjoint equation given below

CT(t)
d

dt
v(t) − GT(t)v(τ ) = 0 (15)

with the following normalization condition

vT(t) CT(t)
d

dt
xs(t) = 1 (16)

v(t) and the integral in Eq. (14) can be computed with
efficient numerical techniques (Demir 2000; Demir and
Roychowdhury 2003). v(t) is known as the Perturbation
Projection Vector (PPV) (Demir and Roychowdhury 2003),
entries of which are the infinitesimal Phase Response
Curves (PRCs) (Izhikevich 2007). Phase models for oscil-
lators have been studied extensively in several disciplines,
such as electronics (Demir et al. 2000), mathematical biol-
ogy (Winfree 2001) and neuroscience (Brown et al. 2004;
Izhikevich 2007). A review on the topic, encompassing sev-
eral disciplines, can be found in Demir et al. (2010) and
Suvak and Demir (2011).

In this paper, we use the semi-analytical noise analysis
techniques outlined above, via our unified modeling
framework, in order to investigate the timing reliability of
various neuronal circuit structures. We have verified and
confirmed all of the results presented in this paper, that
were obtained with the semi-analytical techniques described
above, against straightforward Monte Carlo simulations of
the SDEs of the neuronal circuits. However, we do not
further discuss the verification of our semi-analytical, non
Monte Carlo methods in this paper, which has already been
carried out in detail in Kilinc and Demir (2017). A summary
of the results presented in our recent previous work (Kilinc
and Demir 2017), and the new results we obtain in this
paper, is given in Table 1. In the subsequent sections,
we discuss the details of these findings. The numerical
simulation files are available for public download under the
ModelDB section (with accession number 239146) of the
Senselab database (http://senselab.med.yale.edu).

4 Feedback inhibition

Experimental findings suggest that the timing precision
of the firing of neurons is an important factor in accu-
rate sensory information representation, especially for the
auditory and visual systems (Mainen and Sejnowski 1995;
VanRullen et al. 2005; Grothe and Klump 2000). It has
been observed experimentally that the timing reliability
of spiking neurons is improved when they receive feed-
back inhibition (Hasenstaub et al. 2005; Bacci and Hugue-
nard 2006). In the literature, there are numerous experi-
mental studies investigating feedback inhibition from this
perspective (Deleuze et al. 2014; Isaacson and Scanziani
2011). However, the underlying mechanisms have not
been completely unveiled yet. We investigate this phe-
nomenon from a computational modeling and simulation

http://senselab.med.yale.edu
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Table 1 Summary of the results obtained for various neuronal circuit architectures

Neuronal circuit architecture Results

Single, standalone neuron excited by a constant suprathreshold current
stimulus.

→Timing jitter variance is inversely proportional to membrane
area and amplitude of stimulus current (Kilinc and Demir 2017).

→Average action potential energy is proportional to membrane
area and inversely proportional to amplitude of stimulus current
(Kilinc and Demir 2017).

Multiple neurons connected with excitatory synapses in a ring structure,
where the neuronal circuit is autonomously spiking without an external
stimulus.

→For a given energy budget, multiple small neurons in a ring
configuration have better spike timing precision compared with a
single large neuron (Kilinc and Demir 2017).

Feedback inhibition of a spiking neuron. →Timing jitter variance is a monotonically decreasing function of
the number of synaptic receptor channels in the inhibitory feedback
synapse [Section 4.1].
→As the channel noise of the inhibitory feedback synaptic
receptors decreases, the timing jitter variance first decreases then
becomes constant [Section 4.2].
→Energy efficiency is improved as the number of synaptic receptor
channels in the inhibitory feedback synapse is increased [Section 4.3].

A neuron integrating excitatory synaptic inputs from multiple spiking
neurons.

→Timing jitter variance is inversely proportional to the number of
excitatory inputs [Section 5].
→Phase of the output spikes of the integrator neuron has the
same variance as the sample average of the phases of the input
spikes [Section 5].

Fully connected neuronal networks, where each neuron is connected to
the other neurons via synapses and excited by a constant suprathreshold
current stimulus. The synapses are excitatory, inhibitory, or balanced
excitatory and inhibitory, corresponding to E, I, and EI networks.

→Synchronization time is a monotonically decreasing function of
the number of synaptic receptor channels per synapse [Section 6.1].
→The inhibitory synapses in the fully connected networks speed
up the synchronization of the network [Section 6.1].
→For relatively weak synaptic coupling (i.e., for 100 or less
synaptic receptor channels per synapse), timing jitter variances and
spiking periods of Msync-neuron fully connected networks are the
same as those of a single neuron with a membrane area equal to
MsyncAHM , where AHM is the harmonic mean of the membrane
areas of the neurons in the network [Section 6.2].

perspective based on the framework summarized in Section 2,
via the methods presented in Section 3.

4.1 Spike timing precision vs feedback inhibition

We use the setup shown in Fig. 2 in order to investigate the
effects of feedback inhibition on the spike timing precision
and try to gain some insight into the underlying mechanism.
A constant suprathreshold current stimulus is injected into
neuron N1. In this case, the neuron N1 is oscillating, i.e., it
is under tonic spiking conditions. The neurons N1 and N2

are connected via synapses, where filled and empty circles
represent excitatory and inhibitory synapses, respectively.
More specifically, N1 makes an excitatory synapse on N2,
whereas N2 makes an inhibitory synapse on N1. Therefore,
each spike generated by N1 initiates another spike in
the membrane of N2, which eventually inhibits N1. This
constitutes feedback inhibition for N1.

The phase fluctuations with an increasing variance can be
easily observed in Fig. 3a, where only 20 membrane voltage

waveforms (for neuron N1) generated by Monte Carlo
simulations are plotted on top of each other. At steady-state,
the timing jitter variance evaluated at each multiple of the
oscillation period Tc is given by Var[α(kTc)] = csskTc. If
we normalize Var[α(kTc)] with kTc, we get the slope css ,
which is the accumulation rate of the timing jitter variance.
We use the timing jitter variance slope css of a spiking

2

1

input current
output action potentials

Fig. 2 Feedback inhibition of neuron N1 by neuron N2. Neuron N1 is
under tonic spiking conditions with a constant, suprathreshold current
stimulus
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Fig. 3 a 20 sample paths, generated for the membrane voltage of neu-
ron N1 in Fig. 2, are drawn on top of each other. The timing jitters
α(Tc) and α(2Tc) are indicated for the first two output action poten-
tials, where increasing timing jitter variance can be easily observed.
b The timing jitter variance of the output spikes of neuron N1 in
Fig. 2. The amplitude of the external suprathreshold current input to

neuron N1 is held constant at Iext = 0.25 A/m2. The membrane area
of each neuron in Fig. 2 is fixed at Am = 1000 μm2. The num-
bers of receptor ion channels in the synapses between N1 and N2 are
Next = 3 × 104 excitatory AMPA/kainate receptor channels (in N2)
and Ninh = 1×104 inhibitory GABAA receptor channels (in N1). The
timing jitter variance increases linearly with time as expected

neuron to quantify its spike timing precision. Hence, we can
compare the timing precision performance of spiking neurons
with different spiking periods at the end of a given duration.

For the analysis in this section, the amplitude of the
external suprathreshold current input to neuron N1 is held
constant at Iext = 0.25 A/m2. The membrane area of
each neuron is fixed at Am = 1000 μm2 with the VG
ion channel densities equal to 60 Na+ channels/μm2 and
18 K+ channels/μm2. The number of the excitatory receptor
ion channels in the synapse between N1 and (on) N2

is also kept constant at 3 × 104 AMPA/kainate receptor
channels. In Fig. 3b, the timing jitter variance, Var[α(t)], for
Ninh = 1 × 104 inhibitory GABAA receptor ion channels
(for the synapse from N2 to N1), is shown. For each point
in Fig. 3b, the timing jitter variance at a multiple of the
oscillation period Tc, i.e., Var[α(kTc)], was computed using
the transient semi-analytical method reviewed in Section 3.
The timing jitter variance increases linearly with time as
expected, without any transient settling behavior in this case.

In order to asses the effect of the inhibitory feedback
synapse, the number of the inhibitory GABAA receptor
ion channels Ninh in the membrane of N1 is varied. For
each value of Ninh, the asymptotic timing jitter variance
slope of the neuronal circuit in Fig. 2 is computed via the
steady-state semi-analytical method reviewed in Section 3.
The results in Fig. 4a show that as the feedback inhibition
strength is increased, the timing jitter variance decreases.
These results are consistent with experimental findings
which have shown that the spike timing precision of neurons
is improved when they receive feedback inhibition (Bacci
and Huguenard 2006). In addition, an increase in the
feedback inhibition strength results in an increase in the
spiking period, as shown in Fig. 4b. This behavior suggests

that feedback inhibition prolongs the refractory period of
neuron N1.

In order to more clearly elucidate the spike timing pre-
cision improvement brought about by feedback inhibition,
we consider the amount of information that can be coded
by the timing of a spike. Given the timing of the kth spike,
the timing of the (k + 1)th spike is a Gaussian random vari-
able with a variance of cssTc, which indicates an uncertainty
in the timing of the (k + 1)th spike. Due to this uncer-
tainty, the amount of information that can be encoded by the
timing of the (k + 1)th spike within one oscillation period
Tc is limited. More precisely, the timing of the (k + 1)th
spike within one period Tc cannot be determined with a res-
olution that is better (less) than the standard deviation of
timing jitter, i.e.,

√
cssTc. The information encoded by the

spike can be reliably decoded only when the timing needs
to be resolved within

√
cssTc. If the amount of information

encoded dictates a finer resolution requirement for reliable
detection, then the information may be lost as a result of the
uncertainty due to timing jitter. Thus, the count of possible
timing intervals that can be resolved and used to encode
information by the (k + 1)th spike is limited and given by

Lspike = Tc√
css Tc

=
√

Tc

css

. (17)

The information content, Ispike, per spike measured as the
number of binary bits that can be represented by the timing
of the spike is then given by

Ispike = log2
(
Lspike

) = 1

2
log2

(
Tc

css

)
, (18)

where Tc/css can be considered as the signal-to-noise ratio
(SNR). In particular, as Tc is increased or css is decreased,
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Fig. 4 a The timing jitter variance slope, b the spiking period, and
c the spike timing information content of the output action potentials
of neuron N1 in Fig. 2 with respect to the number of the inhibitory
synaptic channels (in N1) for Iext = 0.25 A/m2, Am = 1000 μm2, and
Next = 3 × 104 AMPA/kainate receptor channels (in N2)

the SNR increases, which results in an increase in the spike
timing information content. The information content for
the two-neuron circuit in Fig. 2 is shown in Fig. 1a as
a function of the number of inhibitory synaptic channels
(in neuron N1), which indicates that feedback inhibition
improves the information content that can be encoded in the
spike timings.

The justification and basis for the discussion and
derivation above originate in well established concepts
and results in information theory. The information content
relation in Eq. (18) is very similar to the information
capacity of an additive white Gaussian communication
channel (Cover and Thomas 2012).

With zero jitter, the spikes are separated from each other
with exactly Tc. In this case, other than being a perfect
time reference, the spike timings do not indeed contain any
information. This may suggest that it would be better if the
spike timings were completely randomized from an infor-
mation content point of view. However, this situation will
change when the frequency/period of spiking is modulated,
for instance, with signals from sensory receptors. In this
case, the spike timings will not be separated from each other
with a fixed Tc, but with a time-varying Tc(t) that encodes
sensory information. Then, lower jitter in spike timings will
allow the detection and determination of the spike timings
with a higher resolution, resulting in a higher information
content that can be encoded in the timings.

4.2 Spike timing precision vs synaptic channel noise

The results above on feedback inhibition were obtained
with SDE models of the ion channels and the synapses.
The noise (diffusion) part of these SDE models depend
on the noiseless mean (drift) component. The diffusion
parts were not added to the model in a phenomenological
manner. Their form is directly linked to the noiseless
drift component and are both derived from the Markovian
models of the ion channels (Kilinc and Demir 2017). Thus,
with an SDE model, when the number of the synaptic
LG channels is varied, both the mean synaptic current
and also the synaptic channel noise levels change. This
is indeed what happens in a real neuron. In order to dig
deeper into this, we observe that the noise, relative to
the mean, contributed by the synaptic channels decreases
with increasing number of LG receptor channels. This is
so because the drift (mean) component of the SDE that
governs channel behavior is proportional to the number
of channels, whereas the diffusion (noise) component is
proportional to the square root of the number of channels.
Then, the following question may arise: Is the spike timing
precision improvement observed with increasing number of
feedback inhibitory synaptic channels due to (i) increased
mean inhibitory feedback current, i.e., stronger feedback
inhibition, or (ii) reduced synaptic current noise relative
to the mean? In order to shed light onto this matter, we
need to separately analyze the effects of the mean and
noise of the synaptic current. For this, we keep the mean
inhibitory synaptic current entering into neuron N1 fixed
by keeping the total maximal receptor channel conductance
constant, given by the product Ninh · gGABAA

, where
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gGABAA
is the conductance of a single inhibitory GABAA

receptor channel. That is, as Ninh is varied, we also vary
gGABAA

accordingly in order to keep their product constant.
Although doing this does not have a physiological basis,
it can help answer the question posed above. When the
number of inhibitory synaptic channels is increased in
this setup, the noise contributed by the synaptic channels
decreases while the mean synaptic current is held constant.
This is so because while both the drift and diffusion
components of the SDE that governs the synaptic current
are proportional to gGABAA

, the drift part is proportional to
Ninh and the diffusion part is proportional to

√
Ninh.

In Fig. 5, the timing jitter variance slope of the output
action potentials of neuron N1 in Fig. 2 for constant mean
synaptic current (i.e., for constant Ninh· gGABAA

= 2×105 pS)
is shown with red dashed curve (square markers) for varying
values of Ninh (on lower x-axis) and gGABAA

(on upper x-
axis). The curve in Fig. 4a is also included in Fig. 5 with a blue
solid curve (circle markers), which shows the timing jitter
variance slope of the output action potentials of neuron N1

for constant gGABAA
= 20 pS with respect to the number of

the inhibitory synaptic channels (in N1) (on lower x-axis).
As the number of inhibitory synaptic LG channels is

increased while the mean inhibitory synaptic current is held
constant as discussed above, the channel noise of these
inhibitory LG channels decreases and eventually becomes
negligible compared with the channel noise of the VG
ion channels in neuron N1. Since the number of VG ion
channels, as well as the mean inhibitory current, is constant
in this scenario, the contribution of the VG channels to noise
and timing jitter does not change. Thus, as the number of
inhibitory synaptic channels is increased, the timing jitter
variance of neuron N1 first decreases due to the reduction
in LG channel noise, but then becomes constant mainly
arising from VG channel noise. This behavior can be clearly
observed on the red dashed curve (square markers) in Fig. 5.
On the other hand, as the number of inhibitory synaptic
LG channels is reduced while the mean inhibitory synaptic
current is held constant, the channel noise of the inhibitory
LG ion channels becomes more prominent and eventually
becomes comparable to the noise of the VG ion channels in
neuron N1. Hence, the increase in LG channel noise results
in an increased timing jitter variance.

In Fig. 5, the two curves intersect at the point where
gGABAA

is set to its nominal value of 20 pS with Ninh = 104

for the red dashed curve (square markers) with constant
Ninh · gGABAA

, i.e., with constant mean inhibitory synaptic
current. The points on the blue solid curve (circle markers)
with constant gGABAA

= 20 pS correspond to larger mean
inhibitory synaptic currents compared with the points on
red dashed curve (square markers) for gGABAA

< 20 pS,
i.e., to the right of the intersection point, with the difference
increasing as one moves further right from the intersection

Fig. 5 The timing jitter variance slope of the output action potentials of
neuron N1 in Fig. 2 for constant Ninh · gGABAA

= 2×105 pS is plotted
with red dashed curve (square markers) with respect to the number
of the inhibitory synaptic channels (in N1) on the lower x-axis and
the conductance of a single inhibitory synaptic channel (in N1) on the
upper x-axis. The blue solid curve (circle markers) is the same curve as
the one in Fig. 4a, which shows the timing jitter variance slope of the
output action potentials of neuron N1 for constant gGABAA

= 20 pS
with respect to the number of the inhibitory synaptic channels (in N1)
on the lower x-axis. For both cases, the amplitude of the external
suprathreshold current input to neuron N1 is Iext = 0.25 A/m2, the
membrane area of each neuron is Am = 1000 μm2, and the number
of excitatory AMPA/kainate receptor channels is Next = 3 × 104

channels (in N2). The product Ninh · gGABAA
is kept constant at each

point of the red dashed curve (square markers). Thus, as the number of
inhibitory synaptic channels is increased, although the mean inhibitory
synaptic current does not change, the inhibitory synaptic current noise
decreases. As the noise level decreases, the timing jitter variance first
decreases and then becomes constant. On the other hand, for the blue
solid curve (circle markers), as the number of inhibitory synaptic
channels is increased, the mean inhibitory synaptic current increases
and the noise relative to the mean current decreases. In this case, the
timing jitter variance monotonically decreases with increasing number
of inhibitory synaptic channels

point. Furthermore, for both curves, the inhibitory synaptic
channel noise relative to the mean synaptic current
decreases with increasing Ninh. In particular, for Ninh >

105, the noise of the inhibitory LG channels is negligible
in both scenarios. That is why, the curve with constant
mean inhibitory synaptic current (red dashed curve, square
markers) is flat. However, in the case with constant gGABAA

(blue solid curve, circle markers), the timing jitter is
further reduced with increasing mean synaptic current
for Ninh > 105, where the dominant noise sources are
the VG ion channels whose count is held constant. This
shows that the improvement of timing precision with
increased inhibitory synaptic strength (and hence with
stronger feedback inhibition) can not be attributed to only
the reduction of the relative synaptic noise due to larger
number of synaptic channels. Thus, the answer to the
question posed above is as follows: The spike timing
precision improvement observed with increasing number of
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Table 2 Spike timing precision and energy consumption analysis of neuronal circuits with and without feedback inhibition

Simulation setup Ninh Iext Am fc EAP css

Standalone neuron 0 ch 0.09 A/m2 2150 μm2 64.2 Hz 3.58 × 10−12 J 4.20 × 10−5s2·Hz
Standalone neuron 0 ch 0.09 A/m2 4600 μm2 64.2 Hz 7.61 × 10−12 J 1.93 × 10−5s2·Hz
Neuron with feedback inhibition 0.2 × 104 ch 0.17 A/m2 1000 μm2 64.1 Hz 3.56 × 10−12 J 1.93 × 10−5s2·Hz

The presence of feedback inhibition improves both the timing precision and the energy efficiency of the neuronal circuit

feedback inhibitory synaptic channels is due to a combined
effect of both stronger feedback inhibition and also reduced
synaptic current noise relative to the mean.

The behavior to the left of the intersection point in Fig. 5
also requires a comment. For Ninh < 5 × 103, the noise of
the inhibitory LG channels dominates when compared with
the noise from the VG channels. This results in worse spike
timing precision in both cases. On the other hand, for the
curve with constant Ninh · gGABAA

(red dashed curve, square
markers), LG channel noise level is even higher due to larger
gGABAA

values as Ninh is further reduced. This results in
worse timing precision when compared with the case (blue
solid curve, circle markers) with constant gGABAA

, even
though the mean synaptic current is higher in the former.

4.3 Energy consumption vs feedback inhibition

We consider the current balance equation of the neuron
membrane in Eq. (1) for the energy consumption analysis.
The power, i.e., energy consumption rate, of a neuron due
to the ion currents passing through its membrane and the
power supplied by an external stimulus are given by

Pion(t) = ∑
i Gion,i[V (t) − Eion,i]2,

Pext(t) = V (t)Iext(t).
(19)

The energy consumption for an action potential can be
computed by integrating Pion(t) and Pext(t) over the
duration of the action potential (Moujahid et al. 2011).
In neurons, energy is consumed by ion pumps, which are
transmembrane proteins. Ion pumps expel ions through
the membrane against their concentration gradient by
consuming energy in the form of adenosine triphosphate
(ATP) molecules (Dayan and Abbott 2001). Hence, ion

pumps play a fundamental role in keeping the ion
concentration difference between the inside and the outside
of the neuron at a certain value so that the neuron can
maintain its activity after an action potential. The ion
concentration differences maintained by the ion pumps are
captured by the constant reversal potentials Eion,i in Eq. (1),
as voltage sources connected in series to the ion channel
conductances. The total energy consumed in order for a
neuronal circuit to spike is computed as the sum of the
energy consumed by the ion pumps and the energy supplied
by the external current injection. We compute the average
energy consumed by a neuronal circuit in generating an
action potential, denoted by EAP, by averaging over 100
action potential cycles.

In order to assess the effect of feedback inhibition
from a timing jitter and energy consumption perspective,
we consider a standalone neuron excited by a constant
suprathreshold current stimulus, Iext, and compare its jitter,
css , and energy consumption, EAP, to that of the neuronal
circuit with feedback inhibition in Fig. 2. We set the
parameters of the standalone neuron circuit in such a way
so that its firing frequency, fc = 1/Tc, is the same as
that of the one with feedback inhibition. If the standalone
neuron has the same energy consumption per spike (timing
jitter variance slope) as that of the neuronal circuit with
feedback inhibition, its timing jitter variance slope (energy
consumption) is roughly twice the one obtained for the
neuronal circuit with feedback inhibition. Thus, feedback
inhibition of a spiking neuron improves its energy efficiency
for a given spike timing precision, or alternatively, feedback
inhibition yields better spike timing precision for a given
energy consumption, as summarized and quantified in
Table 2.

Table 3 Spike timing precision and energy consumption analysis of neuronal circuits with feedback inhibition

Simulation setup Ninh Iext Am fc EAP css

Neuron with feedback inhibition 0.2 × 104 ch 0.17 A/m2 1000 μm2 64.1 Hz 3.56 × 10−12 J 1.93 × 10−5s2·Hz

Neuron with feedback inhibition 0.2 × 104 ch 0.17 A/m2 3600 μm2 64.1 Hz 12.32 × 10−12 J 0.54 × 10−5s2·Hz

Neuron with feedback inhibition 2.0 × 104 ch 1.25 A/m2 750 μm2 64.4 Hz 3.52 × 10−12 J 0.54 × 10−5s2·Hz

As the strength of feedback inhibition is enhanced, both the timing precision and the energy efficiency of the neuronal circuit are improved
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We next consider the neuron with feedback inhibition
in Fig. 2 with a larger inhibition strength, obtained by
increasing the number of the inhibitory GABAA receptor
ion channels (in N1) tenfold, and compare its performance
to the case with weaker feedback inhibition. We again make
sure that the firing frequencies of the two cases are the
same by choosing the relevant parameters appropriately. If
the energy consumption (timing jitter variance slope) of
the high inhibition strength case is the same as that of the
low inhibition case, its timing jitter variance slope (energy
consumption) is approximately 3.5 times better. Thus, as the
strength of feedback inhibition is enhanced, both the timing
precision and the energy efficiency of the neuronal circuit
are improved, as summarized and quantified in Table 3.

4.4 Membrane voltage variance vs feedback
inhibition

We next analyze the transient dynamics of feedback inhibi-
tion. We use the same setup described above. However, in
this case, at t = 10 msec, a transient suprathreshold cur-
rent stimulus with an amplitude Iext = 0.25 A/m2 and a
duration of 2 msec is injected into neuron N1, as opposed
to a constant current stimulus. The updated setup is shown
in Fig. 6. With the transient stimulus applied to N1, a sin-
gle action potential is generated in its membrane, which
initiates another action potential in the membrane of N2

as shown in Fig. 7a. We compute the membrane voltage
variance of N1 via the transient semi-analytical method
summarized in Section 3. In our previous work (Kilinc and
Demir 2017), we have shown that the second order stochas-
tic characterization of neuronal circuits can be accurately
computed by using this technique.

The membrane voltage variance of N1 for varying
feedback inhibition strengths can be seen in Fig. 7b. Let
us first consider the case without feedback inhibition.
Without an external stimulus, the neuron membrane voltage
fluctuates, with a constant variance around its mean resting
potential of −65 mV, until t = 10 msec. Due to the action
potential generated with the injection of the current pulse
at t = 10 msec, the membrane voltage and hence the

2
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output action potential

Fig. 6 Feedback inhibition of neuron N1 by neuron N2. Neuron N1
is stimulated by a single suprathreshold current pulse with a duration
of 2 msec
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Fig. 7 a The mean membrane voltages of the neurons N1 and N2
shown in Fig. 6, where N1 (with membrane area Am = 1000 μm2) is
stimulated by a single suprathreshold current pulse with an amplitude
Iext = 0.25 A/m2 and a duration of 2 msec. The numbers of the
receptor ion channels in the synapses between N1 and N2 are Next =
3 × 104 excitatory AMPA/kainate receptor channels (in N2), and
Ninh = 2 × 104 inhibitory GABAA receptor channels (in N1). b
The variance of the membrane voltage of neuron N1 shown in Fig. 6
evaluated for varying number of inhibitory synaptic channels Ninh
(in N1). Feedback inhibition significantly decreases the membrane
voltage variance during the refractory period. The membrane voltage
fluctuations become depressed for a longer duration, which prevents
the excessive accumulation of timing jitter until the next spike

transition rates of the ion channels undergo a fast variation.
Thus, the membrane voltage noise variance exhibits peaks
at the rising and falling edges of the action potential,
i.e., during the depolarization and repolarization phases,
as observed in Fig. 7b. During the refractory period, the
membrane voltage reaches its minimum value, which is
around −75 mV. At this point, most of the ion channels are
closed (Dayan and Abbott 2001; Goldwyn et al. 2011). As
a result, the fluctuations in the membrane voltage become
subdued. The dip value in the membrane voltage variance
in Fig. 7b coincides in time with the minimum value of
the mean membrane voltage of N1 shown in Fig. 7a, in
the beginning of the refractory period, as expected. When
the refractory period ends, the variance of the membrane
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voltage returns to its steady-state value, corresponding to the
resting membrane potential.

According to the results in Fig. 7b, feedback inhibition
results in a significant reduction in the membrane voltage
variance during the refractory period. The inhibition of N1

by N2 prolongs the refractory period of neuron N1, during
which most of the ion channels remain closed. As a result,
the membrane voltage fluctuations become depressed for a
longer duration, which prevents the excessive accumulation
of timing jitter until the next spike. This may be the key
mechanism through which feedback inhibition enhances
spike timing precision.

5 Synaptic integration

In the mammalian brain, the sensory information is
transmitted to the neocortex, where it is processed for
behavioral and cognitive functions (Miller 2000; Ghazanfar
and Schroeder 2006). The processing in the cortical neurons
involves the integration of their synaptic inputs and the
generation of trains of action potentials in various temporal
patterns. For a cortical neuron receiving multiple synaptic
inputs, its spike timing precision is important in producing
a coherent output in response to sensory stimuli.

A sensory neuron transmits information to multiple
neurons with an axonal divergence of its output. On the
other hand, a neuron can receive multiple synaptic inputs
through dendritic convergence. These motifs are prevalent
in the nervous system. For example, cortical neurons receive
multiple afferent synaptic inputs originating from sensory
sources (Varga et al. 2011). For example, the information
about head and body motion is transmitted to the vestibular
system through multiple sensory pathways (DiGiovanna
et al. 2016).

We consider dendritic convergence in a neuron, which
receives multiple excitatory synaptic inputs from spiking
neurons, as shown in Fig. 8. We analyze the effect of the
synaptic inputs on the timing precision of the output neuron.
Each input neuron is excited by a constant suprathreshold
current stimulus with an amplitude Iext = 0.25 A/m2. The
membrane area of each neuron in the setup is fixed at Am =
1000 μm2 with the VG ion channel densities set to 60 Na+
channels/μm2 and 18 K+ channels/μm2. The output neuron
includes 2×104 excitatory AMPA/kainate receptor channels
per synapse. Each input neuron is spiking at the same
frequency due to the same constant suprathreshold current
excitation, while the output neuron generates an action
potential upon the arrival of an excitatory synaptic input.
The strength of a single excitatory synapse is sufficient to
induce an action potential in the membrane of the output
neuron. In the absence of variability and noise, the input
neurons generate spikes at the same time, even though

M
in

2

in

1

in

output action potentials

.  
.  

.

out

Fig. 8 The synaptic integration of excitatory inputs. Each input neuron
is under tonic spiking conditions with a constant, suprathreshold
current stimulus and has an excitatory synaptic connection to the
output neuron

they are not coupled with each other. This setup, in a
simplistic manner, represents the situation in which the
sensory information relayed by each of the input neurons
comes from the same source.

We use the transient semi-analytical method in order to
compute the asymptotic timing jitter variance slope of the
output neuron shown in Fig. 8. The results in Fig. 9 reveal
that as the number of excitatory synaptic inputs Minput

is increased, the timing precision of the output neuron is
improved. It is indeed interesting to note that the timing
jitter variance of the output neuron, css,out, is equal to that
of a single input neuron, c̄ss , scaled by 1/Minput. That is, the
timing jitter variance of the output neuron is c̄ss t/Minput.

We next consider multiple independent spiking input
neurons with different membrane areas. Hence, each input
neuron has a distinct timing jitter variance c̄ss,i . Since the
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Fig. 9 The timing jitter variance slope of the action potentials of the
output neuron shown in Fig. 8 with respect to the number of input
neurons. Each input neuron is excited by a suprathreshold current
stimulus with an amplitude Iext = 0.25 A/m2. The membrane area
of each neuron is Am = 1000 μm2. The output neuron includes
2 × 104 excitatory AMPA/kainate receptor channels per synapse. The
timing jitter variance of the output neuron css,out is the same as the
timing jitter variance of a single input neuron c̄ss scaled by 1/Minput
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excitation current per unit membrane area, Iext = 0.25
A/m2, is set to the same value for all of the input
neurons, their spiking frequencies are all equal. Based
on running extensive analyses using the transient semi-
analytical technique, we arrive at the following result: The
timing jitter variance slope of the output neuron is given by

css,out = 1

M2
input

Minput∑

i=1

c̄ss,i . (20)

The above result is consistent with the one we have
obtained for the case of input neurons with identical
membrane areas. It can be explained as follows: The output
neuron is in effect estimating the unperturbed timing of
the input spikes denoted by t (which represents the same
sensory information encoded by the spike timings of all
of the input neurons), given Minput independent sample
observations for their perturbed timings, i.e., t + αi(t),
corresponding to the spikes of the input neurons with a
timing uncertainty. The timing deviation of the ith input
neuron is αi(t) and becomes an additive Gaussian random
variable N (0, c̄ss,i t) asymptotically with time, as discussed
in Section 3. Furthermore, αi(t)’s are independent since
they arise from independent noise sources contained in
different neurons. The estimate for the timing, denoted by
testimate, can be computed by the sample average of the
Minput observations, i.e.,

testimate = 1

Minput

Minput∑

i=1

(t + αi(t)). (21)

Then, the variance of the timing estimate (spike timing
uncertainty at the output) is given by

Var[testimate] = 1

M2
input

Minput∑

i=1

c̄ss,i t (22)

where the slope of the variance is the same as the timing
jitter variance slope in Eq. (20) that was distilled from the
simulation data. Thus, the sample average operation above
is effectively implemented by the synaptic integration of the
input spikes.

Our results suggest that the synaptic integration of
multiple afferent synaptic inputs originating from the same
sensory source may be an important mechanism that is
utilized by the cortical neurons in regulating spike timing
precision. The sensory data is first transmitted to multiple
neurons via axonal divergence of the sensory neuron.
The information is transmitted through different neural
pathways. Finally, dendritic convergence in an intermediate
or a cortical neuron improves spike timing precision and
hence the reliability of the information received.

Feedforward inhibition is considered to be another
mechanism utilized in the cortex in order to enhance
the spike timing reliability of neurons (Isaacson and
Scanziani 2011; Pouille and Scanziani 2001). For example,
feedforward inhibition of N out in Fig. 8 would narrow its
integration window, which reduces the effective number
of the received input spikes. However, according to our
results, integrating more inputs from multiple neurons
enhances spike timing precision. At first thought, this seems
to contradict with the enhancement of timing reliability
via feedforward inhibition. However, there is in fact no
contradiction. Feedforward inhibition acts so as to establish
coincidence detection for the received spikes in N out, which
can reduce the jitter due to the spontaneous spikes generated
by the input neurons without any sensory cause (Isaacson
and Scanziani 2011; Pouille and Scanziani 2001). That is,
with feedforward inhibition, a spontaneous action potential
generated in an input neuron is prevented from inducing
a subsequent action potential in N out, unless other input
neurons fire at the same time. Feedforward inhibition
ensures that N out fires if it receives multiple input spikes
with coincident timing. On the other hand, in the scenario
we have considered above, all of the input neurons receive
the same sensory stimulus and generate spikes that are
coincident within a deviation due to noise. Furthermore,
an action potential generated in an input neuron is able
to induce another action potential in N out on its own. In
summary, these two motifs, i.e., (i) feedforward inhibition
that effectively subdues spontaneous spikes with no sensory
cause, and (ii) synaptic integration of multiple inputs that
encode the same sensory stimulus, may represent different
mechanisms utilized by the neurons in the cortex in order to
enhance spike timing reliability.

6 Synaptic coupling

Rhythmic collective oscillations are commonly seen in the
operation of neural circuits. The neurons in these circuits
are synchronized with each other through their synaptic
connections so that the circuit overall spikes in a robust
manner. The nature of these rhythmic oscillations are
determined by the particular neuronal circuit organization.
In Esfahani et al. (2016), the authors argue that the
synaptic coupling delay between the neurons determines the
transition between synchronous and asynchronous states of
a neuronal circuit. The spike timing precision of the neurons
directly relates to the synaptic delay between them, and may
be an important factor in the synchronization of the neuronal
circuits that generate robust rhythms in the brain.

The synchronization of coupled oscillators is ubiquitous,
e.g., synchronized pendulum clocks that are placed on the
same wall and the synchronous flashing of fireflies (De
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Fig. 10 Fully connected neuronal oscillator circuit with five neurons.
Each neuron is under tonic spiking conditions with a constant,
suprathreshold current stimulus

Smedt et al. 2015). The synchronization in these systems
is facilitated mainly through a mechanism called injection
locking (Adler 1973). The timing jitter variance of
autonomously oscillating electrical circuits can be reduced
by injection locking (Razavi 2004). A similar mechanism
is possibly exploited by the circuits in the brain in order to
reduce the timing noise and enhance the timing reliability
of the generated spikes. Next, we investigate the effect of
the nature and the strength of the synaptic coupling among
neurons on the timing precision of a neural circuit. Here, we
define the synaptic coupling strength to be synonymous to
the number of LG synaptic receptor channels per synapse.

Oscillatory neuronal circuits in the brain can have com-
plex organizations. For simplicity, we consider fully con-
nected neuronal circuits. That is, each neuron is connected
to all of the other neurons in the circuit via synapses, as
shown in Fig. 10 for a five-neuron network. Similar net-
work topologies with various connection scenarios have
been considered in the literature (Esfahani et al. 2016;
Gu et al. 2015) in order to investigate the mechanisms of
synchronous oscillations in the brain.

For the five-neuron network in Fig. 10, we consider
three different cases: (i) an excitatory (E) network with
only excitatory synapses , (ii) an inhibitory (I) network with
only inhibitory synapses, and (iii) a balanced excitatory
and inhibitory (EI) network with both excitatory and
inhibitory synapses. For the EI network, the numbers of
the excitatory and inhibitory synaptic receptor channels
per synapse is set to the same value. We denote the total
number of LG receptor channels per synapse with N .
Each neuron in the network shown in Fig. 10 is excited
by a constant suprathreshold current stimulus with an
amplitude Iext = 0.25 A/m2. The membrane area of each
neuron is fixed at Am = 1000 μm2, with the VG ion
channel densities equal to 60 Na+ channels/μm2 and 18 K+
channels/μm2. For the three cases stated above, the numbers
of the excitatory AMPA/kainate receptor channels and the
inhibitory GABAA receptor channels per synapse are varied

in order to observe their effect on the timing reliability of
the neuronal circuit.

6.1 Synchronization time vs synaptic coupling
strength

The instantaneous timing jitter variance of the output
action potentials of a neuron in the five-neuron E network
is shown in Fig. 11a, for both Nex = 750 and 3000
excitatory channels per synapse. In addition, the timing
jitter variance of a single, standalone neuron excited by the
same suprathreshold current stimulus density is also shown
in Fig. 11a. The firing rates for these three cases (i.e.,
(i) standalone neuron, (ii) and (iii) 5-neuron network with
Nex = 750 and 3000) are roughly the same and equal to
fc = 1/Tc = 92.0 Hz. The data for the plots in Fig. 11a was
computed via the transient semi-analytical method for the
jitter variance of a number of consecutive spikes occurring
at t = kTc, i.e., Var[α(kTc)].

The results in Fig. 11a show that the timing jitter variances,
for all of the cases considered, increase linearly asymptot-
ically with time, as predicted by the theory presented in
Demir et al. (2000). Although the timing jitter variance of
the standalone neuron reaches its asymptotic form imme-
diately, the five-neuron network exhibits transient behavior
before settling to its asymptotic linear form. In an oscillat-
ing neuronal circuit, there are multiple oscillating units (i.e.,
individual neurons) coupled with each other. When these
coupled oscillators reach a steady-state, they may become
synchronized, i.e., they lock with each other and the whole
circuit behaves as one oscillating unit. Here, synchroniza-
tion is used to refer to this condition of lock. However,
the fact that the oscillators are locked with each other
does not mean that they become noiseless. The stochastic-
ity that arises from the ion channels and the synapses is
still there, even with synchronization. The overall neuronal
circuit oscillator is still noisy and has an increasing tim-
ing jitter variance with time even after synchronization. For
any oscillator (whether it is composed of a single oscillat-
ing unit, or multiple units that are locked with each other)
without an embedded perfect time reference, the timing jit-
ter variance increases asymptotically linearly with time, as
shown in Demir et al. (2000). For oscillators composed of
multiple, locked oscillating units, the asymptotic timing jit-
ter variance may be different (usually less) than that of the
individual units if they were operating alone. The jitter vari-
ance of the composite oscillator is reduced through a sort of
cooperation of the individual neurons in the network. On the
other hand, the synchronization mechanism (injection lock-
ing via coupling) that eventually locks the individual units
with each other has a time constant that is usually (much)
larger than the oscillation period. The effect of this time
constant can be observed if the timing jitter of the spikes
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Fig. 11 a The timing jitter variance of the output action potentials
of a neuron in the five-neuron E network in Fig. 10, for Nex = 750
and 3000 excitatory AMPA/kainate receptor channels per synapse.
The amplitude of the external suprathreshold current input to each
neuron is Iext = 0.25 A/m2 and the membrane area of each neu-
ron is Am = 1000 μm2. The timing jitter variance of a standalone
neuron excited by the same suprathreshold current stimulus Iext =
0.25 A/m2, with a membrane area Am = 1000 μm2, is also shown. The
synchronization times Tsync,1 (for Nex = 3000) and Tsync,2 (for

Nex = 750) for the E networks are indicated on the graph. b The
synchronization times of the five-neuron E, I, and EI networks as a
function of the number of receptor channels per synapse. The ampli-
tude of the total external suprathreshold current input to each neuron is
Iext = 0.25 A/m2. The membrane area of each neuron is Am = 1000
μm2. For the EI network, N indicates the total number of excitatory
(N/2) and inhibitory (N/2) channels per synapse. For the E and I
networks, N is the number of excitatory and inhibitory channels per
synapse, respectively

generated by the neurons are computed with respect to the
timing of an initial trigger (reference) spike (Demir 2006).
In the short time scale (for the spikes that immediately fol-
low the reference spike), the timing jitter variance slope (i.e.,
jitter accumulation rate) observed is equal to the slope one
would obtain if the neuron under consideration was operat-
ing alone as an independent unit. In the longer time scale,
when the observed spike and the reference spike are sep-
arated from each other by more than the synchronization
time constant, the jitter variance accumulation rate becomes
smaller. This behavior is very similar to the operation of
phase locked loops (PLLs) used in electronic circuits, where
the phase of a noisy oscillator is locked to the phase of a
cleaner reference signal with more precise timing (Gupta
1975; Demir 2006). The synchronization time in the case
of PLLs is determined by the loop bandwidth. For neu-
ronal circuits, we define synchronization time Tsync to be
the time duration (measured from the reference spike) that
is needed for the timing jitter slope to settle to its reduced,
locked value from the larger value that corresponds to the
standalone state of the neuron. The jitter characteristics dis-
cussed above can be observed in the results presented in
Fig. 11a.

It is important to note that, when the neurons in the
network are locked, that is, when they operate as one
oscillation unit, the timing jitter variances of all of the
neurons in the network are the same. In fact, the timing jitter
variance that is computed for a neuronal circuit is a network
property shared by all of the neurons that are locked to
each other. This is also apparent in the representation of the

timing jitter as a common time deviation α(t) in xs(t+α(t)),
that is shared by all of the membrane voltages in the state
vector xs . The technique we use for computing the periodic
xs(t) (based on Fourier spectral collocation, mentioned in
Section 3), with noise removed, reveals whether the neurons
are indeed locked to each other operating as one oscillation
unit, or oscillating independently.

For various number of synaptic channels per synapse,
the synchronization times for the five-neuron E, I, and
EI networks were computed, shown in Fig. 11b. As the
number of LG receptor channels per synapse is increased,
the synchronization time decreases for all network types.
The effect of the synaptic inputs of a neuron from other
neurons in the circuit is enhanced when the coupling
strength is increased due to larger number of synaptic
receptor channels. As a result, the time constant of the
synchronization mechanism becomes smaller. According
to our results, the EI network synchronizes roughly one
order of magnitude faster than the E network for the
same total number of excitatory and inhibitory receptor
channels per synapse, as observed in Fig. 11b. In addition,
the synchronization time of the I network is almost half
of that of the EI network. As we increase the proportion
of the inhibitory channels, for a given total number of
(excitatory and inhibitory) receptor channels per synapse,
the synchronization time of the EI network decreases. In
the light of the results obtained for the feedback inhibition
mechanism in Section 4, the inhibitory synapses possibly
help speed up the synchronization of the network by
preventing the excessive accumulation of timing jitter until
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the next spike. In the next subsection, we analyze the effect
of the coupling strength on the asymptotic timing jitter
variance of the fully connected five-neuron networks.

6.2 Spike timing precision and spiking period vs
synaptic coupling strength

We now consider the asymptotic (beyond the synchroniza-
tion time) timing jitter variance slopes and the spiking
periods for the five-neuron E, I, and EI neuronal circuits.
The steady-state jitter variance slopes are computed via the
steady-state semi-analytical method reviewed in Section 3.
The obtained results are presented in Fig. 12, which also
includes results on the timing jitter variances and the spik-
ing periods of single, standalone neurons with membrane
areas Am and 5Am stimulated by the same suprathreshold
stimulus current density.

The results in Fig. 12, show that the behaviors of the
I and EI networks are substantially different from that
of the E network, due to the presence of the inhibitory
synapses. According to these results, the response of the
E network continuously varies as the coupling strength is
increased. However, the I and EI networks exhibit a three-
phase discontinuous response as a function of the coupling
strength: (i) stable and synchronized with cooperation,
(ii) unstable, (iii) stable and desynchronized with the
domination of one neuron in the network. These three
phases for the EI network are illustrated in Fig. 13, where
sample paths for the membrane voltages of the neurons in
the network are presented. We note that, in the unstable case,
the timing jitter variance and the spiking period become
meaningless. That is why there are gaps in the graphs for
the I and EI networks in Fig. 12a and b. Next, we discuss
in detail the behavior of the fully connected E, I and EI
networks as the coupling strength is changed.

According to the results in Fig. 12a, if the number
of the synaptic receptor channels is lower than a certain
value, i.e., with weak coupling, the asymptotic timing
jitter variance slopes, css’s, of Msync-neuron E, I, and
EI networks are the same as that of an autonomously
oscillating standalone neuron with a membrane area of
MsyncAm, excited by the same constant suprathreshold
current stimulus. In Kilinc and Demir (2017), we have
shown that the asymptotic timing jitter variance slope for a
neuron with a constant suprathreshold current is inversely
proportional to its membrane area. Indeed, if a neuron with
a membrane area of Am has a timing jitter variance slope
c̄ss , then for a neuron with a membrane area of MsyncAm,
the slope becomes css = c̄ss/Msync. It can be concluded
that weak synaptic coupling between neurons in the E, I,
and EI networks enables them to behave like a single neuron
with a larger membrane area, i.e., the timing precision of
these networks is improved by cooperation. In fact, we have
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Fig. 12 a The timing jitter variance slope and b the spiking period
of a neuron in the five-neuron E, I, and EI networks in Fig. 10
as a function of the number of receptor channels per synapse. The
amplitude of the external suprathreshold current input to each neuron
is Iext = 0.25 A/m2. The membrane area of each neuron is Am = 1000
μm2. For the EI network, N is the total number of excitatory (N/2) and
inhibitory (N/2) channels per synapse. For E and I networks, N is the
number of excitatory and inhibitory channels per synapse, respectively.
In a, the timing jitter variance slopes of single, standalone neurons
with membrane areas Am = 1000 μm2 and 5Am = 5000 μm2, excited
by the same suprathreshold current stimulus Iext = 0.25 A/m2, are
also shown. If the number of synaptic receptor channels is lower than a
certain value, the timing jitter variances of the five-neuron E, I, and
EI networks are the same as that of an autonomously oscillating standalone
neuron with a membrane area of 5Am excited by the same constant
suprathreshold current stimulus. In b, the spiking period for a single,
standalone neuron (with membrane area Am = 1000 μm2 or 5Am =
5000 μm2, the period is the same) excited by the same suprathreshold
current stimulus Iext = 0.25 A/m2 is also presented. If the number of
synaptic receptor channels is lower than a certain value, the spiking
periods of the five-neuron E, I, and EI networks are the same as that
of an autonomously oscillating standalone neuron excited by the same
constant suprathreshold current stimulus. We note that the spiking
period of a standalone neuron is independent of its membrane area if
the current stimulus density is kept constant. The reason for the gaps in
the data (due to instability of the circuit) is explained in the main text

found out that this improvement is realized even with very
weak coupling, all the way down to 1 channel/synapse.
This manifests itself as a reduction in the timing jitter slope
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Fig. 13 Sample paths for the membrane voltages of the neurons in the
EI network in Fig. 10. a The EI network is stable and synchronized
with cooperation for Nex = 2 and Nin = 2 channels per synapse. All
of the neurons in the network generate spikes periodically. b The EI
network exhibits unstable behavior. Initially, the network behavior is
dominated by neuron N3. However, after a perturbation due to noise
in the neuronal circuit, neuron N4 starts to dominate the network
behavior and the spiking neuron N3 is inhibited. We note that neuron
N5 also tries to spike but cannot maintain its spiking state. The
numbers of excitatory and inhibitory receptor channels per synapse are
Nex = 2000 and Nin = 2000, respectively. c The EI network is stable
and desynchronized with the domination of neuron N4 in the network
for Nex = 20000 and Nin = 20000 channels per synapse. For each
case, the amplitude of the external suprathreshold current input to each
neuron is Iext = 0.25 A/m2. The membrane area of each neuron is
Am = 1000 μm2

beyond the synchronization time Tsync, when computed
with the transient semi-analytical technique, albeit with
larger synchronization times for weaker coupling. We note
that when the synaptic connections between the neurons
are completely removed, each neuron indeed operates in a
standalone manner. Then, the timing jitter variances of the
neurons become equal to that of a standalone neuron with
membrane area Am, without any reduction.

The results in Fig. 12b show that, if the number of
synaptic receptor channels is lower than a certain value, the
spiking period of the E, I, and EI networks are the same

as that of an autonomously oscillating standalone neuron
excited by the same constant suprathreshold stimulus
current density. This result is consistent with the timing jitter
variance of the E, I, and EI networks for weak coupling, i.e.,
they behave like a single neuron oscillator with a membrane
area of 5Am.

As we further increase the number of the synaptic
receptor channels per synapse, the ion currents passing
through these LG channels start to dominate the currents
passing through the VG K+ and Na+ channels in the neuron.
Thus, strong synaptic coupling among the neurons emerges
as a disruption to the internal spiking dynamics. This results
in an increase in both the timing jitter variance slope and the
spiking period as observed in Fig. 12a and b, respectively.
In other words, the timing reliabilities of the fully connected
E, I, and EI networks start to deteriorate for coupling
strengths that are above a certain value. The increase in
the timing jitter slope css of the networks may be due
to the prolonged oscillation periods Tc. We have observed
a similar relationship between css and Tc for the single,
standalone neuron oscillator in Kilinc and Demir (2017).
We also note that, as the number of receptor channels per
synapse is increased, the spiking periods of the I and EI
networks increase more than that of the E network. In
addition, the increase in the spiking period of the I network
is higher than that of the EI network. That is, as we increase
the proportion of the inhibitory channels for a given total
number of (excitatory and inhibitory) channels per synapse,
the spiking period of the network increases. This behavior
may be due to the fact that the inhibitory synapses try
to depress the spiking behavior of the network, opposing
the suprathreshold external current stimulus. This may then
result in an increase in the spiking period, as observed in
Fig. 12b.

If the number of the receptor channels per synapse
in the I and EI networks exceed 600 and 1200 chan-
nels/synapse, respectively, these networks become unstable.
The inhibitory synapses in both the I and EI networks try
to shut down the spiking of the neurons. However, at the
same time, each neuron is being forced to oscillate by the
suprathreshold current stimulus, and in the EI network also
by the excitatory synapses. Due to the imbalance between
these two driving forces, the behavior of the I and EI net-
works becomes unstable. The unstable behavior of the EI
network is illustrated in Fig. 13b. Initially, the network
behavior is dominated by a spiking neuron. However, after
a perturbation due to noise in the neuronal circuit, another
neuron starts to dominate the network behavior and then
inhibits the initially spiking neuron. That is, the oscillation
of the network is not stable, and noise causes the behavior
of the network to change randomly. In contrast, the stability
of the E network is maintained as the number of excita-
tory receptor channels per synapse is increased. In the E
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network, all of the driving forces, i.e., the synapses and the
current stimulus, are excitatory, which do not result in insta-
bility even for stronger synaptic coupling. As the number of
synaptic receptor channels in both the I and EI networks is
further increased beyond 8000 and 16000 channels/synapse,
respectively, one of the neurons in these networks shuts
down the other neurons completely, which re-stabilizes the
overall network activity as illustrated in Fig. 13c. That is, the
inhibitory synapses of that neuron become dominant when
compared with the excitatory driving forces and remains
dominant even in the presence of disturbances due to noise.
However, in this case, the overall neuronal circuit behaves
like a single, standalone neuron with a membrane area Am.
This is the expected behavior, because the activity of the net-
work at this point is dominated by a single neuron. That is,
the spiking period and the timing jitter variance slope of the
I and EI networks become same as those of a single neuron
oscillator with a membrane area of Am excited by the same
stimulus current density.

6.3 Spike timing precision of weakly coupled
heterogeneous neuronal networks

We can conclude based on the above results is that weak
synaptic coupling among the neurons in E, I, and EI
networks is a key mechanism that improves the timing
precision of neuronal circuits through cooperation. A
weakly connected Msync-neuron circuit behaves like a single
neuron with a membrane area equal to the total membrane
area of the neurons in the network, i.e., MsyncAm, assuming
that the neurons in the network have equal membrane areas.

Now, we consider a heterogeneous, fully connected
network, where each neuron has a different membrane area
Am,i , but excited by the same stimulus current density
Iext = 0.25 A/m2. Here, we would like to clarify that
heterogeneity to the network is introduced only through
different membrane areas, which results in different noise
levels for each neuron. We have performed extensive
characterizations for the timing jitter performances of
various heterogeneous, fully connected E, I, and EI neuronal
circuits with varying number of neurons and varying
membrane areas. By carefully analyzing these extensive
set of results, we arrive at the following conclusion: The
asymptotic timing jitter variance slope css of a weakly
coupled, heterogeneous network with Msync neurons is the
same as that of a standalone, single neuron with a membrane
area of MsyncAHM , excited by the same (per neuron) current
density. Here, AHM is the harmonic mean of the membrane
areas of Msync neurons, given by

AHM = Msync

⎡

⎣
Msync∑

i=1

1

Am,i

⎤

⎦
−1

. (23)

This conclusion applies to all of E, I, and EI heterogeneous
networks. This result is consistent with the one for the case
when the neurons in the network have equal membrane
areas, i.e., AHM = Am with Am,i = Am. Since the
harmonic mean is limited by the value of the minimum
element as expressed by AHM ≤ Msync min{Am,i}, the
performances of the E, I, and EI networks in terms of their
timing jitter variance slopes are limited by the performance
of the smallest neuron in the network. The smallest neuron
has the worst timing jitter performance. Therefore, in order
to improve the performance of the network, either the
membrane area for the neuron with the smallest area should
be increased or it should be removed from the network. We
can conclude that, given a total membrane area budget, the
optimal weakly coupled network (E, I or EI), with respect to
the timing jitter performance, is the one where the neurons
are similarly sized.

In order to investigate the main mechanism behind the
above result, let standalone neurons with membrane areas
of Am and Am,i have timing jitter variance slopes of c̄ss and
c̄ss,i , respectively. As mentioned previously, the asymptotic
timing jitter variance slope is inversely proportional to the
membrane area, i.e., c̄ssAm = c̄ss,iAm,i = constant. Then,
for a neuron with a membrane area of MsyncAHM , the jitter
variance slope is given by

css = c̄ssAm

MsyncAHM
= 1

M2
sync

∑Msync
i=1

c̄ssAm

Am,i

= 1
M2

sync

∑Msync
i=1 c̄ss,i .

(24)

This result is very similar to the timing jitter variance
slope of a neuron integrating Msync synaptic inputs from
multiple independent standalone neurons with timing jitter
variance slopes of c̄ss,i and membrane areas of Am,i , given
by Eq. (22) in Section 5. However, in an Msync-neuron
fully connected network, each neuron receives synaptic
inputs from the other (Msync − 1) neurons. We note that,
in such a network, each neuron itself also behaves like
an oscillating standalone neuron due to the suprathreshold
current stimulus. Then, each neuron in the fully connected
network integrates the timing information of Msync neurons
(including itself), with area Am,i and jitter slope c̄ss,i for
the ith neuron. Thus, the above results are indeed consistent
with the results presented in Section 5. In conclusion, it
can be said that the fully connected E, I, and EI networks
also loosely implement the sample average mechanism (as
in synaptic integration considered in Section 5) on the spike
timings of the neurons in the network, provided that they
are weakly coupled. If the number of the LG receptor
channels are increased beyond a certain threshold value, the
behaviors of the heterogeneous networks are similar to those
of the homogeneous networks discussed above.
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7 Conclusion

We utilized semi-analytical techniques, which were adapted
from previously developed techniques for electronic cir-
cuits, for the stochastic characterization of the timing jitter
and noisy membrane voltages of spiking neuronal circuits.
These semi-analytical methods helped us gain insight into
three common neuronal circuit motifs from a spike timing
precision perspective: (i) feedback inhibition, (ii) synaptic
integration, and (iii) excitatory and inhibitory synaptic cou-
pling. First, we showed that feedback inhibition improves
the timing precision and energy efficiency of a spiking
neuron. In addition, we have elucidated that this improve-
ment is due to the fact that feedback inhibition prolongs the
refractory period of a neuron. Since most of the ion chan-
nels remain closed in the refractory period, the membrane
voltage fluctuations become subdued for a longer duration.
Thus, feedback inhibition prevents the excessive accumula-
tion of timing jitter until the next spike and enhances spike
timing precision. Second, we have considered dendritic con-
vergence of multiple excitatory synaptic inputs originating
from the same sensory source. We showed that a neuron
can improve on the timing jitter of its inputs by synaptic
integration. Furthermore, our results suggest that a neuron
in effect performs a sample average of the timings of the
input spikes, which improves the timing precision of its out-
put spikes. Finally, our results revealed that weak excitatory
or inhibitory coupling among neurons in a fully connected
network enables them to behave like a single neuron with
a larger membrane area in such a way so that the timing
precision of the network is improved by cooperation. This
improvement is maximized, with a total membrane area
budget, if the neurons in the network are similarly sized.
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Appendix : ion channel models

Neurons used in our numerical analyses include 18 K+
channels/μm2 and 60 Na+ VG channels/μm2 (Dayan and
Abbott 2001). In analyzing various neuronal architectures,
the number of excitatory and inhibitory synaptic receptor
LG channels per synapse are varied, in accordance with
the physiologically plausible values for the receptor channel
densities, the number of synapses, and the membrane areas
of the neurons (Masugi-Tokita et al. 2007; Chiu et al. 2002).
We utilize well established kinetic schemes for K+ and
Na+ channels, as shown in Fig. 14a and b (Dayan and
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Fig. 14 MC models for a K+, b Na+, c excitatory AMPA/kainate
receptor, and d inhibitory GABAA receptor ion channels

Abbott 2001). Excitatory synapses include AMPA/kainate
receptor channels with a kinetic scheme shown in Fig. 14c
(Destexhe et al. 1998b). Inhibitory synapses include GABAA

receptor channels having a kinetic scheme illustrated in
Fig. 14d (Destexhe et al. 1998b).

The transition rates we use for the kinetic models of K+
and Na+ channels are given by

αn(V (t)) = 0.01(V (t)+55)
1−exp[−(V (t)+55)/10] ,

βn(V (t)) = 0.125 exp[−(V (t) + 65)/80],
αm(V (t)) = 0.1(V (t)+40)

1−exp[−(V (t)+40)/10] ,
βm(V (t)) = 4 exp[−(V (t) + 65)/18],
αh(V (t)) = 0.07 exp[−(V (t) + 65)/20],
βh(V (t)) = 1

1+exp[−(V (t)+35)/10] ,

(25)

where V (t) is the membrane potential of the neuron as
described by Eq. (1) and expressed in mV, αi’s and βi’s are
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expressed in msec−1 (Dayan and Abbott 2001). The ionic
K+ and Na+ currents are given by

IK+ = gK+Nn4 [V (t) − EK+],
INa+ = gNa+Nm3h1[V (t) − ENa+], (26)

where gK+ = gNa+ = 20 pS, EK+ = −77 mV, ENa+ =
50 mV, Nn4 and Nm3h1 are the total number of open K+ and
Na+ channels, respectively (Dayan and Abbott 2001).

Nominal values for the transition rates in the kinetic
model of the AMPA/kainate receptor channel, i.e.,
Rb([L(t)]) = 1.3 × 107[L(t)], Ru1 = 5.9 × 100, Ru2 =
8.6 × 104, Rr = 6.4 × 101, Rd = 9.0 × 102, Rc =
2.0 × 102, and Ro = 2.7 × 103 (all in units of s−1), are
given in (Destexhe et al. 1998b). The results presented in
Section 5 were obtained based on these transition rates for
the AMPA/kainate receptor channel. With these values, the
synaptic delay is approximately 1 msec. In order to increase
the synaptic delay (between the spikes generated in the
presynaptic and postsynaptic neuron connected via an exci-
tatory synapse) by ∼1 msec to 2 msec, we also use updated
transition rates for the AMPA/kainate receptor channels,
given by Rb([L(t)]) = 1.0 × 106[L(t)], Ru1 = 3.0 × 101,
Ru2 = 1.6 × 105, Rr = 3.4 × 101, Rd = 8.4 × 102,
Rc = 3.7×102, and Ro = 0.9×103 (all in units of s−1). The
results presented in Sections 4 and 6 were obtained based
on these updated transition rates for the AMPA/kainate
receptor channel. These updated values are justified based
on the diversity of activation and desensitization proper-
ties of AMPA/kainate receptor channels that is described
in Pinheiro and Mulle (2006) and Perrais et al. (2010). For
neurons that are reciprocally connected by excitatory and
inhibitory synapses, a synaptic delay that is shorter than
the depolarization duration of an action potential would
result in a premature inhibition of the action potential.
Thus, a ∼1 msec increase in the synaptic delay makes the
neuronal dynamics more physiologically meaningful. Pro-
longed synaptic delays can alternatively be modeled via
distributed multi-compartment synapse or neuron models.

The transition rates in the kinetic model of the GABAA

receptor channel are set to Rb1([L(t)]) = 2.0 × 107[L(t)],
Rb2([L(t)]) = 1.0 × 107[L(t)], Ru1 = 4.6 × 103, Ru2 =
9.2 × 103, Rc1 = 9.8 × 103, Rc2 = 4.1 × 102, Ro1 =
3.3×103, and Ro2 = 1.1×104 (all in units of s−1), as given
in Destexhe et al. (1998b).

[L(t)] is the concentration of neurotransmitter molecules
in the synaptic cleft, given by

[L(t)] = Lmax

1 + exp[−(Vpre(t) − Vp)/Kp] (27)

where Lmax = 2.84×10−3 M is the maximal concentration,
Vpre(t) is the membrane potential of the presynaptic neuron

expressed in mV, Kp = 5 mV is the steepness parameter and
Vp = 2 mV determines the value at which the concentration
is half of the maximum value (Destexhe et al. 1994). The
ionic AMPA and GABAA currents are given by

IAMPA = gAMPANO [V (t) − EAMPA],
IGABAA

= gGABAA
[NO1 + NO2][V (t) − EGABAA

], (28)

where gAMPA = gGABA = 20 pS, EAMPA = 0 mV,
EGABAA

= −70 mV, NO and NO1 + NO2 are the total
number of open AMPA and GABAA receptor channels,
respectively (Destexhe et al. 1998b).
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