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Abstract
Long-range dependence (LRD) has been observed in a variety of phenomena in nature, and for several years also in the
spiking activity of neurons. Often, this is interpreted as originating from a non-Markovian system. Here we show that a
purely Markovian integrate-and-fire (IF) model, with a noisy slow adaptation term, can generate interspike intervals (ISIs)
that appear as having LRD. However a proper analysis shows that this is not the case asymptotically. For comparison, we
also consider a new model of individual IF neuron with fractional (non-Markovian) noise. The correlations of its spike
trains are studied and proven to have LRD, unlike classical IF models. On the other hand, to correctly measure long-range
dependence, it is usually necessary to know if the data are stationary. Thus, a methodology to evaluate stationarity of the ISIs
is presented and applied to the various IF models. We explain that Markovian IF models may seem to have LRD because of
non-stationarities.

Keywords Interspike interval statistics · Stochastic integrate-and-fire model · Long-range dependence · Stationarity

1 Introduction

The modeling of neuronal activity has a long and rich
history whose first successes date back to the 50’s and the
seminal work of Hodgkin and Huxley (1952). A few years
later, a simpler probabilistic model based on the passage
times of a random walk was introduced by Gerstein and
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Mandelbrot (1964), corresponding to a stochastic version of
the Perfect Integrate-and-Fire (PIF) model.

The activity of a neuron is characterized by the electrical
potential of its membrane, and more precisely by spikes
whose amplitude and duration are very similar to one
another. Therefore, it is rather the sequence of times
at which these spikes occur which is believed to carry
the neuronal information. While temporal (and spatial)
correlations between interspike intervals (ISIs) have been
observed for a long time (see Chacron et al. 2003 and
references therein), the presence of fractal behavior (Teich
1992; Bair et al. 1994) and LRD phenomena in the
spiking activity of neurons has been acknowledged for only
two decades: see Teich et al. (1996, 1997), Lewis et al.
(2001), Lowen et al. (2001), Bhattacharya et al. (2005),
including artificially grown neuronal networks in Segev
et al. (2002), etc. (see the introduction of Jackson 2004
for a very comprehensive list of references). This LRD
phenomenon is ubiquitous in nature, and takes the form of
power-law correlations between interspike intervals rather
than exponentially decaying correlations. In particular, LRD
implies that the present neuronal activity is correlated with
a very distant past.

Until recently in the neuroscience literature, long-range
dependence, also called long memory, has been quantified
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mostly by the Fano factor. In Bhattacharya et al. (2005),
temporal and spatial LRD of in vivo human hippocampal
neurons is detected relying on statistics like the detrended
fluctuation analysis (Peng et al. 1992). We shall adopt
a similar approach, which has also been used to detect
LRD in ion channels (de Oliveira et al. 2006). LRD may
arise due to the influence of presynaptic neurons, as well
as intrinsic factors such as fluctuations in ion channel
activity (producing LRD in neurotransmitter exocytosis,
as described by Lowen et al. 1997). Schwalger et al.
(2015) also mention several possible sources of LRD: neural
refractoriness, bursting and adaptation. Here, the LRD
phenomenon is closely related (although not rigorously
equivalent) to the power-law decay of correlations of the
ISIs. The latter property has been considered as a near
optimal way of encoding neuronal information (Baddeley
et al. 1997).

Early attempts to replicate the LRD property of ISIs
were based on point processes models and were proposed
by Teich (1992), Bair et al. (1994), and more recently
by Jackson (2004). Instead, we focus here on stochastic
Integrate-and-Fire models, especially because they allow to
preserve the aforementioned interpretation on the origin of
LRD. Besides, it is commonly accepted that they provide
a good compromise between biologically complex and
realistic models such as the Hodgkin-Huxley model, and
more simple and amenable ones to perform statistical
computations with.

Brunel and Sergi (1998) and Destexhe et al. (2003)
noticed that an additional differential equation for the
synaptic current, coupled with the membrane potential
equation of a simple IF model, introduces temporal
correlations in the dynamics. Assuming that the pre-
synaptic excitation is modeled by a Poisson noise, it is
natural by diffusion approximation to write the synaptic
equation as a stochastic differential equation driven by white
noise. An interesting feature of this model is that it is simple
enough to compute (or approximate) some ISI statistics:
for example, Middleton et al. (2003) focused on the ISI
density, power spectral density and Fano factor of the PIF,
Lindner (2004) on serial correlation coefficients of the PIF,
Schwalger and Schimansky-Geier (2008) on the ISI density,
coefficient of variation, Fano factor of the leaky integrate-
and-fire (LIF) model, etc. We also refer to Sacerdote and
Giraudo (2013) for a mathematical and statistical treatment
of Markovian IF models.

The purpose of this paper is to explain that a (linear)
IF model with Markovian noise, even enhanced with
a noisy adaptation variable, has exponentially decaying
correlations which cannot produce long-range dependent
ISIs. To account for different correlation patterns observed
on real data, we introduce an IF model governed by a
non-Markovian noise, namely a fractional Brownian noise.

The fractional Brownian motion (fBm) is a stochastic
process whose increments (the noise process) are long-
range dependent and stationary. It naturally appears in
modeling as a limit of more simple processes: For instance,
the fBm appears as the limit of high-dimensional Orstein-
Uhlenbeck processes (Carmona et al. 2000). However, it is
non-Markovian, which makes it a challenge to study and
compute all the aforementioned statistics of spike trains. We
shall discuss the related idea developed by Schwalger et al.
(2015), where general Gaussian processes are proxied by
finite-dimensional Markov processes and serve as input in
an IF model.

In addition to modeling, our contribution is also
methodological: we compare several measures of LRD
and stationarity. Indeed, testing stationarity is important in
the attempt to measure LRD, as we shall see that non-
stationary spike trains from Markovian models can give
the illusion of LRD. We refer to Samorodnitsky (2016)
and Beran et al. (2013) on these questions, as well as the
collection of review articles edited by Rangarajan and Ding
(2003) on modeling long-range dependent phenomena in
various fields ranging from economy, biology, neuroscience
to internet traffic. Last but not least, one is often interested in
getting estimates on the distribution of the ISIs. But without
the stationarity assumption, these distributions are likely to
vary with time, which makes the estimation procedure either
difficult or inaccurate. Hence, it is crucial to determine if
these distributions vary with time, as it is desirable that the
sequence of ISIs be in a stationary regime for such study.
We therefore explain how to test this assumption, with a
direct application to ISIs generated by integrate-and-fire
models.

The remainder of the paper is organized as follows: in
Section 2, we present an account of the tools and methods
to measure LRD and stationarity from a single spike train.
Then the stochastic Integrate-and-Fire models and some of
its variations are presented in Section 3, with an emphasis
on fractional noise. The results of our analysis are detailed
in Section 4.1 for the PIF with Markovian noise with or
without adaptation, in Section 4.2 for the PIF with fractional
noise, and in Section 4.3 for variants with mixed Brownian
and fractional noise. Finally, we discuss these results and
compare them to previous models in Section 5.

2 Methods: statistical measurement
of long-range dependence and stationarity

2.1 Long-range dependence

The terminology “long memory” or “long-range depen-
dence” appeared in the early work of Mandelbrot and
coauthors in the 60’s (Mandelbrot 1965; Mandelbrot and
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Wallis 1968), in an attempt to describe the phenomenon
observed by Hurst on the flows of the Nile river.

If X is a random variable or a stochastic process, we
say that X(ω) is a realization (or an observation) of X for
the outcome ω in the probability space � of all possible
outcomes. Let us denote by E the expectation of a random
variable. A sequence of random variables {Xn}n∈N has the
long-range dependence (LRD) property if it satisfies:

∞∑

n=1

E [(X1 − EX1)(Xn − EXn)] = +∞.

Observe that the LRD property is obtained by averaging
over all possible outcomes. In practical situations though,
where we might have access to very few realizations (or
even a single one) of the same phenomenon, at least two
limitations appear: the length of the sequence is finite, and
we do not know the law of the Xn’s (in fact when dealing
with spike trains, we often have only one sample of the
sequence). To detect long-range dependence, we will use
two estimators: the detrended fluctuation analysis (DFA)
and the rescaled range statistics (R/S). There exist other
popular methods to measure the Hurst parameter (properly
defined in Section 2.1.1), but as seen from Taqqu et al.
(1995) and Weron (2002) we may not expect to get much
better results than with the DFA and R/S methods. Besides,
the latter is the only statistics for which it has been possible
to prove convergence to the Hurst parameter rigorously in
some non-trivial cases as the number of observations goes
to infinity (Samorodnitsky 2016; Beran et al. 2013).

To prove convergence of the R/S statistics, it is usually
required that the sequence {Xn}n∈N is L2-stationary, in the
sense that

for all n, E(Xn) = E(X1),

for all n ≥ m, E(XnXm) = E(Xn−m+1X1), (1)

although there are examples of such convergence for non-
stationary data (Bhattacharya et al. 1983 and Samorodnitsky
2016, p.183–185). Verifying this requirement is often
eluded in practical situations, although non-stationarity
may have important consequences on the interpretation of
statistical analysis of data. We emphasize that measuring
(non-)stationarity and long-range dependence is a tricky
question.

Let us insist on the type of data we shall be dealing with:
these are (finite) sequences X1, . . . , XN (we now use this
notation both for the probabilistic model and a realization
of it). We aim at obtaining the Hurst parameter of the data
from a single sequence (i.e. not from averaging several
realizations), to cope with biological constraints.

2.1.1 The rescaled ranged statistics (R/S )

For a sequence {Xn}n∈N of random variables, let {Yj =∑j

i=1 Xi}j∈N denote the sequence of the cumulated sums,
and let the rescaled-range statistics be defined as:

R/S(N) = max1≤i≤N

(
Yi − i

N
YN

) − min1≤i≤N

(
Yi − i

N
YN

)
√

1
N

∑N
i=1

(
Xi − 1

N
YN

)2
.

If for some H ∈ (0, 1), the law of 1
NH R/S(N) converges,

as N goes to +∞, toward some positive random variable
denoted by eb, we call H the Hurst parameter of the model.
In the most simple example, where the Xn’s are independent
and identically distributed (i.i.d.) with finite variance, the
convergence occurs with H = 0.5. We consider that data
have LRD when H > 0.5 (the reverse case H < 0.5 is often
called anti-persistence, but we will not encounter it here).

Let us recall that N denotes the length of the sequence of
data X1, . . . , XN . A simple way to estimate H is to fit the
following linear model for various values of N :

log R/S(N) = b + H log N .

However this is not the robust way to proceed in practice,
see Beran et al. (2013), Taqqu et al. (1995), Weron (2002).
Instead, we divide the data into M blocks of length n

(N = M × n) and compute the R/S statistics on each block
R̃/S(m, n) for m = 1 . . . M . Then, we average over all
blocks to obtain R̃/S(n) = 1

M

∑M
m=1 R̃/S(m, n). Finally

we let n take integer values between 1 and N and estimate
the slope of the function n �→ R̃/S(n). This slope gives the
estimated Hurst parameter of {Xi}i≤N , frequently denoted
by ĤN in the rest of this paper.

Let us conclude this paragraph with several insightful
examples:

– If the Xn’s are i.i.d. and E
(
X2

n

)
< ∞, then standard

convergence results imply that 1√
N

R/S(N) converges.

– If the Xn’s are mixing and stationary, then H = 0.5 (see
Section 5.2).

– If the Xn’s are the increments of a fractional Brownian
motion with scaling parameter α (fBm, see Section 3.1),
then α is also the Hurst parameter, i.e. 1

Nα R/S(N)

converges.

There are also examples of sequences of random vari-
ables with infinite variance such that 1√

N
R/S(N) converges

(Samorodnitsky 2016, p.178–180), which emphasizes the
robustness of the R/S method to a wide class of distribu-
tion of the Xn. There are also examples of non-stationary
random sequences for which the R/S statistics converges at
prescribed rate H ∈ [0.5 , 1) (Samorodnitsky 2016, p.187).
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2.1.2 The detrended fluctuation analysis (DFA)

This method was introduced by Peng et al. (1992, 1994) in
genetics. We merely rephrase (Weron 2002) to present it.
See also Taqqu et al. (1995) where it is called Residuals
of Regression method and where it is compared to other
methods.

Like in the R/S analysis, the data are divided into M

blocks of length n. For m = 1 . . . M and j = 1 . . . n, we
denote the partial sum on block m by

Ym,j =
j∑

i=1

X(m−1)n+i .

On each block, a linear regression is applied to determine
coefficients (am, bm) such that Ỹm,j := amj + bm, j =
1 . . . n is the least-square approximation of Ym,j . Then, the
empirical standard deviation of the error is computed:

sm :=
√√√√1

n

n∑

j=1

(
Ym,j − Ỹm,j

)2
.

Finally, the mean of these standard deviations is s̄n :=
1
M

∑M
m=1sm. The analysis performed with R̃/S(n) can now

be reproduced with s̄n (i.e. the heuristics is that s̄n behaves
asymptotically as a constant times nH ). The slope computed
from the log-log plot is again denoted by ĤN .

2.1.3 Surrogate data

To check for the statistical significance of the R/S and DFA
analyzes, we employed a bootstrapping with replacement
procedure. For each simulated spike train, we produced 100
sequences of spikes by randomly shuffling the interspike
intervals of the spike train. In this way, we obtain 100 new
spike trains having the same interspike interval distribution,
but without any correlation structure between spikes. The
LRD analysis is applied to these new data to estimate ĤN

as a function of N for each of them. The mean over all
surrogate samples is plotted (see Section 4) in a black solid
line, while two gray lines represent the mean ± 2 times
the standard deviation. Thus, the region between gray lines
will contain roughly 95% of possible H values that can
be obtained by chance from a non-correlated data series. If
the plot of ĤN of the initial spike train enters this shadow
region, then it is doubtful that the data have the LRD
property.

2.2 Stationarity

To compute statistics on a time series (e.g. spike trains)
such as the mean, the distribution or more complex statistics
aimed at determining the presence of power law or LRD,
it is often necessary that the series is stationary. But it

is in general a difficult problem to decide whether time
series data are issued from a stationary distribution or not.
Like the measurement of long-range dependence, part of the
difficulty here arises from the fact that we want to decide
whether biological data are stationary relying on a single
observation (i.e. a single sequence of spikes).

Here we used several tests for stationarity: a simple
windowed Kolmogorov-Smirnov (KS) test, the Priestley-
Subba Rao (PSR) test and a wavelet-based test. Note that
notion of stationarity itself must be clarified: the first test
(KS) evaluates strong stationarity, i.e. whether the law of
the process is invariant by any time shift. The PSR and
wavelet-based tests consider a weaker form of stationarity
that we shall refer to as L2-stationarity. A process X is L2-
stationary if it satisfies Eq. (1). It is important to have in
mind that the best test to use in a given situation depends
strongly on the type of non-stationarity of the data (see for
instance Table 2 in Cardinali and Nason 2010). Since we do
not know a priori what type of non-stationarity may appear,
we are applying several tests.

Note that a frequently used test for stationarity is the
KPSS test (Kwiatkowski et al. 1992), based on unit root
testing. However, we found unit root tests to perform badly
when used on fractional noise (which is stationary).

Like for the Hurst estimation of the previous section,
these tests are designed to be run on a single realization
of the process (said otherwise, no averaging is needed),
which is well-suited for biological data. However, to decide
whether a model yields stationary spike trains, multiple
simulations can be performed. Hence the PSR and wavelet-
based tests were applied to 50 simulations of the same
model and a boxplot of the p-values was plotted. If the data
come from a model which produces stationary ISIs, p-values
must be uniformly distributed between 0 and 1. Otherwise
we may conclude that the model yields data which are not
stationary.

Thus, this methodology is designed to decide whether
our models produce stationary ISIs. If the problem is to
decide whether a single (biological or simulated) sequence
is stationary, such stationarity tests will merely give a
probability that the sequence is stationary.

2.2.1 The windowed Kolmogorov-Smirnov (KS) test

Based on the usual Kolmogorov-Smirnov (KS) test, we
designed a windowed KS test. In this test, the ISI series are
split in windows of fixed time length. Each block is tested
against the others to see if they are described by the same
distribution, using the non-parametric KS test. For each pair,
the p-value is then represented in a two-dimensional table.
The null hypothesis is that the two samples are drawn from
the same distribution. Hence, small p-values indicate that
the data may be non-stationary. In this way, a visual map



J Comput Neurosci (2018) 44:297–312 301

is obtained in which one can easily detect portions of the
time series that do not follow the same distribution as the
others. Since this test does not return a single p-value, it is
not suited to the aforementioned methodology of repeating
simulations. Yet it allows for simple interpretations and we
keep it for comparison with other tests.

2.2.2 The Priestley-Subba Rao (PSR) test

Let X = {Xt }t∈R be a centered stochastic process with finite
variance. It is known that if X is L2-stationary, then

Xt(ω) =
∫

R

eif tA(f ) Zω(df ),

where Z = {Zω(B), ω ∈ �,B ∈ B(R)} is a random
measure on R and A is the spectral density function. A
natural generalization of the definition of Xt is to let A

depend on time. The PSR test (Priestley and Subba Rao
1969) evaluates the time dependence of At(·). Thus, a test
is proposed with the following null hypothesis: t �→ At(f )

is constant in time. Note that the process must have zero
mean (data can be centered in practice), finite variance, and
be “almost” Gaussian.

A two-factor analysis of variance is performed. If the
first p-value is small, then the test can stop here and the
data declared to be non-stationary (Priestley and Subba Rao
1969). Otherwise, one can proceed to test the stationarity
with a second p-value.

2.2.3 A wavelet-based test

This test (Cardinali and Nason 2018) is designed for a
large class of processes called locally stationary wavelet
processes, which can be written:

Xt(ω) =
∞∑

j=1

∞∑

k=−∞
θj,kψj,k(t)ξj,k(ω),

where {ψj,k(t), t ∈ Z} is a wavelet basis, {ξj,k} is an array
of i.i.d. random variables with mean 0 and variance 1, and
{θj,k} are the (deterministic) wavelet coefficients of X.

A test statistic is constructed from the data and a p-value
is computed to decide whether the so-called β-spectrum
(see Cardinali and Nason 2018) is constant. If it is, the data
are then stationary. We refer to Nason (2013), Cardinali and
Nason (2018) and references therein for more details about
this test.

The PSR test and this wavelet test give excellent results
when applied to pure fractional noise, in the sense that they
repeatedly give large p-values, as expected.

2.3 Numerical tools

To test stationarity, we relied upon Python’s function
stats.ks 2samp from the scipy library for our
windowed KS test, and upon the couple of R packages:

– for the PSR test, we have used the R pack-
age fractal, and particularly the function
stationarity.

– for the wavelet-based test, we have used the function
BootWPTOS from the R package BootWPTOS.

Our Python code to measure the Hurst parameter and to
generate spike trains from the various models presented
hereafter is available in modelDB (http://modeldb.yale.edu/
235054).

3 The models

We describe a large class of noisy integrate-and-fire
models with adaptation. Integrate-and-fire models have two
regimes. The subthreshold regime is characterized by the
stochastic differential system

dVt = (μV − λV Vt + γZt ) dt + σdBα
t

dZt = (
μZ,t − λZZt

)
dt + σ ′dB̃α

t . (2)

The process (Vt , t ≥ 0) models the membrane potential
(normalized between 0 and 1) and (Zt , t ≥ 0) corresponds
to an adaptation variable. We call Z the adaptation
variable/process, even though in several cases we remove
the adaptation mechanism. μV , λV , λZ , γ , σ , σ ′ and α are
parameters of the model. We detail the role of μZ,t in the
next paragraph. μV is the voltage offset (in ms−1); λV is the
relaxation rate of the voltage (in ms−1); γ is the coupling
factor between the adaptation variable Zt and Vt (in ms−1);
λZ is the relaxation rate of the adaptation (in ms−1); σ and
σ ′ are the intensities of the noises Bα and B̃α (in ms−α)
– random noises called fractional Brownian motions and
described further in Section 3.1.

μZ,t is an offset factor for Z. We will either consider
that μZ,t is constant in time (μZ,t ≡ μZ) or that it varies
during 1 ms only after a spike (μZ,t ≡ μZ + εZ,t ).
In both cases, let us remark that the law of (Vt , t ≥
0) remains invariant by the modification of parameters

(μZ, μV ) →
(
μZ + a, μV − γ a

λZ

)
. So, to reduce the

number of parameters to estimate, we assume that μZ = 0.
In the second case (adaptation), we thus have μZ,t = εZ,t ,
where εZ,t is equal to 1 during 1 ms after a spike and 0
otherwise. Using this form of adaptation (instead of a fixed
increment of Z) puts a natural limit to Z, mimicking the
behavior of a finite population of ion channels (Schwalger

http://modeldb.yale.edu/235054
http://modeldb.yale.edu/235054


302 J Comput Neurosci (2018) 44:297–312

et al. 2010). More hidden states like Z can be added in
Eq. (2) to approximate Gaussian processes which have long-
range correlations (see Schwalger et al. 2015) where this
idea is fully developed, and Section 4.3.2 where we test it
numerically.

The firing regime is activated at the times τ when the
membrane potential hits a fixed (deterministic) threshold
V th. We call such a time τ a firing time. Just after τ , the
membrane potential is reset to a fixed value V r, the rest
potential. At the same time, we recall that μZ,t can be
incremented due to adaptation. The sequence of firing times
is formally defined for n = 1, 2, . . . as

τn = inf{t ≥ τn−1 : Vt = V th}
and τ0 = 0. The sequence of interspike intervals is {Xn =
τn − τn−1}n∈N, consistently with the notations of Section 2.

3.1 The noise

In Eq. (2), the noises (Bα
t , t ≥ 0) and (B̃α

t , t ≥ 0) are
fractional Brownian motions (fBm) of scaling parameter
α ∈ (0, 1). This family of processes, introduced in
Mandelbrot and Van Ness (1968), is given by Gaussian
centered processes with covariance function

E
[
Bα

t Bα
s

] = 1

2

(
|t |2α + |s|2α − |t − s|2α

)
.

The case α = 0.5 corresponds to the standard Brownian
motion (integral of white noise). When α > 0.5, the
increments of the fBm (i.e. the fractional noise) have
positive correlations decaying very slowly, according to a
power law:

E
[
Bα

1

(
Bα

n+1 − Bα
n

)] = 1

2

(
(n + 1)2α +(n − 1)2α−2n2α

)

∼ 2α(2α − 1)n2α−2.

This property will account either for a strongly correlated
synaptic input to the neuron, or it could also be that the
membrane acts as a fractional integrator over a noncorre-
lated input noise. Contrary to most noises encountered in
the literature (in particular Markovian noises), the range of
dependence of this noise can be said to be infinite. Math-
ematically, this is the long-range dependence property we
shall include in our models. A complementary interpretation
of α is as a scaling parameter (or power law): indeed, the
fBm is statistically scale invariant of parameter α, meaning
that an homothetic time change of parameter c will result in
an homothetic space change of order cα .

This stochastic process has already been applied in
various fields of physics and more recently, biology: in
the context of biological dynamics (cell movement in
crowded environment, so-called anomalous diffusions), see
for instance (Metzler and Klafter 2004; Churilla et al. 1995;

Rangarajan and Ding 2003). Notably, a reviewer kindly
pointed to us the work of Zilany et al. (2009) that makes use
of fractional Brownian motion in the modeling of auditory-
nerve fibers: As a consequence, their model displays power
law adaptation properties, as biologically observed several
years earlier by Fairhall et al. (2001).

More generally, fractional Brownian motion provides
a good, mathematically tractable, model of so-called 1/f

noise, see e.g. Abry et al. (1995). 1/f noise has been
successfully applied to describe many phenomena, from
heartbeat (Peng et al. 1993) to internet traffic (Willinger
et al. 1997), including neuronal fractal dynamics (Lowen
et al. 2001; Sobie et al. 2011).

Contrary to standard Brownian motion, the fBm with
α �= 0.5 is not Markovian, which makes the computation
of even basic statistics of ISIs a very difficult problem.
The case α < 0.5 also yields power-law correlations, but
negative, which is not used here. Very little is known on
the first-passage time (i.e. spiking time) of models such
as Eq. (2) driven by fractional Brownian motion: for the
passage-time of fBm itself, see Delorme and Wiese (2015)
for simulations and formal estimation of the density when
α is close to 0.5 and Decreusefond and Nualart (2008) for
inequalities on its Laplace transform, and on the general
model see Richard and Talay (2016) for inequalities on
Laplace transforms.

3.2 Models without the Z variable (γ = 0)

When γ = 0, Eq. (2) is a noisy Leaky Integrate-and-
Fire (LIF) model. The particular case λV = 0 corresponds
to the noisy Perfect Integrate-and-Fire (PIF) model. The
membrane potential is solution of a linear stochastic
differential equation. In the white noise setting α = 0.5,
the interspike intervals are independent and identically
distributed, so in particular such sequences are stationary
and do not have LRD.

Compared with multidimensional Markov models (see
Section 4.3.2), this model with α > 0.5 is also more
compact. This can be interesting when one needs to estimate
the parameters from real data, see Sacerdote and Giraudo
(2013).

We have also chosen to consider a model without any
refractory period. The results seem to be interesting even in
this simplified case.

3.3 Simulation tools

We simulated the subthreshold regime (2) with a simple
Euler scheme. The hitting times are then recorded each
time the simulated value of V reaches a value above the
threshold, according to the firing regime described above.
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Note that there is no simple and efficient algorithm to
simulate fractional Brownian motion. For our simulations,
we chose the most efficient exact algorithm, namely the

Fig. 1 R/S and DFA analysis of PIF model with noisy adaptation.
A ISI sequence analyzed. parameters are μV = 0.04, λV = 0,
γ = −0.3, σ = 0, λZ = 0.005, σ ′ = 2.5e − 6 (all in units of [ms−1]).
The vertical segmented line shows the limit of the data analyzed in
B. Inset, ISIn/ISIn+1 plot. B Rescaled range (left) and Detrended
Fluctuation Analysis (right) for the ISIs in the first 100 seconds of
simulation (3023 spikes). H value is the slope of the best fit of log n

vs. log R/S(n) or log DFA(n) points to a straight line (segmented line
over the data points). C R/S and DFA analysis of the full ISI sequence
(15164 spikes). The H values indicated in the top left corner, and the
segmented lines correspond to the fit of the full set of points to the
data as in B. The shorter, continuous lines depict the best fit of a subset
of the points. For clarity, not all points are shown. D Slope values
calculated at different n values (with a moving window of 15 points),
for the R/S (left) and DFA analysis (right). The continuous line shows
the mean slope calculated with 100 surrogate series and the shadow
region shows 2 Standard Deviations above and below the mean of the
surrogate data slopes

Davis-Harte algorithm (Coeurjolly 2000) (this algorithm
has complexity O(n log n)). All our Python code is available
in modelDB and can be downloaded from http://modeldb.
yale.edu/235054.

4 Study of LRD and stationarity
of the simulated data

4.1 PIF model with stochastic adaptation (α = 0.5)

4.1.1 Long-range dependence

We simulated a spike train using a Perfect Integrate-and-
fire (PIF) model with adaptation, i.e. (2) with λV = 0.
The voltage dynamic is deterministic (σ = 0) and the slow
adaptation variable (Z) has an additive white noise (i.e.
α = 0.5) with σ ′ = 2.5e − 6.

Figure 1A shows the spikes and the intervals obtained
in a 500s-long realization of the model, which yielded
15,164 spikes for a firing rate of approximately 30 spikes/s
(and a mean ISI of 33ms with standard deviation of 4.5).
The Rescaled Range statistics and Detrended Fluctuation
analyzes were first applied to a shorter sequence of
intervals, the first 100s (3,023 spikes) of simulation.
Figure 1B shows that the common linear regression
between log n and log R/S(n) or log DFA(n) yields a
H value near 0.75 in both cases, suggesting a long-
range dependence of the ISI sequence. However, this is a
Markovian model and we do not expect it to yield LRD, as
we shall prove.

Visual inspection of the plots reveals that the slope
calculated is far from being the asymptotic slope, and
that the curve ‘bends’ toward the right end. When we
included the full sequence to the R/S and DFA analyzes
(Fig. 1C), it is evident that the points are not following a
linear relationship and the calculated slopes are lower. To
characterize better the non-asymptotic nature of the slope,
we repeated the fit to smaller subsets of 15 contiguous
points, in a sliding window fashion. Three of such fits are
shown as continuous lines in Fig. 1C (note that in Fig. 1C
every other point has been omitted) and in Fig. 1D are plotted
the slopes at different positions of the moving window.
From this figure, it is clear that for both R/S and DFA the
actual asymptotic behavior is a slope of 0.5. As the sequence
length n increases, the slope approaches the 0.5 value
and, moreover, gets into the 2*standard deviation range
calculated from surrogate data (see Section 2). Thus, only
the analysis of a very large sequence of data —probably
discarding the shorter sequences in the analysis— will
reveal that what appears to be long-range dependence has
only a limited time span and that the phenomena underlying
it is Markovian. Nevertheless, even on smaller sequences,

http://modeldb.yale.edu/235054
http://modeldb.yale.edu/235054
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Fig. 2 Hurst estimation depending on the different sources of noise.
Detrended Fluctuation Analysis of simulations with noise only in the
voltage equation (A), in both the Voltage and the Adaptation equation

(B), and in the Adaptation equation (C and D) with two values of σ ′.
Panels are as described in Fig. 1C and D (right)

Fig. 3 Dependency of the LRD on adaptation parameters. A Effect of a larger rate for Z. B Effect of a smaller rate. C. Long-range dependence
analysis in the absence of adaptation, i.e. the Z variable is not affected by the occurrence of spikes
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A B

C D

λZ = 0.05 λZ = 0.005

λZ = 0.0005 σ = 0.0001, σ' = 0

Fig. 4 PSR and wavelet tests of stationarity on the PIF model with
stochastic adaptation. The box displays the first quartile, the median
and the third quartile, the whiskers extend to the most extreme data
point which is no more than 1.5 times an interquartile away from the
box. We observe here the effect of τZ = 1/λZ on the stationarity of the
ISIs. We see in A, B and C that the smaller λZ is, the further the ISIs
are from being stationary. τZ can be interpreted as a relaxation time
toward a stationary regime. In D, the absence of noise in the adaptation
variable yields stationary ISIs

we see that the Hurst estimator Ĥn is decreasing with n in
the Markovian model (Figs. 2 and 3), while it is relatively
stable in the fractional case, as we shall see later (Fig. 6).
In the following, the R/S analysis is no longer displayed in
the plots. The reason is that we systematically observed a
similar quantitative behavior between the R/S and the DFA,
hence it was not necessary to keep both. We chose the DFA
over the R/S for its better accuracy (see Fig. 7).

The apparent long-range dependence of the data is
largely related to the stochastic nature of the adaptation.
Figure 2A shows that the apparent LRD is lost when the
noise is present only in the voltage equation (σ > 0) but not
in the adaptation (σ ′ = 0). When the noise is present in both
equations, the apparent LRD is somewhat reduced for high
values of σ (Fig. 2B). Also, Fig. 2B shows an interesting
case where visually the straight line seems to be a good
fit of the log n versus log DFA(n) data (and the associated
r coefficient seems also good). However, the bottom plot
shows that H > 0.5 is only observed at the left side of the
plot (shorter sequences) while the asymptotic value actually

falls within the standard deviation for the shuffled data. On
the other hand, the magnitude of the noise seems not to
affect much this behavior (Fig. 2C and D).

The LRD is also linked to the rate constant for slow
adaptation, λZ . Figure 3 shows that a large rate (or a small
time constant τZ = 1/λZ) is associated with the loss of
apparent LRD (Fig. 3A), while a smaller value produces a
LRD that is maintained for longer sequence lengths and also
a higher H value (Fig. 3B). Further parameter explorations
revealed that in order to observe the apparent LRD, the time
constant for slow adaptation has to be at least twice the mean
interval between spikes (not shown).

Figure 3C explores the situation where the adaptation
variable Z is no longer updated at each spike (i.e., μZ,t =
0 for every t). In this case, Zt can be understood as a
correlated noise (in the form of an Ornstein-Uhlenbeck
process) added to the variable V . Although the adaptation
effect is lost and the firing rate is increased (not shown),
the apparent LRD is still present, showing that it is the
correlated nature of the stochastic variable that causes this
effect. This is very much in line with what has been
described for other statistics of firing in the presence of
different forms of correlated noise (Schwalger et al. 2010,
2015).

4.1.2 Stationarity

We base our stationarity analysis of the spike trains on
the windowed KS, PSR and wavelet tests. For the PSR
and wavelet tests, we apply the methodology described in
Section 2, hence in each panel of Fig. 4, the left bar is a
boxplot of 50 p-values from the PSR test computed from 50
independent spike trains generated by the same model; the
right bar does the same with the wavelet test. On the other
hand, Fig. 5 shows the results of the windowed KS test (see
Section 2.2.1) for a single realization of the models indicated.

In the PIF model with stochastic adaptation, a lower
adaptation rate λZ (longer adaptation time constant)
is associated with a loss of stationarity, i.e. the data
windows are no longer described by the same distribution
(Figs. 4A–C and 5A). It seems that a lower adaptation
rate λZ (corresponding to a larger relaxation time 1/λZ)
produces a sequence of ISIs farther from stationarity, and
that 1/λZ not only characterizes the speed of convergence of
Zt to its stationary regime, but also the speed of convergence
of the law of the ISIs to their stationary law.

Observing Figs. 4 and 5A, it seems that the spike
trains for larger λZ are stationary while they are not for
smaller λZ . A first explanation could be that the transient
period to reach a stationary regime is longer for small
λZ , since the characteristic time τZ = λ−1

Z is larger.
However we obtained the same result after removing a
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Fig. 5 Windowed KS test of ISI series, for the PIF model with stochas-
tic adaptation (A) and the PIF model with fractional Gaussian noise
(B). In A, the panel for λZ=0.005 analyzes the same data as in Fig. 1,
while panels for λZ=0.05 and λZ=0.0005 use the same data as in
Fig. 3A and B, respectively. The panel with σ=0.0001, σ ′=0 corre-
sponds to Fig. 2A. In B, three values of α are shown. At the top of each

panel, a sample sequence of 60 s long (around 1800 spikes) is shown.
The ISI sequence analyzed in the windowed KS test is of 300 s (9000
spikes), with 20 windows of 15 s. Blue colors (p-value < 0.05) indi-
cate that the series compared are likely to be described by different
distributions

sufficiently large number of spikes at the beginning of
the sequence. In fact we believe that even for small
λZ , the spike train reaches a stationary regime: First,
it is likely that the stationarity tests are not robust to
the very large fluctuations induced by a small λZ (see
Fig. 5A) and do not scale well; second, we performed
multi-sample tests of stationarity for λZ = 0.0005,
which confirmed our intuition of a long transient period
followed by stationarity (although we recall that such
tests require to simulate many spike trains from the same
model, which is not feasible biologically). This question has
practical consequences, since non-stationary time series cannot
be analyzed, in general, with the same methods as stationary
time series and doing so can lead to severe mistakes.

On the other hand, adding only white noise to the
dynamics of V produces stationary data (Figs. 4D and 5A).

4.2 PIF model with fractional Brownian noise

We decided to compare the behavior of the previous
Markovian PIF model with or without adaptation (but with

noise always in the adaptation variable) to a non-Markovian
PIF model without adaptation mechanism, as this was proved
to be irrelevant as far as LRD is concerned. Therefore we set
γ = 0, λV = 0 and explored values of α above 0.5. σ and μ

were adjusted in order to obtain similar mean and variance
of the ISIs obtained in the previous simulations.

4.2.1 Long-range dependence

Figure 6 shows that adding a fractional Gaussian noise
indeed produces a long-term dependence in the series of
ISIs, as evidenced by both Rescaled Range statistics and
Detrended Fluctuation Analysis. In contrast to the PIF
model with stochastic adaptation, however, the high slope
in the log n versus log R/S(n) or log DFA(n) plots is
maintained and does not decay as n increases. In other
words, the Ĥn value obtained by these analyzes appears to
be rapidly close to its true asymptotic value. This behavior
is observed at different values of α (Fig. 6). The PIF model
with fractional Brownian noise, however, shows a weaker
correlation of consecutive intervals (Fig. 6A, inset, r = 0.34)
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than the PIF model with noisy adaptation (compare to inset
of Fig. 1A, r = 0.85).

Furthermore, we see in Fig. 7 that estimated Hurst
parameter Ĥn is very close to the input value α. Hence we
can safely assert that Ĥn converges to α.

4.2.2 Stationarity

Results concerning stationarity of this model are shown in
Fig. 5B for the KS test. We conclude that the ISIs are
stationary when α = 0.5 (the PSR and wavelet tests yielded
the same conclusion). This agrees with the theoretical result
in this simple framework. The conclusion from the cases

α = 0.7 and α = 0.85 is less straightforward in view of the
PSR and wavelet tests, but we performed additional tests (all
not shown) which suggest stationarity as well. Even more
than for the Markovian model though, proving stationarity
seems mathematically challenging.

4.3 Other models

4.3.1 Leaky integrate-and-fire models

The leaky Integrate-and-Fire model corresponds to λV > 0
in Eq. (2), instead of λV = 0 for the PIF. We draw the same
conclusions on the LRD property for the LIF (not shown).

Fig. 6 Long-range dependence behavior in a PIF model with frac-
tional Gaussian noise. A sequence of ISIs obtained in a simulation
with equation (2) and parameters μV = 0.0303, λV = 0, γ = 0,
σ = 0.0117, α = 0.7. The Z variable was not taken into account.
Inset, ISIn/ISIn+1 plot. B DFA analyzes for the full sequence of
14,500 spikes. The three continuous lines that depict local slopes are

overlapping a segmented line that represents the best fit for all the data
points. As in Fig. 1C, every other point has been omitted. Bottom, plot
of best-fit slopes in moving windows of 15 points. The continuous line
and the shadowed region are the mean and standard deviation, respec-
tively, of the fits with surrogate data. C and D DFA analysis of ISI
sequences obtained with α = 0.6 and α = 0.8, respectively
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Fig. 7 Measure of the Hurst parameter Ĥn of the fractional PIF model.
For each α ∈ {0.5, 0.6, 0.7, 0.8, 0.85}, we simulated 50 independent
sequences of ISIs from a fractional PIF with parameter α (and with
μ and σ chosen so that the ISIs Xn have the following moments
E[Xn] ≈ 32.9ms and Var[Xn] ≈ 20). The Hurst parameter was
estimated by the R/S (blue plot) and DFA (red plot) methods for each
simulation, and for each underlying α parameter, the result has been
aggregated in a boxplot. We see that the estimated Hurst parameter of
the ISIs is very close to the value of the scaling parameter of the fBm
used in the simulations. The DFA method seems to perform better

4.3.2 Higher dimensional integrate-and-fire models with
Brownian noise

Following the idea in Schwalger et al. (2015), we simulated
a PIF with three noisy adaptation variables whose time
constants are 200ms, 1000ms and 5000ms (Fig. 8A).
The aim is to get a better approximation of long-range
dependence with a Markovian model. We observe in Fig. 8A
that the Hurst estimation decays more slowly in this new
model, indicating that it can be a good approximation of
a LRD sequence when the length is not too large. Yet it
still seems to converge to 0.5, which means that it is still
not LRD. To emphasize the slower convergence of the LRD
estimator in the multidimensional model, we compared it to
the previous PIF model (from Section 4.1) with a large time
constant of 5000ms (Fig. 8B).

We observe (particularly in Fig. 8B) that the mean curve
of the surrogate data can be higher than 0.5 for the DFA,
although it decreases (we checked that it indeed decreases to
0.5 for longer spike trains). This is a drawback of the DFA,
which is not robust to data with very large mean and/or
variance. We confirmed this either by artificially removing
the largest ISIs (hence reducing drastically the variance), or
by simulating sequences of i.i.d. positive random variables
following a Pareto law (with scale 1 and shape parameter
between 1 and 2). In that situation, a strong bias appears,
unlike the R/S which still returns values close to 0.5 (not
shown).

4.3.3 PIF model with Brownian and fractional Brownian
noise

Considering the approach of some authors (Schwalger et al.
2015) to add high-dimensional noise in the adaptation
variable (see also some heuristics in Section 5.2) and
the power law behavior of the adaptation often observed
(Fairhall et al. 2001), one is tempted to consider the
following modification of our model (2), where the scaling
parameter of the noise in the voltage is 0.5 and is α > 0.5
in the adaptation variable:

dVt = (μ − λV Vt + γZt ) dt + σdB
1/2
t

dZt = (−λZZt ) dt + σ ′dB̃α
t (3)

This model may allow for more complex behaviors, e.g.
observations from simulations on the previous model
display several firing regimes:

– if σ = 0 and for λZ > 0, λV = 0, μ = −10γ ,
the estimated Hurst parameter of the ISIs, Ĥn, remains
close to the scaling parameter α of the model.

– if σ > 0 and σ ′ � σ , the ISIs are almost independent
and Ĥn is close to 0.5.

– if σ � σ ′ and μ � 1, then similarly to the biological
data, Ĥn increases with n toward the value α and the ISI
histogram seems to deviate from the inverse Gaussian
distribution (figures not shown).

Furthermore, it would be interesting to see in future works
if this model shares the multiple time scale adaptation
observed by Fairhall et al. (2001) and modeled by
Lundstrom et al. (2008), Teka et al. (2014) using fractional
differentiation or cascade processes as in Drew and Abbott
(2006), Pozzorini et al. (2013).

5 Discussion

In this paper, we have studied two approaches to model
the long-range temporal correlations observed in the
spike trains of certain neurons. In a first approach, the
introduction of a weakly correlated input noise with a finite
number of timescales into a linear Integrate-and-Fire model
can produce quite large time dependencies and be a good
approximation of a power law dynamics; however this is
not genuine LRD nor power law behavior, as it is shown
when a sufficiently large sequence is analyzed. Besides,
we have shown that using multiple large time constants
usually yields non-stationarities. A second approach is also
of the Integrate-and-Fire type, with a stochastic input called
fractional Brownian motion. To the best of our knowledge,
this is the first time this stochastic process is used in an IF
model, and we showed that it is very well suited to produce
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Fig. 8 Long-range dependence in the PIF model with multidimen-
sional noise. In A, a PIF with three-dimensional noise whose time
constants are 200 ms, 1000 ms and 5000 ms is simulated and we
observe a slow decay of the Hurst estimation. In B, a PIF with a single

time constant (τ = 5000 ms) is simulated and the Hurst parame-
ter decreases to 0.5, even with a large time constant. This is coherent
with the results of Section 4.1.1. Note that in both cases, the slope is
decreasing, unlike the fractional PIF model (Fig. 6)

genuine long-range dependent spike trains. Besides, this
type of stationary Gaussian noise emerges naturally as a
scaling limit of discrete noises (see Sections 5.1 and 5.2)
which can originate either from the fractal behavior of
ion channels or from the cumulated inputs of the neuronal
network.

To measure the long-range dependence of spike trains,
we followed a well-established procedure (Taqqu et al.
1995). For previous examples in neuroscience, see for
instance the DFA analysis of ISIs in Bhattacharya et al.
(2005) or the R/S analysis for ion channels in de Oliveira
et al. (2006). In the literature to date, we have identified sev-
eral types of IF models aimed at producing correlated spike
trains: those with colored noise input (i.e. Markov noise)
(Brunel and Sergi 1998; Middleton et al. 2003; Lindner
2004; Schwalger and Schimansky-Geier 2008; Schwalger
et al. 2010) and more recently PIF with high-dimensional
Ornstein-Uhlenbeck noise (Schwalger et al. 2015);

non-renewal point processes input1 (Teich 1992; Bair et al.
1994; Teich et al. 1997; Lowen et al. 1997, 2001; Jackson
2004); and models with 1/f noise input (Sobie et al. 2011).
The first conclusion of our study is that the ISIs generated
from Markovian integrate-and-fire models do not have
LRD stricto sensu, and produce instead ISIs whose corre-
lations are exponentially decaying. From this perspective,
we must however point out Schwalger et al. (2015) whose
precise goal was to replicate power-law decay of the corre-
lations. While this goal is achieved on a reasonable band of
frequency (see the power spectrum of their simulated spike
trains), we have shown that such models still do not produce
LRD. However, as seen in all Figs. 1 to 3, these Markovian
integrate-and-fire models (whether perfect of leaky) can
replicate a LRD effect for sequences of spikes with a given

1A limitation of the point process approach is that it is far from the
biological reality.
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length (see Fig. 1), if the adaptation variable is noisy and its
time constant 1/λZ is large enough. Nonetheless, plots of
the estimated Hurst parameter as a function of the sequence
length are always decreasing. This contrasts with fractional
integrate-and-fire models, for which this function appears
constant at a value Ĥ (see Fig. 6). This provides a simple
criterion to discriminate between Markovian and fractional
IF models. Moreover, we see in Fig. 7 that Ĥ , the estimated
Hurst index of the spike trains, is exactly the scaling param-
eter α of the fractional Brownian motion injected in the
model.

We also presented and compared the effectiveness of
several stationarity tests suited to time series analysis. The
methodology for testing stationarity we propose seems
relatively new to the neuroscience literature. Stationarity
is often believed to hold for ISIs (Schwalger et al. 2015),
yet it produced surprising results since we observed that
sequences of ISIs can look non-stationary (Figs. 4 and 5),
even when generated from a simple IF model with Ornstein-
Uhlenbeck noise. However, we believe that a stationary
regime exists for such models. This stationarity property
has important consequences: if a sequence of ISIs has a
stationary regime and its correlations decay exponentially
fast, then the estimated Hurst of the R/S statistic must be
0.5. Altogether the present discussion on stationarity leaves
several questions unanswered and should be the purpose of
future work.

A very interesting and important problem that we may
also be the content of future work is calibration. Consider
the following situation: given an observed spike train with
measured Hurst parameter Ĥ > 0.5, we want to calibrate
either the parameters μV , σ and α of a fractional PIF or
the parameters μV , γ, σ, λZ, σ ′ of a Markovian (α = 0.5)

PIF with an adaptation variable. In the first case, it results
from Fig. 7 that we must choose α = Ĥ . We only have
two more parameters to fix, and the mean of the ISIs is
given by 1

μV
(assuming implicitly that the threshold is 1).

We can then try to compute σ from the variance of the ISIs
and Ĥ . On the other hand, we have seen from Fig. 3 that
the Ĥ value can be replicated by adjusting λV : a larger λV

yields smaller Ĥ parameter, but also impacts the first two
moments of the ISIs. Hence it may be easier to fix first the
scaling parameter of the noise, rather than having additional
parameters just to replicate the correlations of the ISIs. Then
we can focus on additional properties that adaptation can
bring to integrate-and-fire models.

5.1 Other classes of models with fractal/LRD
behavior

Despite the numerous articles emphasizing the presence of
fractal and/or long-range dependence of the spiking activity
of some neurons (see Section 1), we merely identified

two streams of papers proposing a model reflecting these
characteristics. In Jackson (2004) (see references therein
from related previous works from the 90’s, including in
particular (Lowen et al. 1997) and coworkers), an integrate-
and-fire model is used in conjunction with various point
processes modeling a random input into the neuron. If the
point process is a renewal process, then it may produce long-
range dependence only if it has infinite variance (Jackson
2004, Theorem 2). Infinite variance models can get far
from biological observations, thus a more sophisticated
point process, the fractional-Gaussian-noise-driven Poisson
process, is used in Jackson (2004). This process is a doubly
stochastic Poisson process, whose (stochastic) rate function
is a nonlinear function of a fractional Gaussian noise. Each
jump corresponds to a spike in a presynaptic neuron, and
when injected in an IF model, it is successful in producing
spike trains with long-range dependence (as measured with
the Fano factor). However, the use of such process seems
less mathematically tractable than our approach with a
fractional noise. In fact, the fBm is itself the scaling limit of
discrete processes (Taqqu 1975; Sottinen 2001; Hammond
and Sheffield 2013), is statistically self-similar and with
stationary increments, which makes it a natural candidate as
input noise.

The second approach to model LRD is an Integrate-
and-Fire model with 1/f noise proposed by Sobie et al.
(2011), strongly related to our model. The link between
fractional Brownian motion and 1/f noise is explained in
Abry et al. (1995), although there is no definition of 1/f

noise as clear and universally accepted as the definition
of fBm can be. Besides, an advantage of using fBm is
that it can be exactly simulated, which ensures that all
frequencies are present in its spectrum and that LRD holds,
while a simulated 1/f noise is an approximate 1/f noise
with limited bandwidth. Nevertheless, the approach of Sobie
et al. (2011) is complementary to ours since this study
focuses on the dispersion of spike trains in time windows
[0, t] for various times t (as measured by the Fano factor).

5.2 Heuristics on long-range dependence
and fractional Brownian motion

In classical Markovian models (e.g. PIF model with
multidimensional Ornstein-Uhlenbeck noise, α = 0.5),
the correlation between interspike i and i + n decays
exponentially in n, even though having high-dimensional
OU process is intended to produce large time constants.
We assert that the ISIs of this model are mixing, i.e. that
supA,B |P (Xi ∈ A, Xi+n ∈ B) − P(Xi ∈ A)P(Xi+n ∈
B)| ≤ φ(n), for some φ such that

∑
n φ(n) < ∞.

We also believe, based on mathematical arguments and
some numerical evidence (see Section 4), that such model
produces ISIs which converge to a stationary regime.
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From Doukhan (1994), Chapter 1.5, it is known that
any stationary and mixing sequence satisfies an invariance
principle. This is enough to apply Theorem 4 of Mandelbrot
(1975), which gives the convergence of N−1/2R/S(N) to
a non-trivial random variable. Therefore we conjecture the
following result that we plan to prove in a separate work,
that is:

If α = 0.5, the sequence of interspike intervals
generated by the PIF/LIF model (2) has a stationary

regime, and N− 1
2 R/S(N) converges to a non-

degenerate random variable (i.e. ĤN → 0.5).

Our second heuristics is about the approximation of
the fractional Brownian motion by a sequence of n-
dimensional Ornstein-Uhlenbeck processes, as n increases.
In Schwalger et al. (2015), the general idea is that
the covariance of a general Gaussian process can be
approximated by an Ornstein-Uhlenbeck with sufficiently
many components. In Carmona et al. (2000), it is proven
that the fBm is indeed an infinite-dimensional Ornstein-
Uhlenbeck process. Therefore, we can consider our model
with fractional noise as a natural limit to the model proposed
in Schwalger et al. (2015). Although this is not the only
possible limit in their approach, the fBm is the most sensible
choice to obtain long-range dependence.
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