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Abstract During slow-wave sleep, brain electrical activity is
dominated by the slow (< 1 Hz) electroencephalogram (EEG)
oscillations characterized by the periodic transitions between
active (or Up) and silent (or Down) states in the membrane
voltage of the cortical and thalamic neurons. Sleep slow os-
cillation is believed to play critical role in consolidation of
recent memories. Past computational studies, based on the
Hodgkin-Huxley type neuronal models, revealed possible
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intracellular and network mechanisms of the neuronal activity
during sleep, however, they failed to explore the large-scale
cortical network dynamics depending on collective behavior
in the large populations of neurons. In this new study, we
developed a novel class of reduced discrete time spiking neu-
ron models for large-scale network simulations of wake and
sleep dynamics. In addition to the spiking mechanism, the
new model implemented nonlinearities capturing effects of
the leak current, the Ca®* dependent K™ current and the per-
sistent Na™ current that were found to be critical for transitions
between Up and Down states of the slow oscillation. We ap-
plied the new model to study large-scale two-dimensional
cortical network activity during slow-wave sleep. Our study
explained traveling wave dynamics and characteristic syn-
chronization properties of transitions between Up and Down
states of the slow oscillation as observed in vivo in recordings
from cats. We further predict a critical role of synaptic noise
and slow adaptive currents for spike sequence replay as found
during sleep related memory consolidation.

Keywords Slow-wave sleep oscillations - Large-scale
simulations - Up and down states

1 Introduction

Electroencephalogram (EEG) and local field potential (LFP)
recordings during slow-wave sleep, show a prominent slow
oscillation at 0.2 to 1 Hz (Achermann and Borbely 1997;
Steriade et al. 1993a). In vivo intracellular recordings revealed
that sleep slow oscillation arise from periodic transitions be-
tween active (or Up) and silent (or Down) states in the mem-
brane voltage of the cortical and thalamic neurons (Steriade
et al. 2001; Timofeev et al. 2001).
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Experimental evidences suggest that cortical network plays
critical role in generation of sleep slow oscillations.
Deafferented cortical slab generates a slow oscillation
(Timofeev et al. 2000a) after sufficient time following deaf-
ferentation (Lemicux et al. 2014) and a slow-oscillation like
activity was recorded in cortical slices in vitro (Sanchez-Vives
and McCormick 2000; Runfeldt et al. 2014). A slow oscilla-
tion was observed following extensive thalamic lesions
(Steriade et al. 1993b). Intracellular recordings suggest that
the Up states of slow oscillation may arise from progressive
accumulation of miniature EPSPs in the intracortical synapses
(Timofeev et al. 2000a; Chauvette et al. 2010) and initiation of
Up states critically depends on the activity of intrinsically
bursting pyramidal neurons in layer V (Sanchez-Vives and
McCormick 2000; Chauvette et al. 2010).

Previous computational studies reproduced many impor-
tant properties of the sleep slow oscillation in the small
thalamocortical network models based on the Hodgkin-
Huxley type neurons (Timofeev et al. 2000a; Bazhenov
et al. 2002; Compte et al. 2003). In these studies, the Up and
Down states generation depended on the complex interaction
of the intrinsic and synaptic currents. However, conductance
based network models are computationally inefficient and
simulations of the large-scale networks involving more than
few tens of thousands of neurons with realistic connectivity
become intractable. EEG and LFP recordings suggest that
slow oscillation exhibits complex spatiotemporal dynamics
(Sheroziya and Timofeev 2014; Massimini et al. 2004), which
may influence properties of memory consolidation during
deep sleep (Diekelmann and Born 2010). Thus, there is a need
for developing computationally efficient neuronal models ap-
plicable for simulations of the critical properties and the large-
scale spatio-temporal patterns of the sleep slow oscillation
in vivo. While many classes of reduced models exist, e.g.,
integrate-and-fire model (Knight 1972; Tuckwell 1988; Hill
and Tononi 2005), Izhikevich model (Izhikevich 2004,
Izhikevich and Edelman 2008), they do not have explicit
mechanisms for the action of the specific intrinsic currents
which are known to play a critical role in generating sleep
slow waves (Timofeev et al. 2000a; Compte et al. 2003).

In this new study we developed a network model for sim-
ulations of the cortical neuronal dynamics based on the com-
putationally efficient discrete time neuronal models (Rulkov
2002; Rulkov and Bazhenov 2008). We showed that addition
of nonlinear dynamical bias, activity dependent depolarizing
mechanisms and slow hyperpolarizing mechanisms to the pre-
viously developed map-based model design (Rulkov 2002;
Rulkov and Bazhenov 2008) can mimic the effects of the K*
leak, the persistent Na* and the slow Ca**-dependent K* cur-
rents, which are required for modeling the wake-like activity
and the sleep slow oscillation. The new model design was
applied to study large-scale neuronal dynamics in 2D cortical
network models. It revealed the complex spatio-temporal
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patterns and characteristic delays in transitions between Up
and Down states of the cortical slow oscillation as observed
during deep sleep in vivo. Here we emphasize that high com-
putational efficiency of the model results from discrete time
design of its dynamical equations. At the same time, the inter-
nal structure of the model can be fairly complicated, which
allows to model all necessary biophysical components of the
neuronal dynamics, without sacrificing its high computational
performance.

2 Results

We first present in vivo recordings of the slow oscillation from
cats during natural sleep. Next, we formulate the model and
describe properties of a single model cell and compare it to the
intracellular recordings. We then present dynamics of the sim-
plified all-to-all connected network. Finally, we discuss simu-
lations of the large-scale anatomically realistic network model
and compare it to the field potential recordings in vivo.

2.1 In vivo experiments

EEG and local field potential (LFP) recordings from naturally
sleeping animals during slow-wave sleep (SWS) revealed syn-
chronized oscillations with a frequency around 0.5-1 Hz
(Fig. 1a). Recordings from different regions of the cortex of
anesthetized animals found highly synchronous onset of the
slow waves (with delay less than few hundred milliseconds)
(Fig. 1a, b) (Contreras and Steriade 1995; Volgushev et al.
2006). Intracellular recordings during slow-wave sleep re-
vealed that during slow oscillation the pyramidal neurons ex-
hibit rhythmic transitions between active (or Up) and silent (or
Down) states of the membrane voltage (Fig.1c). Down states
represent periods of hyperpolarized (< =75 mV) membrane
voltage, while Up states are characterized by the depolariza-
tion and action potentials in many cortical neurons. The Up
and Down states were clearly separated in the membrane volt-
age (see voltage histogram in Fig.1d). Active states resulted in
a peak at ~ — 59 mV and silent states reflected in a peak at
~— 67 mV. These two peaks in the voltage distribution (Fig.
1d) were separated by ~8 mV; such a bimodal distribution of
intracellular voltage values represents important marker of the
sleep slow oscillation.

Fig.1 presents data of the electrophysiological record-
ings of slow-wave activity in vivo in cats. While this fig-
ure is not supposed to provide a rigorous analysis of the
slow-wave activity, it summarizes characteristic electro-
physiological features, which are commonly observed in
recordings of slow-wave oscillations in animals and
humans (Achermann and Borbely 1997; Steriade et al.
2001; Timofeev et al. 2001, 2000a; Lemieux et al. 2014;
Sanchez-Vives and McCormick 2000; Runfeldt et al.
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Fig.1 Simultaneous multisite local field potential (LFP) and intracellular
recordings during an episode of slow-wave sleep. a. Depth LFPs reveal
characteristic slow oscillations at ~0.5 Hz. Note large upward deflections
representing Down states and nested spindle oscillations (~10 Hz) during
Up states. Reversal of the slow-wave polarity in the LFP depth profile
comes then as natural consequence of differential location of recording
electrode relative to the dipoles of large pyramids from deep layers. b.
Scheme of a cat brain showing LFP electrode locations (small filled

2014; Steriade et al. 1993b; Chauvette et al. 2010;
Volgushev et al. 2011). This includes: (a) low frequency
(<1 Hz) LFP oscillation (Fig. 1a) at multiple cortical lo-
cation (Fig. 1b); (b) transitions between active and silent
states in the intracellular activity of pyramidal neurons
(Fig. lc); (c) bi-modal membrane voltage distribution of
pyramidal neurons (Fig. 1d).

While past studies succeeded in modeling many char-
acteristic properties of the slow oscillation (Bazhenov
et al. 2002; Compte et al. 2003), they were limited by
the Hodgkin-Huxley design and, as a result, simulations
of relatively small neural networks. Understanding com-
plex spatio-temporal properties of the slow oscillation
(Massimini et al. 2004; Volgushev et al. 2011) requires
analysis of the large-scale multi-dimensional multi-layer
network models. While many reduced neuronal models
exist (Knight 1972; Izhikevich 2004; Izhikevich and
Edelman 2008), they lack essential intrinsic properties
necessary for simulating transitions between Up and
Down states of the slow oscillation. Below we address
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circle) and the location of the recording chamber (dotted circle) for
intracellular recordings. c¢. Intracellular recording from a cortical
pyramidal cell during slow-wave sleep recorded simultaneously with
LFPs shown in A. d. Histogram of the membrane potential distribution
of the neuron shown in ¢. Note bimodal distribution with the left peak
representing membrane voltage during Down states and the right peak
corresponding to the Up states

this issue by developing, based on our previous design
(Rulkov 2002; Rulkov and Bazhenov 2008; Bazhenov
et al. 2008; Rulkov et al. 2004), a new class of reduced
model neurons capable of reproducing properties of both
wake and sleep states in the thalamocortical networks.

2.2 Map-based neuronal model

In this work we propose computationally efficient phe-
nomenological models for simulation of the cortical py-
ramidal cells and inhibitory interneurons. The model is
implemented in the form of difference equations (a map)
based on previous works (Rulkov 2002; Rulkov et al.
2004). In the following section we first describe the main
equations that we used for modeling of a single neuron
dynamics.

The model of a single isolated cortical pyramidal cell in-
cluded 4 continuous dynamical variables, which are governed
by the following set of the difference equations:
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Xn+1 :fa(xnvyn + Bn)v

Vus1 = V(%0 + 1) + p(o + o), (1)
Uptl = YylUn + H(xn_1)7

ko1t = kn + H(xn + 0.5)(K1—kn) + H(—(x,, + 1))(K0—kn)

Here x,,, y,, u, and k, are time-dependent continuous dy-
namical variables at discrete moments of time z. The time step
for model (1) is fixed and assumed to be 0.5 ms. Hence, the
ratio n/2 defines simulated time period in milliseconds. Below
we explain the different components (equations) of the pro-
posed model of the single pyramidal neuron. The complete
description of the network model and its specific parameters
can be found in section 4.

2.2.1 Spike-generating mechanism

As in the original model (Rulkov 2002) the spike generating
mechanism is described by two variables x,, and y, (the first
two Equations in (1)). Variable x,, defines transmembrane volt-
age of the neuron as V,, = 50x,, — 15. Spike waveform is deter-
mined by nonlinear function f;,, which was modified from its
original form (Rulkov 2002) to get better control over the
spike shape and firing rate:

%—Q—S(w) x< 0.5,
f(y(x7 W) - +1 -0.5<x < +1, (2)
-1 x> 41,

here function S(w) has the following form:

w, w < wy
S(w) = {Wo + (w—wo)k,  w>wp (3)

Parameters « and wy in (2,3) control non-linearity of the
spike generation mechanism. The main difference of spike-
generating block (x,,,y,) from the original model is in the func-
tion S(w). Note, that for fixed value k,=1 function S(w) re-
duces to S(w) =w and the spike generating block (x,,y,,) is now
described by original map model (Rulkov 2002). The first two
equations in system (1) can be viewed as a black box, which
receives input in the form of 3, and o, and, based on that
input, produces series of action potentials (output). In turn,
0, and o, may depend on external inputs and additional in-
trinsic currents (such as stimulation dc current, synaptic cur-
rent, potassium leak current, afterhyperpolarization current
and others). Similar approach, in capturing important effects
of intrinsic currents, was used before for the design of after-
spike hyperpolarization effect in model of cortical interneu-
rons (Rulkov et al. 2004). By designing dependence of quan-
tities 3, and o,, on external and intrinsic currents, it is possible
to incorporate additional biophysical mechanisms into the
model. We found this hybrid approach rather useful for aug-
menting dynamical features of map model to capture effect of
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specific ionic currents and will demonstrate its application to
the problem of slow-wave sleep oscillations modeling.

Before going into details of the proposed model (1), we first
revisit basic properties of the original model to provide intuition
on the model design. First, we consider only spike-generating
block (x,,),) and assume that 3, and o, are constant values,
which are proportional to constant input current /: o, =
Ko lo, 3,=Kglo. Due to the small value of the parameter 1 <
1, variable y, has relatively slow dynamics and equation x,, =
folX, Vi + B,) defines a slow motion manifold (SM), which is
convenient to plot on the plane (y, + (3, x,,) (dashed blue curve
in Fig. 2a). Intersection of slow motion manifold with line
x"=oc+0,—1 (solid horizontal line in Fig. 2a) defines fixed
point (x*, ") in 2d phase space of the spike-generating block
(*,,v,)- The green solid curve along the slow motion manifold
(Fig. 2a) represents a family of stable fixed points (FP) defined
for different values of input current /. Increase of /, changes o,
and shifts the fixed point FP upwards (along the green solid
curve). When x” reaches the bifurcation point at the horizontal
dashed line (Fig. 2a), the equilibrium, FP, loses stability via
supercritical Neimark-Sacker bifurcation. For higher values of
1y the equilibrium point is unstable, which leads to rapid in-
crease of x,, in time (see green curve with markers in Fig. 2a)
until it reaches threshold value +1 where the system (1) resets it
to x, — — 1 (thin dashed horizontal line in Fig. 2a). After that,
the trajectory goes along the slow motion manifold and repeats
the cycle of spiking as the value of 1, remains above the stabil-
ity threshold. Note that, the parameter o controls the coordinate
of the fixed point at resting potential (when there is no input
0,,=0) and we further use this control to model effect of potas-
sium leak current on coordinate of the resting potential.

In the oscillating regime (tonic spiking), the variable w,, =
VY + (3, controls the firing rate of the neurons: larger values of
w,, lead to higher rate. In order to control the dynamics of firing
rate at the transients, we introduced a monotonically increasing
piece-wise linear function S(w). For w > w,, (area, bounded by
thin vertical dashed line in Fig. 2a) the slope of S(w) is con-
trolled by variable &, > 0. When £, is small (k,, < <1) function
S(w) increases slowly with w and limits the impact of w on the
neuron firing rate. In other words, variable £, controls input-
output relations of the neuron, namely, its excitability and F—/
curve. Effect of &, on the model dynamics is illustrated in the
Fig. 2b, where several F—I curves are plotted for the different
fixed values of fixed &, = k = const. Note, that decrease of £ did
not affect the bifurcation point (corresponding to transition
from silent to spiking state), but changed the slope of the F-/
curve. Similar effects were observed experimentally in (Guan
etal. 2007) where blockade of the fast depolarization-activated
potassium channels reduced spike threshold significantly and
increased a slope of the F'— / curve of a pyramidal neuron.

The described above spike-generating mechanism captures
dynamics of the fast Na* and K* currents that are responsible
for spiking activity of neuron (Hodgkin and Huxley 1952).
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Fig. 2 Explaination of the model design and dynamics of a single model
neuron. a: Phase plane (x,,y,) demonstrates basic properties of the spike-
generating block (original map model). Label SM stands for slow motion
manifold (blue dashed line), FP denotes stable fixed point. See text for
details. Parameters o, and 3, are constants: o, =K,l, 8, =Kzl,.
Parameter 0=0, a=3.65, wo= —2.819,K,=1,K3=0.133. b: F-/
curves are shown for different values of the variable k, = k= const.
Decrease of & led to significant decrease of the neuron sensitivity to
input (the slope of the F-/ curve decreases). Parameters: p,=0, p,=

0.5, =3.65, wy= —2.819. ¢: Parameter plane (p;, Io) (the strength of
the leak current p; vs DC input /,) is shown. The boundary between green

Further, time-dependent quantities o,, (3, represent the sum
of the intrinsic and synaptic currents of a neuron:

On = Kaltotaly Bn = Kﬂltatala
Lo = 1o +1syn +Inap +1g + Lieak

(4)

Here K, =1, K3=10.133 are constants and total current /;,,,,
consists of the following parts:

* [yis a dc current applied to the neuron;

* I, is a sum of synaptic inputs;

*  Ingy=Pnag/(1 +exp(=20(x, + 1.05))) models effect of the
persistent Na* current (I,p), where Pnap Stands for the
maximal conductance of the current;

o I;= —pau,(x,+ 1.2) models effect of the slow hyperpolar-
izing currents, such as the calcium-dependent potassium
current (/xc,)), where parameter p; defines a strength of
the current;

w

~
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(o))
o

u
o

w B
o o

frequency [Hz]

1050

time [ms]

and white areas depicts Neimark-Sacker (N-S) bifurcation where
dynamics of a single neuron change from the steady state (silence,
white area) to the periodic spiking (green area). Red marker denotes
change of N-S bifurcation type: for p, $0.46 the bifurcation is
supercritical, in other case (stronger leak currents) it is subcritical. d:
An example of the transient neuron dynamics in response to DC input.
At zero time the neuron was in quiescence. Application of sufficiently
large depolarizing current /, = 4.0 (lasts continuously from 7 = 10 ms) led
to the periodic spiking. Slow dynamics of the variable u caused spike
frequency adaptation (compare inter-spike intervals at the beginning and
at the end of the voltage trace). Parameters: p,;= 1.8, v, =0.997, P, =0.6.

*  Leak= —Pr(X — Xpaseline) 18 T€Sponsible, in combination
with constant o, for modeling of the leak current.
Throughout the paper we assume that parameters o
is always linearly proportional to parameter p;: o=
—0.4p;;

Quantity (3, is always bounded, such that 3, ——10"*if 3,
<—10"*. Effects and implementation of the “intrinsic current”
Ieais 1 and Iy, are describe below.

2.2.2 Effects of leak current

Transition to sleep is associated with reduction of the
Acetylcholine which results in an increase in K* leak currents
(McCormick 1992). It was shown that the onset of sleep slow
oscillation requires relative hyperpolarization of the mem-
brane voltage of all cortical neurons (Bazhenov et al. 2002).
Increase of K* leak currents shifts the resting potential of the
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cortical neurons to hyperpolarized level (~ —75 mV) and de-
creases overall neuron excitability. In our map-based neuronal
model baseline potential is directly controlled by the parame-
ter o in the equation for variable y,, such that xp4ee =1 — 0.
Moreover, the quantities ,,, (3, in the model include a com-
ponent [, = — pr(X — Xpaseiine), Which does not change the
baseline, but rather influences an overall neuron dynamics
similar to the effects of the leak currents on the passive mem-
brane properties in the conductance-based models (see below
for details). Hence two parameters ¢ and p; in the model
control impact of the leak current on the neuron dynamics: o
shifts the baseline and acts similar to reversal potential and p;,
determines the passive neuronal dynamics (firing frequency,
rate of convergence to the resting state, etc). In this work we
combine these two quantities by assuming the constraint: o =
—0.4p;. Hence, changing parameter p;, controls both the
baseline potential and the strength of the leak current.

Importantly, the leak current also controls threshold activa-
tion current /,, which is necessary to apply for generation of
action potential. Bifurcation diagram on a plane of parameters
(pr, 1y) (Fig. 2c) consists of two areas corresponding to the
periodic spiking and silent states, separated by a curve of
Neimark-Sacker bifurcation (Kuznetsov 1998), an analogue
of Andronov-Hopf bifurcation for map dynamics. In the
framework of map based neuronal model this bifurcation has
been studied in (Shilnikov and Rulkov 2003, 2004). With an
increase of the input current /, and/or decrease of the leak
current (decrease of p;), the model switched from the stable
resting (silent) state (uncolored area) to the periodic spiking
(green colored area).

Note that the resting membrane potential at absence of
input current /, = 0 was significantly lower for the larger
values of p; (since parameter o = —0.4p; controls the base-
line). For the large values of p; we observed a clear separation
in membrane voltages between silent (I, = 0) and spiking (I, >
0) states as required to explain experimental data of bimodal
distribution of the neuronal membrane voltages during slow
oscillation (see below for network simulations). Indeed, appli-
cation of DC input (e.g., Iy=4.0) to a neuron at the baseline
voltage V"= —75 mV led to a rapid depolarization and spik-
ing with membrane voltage staying above -65 mV (recall,
neuron voltage is defined as V,,=50x,, — 15).

2.2.3 Slowly activating hyperpolarazing currents
and adaptation

Cortical pyramidal neurons contain a family of the hyperpolar-
izing potassium currents that tend to reduce excitability of a
neuron in the Up state, and, likely, take a part in the Up state
termination. These currents include the calcium-dependent and
the sodium-dependent potassium currents (Traub et al. 1991;
Tanabe et al. 1998). To model effects produced by these slow
hyperpolarizing currents, we introduced additional slow
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dynamical variable u,,, which integrates contribution of spikes
and exponentially decays towards zero with relaxation rate con-
trolled by the parameter -, (0 <, < 1) (third Equation in (1)):

Up1 = VyUn+1 + H(xn_l) (5)

Here H(x) stands for Heaviside step-function. Hence, var-
iable u,, grows on average at high enough spiking rate and
produces the hyperpolaizing effect since I;= — pau,(x, +
1.2). Fig.2d illustrates effect of spike frequency adaptation in
the model. Spiking activity led to an increase of the variable u,
(Fig. 2d, bottom), which in turn reduced spiking rate. This
effect was equivalent to the activation of Ca** —dependent
K" currents in conductance-based models (Bazhenov et al.
2002; Tanabe et al. 1998; Mainen et al. 1995; Destexhe and
Pare 1999). The spike frequency adaptation was one of the
key factors leading to the termination of an Up state in the
network simulations. The strength of the adaptation in the
model was controlled by parameter +,, that determined decay
rate of the slow variable u,, and parameter p, that determined
effect of the slow variable u,, on the spike-generating mecha-
nism (x,, v,) (see Eq.(4)). Higher values of these parameters
caused stronger spike frequency adaptation.

A neuron input resistance is reduced during Up states
of the slow oscillation (Steriade et al. 2001). This effect
mainly depends on the high level of synaptic activity in
the Up states (Shu et al. 2003), however, additional con-
tribution may arise from an increase in the voltage-gated
hyperpolarizing currents such as K, current (Guan et al.
2007; Guan et al. 2006) and/or through adaptation of fast
Na* channels (Fleidervish et al. 1996) . These mecha-
nisms are rapidly activated at depolarized voltages (near
spike threshold) and decrease excitability of the neurons.
One of the consequence of that is a reduction in the sen-
sitivity to input. In our model, we used a simple phenom-
enological approach to describe this property. Namely, we
control the slope of the function S(w) by means of the
variable k, (see Equations (2) and (3)): the variable rap-
idly decreases in the Up state from relatively high value
K, (high sensitivity) to K, (0 <Ky <Kj), so the slope of
the function S(w) reduces, which decreases sensitivity of a
neuron to synaptic inputs. This was implemented as a
dynamical dependence of the %, on the state of the vari-
able x, : k, switches to K, (low sensitivity) when voltage
crosses threshold x,,= — 0.5 (cell is in the Up state) and
switches back to K; (high sensitivity) when cell leaves the
Up state, so when x,, < — 1, k,, — K;. All together this can
be expressed as: &, , 1 =k, + Hx + 0.5)(K; — k,) + H(—(x +
1))(Ko— k,,) (the last Equation in (1)) where H(x) is a
Heaviside step function. Decrease of the input resistance
in the Up state, as observed experimentally, helps to pre-
vent over-excitation of the neuron and provides physio-
logical range of firing frequencies.
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2.2.4 Effect of persistent Na* current (Inay)

Persistent Na * current contributes to the initiation and main-
taining of the Up state (Timofeev et al. 2000a). In our model
Iygp was implemented as, I, = PgyS(x + 1.05), where S(x) =
1/(1 + exp(—20x)) is a sigmoidal activation function. The ef-
fect of Iy,, is immediate when the voltage reaches a critical
level (1/2 of Iy,, activation was set to —67.5 mV). Hence, at
sufficiently high voltage values Iy,, provides positive
depolarizing force, contributing to maintaining the Up state.
Note, however, the Iy, along cannot sustain the neuron in the
active depolarized state (see below) (Timofeev et al. 2000a).

2.3 Discrete time step provides high computational
efficiency of the model

The main advantage of the proposed model (1) is its high
computational efficiency (due to the large discrete time step)
and, at the same time, complex enough structure, which al-
lows one to use the model for simulation of the relevant dy-
namics found in the biological neurons and HH models. This
is necessary for modeling of various aspects of sleep slow-
wave activity. Table 1 below summarizes comparative analy-
sis of the computation costs for different models: proposed
model (1), original map-based model (Rulkov 2002) and
adaptive exponential integrate-and-fire model (Adexp)
(Brette and Gerstner 2005). We select Adexp model, because
it is one of the simplest (in structure) and computationally
efficient ODE-based models, which have been successfully
used for modelling of slow-wave sleep oscillations reported
in (Destexhe 2009).

The analysis showed that the original map model was 7-fold
faster than model (1). This is a cost of modifications in the
form of additional equations in the model (1) to achieve proper
behavior. Note that the original map model could not be di-
rectly used for simulation of slow-wave sleep oscillations,
since it fails to reproduce important dynamical features of Up
and Down states (a characteristic feature of slow-wave sleep
oscillations). Due to discrete-time form of description the map
models were designed and tuned to generate state samples with

Table 1 Comparative analysis of computation time for different
models. All models were set up in periodic spiking regime and 1000 ms
of model time was simulated. For numerical integration of ODE (Adexp)
we used Euler method with adaptive step size defined by local integration

time interval 0.5 ms. As the result simulation of map dynamics
does not involve any integration routine and the accuracy is
determined by the resolution of variables (we used double
precision in our case). We also would like to emphasize that
computational speed of the map-based simulations can be sig-
nificantly increased using integer computations with rescaled
variables as it is demonstrated in (Rulkov et al. 2016).

The Adexp model is defined with system of ODEs, there-
fore the accuracy of simulated behavior depends on the time
step of numerical integration scheme. For comparative analy-
sis of computational speed of this model, we used Euler meth-
od with adaptive step size (to limit local error of the
solution | €|, see Table 1). At a good level of accuracy
(]€1<0.02 mV) Adexp model was about 10 times slower than
modified map model (1). This is a consequence of the fact that
much smaller time step was needed for Adexp model (average
time step was </4>=0.083 ms and minimal 4,,,;, = 3.4"1 0 *ms).
The computational efficiency of the Adexp model became
comparable with the map at accuracy level |£|<0.5 mV,
which required averaged time step <A>=0.763 ms and mini-
mal time step £,,,, =0.763 ms. At this level of accuracy, the
simulated waveforms may significantly deviate from actual
solutions and behavior of the corresponding ODE model af-
fecting the network dynamics.

2.4 Responses of map-based model neuron matches
single-cell experimental recordings

During NREM sleep the level of Acetylcholine is reduced
compare to awake, which is known to increase conductance
of the potassium leak currents (McCormick et al. 1991). In our
model, we took advantage of having explicit representation of
the leak current effects and we tested neuron response to DC
input for the low and high levels of the acetylcholine. Upon
DC stimulation there was an increase in spiking activity and a
shift in the resting membrane potential to depolarized state
(Fig. 3a). The high leak current, /., condition (low level of
Acetylcholine) revealed lower frequency of spikes and was
more hyperpolarized compared to the low leak current condi-
tion (high level of Acetylcholine) (Fig. 3a). This was in

error |e|. Calculation of original and modified map models is
straightforward (according to system, (1)) and does not require any
numerical integration scheme. Hence the accuracy is determined by
floating point calculations (FPC)

Model Type Normalized computation time Accuracy
Original map model (Rulkov 2002) Discrete time 1 Accuracy of FPC
Modified map model (1) Discrete time 7.03 Accuracy of FPC
Adexp (le] < 0.02 mV) (Destexhe 2009) Continuous time 98.54 < 0.02mV + FPC
Adexp (le] <0.1 mV) Continuous time 21.98 <0.1 mV + FPC
Adexp (|| < 0.5 mV) Continuous time 7.66 <0.5 mV + FPC
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Fig. 3 Single cell properties of the model and in vivo. a Membrane
voltage traces of a single map-based neuron are similar to those of a
cortical regular spiking neuron. Decrease of the parameter py (strength
of leak current) led to the depolarization of the baseline potential and
decrease of the interspike interval. Parameters of the map-based model:
pa=138, 7,=0.995, K;=0.025. b Voltage traces of a regular spiking
neuron are shown in response to DC pulse during sleep (high leak
conductance) and wake (low leak conductance, presumably due to the
high level of acetylcholine in awake). ¢ Effects of the persistent

agreement with in vivo recordings during sleep vs awake state
(Fig. 3b). In the model, as in vivo, frequency of spiking during
DC stimulation reduced after few initial spikes due to the spike
frequency adaptation (compare Fig. 3a, b). The spike-
frequency adaptation was due to the slowly activating hyper-
polarizing current 7, (see Egs. (4) and (5)).

Next, we examined the role of the other intrinsic currents in
the single neuron dynamics. Persistent Na* current (Ingp) is
activated at depolarizing potentials and may provide nonlinear
amplification of the incoming depolarizing inputs. During
sleep slow oscillation, this allows pyramidal neurons to effec-
tively integrate miniature post-synaptic potentials and, as a
result, facilitates the onset of an Up state (Timofeev et al.
2000a). In vivo, the effect of In,p Was tested in an experiment
with anesthetized cat using pulse stimulation (5 ms pulse with
1 nA) of a single cortical pyramidal neuron hold at the different
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Na * current in vivo (left), in the map-based model (middle) and
Hodgkin-Huxley model (right). Here the voltage traces show responses
of a single neuron to the short depolarizing pulse (5 ms, 0.5 nA in vivo,
0.4 a.u. in the map model, and 2.5 in the HH model) at the different levels
of the base membrane voltage (indicated on the left). The base voltage
level was changed by DC input. Note that sharp decay of the stimulation
current at the end of the pulse led to the discontinuity of the voltage
derivative over time. Parameters of the map model: K; =0.025, wy=
2.821,ps=1.0,7,=0.995

levels of the resting membrane potentials (maintained by con-
stant current injection) (Fig. 3c, left). When the overall depo-
larization was sufficiently large (see 4-th voltage trace from
bottom in Fig. 3c, left), the In,p Was activated which resulted
in prolonged depolarization (5 ms vs ~20 ms; Fig. 3¢ lower vs
4th from bottom). The longer depolarized response led to a
spike about 20 ms after the pulse onset. We previously
reproduced this effect by modeling persistent Na * current in
the Hodgkin-Huxley type neuron model (Fig. 3c, right)
(Timofeev et al. 2000a). Here we report that our new map-
based model shows qualitatively similar dynamics (Fig. 3c,
middle). In the model, effect of Iy,p was introduced by includ-
ing additional nonlinearity Iy, = pnapHy(x, +1.05) (see Eq.
(4)), which provided a positive input to the spike generating
mechanism when the neuron voltage was sufficiently
depolarized (half activation is at —=67.5 mV). This facilitated
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spike initiation. We concluded that the new model captures
important features of the single cell dynamics found in cortical
pyramidal neurons in vivo.

2.5 Dynamics of all-to-all coupled network explains
generation of up state

Excitatory connections play an important role in generating
the sleep slow oscillation (Timofeev et al. 2000a). Below, we
examined how excitatory synaptic connections in combination
with intrinsic currents determine activity in a small network of
excitatory cortical neurons. Such a simplified network model

Fig. 4 The basic mechanisms of A
the Up state generation in the
map-based and conductance-

represents a minimalistic configuration, which is able to initi-
ate and sustain the active Up state due to recurrent excitation
(Fig 4a); in the next sections we will present dynamics of the
large-scale network model with both excitatory and inhibitory
neurons. Complete model description, including equation for
synaptic dynamics, can be found in section 4.

Brief depolarizing input applied to all neurons initiated
transition from the silent (Down) to the active (Up) network
state. DC input was much shorter than the length of the active
state it initiated (Fig.4b, c), suggesting that intrinsic currents
and synaptic interactions maintained the active state of the
model. Importantly, for relatively large leak currents (top 2
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traces in Fig.4b, c), the active spiking state was eventually
terminated. This happened because of the slow growth of
the adaptation variable ufj) in each neuron (see, e.g., Fig. 2d)
and depression of AMPA-type synapses (variable d” ) across
the network, which led to the rapid transition from Up to
Down state. The frequency of spiking and Up state duration
depended on the strength of the leak current parameter. In both
map-based (Fig. 4b) and conductance-based (Fig. 4c) neurons,
stronger leak current resulted in shorter Up state and lower
firing frequency. The strength of synaptic, G}, /ps, and the
leak, P;, currents had opposite effect on the Up state duration
(Fig. 4d) and spiking frequency (Fig. 4¢). When AMPA
strength was sufficiently high and/or p; was small, the active
state was never terminated (see boundaries in Fig. 4d, e and
bottom traces in Fig.4b, c). Note that discontinuous behavior
of'the firing rate in panel E was caused by the variations of the
number of spikes within Up state as parameters changed. For
example, when G}, increased, the Up state duration in-
creased as well, which, in turn, led to discrete additions of
new spikes to the active state. These spike additions caused
“jumps” of the firing frequency in Fig.4e.

2.6 Wake and sleep like activity in 2D networks with local
connectivity

We next extended the reduced model described in the previous
section to incorporate miniature EPSP (minis) and realistic
network connectivity of a two-dimensional network with ex-
citatory pyramidal neurons and inhibitory interneurons
(Fig. 5a). Most of the previous studies of the slow oscillation
are limited by 1D networks (Bazhenov et al. 2002; Compte
et al. 2003; Hill and Tononi 2005; Chen et al. 2012; Wei et al.
2016). Here we take advantage of using efficient neuronal
models to explore spatio-temporal structure arising in 2D net-
work models due to the local synaptic connectivity: the con-
nection radius R was set to 5 neurons in PY layer, the same
radius of connectivity was used for PY-PY, PY-IN and IN-PY
connections (there were no IN-IN connections in the model).
Here we used the same connectivity radius for all cell types,
which does not take into account the long-range connections
between neurons. More comprehensive analysis, which
covers different synaptic coupling configurations, is presented
in the following sections. All simulation with 2D network
were performed using periodic boundary conditions.

It is important to note that all synapses in the network
generated spontaneous random releases of neurotransmitter,
which resulted in miniature EPSPs (minis). Experimental re-
cordings indicate that frequency of the minis is strongly mod-
ulated by the neuronal activity. In (Timofeev et al. 2000a)
intracellular recordings in deafferented cortical slab revealed
that the mean rate of minis is minimal after an Up state and
recovers during a network silence during the following Down
state. Hence, in our model we implemented this mechanism
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by modulating the mean frequency of minis. Similar to exper-
imental recordings, the rate of spontaneous releases decreased
the periods of evoked release (action potentials) and slowly
recovered during the silent phase (see section 4 for details).

To set up the baseline state of the model, we first reduced
K* leak current (parameter p; = 0.15) in the model neurons
that resulted in a random firing of all neurons, similar to awake
recordings in vivo (Steriade et al. 2001; Timofeev et al. 2001,
2000b) (Fig. 5b, ¢). Distribution of membrane voltages was
unimodal with a single peak around —60 mV (Fig. 5d). Next
we increased K leak current (parameter p; = 0.5) to simulate
transition to NREM sleep. This led to spontaneous generation
of the slow oscillation (Fig 6a, b) consistent with our past
experimental studies and simulations with Hodgkin-Huxley
type models (Timofeev et al. 2000a; Bazhenov et al. 2002).
The entire network switched periodically between Up (lasting
500-600 ms) and Down (lasting 200—300 ms) states (Fig. 6b).
The neurons were depolarized and spiked during Up state and
hyperpolarized during Down states in agreement to in vivo
data (compare Fig 6b to Fig 1). Further, the average activity
of a small region of the network (20 x 20 neurons) displayed
periodic oscillations (Fig. 6b bottom). Membrane voltage his-
togram (Fig. 6¢) was bimodal with two distinct peaks corre-
sponding to Up and Down states (compare to Fig.1d). To
identify the time points of transition from Down state to Up
state in the individual neurons, two threshold values V" and V°
(Fig.6d) were applied, similar to experimental studies
(Volgushev et al. 2011) (see section 4). Remarkably, we found
that transition to an Up state was less synchronous in compar-
ison to an Up state termination. Fig. 6d shows the overlapping
voltage traces of 50 different neurons right before transition to
from Down to Up state (left part of the panel) and slightly
before Up to Down transition (right part of the panel). The
range of transition times across neurons (shown by black hor-
izontal bars) was much larger for Down to Up transition,
which agrees with in vivo data (Sheroziya and Timofeev
2014; Volgushev et al. 2006). The transition times for each
neuron were calculated based on the intersection of the volt-
age trace with thresholds V* (for Down to Up) and V~ (for Up
to Down, see section 4 for details). This effect is robust to the
changes of the threshold values V" and V"~ and will be
discussed in details in the next section. Overall, 2D cortical
network model based on map-based neurons and spontane-
ously occurring miniature EPSP revealed oscillatory activity
similar to sleep slow-wave activity found in vivo.

2.7 Spatiotemporal features of slow oscillation in 2D
networks: Travelling wave dynamics

For one representative cycle of the slow oscillation (Fig. 6a), we
plotted a series of snapshots of activity in the pyramidal cell layer
(Fig.7b). The set of dashed vertical lines in Fig.7a indicates the
moments of time (Fig.7b) were captured. As before, the active
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Fig. 5 Irregular spiking activity for the low K* leak current (“awake”
state) in the 2D cortical network. a Two layers of the 2D network are
shown schematically. “PY” stands for a layer of the pyramidal neurons,
while “IN” denotes a layer of the interneurons. Here we modeled
200 x 200 PY and 120 x 120 IN. The network has both intra- (PY-PY)
and extra-layer (PY-IN and IN-PY) connections within a radius R = 5
neurons (locally connected network). Periodic boundary conditions were
used. b Irregular spiking activity is shown for 1D section of the network

—45

states originated from accumulation of the spontaneous miniature
excitatory postsynaptic potentials (minis, see Eq. (7)). Minis de-
pendent depolarization during Down state led to an activation of
Inap and initial spiking in some cortical neurons; this triggered
Up state initiation. Note, that locations of the initiation sites were
random (see, e.g., top left snapshot in Fig. 7b) and varied from
one Up state to another. These initiation sites become sources
from where spike waves (transition waves) propagated through-
out the network (see snapshots #2—4 in Fig. 7b) and subsequently
triggered other neurons to switch to an active state.

Termination of Up state was controlled by the same factors we
discussed previously (see Fig. 4) — the spike frequency adapta-
tion and synaptic depression. Because of the strong leak currents
(parameter p; in the map model), Up state termination led to a
strong hyperpolarization and transition to the Down state where
membrane voltages of the neurons stayed relatively low, about
=75 mV. The snapshots #7 and #8 (Fig. 7b) illustrate spatio-
temporal pattern of Up state termination. Similar to initiation,
Up state termination had a structure of the transition wave -
Down state was initiated at several locations and propagated

50 o‘ ¢ . ¢ . o.. ¢
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(200 neurons, black dots denote spike times). ¢ Membrane voltage traces
of two representative PY neurons. d Histogram of the membrane voltage

revealed one prominent peak at ~ —61 mV, which is typical for in vivo
recordings in awake state (see text for details). Parameters 0%
P =0.15,Grips = 0.066, G ypy = 0.013, G 1py = 0.044,

~ mini

Gayps = 0.006,7%7 = 0.75, p, = 0.1,7, = 0.995.

throughout the network. The last snapshot (#9, Fig. 7b) shows
global Down state when all neurons were in the hyperpolarized
quiescent state.

Down state duration in our model depended on the time scales
of intrinsic and synaptic variables: (i) parameter -y, (third
Equation in system (1)) determines the time scale of removal
the spike frequency adaptation (Eq. (5)); (ii) parameter /7 de-
termines the time scale of synaptic recovery from depression (Eq.
(8)) and (iii) the form of the function M(#), which determines the
refractory period of minis (see Eq.(9)). As soon as all these in-
trinsic and synaptic factors became close to their baseline values
(u,, is small enough, dZ and M(n) are close to 1), the network was
able to initiate the next Up state.

2.8 Termination of up states occurs more synchronously
than up states initiation

We next examined how the spatial pattern of the Up state initi-

ation evolved over multiple Up-states. The time of the Up-state
initiation for each neuron was determined based on the
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Fig. 6 Slow-wave like activity for the high K* leak current (“sleep” state)
in the 2D cortical network. a Raster plot shows activity in 1D section of
the 2D network, the same as illustrated in Fig. 5a. Vertical axis
corresponds to the neurons’ number, horizontal axis is time. Color
decodes membrane voltage V;. b Top two traces depict membrane
voltage of one PY and one IN neurons taken from the network
simulations shown in the panel A (time axis is the same). Bottom trace
shows averaged voltage for subgroup of the neighboring neurons (400
cells total). The network displayed periodic transitions between Up and
Down states similar to in vivo experiments shown in Figure 1. The period
of oscillations was about 1 sec. ¢ Membrane voltage histogram of the PY

threshold method (see section 4). Figure 8a presents latency
maps (see section 4) of the transitions between Up and Down
states. The color in these plots denotes the time of transition (in
ms) for each neuron relative to the neuron that initiated transi-
tion. The first row of Fig. 8a shows Down to Up state transition
latency maps for 4 different Up states from the same network:
first 3 plots show 3 consecutive Up states (serial numbers are
indicated below the pictures) and the last plot shows the 20th
Up state from the first one. The second row shows latency maps
of the Up to Down state transition for the Up states presented in
the first row. We found that the transition wave of Up state
initiation was slower compared to the transition wave Up state
termination (compare scale color bars in Fig. 8a). A Gaussian
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neurons. Two peaks are prominent, which correspond to the voltage in Up
and Down states. Two vertical dashed lines depict thresholds V" and V",
which were used for Up and Down state detection (see section 4). d The
panel shows overlapping voltage traces of 50 neurons (taken randomly
from the network) before transitions from Down to Up (left) and Up to
Down states (right). Two solid horizontal bars on the left/top depict
overall range of times of Up state initiation (upper bar) and termination
(lower bar) across all the neurons. Note, large jittering due to the minis
resulted in less synchronous (wider upper bar) Up state initiation in
comparison to its termination. For parameters see Fig. 7

filter (SD = 3) was applied to the latency maps to identify initi-
ation sites (Fig. 8b). It revealed that Up state initiation has a
structure of transition wave with clearly identifiable initiating
zones (bounded areas of dark blue color) from where Up state
propagated throughout the network (Fig. 8b). Note, that there
were always several independent initiation zones triggering an
Up state, so more than one wave occurred in the network.
Analysis of the latency maps revealed “history dependence”
— consecutive Up-to-Down (Down-to-Up) state transition pat-
terns had similar spatial structure (Fig. 8a, b, first 3 plots),
resulting in the similar spatio-temporal pattern of the slow
waves. This effect was reported previously in 1D models (Wei
et al. 2016) and depended on the slow intrinsic and synaptic
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Fig. 7 Spatio-temporal analysis of the network activity reveals multiple
sources of Up state initiation. a Voltage trace of single PY neuron from
2D network simulation, the same as illustrated in Fig. 5a. Vertical dashed
lines indicate times of the snapshots shown in the panel B. b Network
activity is shown as a series of snapshots. Color decodes transmembrane
voltage of the PY neurons (see color bar). First 4 snapshots display
network dynamics at the beginning of an Up state (see also 4 dashed
vertical lines in the panel a). Multiple sources initiate concentric spike
waves leading to the onset of the Up state. In the middle of the Up state
(snapshots #5 and #6) the spike waves are less prominent than near the
onset. The last 3 snapshots (#7-9) show the process of the Up state

termination, which also had a form of a propagating wave. Last
snapshot depicts global downstate in the network. Parameters of the
network: radius of synaptic connectivity R =15 (distance equivalent to 5
cells in PY layer), the same distance was used for all type of connection
PY-PY, PY-IN and IN-PY. For PY-PY connections G,y = 0.121
(roughly corresponds to ~3 mV evoked EPSP at —75 mV),

Giaypa = 0.024: for PY-IN connections Giyyypy = 0.04, Giyyyny = 0.00

mini

8 for inhibitory IN-PY connections GGABA = 0.04, Gypy = 0.004. The

described above values G represent rescaled conductances (see section 4).
Parameters of a neuron model: v,=0.996, p; =0.5,p,=1.2
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Fig. 8 Synchronization properties and history dependence of the slow
waves. a Latency maps (see section 4) for 4 different Up states. Top row
represents latency maps of the Up state initiation. First 3 images show 3
consecutive Up states (serial numbers are indicated below the pictures),
the last image corresponds to the Up state #20 after the first one. Bottom
row represents latency maps of the Up state termination (same Up states
as shown in the top row). b Filtered data from the top row in panel a
(Gaussian filter with o =3). ¢ The difference in similarity (see section 4)
between two Up states (i and j) initiation latency maps (panel a) as a
function of the time delay between these two Up states measured by

recovery processes during Down states of the slow oscillation
(see section 3 at the end of the previous section). However, the
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cycle count (difference i — ). Note that consecutive Up states have very
similar shape and the similarity decays to baseline after 5-15 cycles of
slow oscillation. Two curves correspond to the different values of the
recovery parameter v_ = +,. d Averaged histograms of the time delays
across all the neurons for Up state initiation (Down-to-Up transition,
circular markers) and Up state termination (Up-to-Down transition,
square markers). Up state termination was much more coherent across
the network than Up state initiation (see also Fig. 6d). e Ratio of standard
deviation of Up state latencies to standard deviation of Down state
latencies shown as a function of number of sources

Up states that were suffiently separated in time (e.g. >10 cycles
of slow oscillations), had completely independent spatio-
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temporal patterns (Fig. 8a, b, latency map #20 with #1). To
explore this effect quantitatively we introduced the “similarity
measure” (Fig. 8c) (see section 4 ). It revealed that the spatio-
temporal pattern of the slow oscillation was preserved for about
5-10 cycles of oscillation before similarity disappeared. Note,
that because of the long periods of the entire network activation
in each Up state, the similarity was around 0.8 even for
completely independent patterns.

We previously proposed that history dependence of the slow
waves may result from the slow inactivation of the Ca®* de-
pendent K* current in the Down states of the slow oscillation
(Wei et al. 2016). Since in our model activity dependent hy-
perpolarization is controlled by the variable u,(Egs. (4) and
(5)), we tested this by changing its recovery rate +,. To avoid
changing Up state duration, we used two decay time constants:
;" and 7y, . When the voltage was high (V> — 65mV), we used
7, to calculate the dynamics of u,,, otherwise (V< —65mV) u,
decayed with the rate ~y,. As a result, when v, < ,", deacti-
vation variable decayed faster in the Down state. It speeded up
recovery from the adaptation without affecting the Up state
duration. The blue curve (circle marker) in Fig.8c corresponds
to v, =, = 0.995, so the recovery rate was relatively slow
and the system exhibited prominent “history dependence” ef-
fect. For smaller vy, = 0.99 < ~;" (green square markers), the
curve was steep, which indicates much shorter history depen-
dence. Note, that change of parameter ~, slightly affects the
form spatio-temporal patterns of Up state initiation, which
leads to slightly different asymptotic value for similarity (sim-
ilarity measure for completely independent Up states).

Overall, the spatial pattern of an Up state termination (Up-
to-Down transition) followed the pattern of that Up state initi-
ation (Down-to-Up transition) (compare Fig 8a top vs bottom).
However, the range for the latencies of the two transitions was
widely different, with the Up state initiations being much
slower and less synchronous (across the population of neu-
rons) than the Up state terminations. Indeed, distribution of
the latencies across all neurons and all slow waves was signif-
icantly narrower for Up state terminations (Down state initia-
tion) (Fig. 8d). The voltage traces of the individual cortical
model neurons plotted in the Fig. 6d clearly indicate a large
noisy component in the membrane dynamics before an Up
state onset (compare left and right sections of the Fig 6d),
which is in a good agreement with previous experimental stud-
ies (e.g. Fig. 1 in (Chen et al. 2012), see also (Volgushev et al.
2006)). We hypothesized that the presence of stochastic minis
at the Down to Up state transition leads to multiple Up state
initiation sites and that contributes to the difference in synchro-
nization properties of Up states initiation and termination.
Indeed, the rate of minis is high at the onset of an Up state in
comparison to the onset of a Down state (Timofeev et al.
2000a). The high rate of minis introduces a noisy component
to the network dynamics that could result in less coherent
behavior and much broader latency distribution for Down-to-

Up transition times. To test this hypothesis, we performed a
series of simulations of the network with zero mini strength (no
noise) but varying number of artificially imposed Up state
initiation sites. In this setup Up states were initiated by brief
(10 ms) depolarizing inputs (varying number of inputs), that
were periodically (1 Hz) applied to the different locations in
the network and induced transition waves similar to mini-
induced slow-wave dynamics (Fig.7). We found that for the
large number of sources (>9) the network exhibited behavior
that was similar to the baseline network with minis, i.e. wider
latency distribution for Down-to-Up in comparison to Up-to-
Down transition (Fig.8e). This supports the idea that the noisy
activity due to minis initiates large number of sources and
contributes to a large difference in Up state initiation versus
termination latencies. Recall that the distribution of time delays
for Down-to-Up and Up-to-Down transitions were calculated
based on the threshold levels V" and V~ (Fig.6¢, d). An exact
choice of the values V* and V™ may affect widths of the dis-
tributions, although, it does not change the effect qualitatively.

2.9 Large-scale simulations of 2D network: Role
of long-range connectivity

In the previous sections we described the basic spatio-temporal
properties of the slow-wave activity that arise due to the local
synaptic connectivity in a relatively small 2D network model.
In the following, we discuss the role of miniature EPSPs (minis)
and long-range synaptic connections in properties of slow-wave
sleep oscillations. In order to study the effect of long-range
connections on the spatio-temporal patterns, we have to consid-
er relatively large (in space) 2D cortical network. Increase of the
length of the network dimensions produces quadratic growth of
the overall number of neurons, which quickly leads to a need of
simulation of the large-scale system. Here we leverage the ef-
fectiveness of the discrete time approach (modified map model
(1)) and simulate dynamics of large-scale network consisting of
1.36 million of neurons (1000 x 1000 PY's and 600 x 600 INs)
with more than 100 million of synapses. The network architec-
ture was similar to Fig.5a.

Stochastic minis occurring in the excitatory connections
between the cortical neurons are believed to play vital role
in Up state initiation (Timofeev et al. 2000a; Bazhenov et al.
2002; Chen et al. 2012; Wei et al. 2016). To illustrate impact
of minis properties on the network dynamics, we compared
Up state initiation profiles in the large-scale models with minis
of varying amplitude (Fig. 9a). As the amplitude of minis
increased, complexity of the spatiotemporal pattern also in-
creased. The network with a small amplitude of minis had
very limited number of the initiating sites; an Up state propa-
gation pattern formed concentric waves (Fig. 9a, left).
Increase of the minis amplitude led to an increase of the num-
ber of initiating sites (Fig. 9a, middle/right). (It is worth notic-
ing, that generation of minis obeys stochastic Poisson
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AMPA minis

B Radius

Fig. 9 Snapshots of large-scale network dynamics. The network
architecture is identical to that in Fig. 5a but ~1.36 millions of cells
were simulated. a Snapshots of the network activity are shown for three
different amplitudes of the synaptic AMPA minis (from left to right

GAIXZ;A increases: 0.0213, 0.023, 0.026). The snapshots correspond to
the Up state initiation time. b The same as in panel A, but for three
different radii of the long-range connectivity (from left to right radius

processes (7), so an increase of the minis amplitude also led to
an increase in the stochastic component of the model). At the
same time, the period of the slow oscillation increased and
tended towards an nfinity as G2, decreased (Fig. 10a), in-
dicating that sufficiently high minis amplitude is necessary for
an Up state initiation. Number of the initiation sites increased
dramatically when the minis amplitude increased beyond cer-
tain value (GA%A = 0.0022 ) (Fig. 10b). The nontrivial fact
here is that the number of initiation cites increased rapidly,
resembling discontinuous phase transition effect. This sug-
gests the possibility of a “state transition” like event that
may have some similarities with sleep stage 2 to SWS transi-
tion when there is a large increase in number of slow waves
(Aeschbacj and Borbely 1993). Reduction of acetylcholine is
known to increase the strength of evoked and spontancous
AMPA release (Gil et al. 1997), and acetylcholine reaches
its lowest level in stage 3 of sleep (Lee et al. 2004).

Velocity of the slow-wave propagation also changed with

the minis amplitude. The estimated velocity Vi;)ike

increased
with increasing G /27, suggesting that the larger minis help
with faster propagation of the slow waves (see Fig.10c, d).
To explore the role of the long-range connections on the
network dynamics, below we introduced non-local random
AMPA-type synaptic connectivity with a much larger radius

R, oni0c that varied in the range Rj,. < R,onioc < Rpax + Rioe
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-16
—24
-32
-40
—48
-56
—64
-72

increases: 4, 12, 24). For all simulations radius of local connectivity

was Rjo.=5. Parameter of the network connectivity: PY-PY synapses
Gaypa = 0121, Gi = 0.0261; PY-IN synapses Gy, = 0.04,

G ypa = 0.008; IN-PY synapses Goygy = 0.04, Giypy = 0.004.
Parameters of the single neuron: p; =0.5,~, =0.995, p,=1.32.

where R;,.=5 stands for radius of local connections and
R,.4r describes maximum radius of long-range connections.
GABA-type connections were restricted to the local area only
(Rje = 5). Further on, we used different values of R,,,,,, from 0
<R, <50. Fig.9b presents a series of snapshots of the net-
work activity at the beginning of an Up state. For small values
of the maximal radius (R, = 4), the network dynamics was
similar to that we described in the earlier sections (Fig. 9b,
left). As the radius increased, the spatio-temporal characteris-
tics differed significantly: the number of sources decreased
(Fig.10f) and the structure of slow wave propagation front
became more disrupted (Fig. 9b, compare left, middle and
right). Furthermore, a presence of long-range connections in-
creased the propagation velocity (Fig. 10i) and the synchrony
of Up states initiation (Fig.10h). Next, we calculated the dis-
tribution of the Up state onset latencies across all the neurons
and all the Up states. The width of the histogram decreased for
the higher values of R,,,, (Fig.10g), indicating increase in
synchrony of the Up state initiation for higher values of R,,,,..

3 Discussion

We proposed a new class of the computationally efficient dis-
crete time neuronal models and we applied them for analysis of
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Fig. 10 Charasteristics of large-scle network dynamics. a The period of
the slow oscillation as a function of the mini amplitude G2 . b,c The
number of spike-wave sources (B) and estimated propagation velocity v
(C)asafunction of G4, . d The averaged histograms of the spike delays
across all the neurons for Up state initiation are shown for two different
values of the mini amplitude. Larger minis led to the narrower histogram,
which indicates faster Up state initiation across the network. e Standard
deviation of the Up state initiation times across the neurons (from the
histogram in panel d) is shown for five different values of the mini

the large-scale slow-wave activity as observed during
deep sleep (Steriade et al. 2001; Timofeev et al.
2000a; Steriade et al. 1993b, c). The new model design
was developed to explicitly capture the dynamical
mechanisms representing known biophysical processes
of the cortical neurons. This model was applied to sim-
ulate spatio-temporal dynamics of the large-scale (over
million of neurons and 100 million synapses) two-
dimensional cortical network models in awake and sleep
states. The study described characteristic properties of
the slow-wave activity during sleep and explained re-
cent experimental data on the difference in the synchro-
nization properties of initiation vs termination of the
cortical slow waves in vivo.

amplitude. f Number of the spike-wave sources is plotted as a function
of the radius of the long-range connectivity R. g The same as E, but
plotted for two different values of the radius R. Increase of R led to the
narrower histogram and the faster transition to the Up state across the
network. h,i Standard deviation of the Up state initiation times across the
neurons (J) (from the histogram in panel G) and estimated velocity of the
Up state propagation (K) are shown for five different values of the long-
range connectivity radius

3.1 Reduced model design

Previous successful models of the sleep slow oscillation (0.1-
1 Hz activity found during slow-wave sleep) are build based
on conductance-based neurons (Bazhenov et al. 2002;
Compte et al. 2003; Hill and Tononi 2005). With this approach
each ionic current is described by means of the voltage- and
ion-dependent gating variables, which define a state of the
ionic channels and the amount of current that flows through
these channels (Hodgkin and Huxley 1952). Since, however,
very few cell types are described in sufficient details, a com-
mon approach concerns adaptation of a certain minimal set of
the ion channels, which are known to be responsible for par-
ticular features of the neuronal behavior. Even with this
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minimalistic approach conductance-based models are compu-
tationally expensive and have limited usage in the large-scale
network simulations. Indeed, the past models of the sleep
slow-wave activity included up to few thousands of neurons,
usually organized in one-dimensional architecture.

Various phenomenological models, including integrate-
and-fire and phase-based models, (Knight 1972; Tuckwell
1988; Hoppensteadt and Izhikevich 1996; Crook et al. 1997,
Williams and Bowtell 1997; Gutkin and Ermentrout 1998;
Sigvardt and Miller 1998) constitute another common ap-
proach. These models are usually much simpler than
conductance-based models and are suitable for large-scale
simulations. However, the phenomenological models com-
monly lack an ability to simulate realistic patterns of the elec-
trical activity found experimentally. Generalizations of these
reduced models (e.g., adaptive leaky integrate-and-fire, inte-
grate-and-fire-or-burst, etc) lead to more realistic, but still sim-
plified, patterns (Knight 1972; Softky and Koch 1993; Buhl
et al. 1997; Smith et al. 2000; Casti et al. 2002; Smith and
Sherman 2002; Destexhe et al. 1994; Esser et al. 2007; Ali
et al. 2013). However, possibly the main problem with any
class of the phenomenological models - a limited ability to
adjust independently specific response properties (e.g., spike
frequency adaptation, after-hyperpolarization, activity depen-
dent depolarization) and to maintain them across the range of
the physiological conditions (e.g., across wake-sleep transi-
tion) - remains. This is where conductance-based approach
presents a great advantage; in conductance-based models
adding a new type of ionic channel can enhance the model
with a new property and the strength of that property can be
varied independently by changing conductance of that chan-
nel with a minimal impact on the other intrinsic properties.

In this new study we propose a novel class of the phenom-
enological models of a biological neuron. The new model is
computationally efficient - we present simulations with more
than 1 million of cortical cells and more than 100 millions of
synapses. Importantly, the new model design is based on the
independent dynamical blocks, each of them has a clear corre-
spondence to certain electrophysiological mechanisms.
Current implementation includes explicit modeling of the ef-
fects of the Ca?* dependent K* current, the persistent Na*
current and the K* leak current. Other ionic currents can be
implemented in future design. These results can be also ex-
tended beyond the map model, e.g. the effect of different cur-
rents could be introduced to the adaptive exponential integrate-
and-fire model by adding new variables similar to what we did
to the map model. Thus, similar to conductance-based models,
the new model equations contain parameters, which, to some
extent, may be related to the biophysical properties of the
biological neurons. The discrete time design still allows
to keep very high computational efficiency even for the
fairly complex internal structure of the model
implementing various biophysical mechanisms.
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3.2 Large-scale cortical network dynamics
during slow-wave sleep

The slow (< 1 Hz) oscillation is a hallmark of a deep sleep
called slow-wave sleep, dominating cortical activity during
early periods of the night sleep and under some types of an-
esthesia (Steriade et al. 1993a, 2001; Timofeev et al. 2001;
Steriade et al. 1993d; Borbely et al. 1981). During a slow
oscillation cycle, the entire cortical network alternates be-
tween silent (Down) and active (Up) states, each lasting 0.2—
1 s. Silent periods are periods of disfacilitation (i.e., absence of
synaptic activity), while active periods have intensive synaptic
activity (Timofeev et al. 2001; Contreras et al. 1996; Timofeev
et al. 1996) leading to the generation of the various types of
the faster oscillations (e.g., sleep spindles) within the
thalamocortical system (Contreras et al. 1997; Molle et al.
2002). While many other types of the thalamic and cortical
rhythms (e.g., thalamic delta (1-4 Hz) and spindle (8—16 Hz)
oscillations) presumably result from the interaction of a few
intrinsic currents or a few neurons within a small circuit and
could be reproduced with scaled down network models
(Timofeev and Bazhenov 2005), the sleep slow oscillation is
an important example of brain activity that exists only in the
large enough networks. Number of previous studies suggest
that the sleep slow oscillation has primarily cortical origin. It
was shown that it exists in the cortical slice preparations
(Sanchez-Vives and McCormick 2000) and after extensive
thalamic lesions in vivo (Steriade et al. 1993b). Slow waves
were found to be sharply reduced but then recovered after few
days following thalamic inactivation or cortical isolation (slab
preparation) (Lemieux et al. 2014). Also, an absence of the
slow oscillations was demonstrated in thalamus of
decorticated cats (Timofeev and Steriade 1996). Hence, in
our model we assumed that the slow waves are originated
from intracortical dynamics, involving spontaneous minis re-
lease, whereas thalamus can be primarily involved in synchro-
nization and coordination of slow oscillation across neocortex
(Timofeev, unpublished).

Recent experimental studies revealed that the downward
transition of the slow oscillation (from an active state to si-
lence) is often better synchronized than the upward transition
(from silence to an active state) (Sheroziya and Timofeev
2014; Volgushev et al. 2006). This in vivo result could not
be well explained by the earlier models (Bazhenov et al.
2002; Compte et al. 2003; Hill and Tononi 2005; Chen et al.
2012), which only included up to few thousands of neurons
interconnected within 1D architecture.

Using the new model design presented here, we explored
the spatio-temporal dynamics of the large-scale 2D cortical
network during slow-wave sleep activity. It revealed: (i)
During consecutive switching between Up and Down states
the network exhibit transition waves, meaning that transition
from Down to Up state (and from Up to Down state) has a
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form of propagating wave. Indeed, traveling wave — like struc-
ture of the sleep slow oscillation has been reported in experi-
mental studies (Sheroziya and Timofeev 2014; Massimini et al.
2004; Volgushev et al. 2011; Massimini et al. 2007). (ii) Each
Up state is characterized by multiple sources of initiation
from where transition waves gradually propagate within
the network; this structure is very prominent at the begin-
ning of the Up state and gets disrupted close to the Up
state termination. (iii) The spatio-temporal pattern of a
slow wave has a history dependence — initiation and ter-
mination patterns of the sequential UP states are well cor-
related, provided that certain slow processes (e.g. slow
calcium accumulation and/or AHP potassium current)
are present in the cells. This model prediction needs to
be verified in the future experimental studies. The history
dependence on the pattern of slow oscillation allows a
brief input (e.g., sharp wave - ripple from hippocampus)
to have long lasting effect on the neocortex (Wei et al.
2016). (iv) An Up state termination is more coherent and
synchronous than an Up state initiation, which agrees
with previous experimental studies (Sheroziya and
Timofeev 2014; Volgushev et al. 2011). We found that
the last effect depends on the stochastic nature of an Up
state initiation, which became evident in the large-scale
network models. Synaptic noise introduced by random
minis (both on excitatory and inhibitory synapses) was
mainly present near an Up state onset. It increased mem-
brane voltage fluctuations at the Down to Up state transi-
tion and, as a result, increased jitter of an Up state initi-
ation times across neurons. It is important to emphasize
that the experimentally observed difference in properties
of Up and Down states initiation (Lemieux et al. 2014;
Volgushev et al. 2006, 2011) can be caused by combina-
tion of several independent factors. Network heterogenity
can make some cortical sites to be more likely initiating
Up states which can explain experimentally observed bias
in the Up state initiations across network locations
(Volgushev et al. 2006). Another phenomenon is that for
each given cortical location, distribution of the initiation
delays is wider than distribution of the termination delays
(Volgushev et al. 2011). In this work we demonstrated
that the phase-dependent modulation of minis (reported
in (Sheroziya and Timofeev 2014) and implemented in
our model) is a possible factor that contributes to the less
synchronized Up state initiation. Other mechanisms, e.g.,
inhibition by local interneurons, can contribute to coordi-
nated termination of the Up states (Volgushev et al. 2006).

The miniature post-synaptic potentials are spontaneous
transmitter release events that obey random Poisson pro-
cess, hence minis represent noisy component in the mod-
el. We showed that the amplitude of minis affected basic
characteristics of the spatio-temporal slow-wave dynam-
ics, such as density of Up state initiation sites and velocity

of Up state propagation. Furthermore, a certain minimal
critical value of the minis amplitude was required for slow
oscillation to occur. Reducing the minis amplitude dimin-
ished the difference between synchrony of the Up states
initiation and termination and reduced the number of local
initiation sites. Our recent date of recordings from non-
anesthetized animals revealed presence of the multiple
local waves during slow-wave sleep (Timofeev, commu-
nication). Presence of the many independent Up state ini-
tiation sites leads to the possibility of many local se-
quences of cell spiking that repeat themselves (replay)
because of the history effect as we showed in this study.
Together this suggests that the presence of noise and re-
fractoriness in the cortical network may be critical prop-
erties for reliable replay and consolidation of many mem-
ories during slow-wave sleep.

To conclude, we proposed a novel neuronal model de-
sign that combines computational efficiency of the current
phenomenological neuronal models with flexibility of dy-
namical properties found in the Hodgkin-Huxley type
models. We applied this model to the large-scale simula-
tions of the sleep slow oscillation and successfully ex-
plained essential spatio-temporal properties of the slow-
wave dynamics found in vivo.

4 Methods
4.1 Network model
4.1.1 Model of pyramidal cells

Pyramidal cells were modeled according to the system (1),
which is described the section 2. The equation for the model
are the following:

Xnt1 = fa(xrhyn + ﬂn)a

Yns1 =V i(xn + 1) + p(o + ay),

Upy1 = Yyln + H(xn_l)

k,,+1 =k, + H(x,, + 0.5)(K1_k,,) + H(—(x,, + 1))(K0_k,,)
Here x,,, y,, u, and k, are time-dependent continuous dy-

namical variables calculated at discrete moments of time 7.

The transmembrane voltage of the neurons is computed as

V,,=50x, — 15. Parameters, that were fixed throughout all

simulations, are given in the table below. Other parameters
are specified in the text or in captions to the figures.

4.1.2 Model of inhibitory interneurons

A reduced version of the system (1) was used for inhibitory
interneurons, where only fast variable x,, was time-dependent,
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dynamical variables y,, k, were fixed in time and variable u,,
was absent:

Xn+1 :fa(xnay + 6}1)).)/ = —2.84,k = 0.0025; (6)
ﬁn = kﬂ(lo +1syn)

Nonlinear functions f;, and S(w) were the same as for the
pyramidal neuron (see Equations (2) and (3)).

4.1.3 Synaptic connections

In the network simulation, synaptic current [ , (here upper
index i denotes neuron number) included AMPA and GABA,

synaptic currents:

i _ 7l (i)
I Sy>n = Lyvea + LGasa

where
L&?\/{PA = Zgn (VAMPA V()) gLBA = Zh”(VGABA V())

Here g/ and hz stand for conductance of the AMPA and
GABA A-type synapses, respectively. The upper double index
ij reflects directionality of the synaptic connection: from neu-
ron j to neuron i. The lower index n depicts time dependence.

Both AMPA and GABA, synaptic conductances were de-
scribed by the first-order activation schemes with short-term
activity-dependent depression and Poisson noise:

Gmmz min/

gn-H = vggii + SUG;\yAr:[PAH(Vn_Vth) AMPASn

) (7)
Wy = b+ LG H (VV) + G ™
Here parameters 7, , determine decay time of the synaptic
conductance, time-independent parameters Gjyps and Geyps
stands for the overall strength of the synapse. Variables s¥ and
dZ introduce activity-dependent short-term depression:
J_ VEPSLif VI > Vi (8)
n 1+ 'y’ec( s— 1), otherwise

2 — NP QT if VI >V,
" 1 +~¢(d7-1), otherwise

The dynamics of the depression variables s/, dZ is relative-
ly straightforward: when there is no spike in the presynaptic
neuron (number /) the variable decays exponentially to 1 with
constant rate 7., so the synaptic connection recovers from
depression. In opposite, when presynaptic neuron produces a
spike, the depression variable decays with factor 'yj;‘; that
decreases effective strength of a synapse (in the Equation (7)
quantities Gjyps.Geaps are modulated by depression vari-
ables s7, d” ).
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Experimental and computational (Timofeev et al. 2000a;
Chauvette et al. 2010; Bazhenov et al. 2002) studies suggest
that miniature postsynaptic potentials (minis) play crucial role
in initiation of the Up sates of slow oscillation. Hence, in our
study Equation (7) for conductances g and h” contain inde-
pendent Poisson noise, which was represented by terms
Gim. g mini G p ™" Variables g™ and h™"™ in (7)
represent spontaneous events, which occur according to the
random Poisson process (Anderson and Stevens 1973) with
mean frequencies figapa and piapps, for GABA-A and
AMPA -type synapses respectively. Every time when an event
occurs (g, ™" =1 ), synaptic conductance increases by

A’;"ZJ,A (for g7 ) and GC';%’A (for hZ ), producing minis in the
post-synaptic neurons. Experimental recordings indicate that
frequency of the minis is strongly modulated by the neuronal
activity (Redman 1990; Salin and Prince 1996). In (Timofeev
et al. 2000a) intracellular recordings in deafferented cortical
slab revealed that the mean rate of minis decreases right after
an Up state and recovers during a following Down state. In our
model we implement this mechanism by the modulation of the
frequency of the Poisson process (Bazhenov et al. 2002):

farpa = FarpaM (n=ngpire) ©)

where [i4,,p4 15 constant and modulation function M(n — n-
spike) Tepresents sigmoidal smooth monotonically increasing
function M(n)=0.2+0.8/(1 + exp(—0.1(n — 350))), which
takes values in the interval [0.2,1.0]. So, after each spike in a
presynaptic neuron (at time 7 = ng,;.) the mini rate in the
synapse decreases to just 20% of its maximal value
(~0.2f14)4p4 ) and then recovers to fi4,p4 as time goes on.

In the network simulations, the number of synaptic connec-
tions that project to a particular cell varied from one neuron to
another. To keep total synaptic input per cell constant, coeffi-

: syn, mini syn, mini syn, mini
cients Gyypx apa Were scaled: Gpy™" = = Gopn /Mavea

where myypy is @ number of incoming AMPA synapses to

syn, mini
neuron i and G,y is the same constants for all neurons.

The restriction of total synaptic strength eases the problem of
parameter tuning in the model. At the same time, we believe
that it does not affect the main conclusions of the paper.

4.1.4 Parameters of the model

Below we summarize the parameters of the map model and
their actual values. In simulation below we used values from
the following table, unless otherwise stated:

Parameter ~ Value Description

o 3.65 The parameter of nonlinearity (2), fixed
throughout the simulations

I 0.0018
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Time scale of the variable y,, fixed
throughout the simulations

Wo -2.819 Internal parameter of the spike-generating
mechanism

Yu See text Time scale of variable u,,

PNap 0.15 The parameter reflects the strength of Nap
mechanism, fixed throughout all the
simulations

Da See text The parameter reflects the strength of slow
hyperpolarizing mechanism (variable u,,)

PL See text The parameter reflects the strength of the
leak current

o o= —04p; The parameter determines the baseline
Xpaseline Of @ neuron, proportional to p;

Ko 1 Ky=0.25, The parameters determine input sensitivity

K;=0.00- of a neuron
25
Ky 5 K,=1 Internal constants of the spike generating
K;3=0.133 block

Vin 0 Spike threshold (used in synaptic
dynamics)

Ve 0.995 Time scale of the synaptic dynamics
(AMPA), fixed throughout the
simulations

~ sy See text The parameter defines the overall strength

Garea of synaptic connection (AMPA)

Vi 0.995 Time scale of the synaptic dynamics
(GABA,), fixed throughout the
simulations

~ s See text An overall strength of the synaptic

GYGABA connections (GABA,), fixed throughout

the simulations
~ mini See text The strength of the miniature post-synaptic
Garpa potentials (AMPA synapses)
~ mini See text The strength of the miniature post-synaptic

GABA potentials (GABA, synapses), fixed
throughout the simulations

- 50 Frequency of the Poisson process, fixed
Hampa,Gasa throughout the simulations

dep 0.05 Time scale of synaptic depression
Vs.d

ree 0.005 Time scale of synaptic recovery from
Vsd depressed state, fixed throughout the

simulations

o 0 Reversal potential of the AMPA synapses
VGasa =70 Reversal potential of the GABA  synapses

4.2 Analysis of 2D spatio-temporal patterns
4.2.1 Detection of up states initiation and termination

Analysis of the spatio-temporal properties of slow oscillation
requires detection of Up and Down states. We followed
threshold paradigm developed in (Volgushev et al.
2011), which requires two voltage thresholds V  and
V*. If membrane voltage V; raises and crosses the
threshold V' = —65 mV, than we assumed that the

neuron i transits from Down to Up state. Similarly,
when V; decays and crosses V' = —68 mV, we detected
transition from Up to Down state.

4.2.2 Latency map, similarity measure and detection
of propagation sources

Using Up state detection algorithm, it is possible to construct a
latency map 7(X,, Y.), which reflects relative times of the state
transition for a given cell at location (X., Y..). For example, to
construct a latency map for Down-to-Up state transition, we
analyzed voltage traces of all the neurons within the time
window when the entire network went from Down to Up state.
Using Up state detection algorithm, we first identified specific
times when the neurons made transition from Down to Up
state. Using these times, we next constructed a latency map,
such that the earliest cell had latency 0 and all other cells had
positive latency values, indicating delay of transition to the Up
state in comparison to the earliest cell.

The similarity measure is aimed to characterize how close
the spatio-temporal structures of two different Up states are. It
was calculated as follows: for the i—th Up state we defined the
latency map 7*”(X,, Y.) and then normalized it as 7" X, Ye)
Jmaxy.y. (7% (X, Y.)) (here pair (X, Y,) stands for the 2d
index of the neuron in the network). The similarityD; ; was
calculated as an inversed averaged point-by-point difference
of the normalized latency maps: D;; = 1-< |7~'<i) X, Yo)—
70X, Ye) |>( FRAL where < > means averaging.

The process of detection of Up state propagation sources
was based on detection of local minima of the smoothed la-
tency map. As the first step, we use 2D gaussian filter (o = 10)
on the latency map to remove noise from the data. Next, we
detected initiation sources by finding local minima in the
smoothed latency map. The algorithm was tested on several
examples and compared to actual dynamics for validation.

4.2.3 Velocity of the transition waves

To characterize spatio-temporal activity in the 2D net-
work we calculated velocity of the waves propagation
as follows: for each Up state in the network we first

(X, Ye) (0 - se-
rial number of Up state, X. and Y. are spatial coordi-
nates in the network); after that we calculated a gradient

of the spike delay map Vrf,gike(Xc,Yc), where V is

calculated the spike latency maps TE,Qike

Nabla operator. The estimated propagation speed is giv-
en by an average inverse amplitude of that gradient:

Vgp)ike =< 1/HVT§;)ike X, YOI> x.xo)-
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4.3 In vivo experiments

Experiments were conducted on adult non-anesthetized cats.
The cats were purchased from an established animal breeding
supplier. Good health conditions of all animals were certified
by the supplier and determined upon arrival to the animal
house by physical examination, which was performed by an-
imal facilities technicians and a veterinarian in accordance
with requirements of the Canadian Council on Animal Care.
The surgery was performed on animals 5-20 days after their
arrival to the local animal house. We recorded field potentials
from several cortical areas and from the VPL thalamic nucleus
of cats during natural sleep/wake transitions.

4.3.1 Preparation

Chronic experiments were conducted using an approach sim-
ilar to that previously described (Steriade et al. 2001;
Timofeev et al. 2001; Chauvette et al. 2011). For implantation
of recording chamber and electrodes, cats were anesthetized
with isoflurane (0.75%—2%). Prior to surgery, the animal was
given a dose of preanesthetic, which was composed of keta-
mine (15 mg/kg), buprenorphine (0.01 mg/kg), and
acepromazine (0.3 mg/kg). After site shaving and cat intuba-
tion for gaseous anesthesia, the site of incision was washed
with at least three alternating passages of a 4% chlorexidine
solution and 70% alcohol. Lidocaine (0.5%) and/or marcaine
(0.5%) was injected at the site of incision and at all pressure
points. During surgery, electrodes for LFP recordings, EMG
from neck muscle, and EOG were implanted and fixed with
acrylic dental cement. Eight to ten screws were fixed to the
cranium. To allow future head-restrained recordings without
any pressure point, we covered four bolts in the dental cement
that also covered bone-fixed screws and permanently im-
planted electrodes. Throughout the surgery, the body temper-
ature was maintained at 37 °C using a water-circulating ther-
moregulated blanket. Heart beat and oxygen saturation were
continuously monitored using a pulse oximeter (Rad-8,
MatVet) and the level of anesthesia was adjusted to maintain
a heart beat at 110-140 per minute. A lactate ringer solution
(10 ml/kg/h, intravenously [i.v.]) was given during the
surgery. After the surgery, cats were given
buprenorphine (0.01 mg/ kg) or anafen (2 mg/kg) twice
a day for 3 days and baytril (5 mg/kg) once a day for
7 days. About a week was allowed for animals to re-
cover from the surgery before the first recording session
occurred. Usually, 2-3 days of training were sufficient
for cats to remain in head-restrained position for 2—4 h
and display several periods of quiet wakefulness, slow-
wave sleep (SWS), and rapid eye movement (REM)
sleep. The recordings were performed up to 40 days
after the surgery.

@ Springer

4.3.2 In vivo recordings

All in vivo recordings were done in a Faraday chamber. LFPs
were recorded using tungsten electrodes (2 MS2, band-pass filter
0.1 Hz to 10 kHz) and amplified with AM 3000 amplifiers (A-M
systems) with custom modifications. We aimed to implant elec-
trodes at 1 mm below the cortical surface. A silver wire was fixed
either in the frontal bone over the sinus cavity or in the occipital
bone over the cerebellum and was used as a reference electrode.
Intracellular recordings were performed using glass micropi-
pettes filled with 2.5 M potassium acetate and having a resistance
of 30-70 MS2. A high-impedance amplifier with active bridge
circuitry (Neurodata IR-283 amplifiers; Cygnus Technology;
low-pass filter, 10 kHz) was used to record the membrane poten-
tial and to inject current into the neurons. All electrical signals
were digitally sampled at 20 kHz on Vision (Nicolet) and stored
for offline analysis. At the end of the experiments, the cats were
euthanized with a lethal dose of pentobarbital (100 mg/kg, i.v.).
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