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Abstract Directed information transfer measures are increas-
ingly being employed inmodeling neural system behavior due
to their model-free approach, applicability to nonlinear and
stochastic signals, and the potential to integrate repetitions of
an experiment. Intracellular physiological recordings of grad-
ed synaptic potentials provide a number of additional chal-
lenges compared to spike signals due to non-stationary behav-
iour generated through extrinsic processes. We therefore pro-
pose a method to overcome this difficulty by using a prepro-
cessing step based on Singular Spectrum Analysis (SSA) to
remove nonlinear trends and discontinuities. We apply the
method to intracellular recordings of synaptic responses of
identified motor neurons evoked by stimulation of a proprio-
ceptor that monitors limb position in leg of the desert locust.
We then apply normalized delayed transfer entropy measures
to neural responses evoked by displacements of the proprio-
ceptor, the femoral chordotonal organ, that contains sensory
neurones that monitor movements about the femoral-tibial
joint. We then determine the consistency of responses within
an individual recording of an identified motor neuron in a
single animal, between repetitions of the same experiment in

an identified motor neurons in the same animal and in repeti-
tions of the same experiment from the same identified motor
neuron in different animals. We found that delayed transfer
entropy measures were consistent for a given identified neu-
ron within and between animals and that they predict neural
connectivity for the fast extensor tibiae motor neuron.

Keywords Synapticresponses .Neuralnetwork . Information
theory . Singular spectrum analysis . Analogue signals

1 Introduction

One key advantage of Information Theoretic approaches is
that they provide tools capable of analyzing nonlinear and
stochastic signals in a model-free approach (Ebeling 2002).
Moreover, information transfer measures, such as mutual in-
formation (Wilmer et al. 2012) and transfer entropy (Schreiber
2000; Wollstadt et al. 2014), can be employed to propose
network structures capable of explaining complex systems
by providing a model, not just in function of an input-output
response, but also with dynamic internal states that interact.
This type of model is referred to as a Dynamic Bayesian
Network (Smith et al. 2006).

In this context, here we develop and apply these tools to the
analysis of connectivity and information transfer in neural
networks responsible for controlling limb movements. This
area has become increasingly a focus of research, not simply
to understand howmovements are produced and controlled by
the nervous system, but also for their potential applicability in
bioinspired robotics and neuroprotheses design. Insect senso-
rimotor systems have relative simplicity and stereotyped neu-
ral structures (when compared to those of vertebrates), with
few neurons generating complex behaviors. They are there-
fore better suited to developing analytical methods such as
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data acquisition and analysis techniques than vertebrates and
in providing insights into the control of robots and prostheses
(Buschmann et al. 2015; Kovač 2014; Vitanza et al. 2015).
Recent studies have focused on the locust hind leg and the role
of proprioception in the control of reflex movements. Using a
Wiener-kernel method of analysis Kondoh et al. (1995)
showed that the sensory neurons of a femoral chordotonal
organ (FeCO), responsible for proprioceptive control about
the ‘knee’ joint in the locust, encoded the position, velocity
and acceleration of movements of the tibia about the femoro-
tibial joint. Subsequently, Vidal-Gadea et al. (2010) modeled
the responses of spiking local interneurons within the central
nervous system using system identification with Wiener-
kernel methods and cross-validation parameter estimation.
While these methods provided improved estimates of re-
sponses over previous studies they were still subject to a num-
ber of limitations due to the nonlinear responses of the inter-
neurons (Dewhirst et al. 2013). Improved methods using a
Volterra model with complexity reduced by Laguerre basis
functions were developed, and applied to a population of
non-spiking local interneurones responsible for premotor con-
trol in the same neural networks. Recently, Meruelo et al.
(2016) again improved this modelling by employing
Artificial Neural Networks in system identification, while
Endo et al. (2015) employed information theoretic approaches
to understand interactions between neurons in the same neural
network to predict connectivity patterns that correlated strong-
ly with known morphological and physiological connectivity
(Burrows 1996).

The use of information theory in understanding analogue
synaptic signalling has received far less attention compared
to its use on spike data. Part of that problem is due to a lack
of identifiability of neurons within and between vertebrates,
but also the non-stationarity of intracellular recordings, un-
like spike data, that present a number of challenges
(Dewhirst et al. 2013) such as the need for greater amounts
of data for the estimation of probability distributions (Kaiser
and Schreiber 2002; Pampu et al. 2013). The length of re-
cordings needed to maintain stable recordings for analysis
means that there is the potential for many factors to lead to
DC offsets, and trends in the data caused by extrinsic fac-
tors, but also due to intrinsic non-stationary properties of the
signal itself. In the latter case, several models have been
proposed that rely on cyclostationarity and multiple repeti-
tions of a recording (Wollstadt et al. 2014), or estimating
different models separated by change-points (Grzegorczyk
and Husmeier 2009).

In this study we consider the cause of the non-stationarity
present in the signals as irrelevant to the model and associate it
with experimental artifacts, based on the visual inspection of
the signals, and the success of previous studies in finding
consistent connections by considering only stationary parts
under a Gaussian White Noise input signal (Dewhirst et al.

2013; Endo et al. 2015). Thus, we investigate the use of a
Singular-Spectrum Analysis (SSA) method for removing
non-stationarities from intracellular recordings as a pre-
processing step, prior to transfer entropy estimation, to re-
move complex trends and discontinuities in the signal. Not
only does this preprocessing step generate stationary signals
that are a requirement for causality measures such as transfer
entropy (Barnett and Seth 2011), but it also increases the
availability of useable data. We then analyse these
preprocessed signals from identified motor neurons and deter-
mine the effect of signal length on delayed transfer entropy
measures. Finally, we determine the consistency of transfer
entropy measures in identified neurons both within and be-
tween animals.

2 Materials & methods

2.1 Data acquisition

Data were previously collected by Newland and Kondoh
(1997a, b) from adult male and female desert locusts
(Schistocerca gregaria Forskål) that were immobilized
ventral-side-uppermost in modeling clay, with their hind
left leg fixed anterior surface uppermost. The FeCO was
exposed by opening a small window in the cuticle of the
distal femur and its apodeme exposed. This was the
grasped by forceps mounted on a Ling shaker and driven
with a 27 Hz band-limited Gaussian White Noise (GWN)
signal as input to the neural circuits (see Newland and
Kondoh 1997a, b for more details). The outputs, analogue
synaptic potentials, were recorded intracellulary from the
somata of motor neurons in the metathoracic ganglion
(Fig. 1) with a sampling rate of 24 kHz. Hind leg motor
neurons were identified as unique individuals based on the
spatial location of their somata in the ganglion and their
physiological properties (Burrows 1996).

2.2 Singular-spectrum analysis and preprocessing

To remove artifacts and complex non-stationary trends in the
intracellular recordings of motor neurons unrelated to the
stimulus input we used singular-spectrum analysis (SSA).
SSA is an effective model-free method to remove complex
trends in time-series and decomposes a data series into the
sum of a small number of independent and interpretable com-
ponents (Hassani 2007) and reconstructs it according to de-
sired components (more details in Appendix A).

The SSA algorithm was applied to each intracellular signal
recorded in the experiments and the signal was reconstructed
without the component associated with the largest eigenvalue.
This was based on Palus and Novotná (1998) who showed
that SSA decomposes a time-series into orthogonal
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components (modes) with different dynamical properties, and
that the eigenvalues related to slow modes (or trends) are
much larger than eigenvalues of the modes related to higher
frequencies. Thus, the largest eigenvalue can be regarded as
being associated with complex trends and slow discontinuities
(i.e., with low frequencies when compared to the higher ones
present in the signal). The SSA-MTM Toolkit (Vautard et al.
1992) was then used with window length parameters of 2000
samples (83.3 ms), decomposing the signal into 64 principal
components and reconstructing it with 63 (excluding the low-
est oscillatory component).

2.3 Delayed transfer entropy measures

Recently the use of directed information transfer measures,
such as Transfer Entropy and Conditional Transfer Entropy,
have been applied to physiological data to determine network
structures describing dependencies and independencies be-
tween regions of the brain or neurons (Wibral et al. 2014).

Given two time-series X and Y, transfer entropy (Schreiber
2000) is defined as the Bamount of information that a past
state of X contains about a future observation of a process Y,
given the past state of Y ,̂ thus defined generically by (Wibral
et al. 2014) as:

TE X→Yð Þ ¼ I X−;Yþ j Y−ð Þ 3ð Þ

where X− and Y− are past states of processes X and Y.
Schreiber (2000), by assuming a generalized Markov

property, proposed transfer entropy to be estimated according
the following expression:

TE X→Yð Þ ¼ I ynþ1; x
lð Þ
n y kð Þ

n

��� �

¼ ∑
∀x∈X
∀y∈Y

P ynþ1; y
kð Þ
n ; x lð Þ

n

� �
log

P ynþ1 y kð Þ
n xln

��� �
P ynþ1 y kð Þ

n

���� �
ð1Þ

where P are probability mass functions for processes X and Y
with alphabetsX andY. y kð Þ

n stands for k past states of Yand x lð Þ
n

for l past states of X.
We used 32 even width bins for discretization, based on the

mean data length close to 320,000 samples, and estimated
probability mass functions through histograms. In addition,
we fixed k = 1 and l = 1, under the supposition that the under-
lying system was Markovian (i.e. present states depend only
on immediate past states), which may be a rough approxima-
tion, however it is what is possible given the data available.
Standard practice would include searching for an appropriate
embedding dimension such as through the Ragwitz criteria as
pointed out by Wibral et al. (2014).

The immediate past state of Y also had to be determined
since our experimental sampling rate (24 kHz) did not auto-
matically correspond to it. We defined the delay of the im-
mediate past, or embedding delay, as α, and employed the
technique for delay embedding proposed by Kantz and
Schreiber (2004). This delay was thus estimated following
the practice of obtaining the first minimum found in the delay
of the auto mutual information of the time-series (Kantz and

Fig. 1 Experimental setup for the collection of data from hind leg motor
neurons controlling movements of the tibia about the knee joint. The
input to the neural network was generated using a Gaussian White
Noise (GWN) generator with a cut-off frequency of 27 Hz, and used to

move forceps attached to the apodeme of the FeCO. The output of the
neural networks were recorded using intracellular microelectrodes as syn-
aptic potentials of motor neurons in the metathoracic ganglion
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Schreiber 2004). The system could also be subsampled in
order for yn − α to correspond to yn − 1 (i.e., the immediate
past), however, this could also compromise the resolution of
the time delay found between the two processes, as explained
below. Wibral et al. (2013), however, argued recently that
best practice is assured by setting α = 1 in the experimental
sampling, since it would better consider the influence of
memory in the transfer entropy measures. This analysis, how-
ever, will be conducted in further experiments.

Transfer entropy is then used to find the time-delay be-
tween two variables in the complex system. These time-
delays are obtained by considering the maximum peak of
information transfer in a sweep of different delays between
two signals (Silchenko et al. 2010; Wibral et al. 2013). Thus,
with the assumptions above, the delayed transfer entropy is
calculated as:

TE X→Y ;βð Þ ¼ I yn; xn−β yn−αj� �

¼ ∑
∀x∈X
∀y∈Y

p yn; yn−α; xn−β
� �

log
p yn yn−α; xn−β

��� �
p yn yn−αjð Þ

ð2Þ

and the time-delay between two processes X and Y obtained
as δ = arg maxβ(TE(X→ Y, β)) (Pampu et al. 2013; see Wibral
et al. 2013 for the formal proof).

Finally, it was also important to consider the effect of noise
and finiteness of the data in these information measures, elim-
inating bias and evaluating the significance of these mea-
sures. A number of tools are available for bias correction,
such as the KSG estimator or the Miller and Madow type
correction (Wibral et al. 2014). However, for the purposes
of statistical significance tests one usually generates surrogate
data (Schreiber and Schmitz 2000), which represents, as best
as possible, all the characteristics from the real process, but
with no information transfer. Thus, a comparison can be made
between the original signal and surrogate data. In the case of
neurophysiological data, information transfer happens in
phase synchronization (Yang et al. 2013), and thus Endo
et al. (2015) proposed the generation of surrogate data with
the Iterative Amplitude Adjusted Fourier Transform (AAFT)
algorithm, which generated signals preserving the signal’s
power density spectrum but randomly shuffling its phase
components (Venema et al. 2006). An alternative is simply
shuffling the samples of the original time-series, as a way of
destroying the temporal precedence structure (Wibral et al.
2014). Dolan and Spano (2001) showed, however, that this
method preserves the same amplitudes and frequencies of
samples, and thus may not provide too much variability for
estimating probability distributions with limited data. Thus, in
this study, we employed the AAFT algorithm due to its better
ability to catch the bias due to limited data and, also, for its
computational efficiency.

The values of delayed transfer entropy obtained, however,
may also vary according to the signals recorded and the
number of samples employed in their estimation (Ince et al.
2012). A debiasing and normalization procedure must
therefore be applied to make these measures comparable
across experiments. Gourevitch and Eggermont (2007) pro-
posed that transfer entropy measures should be normalized
by the difference between transfer entropy with the original
data and the mean transfer entropy with surrogate data (i.e. a
debiasing procedure) over the entropy of the actual value of
the target variable given its past, H(Yn| Yn −α), which is de-
fined as

H Yn Yn−αjð Þ ¼ − ∑
∀x∈X
∀y∈Y

P yn; yn−αð Þlog P yn; yn−αð Þ
P yn−αð Þ ð3Þ

and therefore we obtain the normalized delayed transfer en-
tropy (Gourevitch and Eggermont 2007):

cTE X→Y ;βð Þ ¼ TE X→Y ;βð Þ−TE X surrogate→Y;β
� �

H YnjYn−αð Þ ∈ 0; 1½ �

ð4Þ

Delayed transfer entropy throughout the entire dataset was
always evaluated between the input 27 Hz GWN displace-
ment of the FeCO apodeme and the respective intracellular
recording of synaptic responses from a motor neuron. From
each of these pairs of data, 10 surrogate data series were gen-
erated to infer the noise level (the number was chosen accord-
ing to feasibility given the computational time available). The
complete process is shown in Fig. 2.1

2.4 Statistical analysis

To evaluate how well our method based on surrogate data was
able to exclude spurious peaks found in the delayed transfer
entropy measures, we use a statistical power test for obtaining
the confidence level (Schreiber and Schmitz 2000). The test
compares the TE statistic against that obtained from N surro-
gates, and rejects the null hypothesis of no directed relation-
ship between source and target if the TE statistic is greater
than all N surrogate measurements. The relationship between
the number of surrogate data (N) employed and the probability
of false rejection (α), corresponding to the level of signifi-
cance (Therrien 1992), is given as N =K/α − 1, where K = 1
for a one-sided test and N = 10 in our experiment. Thus, the
estimated confidence level was close to 91% (i.e., the proba-
bility to correctly reject a spurious peak). This was limited due

1 The code used in the analysis is publicly available at https://github.com/lablps/
JCNS2017. Further information may be obtained by contacting the authors.
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to computational cost, which was associated with the fact the
we performed a direct estimation of transfer entropy from
histograms (as outlined in Section 2.3), the length of the data
files and the repetitions during the sweeping of time delays for
the original and surrogate data. The additional computation of
surrogate data and transfer entropy had a large impact on data
set analysis and would have moved the analysis from a scale
of weeks to months if a confidence level of 97% (N = 30) were
to be used.

3 Results

3.1 Pre-processing

To determine the effectiveness of pre-processing at re-
moving artifacts and non-stationarities from intracellular
recordings we applied SSA to intracellular recordings in
which the FeCO was stimulated with a 27 Hz band lim-
ited GWN signal while the synaptic responses of different
identified leg motor neurons were recorded intracellularly
from their somata. In particular, we analysed recordings
of motor neurons that were excluded from previous stud-
ies (Dewhirst et al. 2013; Newland and Kondoh 1997a, b)
due to their non-stationarities, including those showing
simple trends (Fig. 3a) to those showing abrupt changes
(Fig. 3b). In total we analysed 216 signals from motor
neurons ranging in length from 17.8 s to 123.7 s
(41.43 ± 15.94 s, mean ± SEM). Based on a Wald-
Wolfowitz test of stationarity (Grazzini 2012) we found
that 36.6% of the data was stationary before SSA pre-
processing, however following pre-processing using SSA
95.8% of the data was stationary and useable for analysis
of delayed transfer entropy. Unstable data was removed
from subsequent analyses.

3.2 The impact of signal length on transfer entropy
measures

To determine the effect of data length on delayed transfer
entropy measures of the synaptic responses of identified neu-
rons we analysed the pre-processsed intracellular recordings
from a posterior slow flexor tibiae (PSFlTi) motor neuron
(Fig. 4). An analysis of delayed transfer entropy revealed 2
distinct peaks in association between the synaptic response
and the GWN input to the FeCO. The original recording of
this motor neuron contained 1.2 M samples (labeled 12 on
Fig. 4). We then cut the data into 100 k samples so that trace
1 was 100 k in length, trace 2 was 200 k in length, trace 3300 k
in length and so on up to trace 12 containing 1.2 M samples
(labeled 1–12 in Fig. 4). Absolute values of delayed transfer
entropy were then calculated, however, these could include
false positive results, and thus the significance of the measures
were tested against surrogate data.for spurious peak associa-
tion which is represented by the noise levels in Fig. 4. Noise
levels from surrogate data were determined for each indepen-
dent recording, and in this case the noise levels determined by
the surrogate data are shown only for traces 1, 2 and 12 for
clarity. With reducing signal length the noise levels increased
markedly (compare surrogate data traces in red in traces 1 and
12 in Fig. 4).

DTE was applied and the behaviour of the data in three
different identified motor neurons, each from a different ani-
mal, and with three different recording lengths were compared
(Fig. 5). For example, recordings from FETi with three differ-
ent recording lengths are shown in the top row of Fig. 5, three
examples of the PSFlTi from a different animal with three
recording lengths are shown in the middle row, while three
recordings of the Anterior Intermediate Flexor Tibiae (AIFlTi)
motor neuron from a different animal are shown in the lower
row. Results show a general increase in the value of delayed
transfer entropy with signal length, leading to a saturation. For

Fig. 2 Data preprocessing with SSA and information transfer measures
applied to intracellular recordings of synaptic responses obtained from a
hind leg motor neuron. Transfer entropy was applied to the 27 GWN
stimulus (X) to motor neurons (Y) and from 10 surrogate time-series from

the stimulus generated through the AAFT algorithm. The number of
surrogates was chosen arbitrarily, considering that an increase consider-
ably impacts the time of execution. Normalization was applied according
to Eq. (4)
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example, analysis of synaptic responses in FETi revealed a
single peak in DTE. With 171,513 samples (7.34 s trace
length) the difference between the peak in DTE and the mean
DTE of the surrogate data was 0.412 bits. With 343,027

samples (14.29 s trace length), approximately double the sig-
nal length, the difference increased to 0.543 bits while with
686,094 samples (28.58 s trace length) the difference rose to
0.547 bits (thus, a saturation occurred). Similarly, for the
PSFlTi motor neuron a recording with 172,513 samples re-
vealed two distinct peaks in DTE with the difference between
DTE in the first peak and the mean DTE of the surrogate data
of 0.267 bits. With 343,027 samples, the difference increased
to 0.342 bits while for 860,547 samples the difference rose to
0.336 bits. Finally, a similar relationship existed for the AIFlTi
motor neuron (third row in Fig. 5) in which a recording with
180,200 samples, revealed two distinct peaks in DTE. The
difference between DTE in the first peak and the mean DTE
of the surrogate data was 0.246 bits. With 348,521 samples,
the difference increased to 0.276 bits, while for 757,043 sam-
ples the difference rose to 0.300 bits. Also, for each motor
neuron, the longer the data length the lower the mean noise
level and variation.

3.3 Consistency of delayed transfer measures

To establish delayed transfer entropy (DTE) as a useful tool
to model functional connectivity based on intracellular re-
cording of synaptic responses in neural networks it was im-
portant to establish that DTE estimates from given identified
neurons were consistent from the same neuron in a single
animal over the time course of a single experiment, over

Fig. 4 Effect of signal length on transfer entropy. A recording from a
posterior slow flexor tibiae (PSFlTi) motor neuron was cut into 100 k
samples from 100 k (trace 1) to 1.2 M samples (trace 12) and labeled 1 to
12 (blue traces). Analysis of transfer entropy revealed two distinct peaks.
Surrogate data (red traces), representing the noise level, was used as a test
of significance of the peaks in transfer entropy. Both the significance and
the noise level decreasedwith increasing samples due to the use of 32 bins
for discretization

Fig. 3 Examples of intracellular recordings from the somata of the fast
extensor tibiae motor neuron. aAn example of a recorded signal from the
fast extensor tibiae (FETi) showing a continuous drift in the membrane
potential of the motor neuron. b An example of a recording of FETi from

a different animal showing both continuous trends and abrupt changes in
membrane potential. Following SSA pre-processing both signals
displayed stationarity data and were subsequently analysed
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multiple experiments from the same identified neuron in the
same animal, and finally between identified neurons in dif-
ferent animals.

3.3.1 Consistency of DTE measures from the same neuron
over time within a single experiment

To test whether delays in information transfer occurred during
the time course of an experiment form an individual motor
neuron (and thus the SSA detrending method sufficient to
obtain a stationary model), we tested consistency of DTE
within a recording. We took long recordings from specific
neurons following SSA pre-processing, divided them into
three segments and evaluated the DTE in each segment. For
example we, compared three equally sized parts of an intra-
cellular recording of FETi of approximately 1.2 M samples
(50 s) and found that it showed a single distinct peak with a
mean delay 15.97 ± 0.41 ms (Fig. 6) over the three sections of
data, implying no significant variation in peak times through-
out the duration of the recording. Based on these DTE

measurements we evaluated the normalized standard devia-
tion and found that the percentage of peaks with a normalized
standard deviation of less than 5 % was 88%, while at 10 % it
was 98%.

3.3.2 Consistency of DTE measures from the same neuron
between repeated experiments in the same and different
animals

To determine the consistency of DTE measures of an identi-
fied motor neuron between six repetitions of the same exper-
iment at 5 min intervals within the same animal we used data
in which the FeCO apodeme was stimulated with a 27 Hz
band-limited GWN for approximately 45 s while the evoked
synaptic responses were recorded intracellularly from FETi.
DTE measures in each experiment revealed responses with
similar peak times of 15.49 ± 0.49 ms (mean ± SEM) indicat-
ing consistency over time in the same animal (Fig. 7a).

To determine the consistency of DTE measures of an iden-
tified motor neuron in different animals we again compared
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Fig. 5 Effect of recording length on DTE. DTEs were calculated
between the input GWN to the FeCO and motor neuron synaptic
response. Top traces, DTE measures in FETi for three different
recording lengths (sample sizes). Middle traces, DTE measures from

the PSFlTi motor neuron for three recording lengths, and bottom traces,
DTE measures in the AIFlTi motor neuron for three recording lengths. In
each identified neuron the significance of DTE measures increased with
signal length (sample size) that saturated
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different recordings with the longest possible lengths greater
than 45 s. Results showed that the patterns of DTE were sim-
ilar between the same identified neuron in different animals,
which can be seen clearly when the DTE measures are
superimposed (Fig. 7b). The mean time to peak of FETi in
eight different animals was 16.48 ± 1.01 ms (mean ± SEM).
Experiments from different animals with different lengths, and
therefore different noise levels, revealed consistent DTE pat-
terns from the same motor neuron between animals.

4 Discussion

Analysis of transfer entropy is increasingly becoming a key
tool for understanding connectivity and information transfer
in neural networks (Gourevitch and Eggermont 2007; Faes
and Porta 2014. Wibral et al. 2014; Schroeder et al. 2016).
Here we have developed methods to preprocess synaptic

responses recorded intracellularly from identified neurons in
a proprioceptive network to recover and enhance stationarity
for analysis, and take advantage of the identifiability of indi-
vidual motor neurons in the locust to test the consistency and
repeatability of transfer entropy estimates both within and
between animals. We showed that preprocessing using
Singular SpectrumAnalysis was effective at generating longer
stationary time series that can be used in analysis of transfer
entropy, and that transfer entropy estimates from synaptic sig-
nals were highly dependent on sample size/recording length.
We were then able to show that transfer entropy estimates
were consistent over the time course of a single experiment
for an identified neuron in an individual animal, were consis-
tent and repeatable between multiple experiments from the
same animal, and also consistent for the same neuron between
animals. This is the first time that the accuracy and repeatabil-
ity of transfer entropy has been tested directly on the synaptic
responses of identifiable neurons.

Fig. 6 Consistency of DTE measures over time within a single
experiment. Comparison of non-normalized DTE measures over three
segments (of approximately 16.6 s) of a time-series recorded from a

FETi motor neuron showing consistent peak times. The mean peak in
delay was 15.97 ± 0.41 ms, indicating little variation along the signal

Fig. 7 Consistency of DTE
within and between animals. a
DTE from 6 separate recordings
from FETi in the same animal.
The solid black line indicates the
mean DTE. b DTE estimates
from a single recording from
FETi in eight different animals.
The solid black line indicates the
mean DTE, and the coloured lines
the DTE from each animal
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4.1 Computational analysis and preprocessing

We have used an information theoretic approach to under-
standing the transfer of information in a well-studied neural
network that produces limb reflex movements in locusts
(Burrows 1996). Since Schreiber (2000) introduced the general
concept of transfer entropy, the technique has been applied
successfully to many different systems and different types of
data, in particular spiking neurophysiological data, due to its
characteristics of asymmetry and coupling inference
(Knoblauch and Sommer 2016; Orlandi et al. 2014). One of
the advantages of transfer entropy is that it is a model free
approach that makes no assumptions about the models that
underlie the interactions between processes (Faes and Porta
2014). Hlaváčková-Schindler et al. (2007) and Lee et al.
(2012) point out that the estimation of transfer entropy from
time series data, such as the synaptic responses of FETi evoked
by FeCO stimulation, is complicated by a number of practical
problems, including that of estimating probability density
functions underlying transfer entropy computation on restrict-
ed datasets whose lengths may be limited by experimental
constraints and/or due to non-stationarity. Here we have used
SSA preprocessing to overcome some of these problems.

In comparison to delayed mutual information (Endo et al.
2015), transfer entropy conditions the entropy between two
processes on the past states of the target process and thus ex-
cludes some of the memory effects by capturing the synergy
between the source process and the past states of the target
process (Marinazzo et al. 2014). It is important to note however,
that a proper embedding dimension of the time-series is needed
to completely differentiate information flow from memory.
Here we did not achieve this given the histogram approach
employed that required the assumption of a first order
Markovian system (k = l = 1) due to the high demands of data.

Nevertheless, a comparison between delayed mutual informa-
tion measures and the delayed transfer entropy measure devel-
oped here already reveals new information about the system
studied. For example, a comparison between measures of de-
layed mutual information (Fig. 8a) and delayed transfer entropy
(Fig. 8b) applied to the same recording of a PFFlTi motor
neuron reveal that mutual information may fail to find definite
peaks and continue to have significant values (over the surro-
gate level) with higher time delays. This could be interpreted as
a memory effect resulting from not conditioning on the past of
the target variable. Moreover, Kaiser and Schreiber (2002)
showed that transfer entropy is an asymmetrical measure
(which is not the case with mutual information) and thus can
better represent the directionality of information transfer.

We have tested a preprocessing method to increase the
length of useable data from intracellular recordings of identi-
fied motor neurons. Analysis of data with spike responses is
often carried out using spike times of inter-spike intervals
(Nawrot 2010), however, this was clearly impossible with
synaptic responses and thus we proceeded to a detrending
method. We also chose not to filter the intracellular signals
with high-pass filters, such as those discussed by Barnett
and Seth (2011), as this method requires determination of
parameters such as cut-off frequency, among others, which
can be highly arbitrary and can change from signal to signal.
Moreover, a study by Florin et al. (2010) suggested that a
simple filtering of neural data is prone to disturbing the order-
ing of the data, thus hindering the use of Granger causality
measures (which is transfer entropy with the assumption of
Gaussian processes (Barnett et al. 2009). Barnett and Seth
(2011) explored this issue further and concluded that although
Granger causality measures remain invariant under the appli-
cation of invertible filters, in practice some changes may be
present due to the increase of model order due to filtering.

Fig. 8 Difference between delayed mutual information (a) and delayed
transfer entropy (b) applied to the same recording of a PFFlTi motor
neuron. Transfer entropy revealed clearly defined peaks of information

transfer and also eliminated the significant values at higher time-delays
found with the delayed mutual information values
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Since our model order was low there was a risk of missing or
spurious causality measures even if the filtering was applied
for removing non-stationarities.

By applying SSA as a preprocessing step to remove trends
in data, the number of samples available for information trans-
fer measures increased markedly compared to previous stud-
ies (Dewhirst et al. 2013; Endo et al. 2015) that analysed small
stationary segments in the recorded time-series. This was only
possible once it was clear that the trends represented extrinsic
factors imposed on the signal by the experimental setup, and
not reflecting characteristics of the neural response to be de-
scribed in the model. This was also assured by the consistency
test throughout the duration of an experiment presented in
section 3.3.1, indicating no significant variation in the peak
delay times throughout an experiment.

A common feature of neural circuits, and individual neu-
rons, is that they often adapt to repetitive or constant stimula-
tion (Benda et al. 2005; Prescott and Sejnowski 2008). This
intrinsic adaptation provides many functions including facili-
tating stable limb control (Kittmann 1997), coincidence detec-
tion (Cook et al. 2003) and separating signals of different time
scales (Benda et al. 2005). Adaptation to repetitive stimulation
over a time scale of seconds has been shown to occur in the
same locust local circuits we study here, at the sensory
(Newland 1991), interneuron (Angarita-Jaimes et al. 2012;
Vidal-Gadea et al. 2010) and motor neuron (Field and
Burrows 1982) levels. Similar patterns of adaptation have also
been shown in limb control networks in stick insects (Bässler
1993) and in proprioceptors in crabs (Gamble and DiCaprio
2003). Dewhirst et al. (2013), however, showed that key sys-
tem dynamics remain relatively unchanged during repetitive
stimulation while output amplitude adaptation occurs.
Moreover, much of the adaptation occurs within the first few
seconds of stimulus input whichmeans that there are generally
relatively long stationary periods from which data can be
analysed (Kondoh et al. 1995). Here we find that DTE mea-
sure were consistent throughout a single experiment from a
given identified motor neuron suggesting that information
transfer delays remain invariant irrespective of any adaptation
in amplitude of responses.

To evaluate parameters like entropy, mutual information
and transfer entropy large data sets are required with at least
wide sense stationarity properties (Wibral et al. 2014). Each of
these measures is estimated based on histogram algorithms
(two-dimensional for mutual information and three-
dimensional for transfer entropy) and the greater the length
of the data the better the estimates, and better models inferred.
In addition, the need for larger datasets grows exponentially
when analysis moves from entropy estimation to transfer en-
tropy estimation (Wibral et al. 2014). For analyses of neural
activity, whether in vertebrates or in invertebrates, experi-
ments require animal use, are often time consuming and ex-
pensive and difficult to prepare. An ability to use all data to

recover information is therefore a necessity. Pre-processing
algorithms therefore represent an important step towards in-
creasing the amount of useable data from experiments.

4.2 Connectivity in local circuits

The patterns of connections of FeCO afferents and central
neurons, with the exception of FETi are well known. For ex-
ample, FeCO stimulation has previously been shown to have
an effect on FETi, in parallel with SETi (Meruelo et al. 2016;
Dewhirst et al. 2013; Field and Burrows 1982) by evoking
depolarization during flexion of the tibia, typical of a negative
feedback reflex. In common with SETi, FETi shows position
dependent responses during FeCO stimulation, however FETi
has a greater dependence on velocity (Field and Burrows
1982). Burrows (1987) showed that flexor motor neurons ap-
pear to receive monosynaptic input from FeCO afferents, as do
spiking local interneurons of a population with somata at the
ventral midline of the metathoracic ganglion (Burrows 1988).
Burrows et al. (1988) also showed that some FeCO afferents
made monosynaptic depolarizing synaptic connections with
nonspiking interneurons in parallel with flexor motor
neurones, and with a central latency of 1.5 ms. Finally,
Burrows (1988) found that inhibition in nonspiking interneu-
rons during FeCOwas the result of indirect GABAergic inputs
from spiking local interneurons (Watson and Burrows 1987).
Despite the considerable knowledge we have of the patterns of
connections between FeCO afferents and leg motor neurons
we know little of the details of the synaptic connections be-
tween the FeCO afferents and FETi.

Endo et al. (2015) analysed the synaptic responses of
nonspiking interneurons in response to FeCO stimulation
and found three distinct time delays in delayed mutual infor-
mation (DMI) between mechanical excitation of the FeCO
and the neuronal responses. One group of nonspiking inter-
neurons had mean delays of DMI of 14.2 ± 0.4 ms
(mean ± SEM), a second group exhibited peaks of DMI at
25.7 ± 1.3 ms while a third group had two pronounced peaks
of DMI at 31.8 ± 0.9 ms and 45.3 ± 1.5 ms. Endo et al. (2015)
argued that the times to peak DMI were related to known
physiological pathways (Burrows 1996) and that the shortest
time delays were most likely due to direct monosynaptic ex-
citatory connections between FeCO sensory afferents on the
interneurons (Burrows et al. 1988). They also analysed the
DMI in spiking local interneurons and found that they could
be divided into two groups based on time to peak of DMI, and
concluded that those with the shortest time delays were again
likely to be due to monosynaptic inputs from sensory
neurones that are known to be present (Burrows 1988).
Results from our analyses of DTE in FETi here show consis-
tent estimates from repeated experiments within the same and
different animals of delay lengths similar to known monosyn-
aptic inputs to spiking and nonspiking interneurons and flexor
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tibiae motor neurons (Burrows 1987, 1988), and therefore
suggest that the major excitatory input to FETi during resis-
tance reflexes mediated by the FeCO is via excitatory mono-
synaptic input. Thus our analysis and models predict that there
is likely to be functional connectivity that has yet to be re-
vealed using more traditional physiological and morphologi-
cal analyses and highlight the value of computational model-
ling in understanding connectivity in neural networks.

In this study we have developed methods and tested con-
sistency of delayed transfer entropy measures from recordings
of synaptic activity recorded from identified motor neurons.
The aim now is to use these techniques to understand how
information is transferred between every layer in local circuits
and between synaptic input and spike output within an indi-
vidual neuron. The neural circuits underlying local move-
ments of the leg of the locust therefore represent an ideal
system in which to address fundamental properties of infor-
mation transfer in neural circuits.
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Appendix A: Singular spectrum analysis

The SSA algorithm is described as follows (Golyandina and
Zhigljavsky 2013): consider a time-series ZT = (z1, … , zT).
The embedding matrix of Z is obtained as:

Z ¼ zij
� �L;K

i; j¼1
¼

z1 z2 z3 … zK
z2 z3 z4 … zKþ1

⋮ ⋮ ⋮ ⋮ ⋮
zL zLþ1 zLþ2 … zT

0
BB@

1
CCA ð5Þ

where K = T − L + 1 and L are window lengths considered for
calculation (L ≤ T/2). It is also important to note that Z is a
Hankel matrix and has equal elements on the anti-diagonals. A
singular value decomposition (SVD) value is be applied to the
matrix ZZ′, representing it as a sum of rank-one bi-orthogonal
elementary matrices. We then denote λ1,λ2,… , λL is as the
eigenvalues of ZZ′ in decreasing order of magnitude λ1 ≥
… ≥ λL ≥ 0 and P = (P1, P2, … , PL) is the orthonormal sys-
tem of the eigenvectors of ZZ′ corresponding to these eigen-
values (Golyandina and Zhigljavsky 2013). We also define d
as d = max(i, such that λi > 0) = rank Z (in real data, we

usually have d =min {L,K}).
The principal components (PCs) Vi (i = 1 , … , d) of the

embedding matrix are then obtained by Vi ¼ Z
0
Pi=

ffiffiffiffi
λi

p
, and

thus the trajectory matrix can be written as Z = Z1 + Z2 + Z3 +
… + Zd, where Z i ¼

ffiffiffiffi
λi

p
PiVi

0
i ¼ 1;…; dð Þ. These matrices

have rank 1, and therefore are called elementary matrices
(Hassani 2007).

The signal, then, can be reconstructed by selecting PCs ac-
cording to their desired properties and then projecting them back
to the original coordinates of the time-series. This is done by
selecting and partitioning the indices i = 1 , … , d into disjoint
subsets I1 , I2 , … , Im. Then, for a given subset I = {i1, i2, … ,
iQ} the corresponding resultant matrix ZI is defined as Z I ¼ Z i1

þZ i2 þ…þ Z iQ . This also leads to the SVD decomposition

being represented as Z ¼ Z I1 þ Z I2 þ…þ Z Im .
Diagonal averaging is then applied to a matrixX Ik producing

the reconstructed time-series ~Z
kð Þ ¼ ~z1 kð Þ;~z2 kð Þ;…;~zT kð Þ� �

. In
this way, the original series is decomposed into a sum of m
reconstructed subseries:

zn ¼ ∑
m

k¼1
~z

kð Þ
n ; n ¼ 1; 2;…; Tð Þ ð6Þ

With this, SSA can be used as a tool for time-series smooth-
ing, extraction of trends and extraction of oscillatory compo-
nents (Golyandina and Zhigljavsky 2013).
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