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Abstract A neuron receives input from other neurons via
electrical pulses, so-called spikes. The pulse-like nature
of the input is frequently neglected in analytical studies;
instead, the input is usually approximated to be Gaussian.
Recent experimental studies have shown, however, that an
assumption underlying this approximation is often not met:
Individual presynaptic spikes can have a significant effect
on a neuron’s dynamics. It is thus desirable to explicitly
account for the pulse-like nature of neural input, i.e. con-
sider neurons driven by a shot noise — a long-standing
problem that is mathematically challenging. In this work,
we exploit the fact that excitatory shot noise with exponen-
tially distributed weights can be obtained as a limit case
of dichotomous noise, a Markovian two-state process. This
allows us to obtain novel exact expressions for the stationary
voltage density and the moments of the interspike-interval
density of general integrate-and-fire neurons driven by such
an input. For the special case of leaky integrate-and-fire
neurons, we also give expressions for the power spectrum
and the linear response to a signal. We verify and illustrate
our expressions by comparison to simulations of leaky-,
quadratic- and exponential integrate-and-fire neurons.
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1 Introduction

Two synaptically connected neurons communicate via
spikes or action potentials (APs). Neglecting the underly-
ing conductance dynamics, one can model the effect of a
presynaptic AP as a jump in the voltage of the postsynaptic
neuron. The height of this jump then depends on the strength
of the synapse. Cortical neurons typically have thousands
of presynaptic partners (Braitenberg and Schiiz 1998) that
often fire asynchronously. Thus, a popular assumption in
theoretical work has been that the overall rate of input is
high, while each individual presynaptic spike only causes a
very small jump in voltage, so that the input can be mod-
eled as a Gaussian process. If one additionally assumes
that it is temporally uncorrelated, one obtains the so-called
diffusion approximation (DA). Modeling neural input as
Gaussian white noise has allowed theoretical insights, rang-
ing from the statistics of single neurons to the dynamics of
whole networks (Gerstein and Mandelbrot 1964; Ricciardi
and Sacerdote 1979; Lindner and Schimansky-Geier 2001;
Brunel 2000). This kind of theory has been extended to
correlated Gaussian noise (Brunel and Sergi 1998; Moreno
et al. 2002; Fourcaud and Brunel 2002; Moreno-Bote et al.
2008; Schwalger et al. 2015).

The assumption that individual spikes have only a weak
effect on postsynaptic voltage, however, is not always justi-
fied: In recent experiments, the mean peak height of evoked
postsynaptic potentials (EPSPs) has been reported to lie in
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the range of 1-2mV (Thomson et al. 1993; Markram et al.
1997; Song et al. 2005; Lefort et al. 2009). Further, the dis-
tributions of EPSPs can be highly skewed (Song et al. 2005;
Lefort et al. 2009), so that individual EPSPs can range up to
8-10mV (Thomson et al. 1993; Lefort et al. 2009; Loebel
et al. 2009). For pyramidal neurons, the distance from rest-
ing potential to threshold lies between 10 and 20mV (Badel
et al. 2008; Lefort et al. 2009). Thus, between 5 and 20
EPSPs — and in some cases even a single strong EPSP — can
be sufficient to make the neuron fire. If such large EPSPs
dominate the input to the neuron, the DA cannot be expected
to yield good results (Nykamp and Tranchina 2000), and
one should rather model the input as a shot noise (SN), in
which individual events have weights that are drawn from
a skewed distribution. In contrast to these expectations,
some approximations, such as the moment-closure method
for multidimensional integrate-and-fire (IF) models, suggest
that there is no difference between neurons driven by Gaus-
sian or shot noise - at least with respect to simple firing
statistics (this is critically evaluated by Ly and Tranchina
(2007)). Hence, it is important to test the effect of the pul-
satile nature of SN input on the firing statistics of IF neurons
and to compare it with the case of Gaussian noise.

Integrate-and-fire neurons driven by SN have been ana-
lytically studied for a long time (Stein 1965; Holden 1976;
Tuckwell 1988), with most studies focusing on the voltage
distribution, either in spiking, current-based leaky IF (LIF)
neurons (Sirovich et al. 2000; Sirovich 2003; Richardson
2004, Helias et al. 2010a, b, 2011) or in conductance-
based neurons far below threshold (Richardson 2004;
Richardson and Gerstner 2005, 2006; Wolf and Lindner
2008, 2010). With respect to neural signal transmission,
it was found that LIF neurons can faithfully transmit sig-
nals even at high frequencies if they are encoded in an SN
process, rather than as a current modulation (Helias et al.
2010b; 2011; Richardson and Swarbrick 2010).

Most of the work concerning SN-driven spiking neurons
has relied on simulations or approximation; exact analyt-
ical results are rare. For perfect IF (PIF) neurons driven
by excitatory Poisson shot noise with constant weights,
the density of interspike intervals and the power spec-
trum have been calculated early on by Stein et al. (1972).
Some results have been derived without explicit reference
to IF neurons but apply directly to their interspike-interval
(ISI) density; these comprise the Laplace-transformed first-
passage-time density of linear systems driven by excitatory
(Tsurui and Osaki 1976; Novikov et al. 2005) or both exci-
tatory and inhibitory (Jacobsen and Jensen 2007) SN with
exponentially distributed weights, as well as the mean first-
passage time for potentially nonlinear systems driven by
excitatory SN with either exponentially distributed or con-
stant weights (Masoliver 1987). Recently, Richardson and
Swarbrick (2010) have considered LIF neurons driven by
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excitatory and inhibitory SN with exponentially distributed
weights and given expressions for the firing rate, the suscep-
tibility with respect to a modulation of the input rate, and
the power spectrum.

The aim of this paper is methodological: to draw atten-
tion to the shot-noise limit of dichotomous noise, which has
been used in statistical physics for a long time (van den
Broeck 1983), but, as far as we know, never been applied
to the description of neural input. We present exact expres-
sions, derived using this limit, in the hope that others may
find them useful. Thus, rather than systematically exploring
particular effects (or even functional consequences) of SN
input, we demonstrate the theory for a few illustrative exam-
ples. We provide the complete source code implementing
the analytics (in PYTHON and C++) and the simulation (in
C++) at http://modeldb.yale.edu/228604.

The paper is organized as follows: We first describe the
model in Section 2, before introducing the shot-noise limit
of dichotomous noise in Section 3 and discussing the treat-
ment of fixed points in the drift dynamics in Section 4. For
general IF neurons, we give expressions for the stationary
voltage distribution (Section 5), and the moments of the IST
density (Section 6). For the special case of LIF neurons, we
derive the power spectrum in Section 7 and the susceptibil-
ity with respect to a current-modulating signal in Section 8.
We close with a brief discussion in Section 9.

2 Model

We consider the dynamics
Tm¥ = f(v) + €s(t) + m Xin(2), ()

where T, is the membrane time constant, f(v) is a poten-
tially nonlinear function, ¢ « 1, and s(¢) is some time-
dependent signal. Note that we set ¢ = 0, except for the
calculation of the susceptibility. Whenever the voltage v
crosses a threshold v, a (postsynaptic) spike is emitted, v
is reset to vg and clamped there for an absolute refractory
period tref (see voltage trace in Fig. 1a). The input Xj,(¢) is
a weighted shot noise,

Xin(t) =Y ais(t —1;). )

Here, a; is the weight and #; the time of the ith presynap-
tic spike. The a; are drawn from an exponential distribution
with mean a; they are all statistically independent of each
other and of the spike times 7;. The spikes occur according
to a homogeneous Poisson process with rate rip,

<Z(S(t—t,~)> = r. (3)
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Fig. 1 a Voltage trace of an exponential integrate-and-fire (EIF) neu-
ron driven by excitatory shot noise with exponentially distributed
weights. b The shot-noise limit of dichotomous noise: Increasing the

Common choices for f(v) are f(v) = w, yielding the
perfect integrate-and-fire (PIF) neuron, f(v) = u — v,
the leaky integrate-and-fire (LIF) neuron, f(v) = u + v2,
the quadratic integrate-and-fire (QIF) neuron, or f(v) =
©w— v+ Aexp[(v — vr)/A], the exponential integrate-and-
fire (EIF) neuron. Here, ; quantifies a constant input to the
neuron; in the EIF, vr sets the position of the (soft) threshold
and the slope parameter A controls the sharpness of postsy-
naptic spike onset. In the QIF neuron, one typically chooses
reset and threshold at infinity, vg — —o00,vy — o00.
For the EIF, the hard threshold can also be set to infinity,
vr — oo. In practice, it is sufficient to take large but finite
values. For a systematic comparison of the different IF mod-
els in the Gaussian noise case, see Fourcaud-Trocmé et al.
(2003), Vilela and Lindner (2009b), and Vilela and Lindner
(2009a).

A common modeling assumption in theoretical studies is
that the a; are sufficiently small and ry, sufficiently large
that one can approximate Xj,(#) as a Gaussian white noise.
Throughout this paper, we will contrast our results to this so-
called diffusion approximation (DA). For the DA, the shot
noise input is replaced by a Gaussian white noise with the
intensity

Deft = a’t2rin. 4

Its mean value can be lumped into the function f(v),
in which the parameter w is replaced by a new effective
parameter

Heftf = U + ATmlin- (5)

Note that Degs differs from the case with fixed synaptic
weights, in which it would be azrr%rin /2.

As often done, we rescale the voltage axis such that vg =
0 and vy = 1. Thus, for a distance between resting potential
and threshold of approximately 10-20mV, the spike weights
a = 0.1 and a = 0.2 typically used in the figures shown
below correspond to mean EPSP peak heights of 1-2mV
and 2—4mV, respectively.

n(t)

00+ to‘ty

ﬁwr ¢¢hrT'r TT

t

noise value in the + state, o, while decreasing its mean duration 1/ k4
such that a, the area under each excursion, remains constant, yields a
shot noise with exponentially distributed weights of mean a

For the DA, we use the known results for the firing rate
(Siegert 1951; Ricciardi and Sacerdote 1979; Brunel and
Latham 2003; Lindner et al. 2003, for general IF, LIF, or
QIF neurons, respectively), the CV (Siegert 1951; Lindner
et al. 2003) power spectrum (Lindner et al. 2002), and the
susceptibility with respect to current modulation (Brunel
et al. 2001; Lindner and Schimansky-Geier 2001).

3 Dichotomous noise and its shot-noise limit

All our results rely on the fact that a dichotomous Markov
process (DMP) can be taken to a shot-noise limit (van den
Broeck 1983). A dichotomous Markov process (Gardiner
1985; Bena 2000) is a two-state process that jumps between
two values, o4 and o_. Jumps occur at constant rates, k4
and k_, where k_ is the rate at which transitions from o to
o_ occur (and vice versa). The residence times within one
state are exponentially distributed (with mean 1/k4.).

One obtains the shot-noise limit by taking o — oo and
k4 — oo while keeping a = o4/ k4 constant. This is illus-
trated in Fig. 1b: As the limit is taken, the excursions to
the plus state get shorter and higher, such that a, the mean
area under the excursions, is conserved. The area under indi-
vidual excursions is an exponentially distributed random
number; in the SN limit, this corresponds to exponentially
distributed weights of the § functions.

The recipe for calculating the statistics of shot-noise-
driven IF neurons is thus the following: One solves the
associated problem for an IF neuron driven by asymmet-
ric dichotomous noise with appropriate boundary conditions
and then takes the shot-noise limit on the resulting expres-
sion. We have derived expressions for statistical proper-
ties of IF neurons driven by dichotomous noise elsewhere
(Droste and Lindner 2014, 2017).

In most cases, taking the shot noise limit is rather straigh-
forward: In the expressions for dichotomous noise, one
replaces f(v) by f(v)4+(o4+0_)/2and o by (64 —0_)/2.
Then, one renames k_ to ri, (the rate of leaving the minus
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state corresponds to the rate at which input spikes occur),
sets o— = 0, and replaces o by ak, before performing the
limit k; — oo. We have previously expressed power spec-
trum and susceptibility of dichotomous-noise-driven neu-
rons in terms of hypergeometric functions 7 F1 (a, b, ¢; 2)
(Abramowitz and Stegun 1972), in which k4 appears both
in the parameter b as well as, inversely, in the argument
z. It can be shown that the limit k1 — oo turns them
into confluent hypergeometric functions 1 Fj (a, b; z). For
example,

lim »F;
ky—00

. . . V—u
—iw, ky +rin —iw; rip — lw;
Clk_;,_

=1F] <—ia), Fin — Lw; v M) . (6)

a

Note that if one wants to consider also the limit of van-
ishing refractory period, it is important to take the shot
noise limit first to get consistent results. In the remainder
of this paper, we just give the resulting expressions in the
shot-noise limit.

4 Importance of fixed points of the drift dynamics

Systems driven by dichotomous noise follow a determin-
istic dynamics within each of the two noise states, and
these deterministic flows can contain fixed points (FPs). It
has been pointed out that these FPs call for special atten-
tion when such systems are treated analytically (Bena 2006;
Droste and Lindner 2014). In particular, when solving dif-
ferential equations to obtain the probability density, the
integration constants need to be chosen separately in Njy
intervals on the voltage axis, delimited by the threshold v,
the lowest attainable voltage v_, and FPs of the drift dynam-
ics, i.e. points vy for which f(vr) = 0. An FP is stable if
f'(vF) < 0 and unstable if f'(vg) > 0.

The LIF neuron with u < vr, for example, has a stable
FP at vs = w. If u < wvg, this is also the lowest attain-
able voltage (v— = vs = w), because the excitatory shot
noise can kick the neuron only to higher voltages; in this
case, Nipe = 1. Otherwise, the lowest attainable voltage is
v_ = vR because of the reset rule; here, we have Nj,; = 2
and need to consider the intervals [vg, ] and [u, v7]. Non-
linear neuron models such as QIF or EIF neurons have in
general also an unstable FP, vy, and thus Nj,; = 3 intervals
need to be distinguished.

5 Voltage distribution

The stationary probability density for the voltage of IF
neurons driven by a dichotomous noise has been derived
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elsewhere (Droste and Lindner 2014). Taking the shot-noise
limit yields, for the ith interval (i = 1... Niy),

bW

ol [0(c; — vr) — O(v — vg)] ? V)

Pi(v) = Tmro

v

1
+—fdx [0(x—vR) —O(x—vp)]e®D ), D)
a

Ci

where rg is the firing rate, the constant ¢; depends on the
interval,

vg ifi =1and f(vr) > 0,
= if one of the interval boundaries is an )
;=

unstable FP at vy,
v}“ if i = Nijp and f(vr) <0

(here xT (x ) indicates that the value is to be taken infinites-
imally above (below) x), and the function in the exponent is
defined as

ey ©)
v) := — + Tmin x o
For PIF, LIF, and QIF neuron, closed-form expressions for
¢ (v) are given in Appendix A. For the EIF, the integral has
to be obtained numerically.

Note that Eq. (7) gives, strictly speaking, only the con-
tinuous part of the probability density; if one considers the
voltage during the refractory period to be clamped at vg,
then Py(v) should also contain a § peak with weight r(Tref,
centered at vg. To make comparison between theory and
simulation somewhat easier, we discard this trivial contri-
bution also in the simulation by building the histogram of
voltage values only when the neuron is not refractory. We
emphasize that in higher dimensional models or when using
colored noise as an input, it becomes important to take
the time evolution of neurons in the refractory state into
account.

The firing rate ro, which appears in Eq. (7), can either
be determined from the requirement that the probability
density needs to be normalized,

vr

S f dv Pov) = 1, (10)

v

or using the recursive relations for the ISI moments given in
the following section.

In Fig. 2, we compare Eq. (7) for an EIF neuron to sim-
ulation results and the diffusion approximation. The theory
matches the histogram obtained in the simulation. For the
parameter regime shown, only an average of eight presy-
naptic spikes occurring in short succession are needed to
take the neuron from the resting potential to the unstable
fixed point of f(v) (here slightly above 1.4). Because of
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Fig. 2 Voltage distribution in a shot-noise-driven EIF neuron. We
compare our theory (Eq. (7), red solid line) to a histogram obtained in a
simulation (gray bars) and the diffusion approximation (green dashed
line). The discontinuity in the density’s derivative, typical for the DA,
is in this example particularly small and hence not visible. Parameters:
Tm = 20ms, u = —0.1,a = 0.2,r, = 0.12kHz,vg = 0,07 =
1,A=0.2, tref =2 ms

the relative strength of the single presynaptic spikes, large
qualitative differences to the diffusion approximation can be
observed. In particular, while the diffusion approximation
predicts a rather symmetric and approximately Gaussian
distribution for the voltage, the sparse, excitatory shot noise
input leads to an asymmetric, clearly non-Gaussian profile.

It is also interesting to consider the voltage distribution
for neuron models with a sharp threshold. In Fig. 3, we plot
Py(v) of a LIF neuron for three different values of 1. Focus-
ing on the value at the threshold, it is apparent that Py(v;)

Sr simulation p=1.2
< r — theory
~ 1.5 - diffusion approximation
o L -
0 L
3—
= L
5 1.5
D- |
ol=
33—
= L
% 1.5
D- |
0

Fig. 3 Voltage distribution in a shot-noise-driven leaky integrate-
and-fire (LIF) neuron for three values of 1. Our theory (Eq. (7), red
solid lines) is compared to histograms obtained in simulations (gray
bars) and the diffusion approximation (green dashed lines). Remaining
parameters: T, = 20ms, 4 = —0.2,a = 0.2, rj; = 0.28 kHz, vg =
0,vr =1, Tref = 2 ms

is finite only for u > v7. This is reflected in the analytical
formula Eq. (7), which yields

Tm’0

P(vy) = —a)m,

Y

where

vy
1 )
a=1— 9(UR—CN)€¢(UR)_¢<UT)+*‘/dx Q(x—vR)e‘b(”_‘b(”T)
a

CN

12)

It is apparent from Eq. (8) thato = 1 if f(vr) < Oand @ <
1 for f(vr) > 0. There is an direct interpretation of « that
will become clearer in the next section: it is the fraction of
trajectories that cross the threshold because of a kick (rather
than by drifting). The probability density can thus only be
non-vanishing at the threshold if it is possible to drift across
it in the absence of inputs.

If © < vg (third panel in Fig. 3), the density Po(vg)
jumps to a higher value when crossing vg from above. This
is caused by reset trajectories which, until the next incoming
spike occurs, drift to lower voltages.

6 IST moments of shot-noise-driven IF neurons

We have previously derived recursive relations that allow to
obtain the moments of the ISI density of IF neurons driven
by dichotomous noise (Droste and Lindner 2014). In the
shot-noise limit, they read

i(v) min(v,r;)

Mi e n
Tn()=>" / dx";z—;)(X)Jr(i—r:) 8(x—vp),
i=1 1
(13)
nMilfl(x) Tn(x)
Jx) a

¥ (;) 5(x — vR)> (14)

where i (v) denotes the interval that contains v, r; (I;) is the
upper (lower) boundary of the ith interval, ¢; is defined as
in Eq. (8), and where

[e.e]

dt J_(v, )t".
(15)

Here, J (v, 1) is the total probability current and J_ (v, ¢) is
the probability current due to drift only. The nth ISI moment
is then given by

(1) = Fu(wr). (16)

jn(v):=/ dt Jov, Hr", Mn(v):zf
0 0
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In Eq. (11), we have introduced «, the fraction of trajec-
tories that cross the threshold directly due to an incoming
spike (and not by drifting over the threshold). Expressed
via integrated fluxes, it should be given by « = Jo(vr) —
Mo(vr). Indeed, evaluating Egs. (13) and (14) forn = 0
and v = vy recovers the expression given in Eq. (12).

6.1 Firing rate

Using Eqgs. (13), (14), the following formula for the firing
rate can be obtained:

-m / P =60
ro = dx /dy 0(x —vg)——
- )
=
é -1
DR B ()
dx —— , 17
+/ X f(x) + Tref a7
VR

where ¢; is the interval boundary opposite of ¢;. For the spe-
cial case of an LIF neuron with 7. = 0 and u© — 0, this can
be shown to reduce exactly to the formula given by Richard-
son and Swarbrick (2010) if one sets the inhibitory weights
to zero in their expression (Droste 2015, App. BS).

We plot the firing rate of an EIF neuron as a function of
the input rate in Fig. 4 for two values of the slope factor
A. The actual firing rate can be both lower or higher than
what the DA predicts, depending on the input rate. For an
increased slope factor, the deviations are less pronounced.
This can be traced to an effective reduction in the weight of
presynaptic spikes: As shown in the inset of Fig. 4, a higher
slope factor pushes the effective threshold — the unstable
fixed point — to higher voltages. Relative to the distance
from resting potential to threshold, the spike weight is thus

20 o simulation (A =0.01)
— theory (A=0.01) ’
r -~ diffusion approximation (A = 0.01) Jo
o simulation (A = 0.6)
15 — theory (A=0.6)

diffusion approximation (A = 0.6)

400 500

Fig. 4 Firing rate of a EIF neuron as a function of the input
rate for two values of the slope factor A. Our theory (Eq. (17),
solid lines) is compared to simulations (symbols) and the diffusion
approximation (dashed lines). Inset: the nonlinearity f(v) for the two
values of A. The white dot marks the unstable fixed point. Parameters:
Tm =20ms, u = —0.1,a =0.1,vg =0, v7 = 1, Tref = 2 ms
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reduced by increasing A, bringing the system closer to the
range of validity of the DA.

A particularly pronounced deviation between the SN case
and the DA can be observed for very low input rates (shown,
in Fig. 5, for an LIF neuron). This is mainly due to the
distributed weights in the SN case: no matter how sparsely
input arrives, each input spike can potentially cause an out-
put spike if its weight @; > vr — u, where we have assumed
that input is so sparse that the neuron relaxes to u between
input spikes. Thus, for ri, < 1, the output firing rate goes
linear with the input rate,

T_—M} . (18)

1o = I'in €Xp |:—

a
In contrast, the diffusion approximation (and also SN input
with weights fixed to a, black squares in Fig. 5) falls off
much more rapidly with decreasing input rate.

The fact that individual incoming spikes can have a
weight larger than the distance from reset to threshold is not
necessarily realistic. However, even if we set the weight of
all incoming spikes with a; > amax t0 amax (green triangles
in Fig. 5), the decay of the firing rate with decreasing rjy is
still much slower than predicted by the DA.

6.2 Coefficient of variation

The recursive relations, Eqs. (13), 14), can also be used to
calculate the coefficient of variation (CV),

) _JPon - R

m fixed weights
O exp. distr. weights
v exp. dist. weights with cutoff

Cy = , 19)
Y <T> i (vr)

1000 ¢
100
101
w F
L 1L
04

0.01¢ A
. exact theory
b -- diffusion approximation
[ AT i L i
0.001™ 100 10000
r. [Hz]

Fig. 5 Firing rate of a LIF neuron as a function of the input rate.
Our theory (Eq. (17), red solid lines) is compared to simulations (gray
symbols) and the diffusion approximation (green dashed line). Also
shown are simulations using spike weights that were either distributed
but cut off at amax = 0.4 (green triangles) or fixed (at a = 0.1) (black
squares), the maximally achievable firing rate min(rj,, 1/ref), and the
asymptotic rate for SN input with exponentially distributed weights
(Eq. (18)). Parameters: t, =20ms, u = 0.5,a = 0.1, vg =0, vr =
1, Tref = 2 ms
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which quantifies the regularity of the spiking. For a Poisson
process, Cy = 1; a lower CV indicates that firing is more
regular than for a Poisson process.

In Fig. 6, we plot the CV for of a shot-noise-driven QIF
neuron as a function of the mean spike weight a. In order to
demonstrate the plausibility of limit cases, we deliberately
show an unphysiologically large range for a. For small a,
where the assumptions underlying the diffusion approxima-
tion are still approximately fulfilled, the CV predicted by the
diffusion approximation is still a good match. For very low
spike weights, the input is so sparse that spiking becomes a
rare event and the output spike train thus becomes Poisson-
like with a CV of 1. At (unreasonably) high spike weights,
the CV also approaches 1, which is a plausible limit: when
a becomes very large, each incoming spike causes an output
spike (note that in Fig. 6, tef = 0) and the CV approaches
that of the Poissonian input. This is in contrast to the DA,
which, for a QIF with vg — —o0, vy — 00, predicts a
CV of 1/+/3 (dotted line in Fig. 6) as the noise intensity
tends to infinity (Lindner et al. 2003). However, even up
to unphysiological mean spike weights of @ = 1 (which
here corresponds to an average of only two presynaptic
spikes needed to reach the threshold), the CV calculated
using the DA is not qualitatively different from the exact
one.

7 Power spectrum of shot-noise-driven LIF
neurons

For leaky integrate-and-fire neurons driven by dichotomous
noise, we have previously derived expressions for the power

Ccv

0.5 ‘«' ——————

O simulations
— exact theory
— . diffusion approximation

R | | Ll | el

0
0.01 0.1 1 10 100 1000
a

Fig. 6 Coefficient of variation of a quadratic integrate-and-fire
(QIF) neuron as a function of the mean spike weight a. Our theory
(solid red line) is compared to simulations (gray symbols) and the dif-
fusion approximation (green dashed line). The dashed line marks the
value 1, expected for a Poisson process, the dotted line marks 1/ V3,
the asymptotic value expected for the DA with vg — —oo,vr —
oo. Parameters: 7, = 20ms,u = —1,ry, = 0.675kHz,vg =
—20, vy = 20, Tref = 0 ms

spectrum for the parameter regime < vr (Droste 2015;
Droste and Lindner 2017). Their shot-noise limit reads

|e_2niffref]-—(UT9 f) ‘2

G (vg, f)\
Sxx(f) =ro

6_2ﬂifrr9f‘/—'v(v7“’ f) i —r;r[lfg(vR’ f)‘
(20)

where F (v, f) and G(v, f) are given in terms of confluent
hypergeometric functions (Abramowitz and Stegun 1972),

FO. ) =1k (—2”iffm: (rin = 23 f)tm: — “) ,
@

G, f)=1Fi (—27Ti o 12y ¥) |
22)

In Fig. 7, Eq. (20) is compared to simulation results and
the diffusion approximation. The SN theory matches sim-
ulation results nicely. The DA, in contrast, does not even
qualitatively match it. Somewhat surprising is that, in the
SN-driven case, the low value of the power spectrum at zero
frequency (proportional to the squared CV of the interspike
interval) does not translate into a pronounced peak around
the firing rate. Hence, although the single interspike inter-
val for this parameter set has a rather low variability (that is
close to the value in the DA), the resulting spike sequence
does not show a pronounced periodicity.

8 Linear response of the firing rate

The susceptibility with respect to a current modulation of
LIF neurons driven by dichotomous noise has been derived

— simulation
— exact theory
200 — - diffusion approximation
z v
— At
@ 100
0 | I |
0 200 400

f [Hz]

Fig. 7 Power spectrum of an LIF neuron. Theory (Eq. (20), solid
red line), compared to simulation results (gray line) and the diffusion
approximation (green dashed line). Parameters: 7, = 20ms, p =
05,0 =02,rin =1kHz ,vg =0,vy =1, Tref = 2 ms
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elsewhere (Droste and Lindner 2017). Its shot-noise limit
reads

_ ro -F/(UT7 f) - rinjiznj-”'fg/(vRv f)
2nity f—1 F(or, f)—ez”ifffcfrinjiz“ﬂifg(vR7 N’
(23)

Xu(f) =

Here, the derivatives of Egs. (21), (22) with respect to v
are given by Abramowitz and Stegun (1972)

P o —2mif
D= e —2mip)
. . v—
x 1F] (1— 270 f s 14+ (rin =270 f ) T T) ,
(24)
G, )= —27ifTm

a(l + [rinp — 27wif]tm)
x 1F1 <1—27Tif‘[m;2—{—(rin—27rif)tm;ﬂ) .
a
(25)

In Fig. 8, we compare the absolute value and the phase of
the susceptibility to simulations and the DA. Especially for
high frequencies, a marked deviation from the DA can be
observed. This high-frequency behavior of the susceptibility is
of particular interest to understand how well neurons can track
fast signals; it has thus attracted both experimental and the-
oretical attention (Fourcaud-Trocmé et al. 2003; Boucsein
et al. 2009; Tchumatchenko et al. 2011; Ilin et al. 2013;
Ostojic et al. 2015; Doose et al. 2016). With the properties

— 10
N
L.
— O simulations ~
= — exact theory N
- high-frequency limit (e, ~
diffusion approximation =

15’_'

| |

arg(x)

10 100
f[Hz]

1000

Fig. 8 Susceptibility of an LIF neuron with respect to a current
modulation. Theory (Eq. (23), solid red line) compared to simula-
tions (gray symbols) and the diffusion approximation (green dashed
line). Also shown is the high-frequency behavior of the theory (blue
dotted line). Parameters: 7, = 20ms,u = 0.5, = 02r, =
0.28kHz ,vg =0, vy = 1, Tref = 2 ms

@ Springer

of confluent hypergeometric functions (Abramowitz and
Stegun 1972), we find from Eq. (23) for f > 1,

1o
2rat, f’

mmq»ng (26)

|Xu(f > 1| =

This is in contrast to LIF neurons driven by Gaussian white
noise (i.e. the DA), for which the absolute value of the sus-
ceptibility decays like 1/4/f while its phase approaches
% (see Fourcaud and Brunel 2002, for a comparison of
different neuron/noise combinations).

Note that the shot noise limit of a dichotomous-noise-
driven LIF neuron can also be used to study the suscepti-
bility with respect to a modulation of the firing rate (Droste
2015), a quantity previously studied by Richardson and
Swarbrick (2010).

9 Discussion

We have used the shot-noise limit of dichotomous noise to
obtain novel analytical expressions for statistical properties
of integrate-and-fire neurons driven by excitatory shot noise
with exponentially distributed weights. We have derived
exact expressions for the stationary distribution of voltages
and the moments of the ISI density for general IF neurons
as well as, for LIF neurons, the power spectrum and the
susceptibility to a current signal.

Our approach is complementary to others that have pre-
viously been employed. We obtain, for instance, the same
expression for the Laplace-transform of the first-passage-
time density of LIF neurons as Novikov et al. (2005)
(not shown), or the same expression for the firing rate as
Richardson and Swarbrick (2010) (if one considers only
excitatory input). Our expression for the power spectrum
provides an alternative formulation to the one given by
Richardson and Swarbrick (2010), given in terms of conflu-
ent hypergeometric functions that can be evaluated quickly.
Exact results for the coefficient of variation (CV), the
voltage distribution, or the susceptibility with respect to
a current-modulating signal have, to our knowledge, not
previously been obtained for SN-driven IF neurons.

For low input rates, the firing rate of the SN-driven neu-
ron was found to be much higher than predicted by the DA.
As we have argued, this is mainly due to the exponential
distribution of spike weights, which implies that individual
presynaptic spikes can be strong enough to make the neuron
fire. While arbitrarily high spike weights are not realistic,
this effect survives at least partially when we introduce a
weight-cutoff, i.e. when we no longer allow single individ-
ual spikes to push the neurons across threshold. This may
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be related to the finding that few strong synapses can sta-
bilize self-sustained spiking activity in recurrent networks
(Ikegaya et al. 2013).

An obvious limitation of our approach is that is does not
incorporate inhibitory SN input to the neuron. Many of the
qualitative results in this paper can be expected to persist
also with additional inhibitory input: the probability density
at the threshold, for instance, should still only be finite if it
can be crossed by drifting, the output firing rate should still
be proportional to the (excitatory) input rate when input is
sparse, and the CV should still approach 1 in the a — oo
limit. Nevertheless, it would be valuable to have quantita-
tively exact expressions also for this more realistic case. A
possible approach could be to derive statistics for neurons
driven by a trichotomous noise (Mankin et al. 1999) and
then take a shot noise limit.

Another interesting extension is to consider multiple neu-
rons with shot noise in order to understand the emergence
of correlations among neurons in recurrent neural networks.
The simplest problem of this kind is the calculation of
the count correlations of two uncoupled neurons which are
driven by a common noise (de la Rocha et al. 2007). Recent
work indicates that a common shot noise has a decisively
different effect than a Gaussian noise (Rosenbaum and Josic
2011). Some of the methods developed here may be also
useful for tackling this more involved problem.
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Appendix A: Expressions for ¢ (v) for various
neuron models

Here, we list explicit expressions for

v v 1
60) = 2+ i / & 5 @7
for PIF, LIF and QIF neurons.
— PIF(f(v) = p):
1 Tm’in
o) = v (— + > : (28)
a w
— LIF(f(v) = p — v):
P(v) = 2 — Torin In(lt — v]). (29)

- QIF(f(v) = u+v?):

v
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