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Abstract The statistical analysis of neuronal spike trains
by models of point processes often relies on the assumption
of constant process parameters. However, it is a well-known
problem that the parameters of empirical spike trains can
be highly variable, such as for example the firing rate. In
order to test the null hypothesis of a constant rate and to
estimate the change points, a Multiple Filter Test (MFT)
and a corresponding algorithm (MFA) have been proposed
that can be applied under the assumption of independent
inter spike intervals (ISIs). As empirical spike trains often
show weak dependencies in the correlation structure of ISIs,
we extend the MFT here to point processes associated with
short range dependencies. By specifically estimating serial
dependencies in the test statistic, we show that the new
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MFT can be applied to a variety of empirical firing pat-
terns, including positive and negative serial correlations as
well as tonic and bursty firing. The new MFT is applied
to a data set of empirical spike trains with serial correla-
tions, and simulations show improved performance against
methods that assume independence. In case of positive cor-
relations, our new MFT is necessary to reduce the number of
false positives, which can be highly enhanced when falsely
assuming independence. For the frequent case of negative
correlations, the new MFT shows an improved detection
probability of change points and thus, also a higher potential
of signal extraction from noisy spike trains.
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1 Introduction

One fundamental property of neurons is that they can code
information by varying their firing rate. In many neu-
rons, information is encoded in transient spike rate changes
against a variable baseline. The statistical structure of base-
line firing in spike trains is an important determinant
of neuronal information encoding (Luczak et al. 2013;
Hartmann et al. 2015). Likewise, state-related changes in
baseline firing rate alone affect signal to noise ratio and
the quality of information encoding (Lee and Dan 2012). In
this context, statistical estimation of rate change points is
an important tool for extracting relevant features from neu-
ronal signals, especially during so called spontaneous firing
neuronal activity during sleep, periods of quiet wakefulness,
under anesthesia, or whenever there is no direct behavioral
or sensorial trigger for the recorded neural signal, but which
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does carry important information about the structure of neu-
ronal networks and the biophysics of individual neurons
(Schiemann et al. 2012; Luczak et al. 2013; Hartmann et al.
2015).

General point process models have been proposed for the
description of varying firing rates and their dependence on
past spiking activity, external stimuli or behavioral events
(Brown et al. 2004; Koyama et al. 2010; Pillow et al. 2008;
Paninski 2004; Trucculo et al. 2004). The present article is
motivated by the observation that in addition to represent-
ing potentially important neuronal signals, changes in the
firing rate can often have a crucial impact on a large num-
ber of standard statistical spike train analyses that require
the assumption of a constant firing rate (e.g., Brody 1999;
Grün et al. 2002; Schneider 2008). Therefore, the main aim
is to present a statistical test of the null hypothesis of con-
stant rate and a method that can estimate change points in
the firing rate in order to divide a spike train into sections of
approximately constant rate.

A statistical method that aims at detecting rate change
points in neuronal spike trains should take into account sev-
eral phenomena and challenges observed in empirical data
(see also Fig. 1). First, distributions of inter spike intervals
(ISIs) can be highly diverse, and rate changes can occur on
different time scales. Second, other process parameters such
as the variance are not known in practice. And finally, as
one of the main issues in the present paper, neuronal spike
trains have often been reported to show serial dependencies
of low orders (Lowen and Teich 1991; Ratnam and Nelson
2000; Chacron et al. 2001; Nawrot et al. 2007; Farkhooi
et al. 2009), implying that independence of ISIs can not
necessarily be assumed in practice.

Serial correlations themselves have been proposed to be
a crucial aspect of information transmission in neuronal

spike trains, for example, by reducing variability of spike
count through negative correlations, thus increasing signal
detection efficiency by a post-synaptic neuron (Chacron
et al. 2001; Ratnam and Nelson 2000; Chacron et al. 2004;
Nawrot et al. 2007). Several models of neuronal informa-
tion coding have been proposed that incorporate mecha-
nisms for positive and/or negative serial ISI correlations
(Avila-Akerberg and Chacron 2011; Schwalger and Lindner
2013; Shiau et al. 2015). The concept that serial correla-
tions shape the way in which informative spike changes
are detected by neuronal systems inspired us to develop
a statistical analysis method that can detect rate changes
in spike trains while assuming and incorporating serial ISI
correlations. Specifically, our novel method can detect rate
changes in spike trains with short range dependencies in
which the covariance structure of life times is unknown and
rate changes may occur at different time scales.

As a proof of principle, we applied our analysis to spike
train recordings obtained from spontaneous activity of DA
neurons in anaesthetized mice. These trains include more or
less regular single spike or bursty patterns, (e.g., Bingmer
et al. 2011; Schiemann et al. 2012, see Fig. 1c, d for exam-
ples), and the activity of this class of neurons has been
previously described with spike train models with serial
dependencies, such as stochastic cluster processes (Bingmer
et al. 2011) or Hidden Markov Models (Camproux et al.
1996). The dataset presented here shows serial correlations
between successive ISIs, which can be strong for small lags,
but decay fast towards zero, in accordance with the literature
on serial ISI correlations (Fig. 1).

For the detection of rate changes in point processes,
methods were developed e.g., by Kendall and Kendall
(1980), Csörgȯ and Horváth (1987), Steinebach and Zhang
(1993), Gut and Steinebach (2002), Gut and Steinebach

Fig. 1 Spike trains with serial
correlations of ISIs from the
sample data set. a Positive
correlations, (c, d) negative
serial correlation of order one. b
Serial correlations of ISIs,
derived from mean in disjoint
windows of 50 ISIs each, with
95 % confidence limits
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(2009), and Messer et al. (2014). In the context of stochas-
tic time series, change point detection techniques that allow
for dependencies have been developed by, e.g., Tang and
MacNeill (1993), Lavielle (1999), Ray and Tsay (2002),
Berkes et al. (2006), and Dehling et al. (2013). Further,
several interesting methods that focus on the aspect of multi-
scale detection have been proposed recently by Frick et al.
(2014), Fryzlewicz (2014), and Messer et al. (2014).

Our novel method extends the multiple filter test (MFT)
proposed in (Messer et al. 2014) to respecting weak depen-
dencies in the ISIs. Regarding the point process model the
ISIs are often referred to as the life times of the point events.
The MFT was designed specifically for spike trains with a
wide range of ISI distributions and multi scale rate changes.
The idea in the corresponding filtered derivative approach
is to study for every time point the difference between the
number of spikes in the left and right window, scaled by an
estimate of its standard deviation. Under specific assump-
tions, one obtains a limit process that is independent of all
parameters of the underlying spike train. This limit process
can be used to define rejection thresholds of the null hypoth-
esis of constant rate and to estimate the rate change points.
By simultaneous application of multiple moving windows,
change points at multiple time scales can be detected. A
corresponding algorithm (MFA, see Messer et al. 2014) can
then be used to estimate the change points.

The idea behind extending the MFT to weak depen-
dencies is based on the fact that under independence, the
variance of the life times {ξi}i≥1, Var(ξ1), is used as a scal-
ing factor of the test statistic. If independence does not hold,
this term needs to be replaced by

ρ2 := Var(ξ1) + 2
∞∑

�=1

Cov(ξ1, ξ1+�).

We then require a consistent estimate of ρ2 in practical
application. Here we focus on the practically important case
of m-dependence, i.e., when Cov(ξ1, ξ1+�) = 0 for all
� > m, with some m ∈ N, which yields consistency of the
standard estimators for the summands of ρ2.

The paper is organized as follows. We first review the
ideas of the MFT assuming independence and the corre-
sponding MFA for change point detection in Section 2.1.
In Section 2.2 we derive a modification that can be applied
to spike trains with weak dependencies. Section 2.3.1 gives
examples of such theoretical processes to illustrate their cor-
respondence to neuronal spike trains, particularly including
also tonic and oscillatory bursty processes. Section 3 uses
simulations to discuss estimation principles of ρ2 and m

and practical performance of the proposed method includ-
ing also a recommendation for the choice of the window
size. Particularly, we show that disrespecting serial corre-
lations or globally estimating ρ2 or m can yield erroneous

results, and illustrate improved performance of the modified
MFT and MFA with regard to the number and location of
change points. In Section 4, we apply the derived statistical
method and algorithms to a data set of spike train record-
ings obtained from spontaneous activity of DA neurons in
anesthetized mice.

2 Extension of the multiple filter test to weak
dependencies

We consider a finite spike train of length T > 0 on the time
interval [0, T ] as a sequence of spikes 0 < S1 < S2 < · · · <

SNT
, where Nt denotes the number of spikes up to time t .

The ISIs are denoted by {ξi}i≥1, with ξ1 = S1 and

ξi = Si − Si−1 for i = 2, 3, . . . , NT .

The ISIs are considered realizations of random variables,
and the aim is to construct a statistical test for the null
hypothesis that the (positive) mean of all ISIs, i.e., the firing
rate, is constant,

H0 : E[ξi] = E[ξ1] =: μ > 0 for all i = 1, . . . , NT . (1)

For the alternative of k change points c1, . . . , ck ∈ [0, T ],
we assume k+1 (independent) processes with constant rates
μ−1

1 , . . . , μ−1
k+1, while μj �= μj+1 for all j . At time zero

start in the first process with rate μ−1
1 , at the first change

point c1 jump into the second process of rate μ−1
2 etc. Then

the resulting process is a piecewise combination of sections
with different rates. If the null hypothesis is rejected, we are
interested in estimating the change points c1, . . . , ck in order
to segment the spike train into sections of constant rate.

2.1 The MFT for rate changes in renewal processes

Here we describe the main idea of the MFT (for more details
see Messer et al. 2014). The MFT is based on a filtered
derivative approach that compares the numbers of events,
Nle := Nt −Nt−h and Nri := Nt+h −Nt in the left and right
window of size h ∈ (0, T /2] for every time t ∈ [h, T − h].
By standardizing with a consistent estimator of the stan-
dard deviation of this difference, ŝh,t , one obtains a filtered
derivative process

Gh,t := Nri − Nle

ŝh,t

. (2)

Large differences between the numbers of events in the left
and right window, i.e., large deviations of G from zero indi-
cate deviations from the null hypothesis of constant rate. In
order to test statistical significance of these deviations, the
maximal deviation maxt |Gh,t | from zero could serve as a
test statistic for one window, and the rejection threshold at
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level α can be derived from the limit process of G as fol-
lows. Using an extension G(n) := Gnh,nt in an asymptotic
setting in which the window size nh and the time nT (or
alternatively, the firing rate) grow linearly in n, G(n) can be
shown to converge weakly to a functional L of a standard
Brownian motion W ,

Lh,t := ((Wt+h − Wt) − (Wt − Wt−h)) /
√

2h, (3)

under the null hypothesis of a constant rate. Note that Lh,t ∼
N(0, 1) for all h and t , i.e., ŝh,t standardizes the difference
of the number of events in both windows. As L does not
depend on parameters of the underlying process, the dis-
tribution of maxt |Lh,t | can be easily simulated to obtain a
rejection threshold Q for a statistical test at level α.

In order to allow detection of change points at multiple
time scales, the MFT combines multiple windows from a
finite set H and the corresponding processes Gh,t . As the
distribution of maxt |Gh,t | depends on the window size h,
the process G is rescaled to give about the same weight to
every window size, resulting in a rescaled process

Rh,t := |Gh,t | − μ̂M∗
h

σ̂M∗
h

,

where μ̂M∗
h

and σ̂M∗
h

denote the estimated mean and stan-
dard deviation of M∗

h := maxt |Lh,t | obtained in simulations
by simulating W and deriving L from W as in Eq. (3). The
maximum of all R-processes,

M := max
h,t

Rh,t ,

is used as a test statistic. The rejection threshold Q

can then be derived from the corresponding distribu-
tion of maxh (M∗

h − μ̂M∗
h
)/σ̂M∗

h
, which can be obtained in

simulations.
This approach has three practical advantages: First, it

does not require previous knowledge of process parameters
because G is scaled such that the limit process does not
depend on the parameters of the underlying process. Sec-
ond, it can be applied to a wide range of processes, i.e.,
Poisson or Gamma processes or processes with complex
or unknown ISI distributions as long as ISIs are indepen-
dent and identically distributed (Steinebach and Eastwood
1995). It even holds for processes with independent but not
necessarily identically distributed ISIs in the sense that the
variance of ISIs may show a certain degree of variation
between regular and irregular phases (Messer et al. 2014)
as can sometimes be observed in empirical spike trains.
Third, this approach allows the simultaneous use of multi-
ple windows in a finite set H and thus, analysis of change
points at multiple time scales. Due to the asymptotic nature
of the method, the smallest window should contain at least
about 100 − 200 spikes in order to approximately keep the
significance level.

The MFT is applied to a simulated spike train with
three rate changes in Fig. 2. The upper panel indicates the
rescaled processes for a window set H = {50, 100, 200}.
The maximum M exceeds the rejection threshold Q, and
the null hypothesis of constant rate is rejected. Then, the
MFA successively estimates the change points. For every
window h, change point candidates ĉj are identified by suc-
cessively locating the maxima of (Rh,t )t and then deleting
their h-neighborhood [ĉj − h, ĉj + h]. Change point candi-
dates are then successively combined (see also the articles
by Fryzlewicz (2014) and Frick et al. (2014) for similar
approaches), preferring candidates of smaller windows and
adding only those whose h-neighborhood does not overlap
accepted change points. This is motivated by the idea that
large windows tend to be affected by multiple change points,
which may reduce their estimation precision. In Fig. 2,
change points with fast, strong changes are estimated with
small windows, while change points with slow and weak
changes are estimated with larger windows.

2.2 The MFT for weak dependencies

The main purpose of this paper is to study the MFT in
case of weak dependence of ISIs. We will show here that
this requires two assumptions: First, a generalized class of
point processes that also include weak dependencies (Def-
inition 2.1), and second, consistent estimation of process
parameters (Proposition 2.2).

Under independence, a consistent estimator of the stan-
dard deviation of (Nri − Nle) in Eq. (2) is given by
(

2nhσ̂ 2/μ̂3
)1/2

(4)

if μ̂ > 0, and zero otherwise, where μ̂ and σ̂ 2 denote
the empirical mean and variance of the ISI lengths in the
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Fig. 2 Application of the MFT and MFA to a piecewise renewal pro-
cess with Gamma-distributed intervals ξi with variance Var(ξi ) = 0.22

and rates 2.5, 3, 6, 10 Hz with change points at 150, 300, 360 sec-
onds. Upper panel indicates rescaled processes Rh,t for window sizes
h ∈ {50, 100, 150} and rejection threshold Q (dashed) at 5 % level,
and lower panel indicates rate histogram, true rate (thick, solid) and
estimated rate (thin, dashed) with estimated change points (diamonds
and arrows). The color indicates the window with which the change
point was detected
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analysis window. In case of non-zero covariances between
successive ISIs, the estimate of the variance of ISIs σ 2 :=
Var(ξ1) needs to be replaced by an estimator of

ρ2 = σ 2 + 2
∞∑

�=1

ρ�, (5)

where ρ� := Cov(ξ1, ξ1+�), yielding

ŝ := ŝnh,nt :=
(

2nhρ̂2/μ̂3
)1/2

, (6)

where details on ρ̂2 and μ̂ can be found in Section 2.3.2.
Here we show under which assumptions on the point pro-
cesses and modifications of the MFT one obtains the same
convergence and thus, applicability to spike trains with
weakly dependent ISIs. To that end, we require a class of
point processes P for which the ISIs fulfill a functional
central limit theorem (FCLT) and for which consistency of
ŝ can be concluded.

Definition 2.1 The class of point processes P is given by
all point processes on the positive line whose life times
{ξi}i≥1 are stationary, ergodic, almost surely positive and
square-integrable and further they fulfill ρ2 > 0 (see
Eq. (5)) as well as
∞∑

i=2

‖E[ξ1 − E[ξ1]|{ξk|k ≥ i}]‖ < ∞. (7)

Here, ‖·‖ denotes the L2-norm (as the conditional expec-
tation in Eq. (7) is a random variable). Stationarity means
that the distribution of any subset of life times is invari-
ant under a time shift of their indices. The assumptions on
{ξi}i≥1 particularly imply a FCLT as well as ergodic the-
orems. The FCLT will be used to derive the convergence
of the filtered derivative process (Proposition 2.2) and the
ergodic theorems will be used for consistent parameter esti-
mation (Lemma A.1 and A.2). See (Billingsley 1999) for
details on the notions of stationarity and ergodicity. Further
note that the summation condition (7) implies absolute con-
vergence of the series (5) (see Billingsley 1999, Thm. 19.1).
This condition particularly holds true for the special case of
m-dependent sequences.

Throughout this article,
d−→ denotes convergence in dis-

tribution, and (D[0, ∞), dSK) denotes the space of càdlàg-
functions on [0, ∞) endowed with Skorokhod-topology,
and analogous for (D[h, T − h], dSK).

The following proposition ensures that the MFT can be
applied to point processes � ∈ P when their parameters
are consistently estimated.

Proposition 2.2 Let � ∈ P with ISIs {ξi}i≥1 and let ŝ2 be
an estimator for s2 = 2nhρ2/μ3 that satisfies in (D[h, T −
h], dSK) as n → ∞ that (ŝ/s)t → (1)t in probability.

Then it holds for the filtered derivative process G(n) =
(Gnh,nt )t as given in Eq. (2) in (D[h, T − h], dSK) as n →
∞
G(n) d−→ L.

Proof From the conditions on P it follows that in
(D[0, ∞), dSK) as n → ∞
(

1

ρ
√

n

[nt]∑

i=1

(ξi − μ)

)

t

d−→ W, (8)

where W denotes a standard Brownian motion (see Billingsley
1999, Thm. 19.1). For t ≥ 0 let

Z
(n)
t := (Nnt − nt/μ)/(nρ2/μ3)1/2

denote the rescaled counting process. According to Vervaat
(1972) it follows from Eq. (8) that in (D[0, ∞), dSK) as

n → ∞ it holds Z(n) d−→ W . We then define a continu-
ous map ϕh : (D[0, ∞), dSK) → (D[h, T − h], dSK) via

f (t)
ϕh�−→ ((f (t +h)−f (t))− (f (t)−f (t −h)))/(2h)1/2.

By continuous mapping theorem it follows in (D[h, T −
h], dSK) for n → ∞ that

((N
(n)
ri − N

(n)
le )/(2nhρ2/μ3)1/2)t

d−→ L,

where N
(n)
ri := Nn(t+h) − Nnt and N

(n)
le := Nnt − Nn(t−h).

Due to the consistency assumption of the estimator ŝ, we can
exchange (2nhρ2/μ3)1/2 with ŝ by Slutsky’s theorem.

2.3 Examples for practical application

Proposition 2.2 states that the MFT is applicable to pro-
cesses in the class P if one uses the modified filtered
derivative process

Gh,t := Nri − Nle

ŝh,t

, (9)

with ŝ2 a consistent estimator of s2 = 2hρ2/μ3 and ρ2 =
σ 2 + 2

∑∞
�=1 ρ� with the convention Gh,t := 0 if ŝh,t =

0. In order to illustrate practical applicability specifically
to spike trains with weakly dependent life times, we give
examples of processes in P that resemble empirical spike
trains (Section 2.3.1) and examples of consistent estimators
of s (Section 2.3.2).

2.3.1 Processes in P

The assumptions of processes in P are fulfilled for exam-
ple in renewal processes with independent and identically
distributed ISIs. Here, we focus on dependencies in the ISI
structure, i.e., processes with stationary and ergodic ISIs as
stated in Definition 2.1. In a simple but practically important
case, the ISIs are m-dependent for an m ∈ N, i.e., ρ� = 0
for all � > m.
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Here we give three examples of m-dependent processes
in Fig. 3 that resemble the neuronal spike trains shown in
Fig. 1. Panel a shows a process with m = 3 and positive
serial correlations given by life times

ξi := a0Xi + a1Xi−1 + . . . + amXi−m, (10)

with X1, X2, . . . independent with expectation μX and vari-
ance σ 2

X > 0. This implies

σ 2 = Var(ξi) = σ 2
X

m∑

j=0

a2
j

and ρ� = σ 2
X

∑m−�
j=0 ajaj+� for � ≤ m, and ρ� = 0 for

� > m i.e.,

ρ2 = σ 2
X

⎛

⎝
m∑

j=0

a2
j + 2

m∑

�=1

m−�∑

j=0

ajaj+�

⎞

⎠ .

Appropriate conditions on the ai and the distribution of Xi

ensure almost surely positive ISIs.
Panel c shows an example of a single spike process

similar to Fig. 1c. It is described by ISIs

ξi = Ui + Zi − Zi−1, (11)

where Ui, Zi are independent and uniformly distributed
with Ui ∼ U [ν − σ1, ν + σ1] and Zi ∼ U [−σ2, σ2], with
ν, σ1, σ2 > 0 and σ1 + 2σ2 ≤ μ, which assures ξi > 0.
In this process, all ISIs ξi are identically distributed with
mean ν and variance σ 2 = (1/3)(σ 2

1 + 2σ 2
2 ). The process

is 1-dependent with negative covariance of lag one given by
ρ1 = −Var(Zi) = −(1/3)σ 2

2 (panel b). The spikes of this
process can be regarded as jittered uniformly with jitter Zi

around the unobservable beats of a background rhythm with
period ν which is a renewal process with independent and

uniformly distributed intervals Ui . Related doubly stochas-
tic Cox processes have been used earlier for the description
of single spike processes (Bingmer et al. 2011). Similar to
Hidden Markov Models (Camproux et al. 1996), they can
also be used for the description of oscillatory bursty activity
as in Fig. 1d.

In order to illustrate applicability of Proposition 2.2 also
to oscillatory bursty spike trains, Fig. 3d shows an example
of a 2-dependent oscillatory bursty process similar to the
spike train in Fig. 1d. Every ISI ξi is described by

ξi = Ii(1 − Ii−1)Xi + Ii−1JiYi + Ii−2J
′
i Y

′
i (12)

+(1 − max(Ii(1 − Ii−1), Ii−1, Ii−2Ji))Y
′′
i ,

where (Ii)i≥1, (Ji)i≥1, (J
′
i )i≥1 are independent sequences

of independent {0, 1}−valued random variables with suc-
cess probabilities pI and pJ = pJ ′ , and (Xi)i≥1,
(Yi)i≥1, (Y

′
i )i≥1 and (Y ′′

i )i≥1 are independent sequences of
independent and almost surely positive random variables
and Yi, Y

′
i , Y

′′
i are identically distributed for all i. Obvi-

ously, all ISIs are identically distributed and the process is
2-dependent. The idea is that Xi takes large values to gener-
ate large ISIs, while Yi, Y

′
i , Y

′′
i take small values. Then, an

ISI ξi takes a large value if Ii = 1 and Ii−1 = 0, such that
in this example, a long ISI is typically followed by at least
one short ISI, leading to negative serial correlation (panel
b). The last summand in Eq. (12) only ensures that ξi > 0.

2.3.2 Consistent estimators

In addition to requiring a process in P , the second
ingredient of Proposition 2.2 is a consistent estimator
ŝ. Common approaches in the setting of dependencies

Fig. 3 Examples of processes
from P (panels a,c,d) that
resemble spike train patterns
from Fig. 1, and corresponding
covariance structure (b). a. A
3-dependent process according
to Eq. (10), with Xi Gamma
distributed and μ = 0.2, σ =
0.1, ak = ck, c = 0.25. c. A
1-dependent process similar to
Fig. 1c, simulated according to
Eq. (11), with
μ = 0.3, σ1 = 0.06, σ2 = 0.12.
d. A 2-dependent process
similar to Fig. 1d, simulated
according to model (12), with
pI = .5, pJ = .4, Xi ∼
U [0.45, 0.73], Yi ∼ U [.01, .12]
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include methods based on covariance kernel estimation
(De Jong and Davidson 2000, e.g.,Wied et al. 2012) or the
Bartlett-estimator (Berkes et al. 2005; Xiao and Wu 2012;
Kirch and Muhsal 2014). Here we focus on two simple
estimators - a global and a local estimator - that are partic-
ularly useful in practical application. Under m-dependence,
we show consistency under the null hypothesis of constant
rate, even for the local estimator. The local estimator is par-
ticularly useful in the presence of change points because the
global estimator is sensitive to rate changes and therefore
tends to be biased in these cases. In contrast, the local esti-
mator does not tend to be biased on most time sections (see
Section 3).

In case of m-dependence ρ2 equals a finite sum

ρ2 = σ 2 + 2
m∑

�=1

ρ�. (13)

The global estimator uses global estimates of the variance
and covariances in Eq. (13) from the entire spike train using
standard estimators

ρ̂� :=
⎛

⎝ 1

NnT − (� + 1)

NnT −(�+1)∑

i=1

ξiξi+�

⎞

⎠ − μ̂2, (14)

ρ̂2 := σ̂ 2 + 2
m∑

�=1

ρ̂�, (15)

where μ̂ denotes the empirical mean of all ISIs. Lemma A.1
in the Appendix shows that this yields a consistent estimator

ŝ2 := 2hnρ̂2/μ̂3 (16)

under the null hypothesis.
As mentioned above, one main disadvantage of global

parameter estimation is that it tends to be biased under the
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Fig. 4 The classical MFT(0) can estimate too many change points
when applied to processes with positive correlations (a,e) and
may show reduced test power when applied to negative correla-
tions (c). True rate profiles indicated in thick solid, estimated rate
profiles in thin, dashed. Here, the MFT(1) (b,d) detects all true
change points and no false positives. e. Significance level of classical
MFT(0) for positive serial correlations obtained in 10000 simula-
tions, where the threshold was chosen such that under independence,
the MFT(0) would yield an asymptotic significance level of 5 %

(indicated by horizontal line). All simulations were performed using
model (10) with T = 300, H = {25, 50, 75, 100} and m = 1
in (a-d) and varying m in e. The coefficients ai were a0 = 1
throughout and a1 = 0.5 in a, b, a1 = −0.5 in c,d and ak =
ck, c ∈ {0.1, 0.25, 0.5} in e. The Xi were Gamma-distributed in
a,b,e and, in order to ensure a.s. positive ISIs, uniformly distributed
in c,d. The parameters μX, σX were chosen such that the ISIs ξi

had standard deviation 0.15 and the given rate profiles (a-d) or
μ = 0.1 (e)
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alternative hypothesis (see Section 3 and Fig. 6d). There-
fore, we suggest to use an analogous local estimator, which
for every t uses only the ISIs in the window (n(t −h), n(t +
h)]. More precisely, for every time t , we estimate ρ2 and
μ analogously, but only from the life times that lie within
the windows (separate estimation for the left and the right
window) and let the local estimator be

ŝ2 :=
(

ρ̂2
ri

μ̂3
ri

+ ρ̂2
le

μ̂3
le

)
nh. (17)

For the case of independent life times, i.e., m = 0, con-
sistency of this estimator was shown in Messer et al. (2014).
In Lemma A.2 in the Appendix we show consistency of this
estimator for m-dependent processes.

3 Practical application of the MFT for weak
dependencies

Section 2 presented theoretically a class of processes, esti-
mators and statistics that allow to apply the MFT and MFA
for the estimation of rate change points in spike trains with
weakly dependent ISIs. Here we use simulations to illustrate
the difference between the proposed method and the classi-
cal MFT that assumes independence. In addition, we discuss
the important practical issue of estimating serial dependen-
cies and of choosing the set of windows H , particularly the
smallest window. Simulations are performed using models
(10) and (11), which yield flexible and simple formulas for
serial correlations.

For ease of notation we denote the MFT and MFA that
assume m-dependence by MFT(m) and MFA(m). The classi-
cal MFT assuming independence will therefore be denoted
by MFT(0). All procedures use the statistic described in
Eq. (9). Under m-dependence, ρ2 is estimated up to the m-
th summand in the MFT(m). The corresponding estimator of
s is denoted by ŝ(m).

First, we show that falsely applying the classical MFT(0)

yields too many false positives in cases of positive correla-
tions and reduced test power for negative correlations. This
is because MFT(0) uses ρ̂2 := σ̂ 2, disrespecting potential
serial correlations. Positive correlations yield ρ2 > σ 2 and
thus increase the number of false positives in the MFT(0)

when the scaling ŝ(0) is spuriously low (Figs. 4a, e and 5b).
Vice versa, negative correlations yield conservative results
for the MFT(0) and a reduced test power (Fig. 4c), while in
the given example, the MFT (m) can detect the given change
points with high precision (Fig. 4d).

Second, we illustrate the performance of the MFA(m)

when m is known using the standard estimators ŝ(m) from
Section 2.2 and emphasize that s should be estimated
locally. In particular, we propose to use the local estimator
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Fig. 5 Number of detected change points in 1000 simulations under
the alternative with rate profile given in a. b. MFA(0) without account-
ing for serial correlations. c. True value of local s2 (solid) compared
with local estimation (dashed) and global estimation (dotted). d.
MFA(m) with global estimate of s. e. MFA(m) with estimates of s

derived separately in every analysis window. Simulations according to
model (10), with Xi Gamma distributed, ak = 0.5k , T = 300, H =
{25, 50, 75, 100}, σ = 0.15, m = 3, c = 0.5

from Eq. (17) because a global estimator (Eq. (16)) would
be biased in case of rate changes and thus, reduce test power
and/or increase the number of false positives. This effect is
illustrated in Fig. 5. Spike trains with positive serial corre-
lations are simulated with a rate profile with two change
points (panel a). As described above, the classical MFA(0)

assumes independence and therefore shows many false pos-
itives (panel b). Using the MFA(m) with global estimation
of s is also unsatisfactory as is shows increased false pos-
itive rate on the left and decreased detection rate on the
right (panel d). This is because the rate changes cause the
true value of s2 to change across time (panel c). The global
estimate (dotted) falsely uses a global μ and therefore a
biased global estimate of ρ2 (see also Fig. 6d) and thus
underestimates s2 on the left and overestimates on the right.
In contrast, the estimates from local windows (blue) cor-
respond closely to the true value of s2, and accordingly,
the corresponding MFA(m) using local estimators detects
the change points with high precision without showing
an increased false positive rate (panel e). For individual
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Fig. 6 a. Estimation errors of ρ̂2 for different values of m. Simula-
tions according to model (10), with Xi Gamma distributed, ak = 0.5k ,
T = 300, μ = 0.15, σ = 0.15, m = 7. Serial correlation decreases
exponentially with the lag, such that the summands with large lags
show only small contributions to ρ2. Neglecting these in the estima-
tion of ρ yields a small bias but a highly reduced variance. b. A
spike train with negative first order serial correlation but a rate change.

c. First order correlation is negative locally within sections of constant
rate (dots and solid regression lines), but positive globally across sec-
tions (dashed regression line). d. Estimates of serial correlations of
lags � ∈ {1, 2, . . . , 10} for the spiketrain shown partly in b. Global
estimates (red), local estimates (grey) derived in disjoint windows
of length 50 ISIs, their medians (black) and true serial correlations
(green)

examples with positively or negatively correlated life times
in the case of 1-dependence see also Fig. 4b and d).

Third, we discuss the estimation of m, which is typically
unknown in practice. If a spike train was arbitrarily long,
we could simply use all serial correlations up to an arbi-
trarily large order as ρ� = 0 for � > m, which does not
bias the estimation of ρ (this is the idea behind approaches
for consistent estimation under long-range dependence, see
De Jong and Davidson 2000; Berkes et al. 2005; Wied
et al. 2012; Xiao and Wu 2012). However, in practice, this
approach is not applicable because for finite spike trains
it highly increases the variance of ρ̂ and thus, the prob-
ability of over- or underestimating ρ, whereas the former
decreases the test power and the latter increases the num-
ber of false positives. Therefore, it is important to include
only the largest summands into the estimation of ρ2, while
summands with smaller contributions can be neglected. This
effect reduces the mean squared error (MSE) of ρ̂2 by intro-
ducing small bias but reducing variance as shown in Fig. 6a
where for m = 7, m̂ = 4 yields the smallest MSE.

Therefore, we consider here only the practically impor-
tant case in which serial correlations decrease with the lag,
and propose to search the smallest lag �∗ for which the serial
correlation is not significantly different from zero (e.g. on

the 5 % level) and to use m̂ = �∗ −1 as an estimate of m. As
before, the evaluation of statistically significant deviations
from zero must be based on local estimates because poten-
tial rate changes can bias the estimates of serial correlations
as illustrated in Fig. 6b–d. Panel b shows a simulated spike
train according to model (11) with negative first order serial
correlations, i.e., ρ1 < 0, and a rate change point in the mid-
dle. The corresponding successive ISIs ξi, ξi+1 on which the
estimation of ρ1 is based are shown in panel c. The global
estimate of ρ1 is not even negative but positive (dashed line
in c), whereas the true correlation is indicated by the blue
and black lines with negative slope; a phenomenon known
as Simpson’s paradox.

We therefore propose to estimate m by splitting up the
process into disjoint sections. In each section, serial corre-
lations up to a maximal lag are calculated, and systematic
deviations from zero are investigated for each lag. These
sections should be long enough to provide good estimates of
serial correlations, and small enough so that most windows
remain unaffected by potential change points. In Fig. 6d,
the estimates derived from the local estimators in small
windows (black and grey dots) agree well with the true cor-
relation structure (green) of the spike train shown in panel
b, whereas the global estimators (red) are highly biased.
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Finally, we investigate the practical applicability of the
proposed procedure to finite windows as it relies on asymp-
totic thresholds. As mentioned earlier (see also Fig. 9 in
Messer et al. 2014), simulations suggest that the MFT(0)

keeps the asymptotic significance level if the smallest win-
dow contains about 100 − 200 spikes for spike trains with
medium regularity, i.e., if σ 2/μ3 is not too small. If we
assume additional covariance structure, we need to con-
sider the term ρ2/μ3 instead, which basically determines
the asymptotic value of the denominator of Gh,t . If it takes
values close to zero, estimation error may lead to negative
estimates of ρ2/μ3, in which case ŝ and Gh,t would be not
defined. In addition, estimates of ρ2/μ3 in the neighbor-
hood may be positive, but extremely small, causing sharp
peaks in Gh,t and therefore, false positives, particularly
when using smaller windows (Fig. 7b, red curve with esti-
mated change point). This needs to be taken into account in
practice because negative serial correlations may yield very
small ρ2/μ3. We therefore suggest to slightly modify the
MFA by excluding the h-neighborhood of points in which
the denominator of Gh,t is not defined by setting ŝ := 0
in this neighborhood (such that G is also set to zero in this
case, Fig. 7b, green curve). As this has asymptotically no
effect, ŝ remains consistent. The empirical significance level
of this modified MFT(m) is investigated by application to the
three simulated spike trains from Fig. 3 by varying the mini-
mal window size. Figure 7a shows that in these simulations,
again about 150 − 200 spikes are required to approximately
reach the asymptotic significance level.
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Fig. 7 Practical applicability to finite data sets and window choice.
a. Empirical significance level of MFT(m) applied to simulations of
spike trains from Fig. 3. For positively correlated ISIs (black), the sig-
nificance level approaches the asymptotic 0.05 (horizontal line) when
increasing the smallest window and thus, the spike number. For neg-
atively correlated ISIs (red, blue), cutting out the h-neighborhood of
points with undefined ŝ, which occurs particularly in small windows,
reduces the number of false positives. b. Illustration of test modifica-
tion. By cutting out the h-neighborhood (green curve) around falsely
detected change points (red curve) caused in the neighborhood of
points with undefined ŝ, false positives are reduced for small analysis
windows, particularly when ρ2/μ3 is close to zero

4 Application to spike train recordings

We apply the proposed methods, principles and algorithms
to an experimental data set of spike trains obtained from
spontaneous activity recordings of dopaminergic neurons in
the substantia nigra and ventral tegmental area of anaes-
thetized mice, as described previously (Schiemann et al.
2012; Subramaniam et al. 2014). The data set contains 44
spike trains of length 600 seconds, with a mean rate of
about 4 spikes per second. The set of analysis windows
was therefore chosen as H = {50, 75, 100} seconds, yield-
ing an expected number of about 200 spikes in the smallest
window.

We estimated the maximal lag m̂ for every spike train
separately as described in Section 3 (Fig. 6d). To that end,
we used disjoint windows of 50 ISIs to estimate serial cor-
relations, and estimated m + 1 as the first lag for which
deviations from zero were not significant on the 5 %-level
using a Wilcoxon test. Figure 8a shows a typical example
for one spike train. The serial correlation of lag one shows
considerable deviation from zero, the correlation of lag two
is small but still deviating from zero, and all other correla-
tions do not strongly deviate from zero, leading to m̂ = 2 for
this spike train. The corresponding estimates of serial corre-
lations up to m̂i are shown in panel b for all spike trains. The
values of m̂ were m̂ ≤ 3 in about 90 % of all cases, ranging
up to a maximum of 7, and the estimated serial correlation
tended to be negative in the majority of spike trains.

In this more frequent case of negative serial correlations,
the MFA(m̂) typically detected more change points than the
MFA(0), leading also to rate profiles matching better with
visual inspection (D-F). In order to measure this effect as a
function of the degree of serial correlations, we plotted the
difference between the number of change points estimated
by the MFA(0) and by the MFA(m̂) in panel c as a function
of an estimate of the term

2
m∑

�=1

Cor(ξi, ξi+�) = ρ2 − σ 2

σ 2
, (18)

which measures the contribution of serial correlations to ρ2.
As expected, when this term is negative, the MFA(0) typi-
cally estimated much fewer change points, often none at all.
In the rare cases where this term was positive, the MFA(0)

typically estimated more change points than the MFA(m̂).

5 Discussion

We have presented a multiple filter test (MFT) that can
test the null hypothesis of constant firing rate and estimate
change points in the rate of spike trains especially if these
show dependencies in their ISI structure as is often observed
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experimentally. Detection of subtle rate changes can be used
for extracting meaningful signals from neuronal spike trains
and, more generally, it can be an important preprocessing
step for statistical analyses that are sensitive to rate changes.

Our procedure incorporates multiple features that are par-
ticularly important for practical application in spike train
analysis: (1) un unknown number of rate changes can occur
(2) on multiple time scales, (3) other process parameters
such as the variance of inter spike intervals can be unknown,
and (4) processes can show a high variety of patterns and
distributions, including particularly serial dependencies.

The initial version of the MFT for rate change detec-
tion introduced in Messer et al. (2014) was developed for
renewal processes with a wide range of life time distribu-
tions but assumed independence of ISIs, which does often
not hold in empirical neuronal spike trains. The MFT uses
a filtered derivative process with multiple filters that con-
verges weakly to a parameter free limit process that can be
used to obtain the rejection threshold for the test. By specif-
ically estimating serial dependencies in the test statistic, we
show that the new MFT can be applied to a variety of empir-
ical firing patterns, including positive and negative serial
correlations as well as tonic and bursty firing. Note that the
conditions for the present new MFT include models where
the life times are independent or where the life times are
dependent but show no serial correlations. In these cases the
results of the present MFT would be identical to the results

of the original MFT (Messer et al. 2014). This is because
zero serial correlation implies that ρ2 = σ 2 i.e., the terms
that are responsible for the difference in the methods are
identical.

For practical application, it is necessary to estimate the
denominator of the test statistic, s, consistently. We have
therefore proposed a consistent local parameter estimator
under m-dependence. Although more complex theoretical
approaches for consistent estimation are available for the
more general case of ergodicity (Berkes et al. 2005; Wu and
Pourahmadi 2009; Xiao and Wu 2012; Kirch and Muhsal
2014), we focus on m-dependence because it is techni-
cally simple and suitable for empirical data analysis with
finite spike numbers. Especially under the alternative of rate
changes, global estimators of s are affected by rate changes
and yield erroneous results. Therefore, our simulations
argue strongly for local estimates of s within small win-
dows as these are less affected by potential change points.
Even these local estimators require that m is small relative
to the window size used for estimation. This implies that
even under m-dependence the performance can be subopti-
mal if m is large and change points occur frequently. This
is because large m requires large windows with constant
firing rate for the estimation of s. If change points occur fre-
quently, such windows cannot be found, and consequently, ŝ
will be affected by change points within the used estimation
windows. Therefore, in practice, only cases with a moderate

Fig. 8 Application of the MFA
to a data set of spike trains with
weak serial correlations. a.
Serial correlations estimated in
disjoint windows of 50 life times
each (grey), and medians
(black). Vertical line indicates
cutoff value for m̂ for the
respective spike train. b. Serial
correlations are short and
typically negative. Median serial
correlations derived as in A for
all spike trains, plotted up to the
respective estimate mi for every
spike train i. c. Difference
between the number of change
points estimated by the MFA(0)

and the MFA(m̂), as a function of
the contribution of the serial
correlations to ρ2 (Eq. (18)). d.
Application of the MFA(0) and
e. the MFA(m̂) to one spike train
with correlation profile similar
to a. f. The rate profile of the
sample spike train, and the rate
profiles estimated by the MFA(0)

(red, one estimated change
point) and the MFA(m̂) (blue, six
estimated change points)
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number of change points and short range dependencies can
be considered, i.e., when m is small or serial correlations
decay fast with the lag. According to practical examples
such as the data set used here (e.g., Fig. 1 and Ratnam
and Nelson 2000; Chacron et al. 2001; Nawrot et al. 2007;
Farkhooi et al. 2009), this is a typical case for empirical
spike trains.

One practical limitation of the presented method is its
asymptotic nature, which requires a sufficient number of
spikes, i.e., about 100 − 200 events in the smallest win-
dow, which prevents change point detection in shorter time
scales. Therefore, it can be considered particularly useful
for spontaneous activity, rather than for short trials with
many external stimuli or behavioral events. For these cases,
different methods such as for example point process adap-
tive filter methods (e.g., Eden et al. 2004) may be useful.
The main problem with using smaller window sizes is that
the asymptotic threshold, Q, is too low when the small-
est window does not contain sufficiently many spikes. One
possibility to deal with this issue could be to replace Q by
a threshold Qb derived from a block bootstrap procedure
(Singh 1981; Gonçalves and Politis 2011; Kreiss and Lahiri
2012), where the block size needs to be chosen such that
serial correlations can be treated appropriately. In our simu-
lations of the spike trains used in Fig. 7a, a block bootstrap
procedure kept the asymptotic significance level by increas-
ing the rejection threshold Qb (data not shown). However,
while Q always depends only on the window set H and the
time T , under the alternative hypothesis of change points,
Qb largely depends on the properties of the spike train.
This can render interpretation difficult in case of change
points. Bootstrap can be advantageous when ρ2 is close
to zero, for example due to strong negative correlations,
such that large amounts of data would need to be excluded
from the analysis due to negative estimates of ŝ, poten-
tially also including the change points themselves. In such
cases, bootstrap procedures can enhance detection proba-
bility by avoiding this exclusion. In other cases, detection
probability can be reduced, which often makes the use of
small windows equally unsatisfactory for bootstrap proce-
dures. In addition, the derivation of Qb takes considerably
longer than the derivation of Q. We therefore recommend to
use the asymptotic threshold and a minimal spike number of
about 100−200 events in the smallest window, but bootstrap
options are also made available in the provided code.

As a second limitation, the present method assumes the
rate to be a step function with clear change points. As a
consequence, other forms of the rate function, such as ramps
or rhythmic behavior, will be described by corresponding
step functions.

Our simulations illustrate the necessity of incorporat-
ing serial correlation in the MFT. For positive correla-
tions, our new MFT is necessary to reduce the number of

false positives, which can be highly enhanced when falsely
assuming independence. For the frequent case of nega-
tive correlations, these reduce the variability of the spike
count and therefore enhance the detection probability of
change points, yielding a higher potential of signal extrac-
tion from noisy spike trains. Indeed, it has been suggested
that sensorial neural systems, such as the electroreceptive
organs of weakly electric fish (Chacron et al. 2001) and pri-
mary somatosensory cortical neurons in rats (Nawrot et al.
2007) use this feature to increase their information trans-
fer capacity. In this, our method takes into account a feature
of information transfer in point processes with a direct
correlate in the actual function of neuronal circuits.

In order to illustrate the performance of the method, we
have applied the new MFA(m̂) to a data set of empirical spike
trains and compared its performance to the classical MFA(0)

that falsely assumes independence of ISIs. For all spike
trains, serial correlations of small orders were estimated by
using small windows to account for potential bias caused
by rate changes. In the rare case of positive correlations,
the classical MFT(0) that falsely assumes independence
detected up to twice as many change points as the new
MFT(m̂). In the more typical case of negative serial correla-
tions, the new MFT(m̂) detected many more change points
than the MFT(0). The new MFT(m̂) then yielded rate profiles
matching better with visual inspection, indicating a higher
detection power of potential neuronal rate signals. Potential
applications of our novel algorithm include the extraction of
information-rich signals from noisy spike trains, especially
when there are no clear behavioral or sensorial triggers, e.g.
spontaneous activity recordings. It can also potentially be
used as a pre-processing step for other statistical analyses,
and for detecting long-term but subtle rate changes, which
may reflect transitions of neuromodulatory states (Lee and
Dan 2012).
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Appendix: A Proofs

Here we show consistency of the estimators ŝ2 of s2 in
Eqs. (16) and (17). Recall that these were

global estimator: 2hρ̂2/μ̂3 (see Lemma A.1)

local estimator:

(
ρ̂2

ri
μ̂3

ri
+ ρ̂2

le

μ̂3
le

)
h (see Lemma A.2)
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The used estimators ρ̂, μ̂, ρ̂le, ρ̂ri, μ̂le, μ̂ri are the empiri-
cal means and estimates of ρ given in Eq. (14), derived
from the whole process in the global estimator and from
the local right and left windows at time t in the local
estimator.

Lemma A.1 Let {ξi}i≥1 be an m-dependent process in P
and (ŝ2

nh,nt )t the global estimator as in Eq. (16). Then it
holds in (D[h, T − h], d‖·‖) almost surely as n → ∞ that

(ŝ2
nh,nt /n)t −→ (2hρ2/μ3)t ,

where d‖·‖ denotes the supremum norm.

Proof Note that the global estimator ŝ does not depend on
h and t , i.e., the formulation of ŝ as a process is artificial.
We show that μ̂ → μ a.s. and ρ̂� → ρ� a.s. as n → ∞
for � = 0, 1, 2, . . . where ρ0 = σ 2. Since {ξi}i≥1 is m-
dependent and square-integrable, the sequence {ξiξi+�}i≥1

is integrable and (m + �)-dependent, thus ergodic. Then,
the ergodic theorem, see e.g., Klenke (2008), states almost
surely as n → ∞
1

n

n∑

i=1

ξi −→E[ξ1]=μ and
1

n

n∑

i=1

ξiξi+� −→E[ξ1ξ1+�].

(19)

Since the life times are a.s. positive and integrable, it follows
NnT → ∞ a.s. as n → ∞ (cmp. the proof to Lemma A.1.
in Messer et al. (2014)). Thus, in Eq. (19), the value n can
be exchanged with the random number of observations NnT

(respectively NnT − (� − 1)). Hence, for n → ∞, we find
μ̂ → μ a.s. and ρ̂� → ρ� a.s., so that the finite sum ρ̂2 →
ρ2 a.s. By construction of ŝ2 the statement holds.

Lemma A.2 Let {ξi}i≥1 be an m-dependent process in P
and for all T > 0 and h ∈ (0, T /2] let ((ŝnh,nt )

2)t be the
local estimator as in Eq. (17). Then it holds in (D[h, T −
h], d‖·‖) almost surely as n → ∞ that ((ŝnh,nt )

2/n)t →
(2hρ2/μ3)t .

Proof We show the uniform a.s. convergence of (μ̂le)t and
(μ̂ri)t to the constant μ in Lemma A.4, and the uniform a.s.
convergence of the summands (ρ̂le,�)t and (ρ̂ri,�)t of ρ̂2

le and
ρ̂2

ri to the constant ρ� in Lemma A.5. This implies the state-
ment, since uniform almost sure convergence interchanges
with finite sums in general and with products if the limits
are constant.

We start with a uniform a.s. result for the scaled
counting process (Nt )t≥0. Throughout, we use the follow-
ing approach: First, we state an almost sure convergence
result for the finite dimensional marginals of the pro-
cesses. This essentially results from the ergodic theorem.

Then, by a discretization argument, we show uniform a.s.
convergence.

Lemma A.3 Let {ξi}i≥1 be a process in P with E[ξ1] = μ.
Then we have in (D[h, T − h], d‖·‖) almost surely as n →
∞ that
(

Nnt − Nn(t−h)

nh/μ

)

t

−→ (1)t , (20)

(
Nn(t+h) − Nnt

nh/μ

)

t

−→ (1)t . (21)

Proof We show Eqs. (21); (20) follows analogously.
For Sn := ∑n

i=1 ξi for n ≥ 1, the ergodic theorem
implies Sn/n → μ a.s. for n → ∞. As we have Nt → ∞
a.s. as t → ∞, SNt /Nt → μ a.s. as t → ∞. Now, for all
t ≥ 0 we find SNt ≤ t ≤ SNt+1, so that (for all t sufficiently
large such that Nt ≥ 1)

SNt

Nt

≤ t

Nt

≤ SNt+1

Nt + 1

Nt + 1

Nt

.

Since the left hand side and the right hand side tend to μ

almost surely we obtain Nt/t → 1/μ a.s. as t → ∞. For
0 ≤ s < t , this implies, as n → ∞, almost surely

Nnt − Nns

n(t − s)
= t

t − s

Nnt

nt
− s

t − s

Nns

ns

−→ t

t − s

1

μ
− s

t − s

1

μ
= 1

μ
. (22)

This implies the convergence of the finite dimensional
marginal of Eq. (21). The uniform convergence follows by a
discretization argument analogously to the proof of Lemma
A.14 in Messer et al. (2014).

Next, we show the uniform a.s. convergence of the
estimators (μ̂ri)t , (μ̂le)t , (σ̂ 2

ri)t and (σ̂ 2
le)t .

Lemma A.4 Let {ξi}i≥1 ∈ P with μ := E[ξ1]. Then it
holds in (D[h, T − h], d‖·‖) almost surely as n → ∞ that
(
μ̂le

)
t
−→ (μ)t and (μ̂ri)t −→ (μ)t .

Proof Again we prove the statement only for the right
window. We find (1/n)

∑n
i=1 ξi → μ a.s., such that

(1/Nt )
∑Nt

i=1 ξi → μ a.s. as n → ∞. Then we conclude for
all 0 < s < t (the case s = 0 being similar) as n → ∞
almost surely

1

Nnt − Nns

Nnt∑

i=Nns+1

ξi

= Nnt

Nnt − Nns

(
1

Nnt

Nnt∑

i=1

ξi − Nns

Nnt

1

Nns

Nns∑

i=1

ξi

)

−→ t

t − s

(
μ − s

t
μ

)
= μ, (23)
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making use of Lemma A.3. Thus, for every fixed t we obtain
almost surely as n → ∞

μ̂ri = 1

Nn(t+h) − Nnt − 1

Nn(t+h)∑

i=Nnt+2

ξi −→ μ. (24)

The a.s. convergence holds for finitely many t simulta-
neously. As above, the uniform convergence follows by a
discretization argument analogously to the proof of Lemma
A.15 in Messer et al. (2014).

Now we show the uniform a.s. convergence of covariance
estimators.

Lemma A.5 Let {ξi}i≥1 ∈ P , and let ρ̂le,� and ρ̂ri,� be
the local estimators of ρ� in the left and right window, see
Eqs. (14),(17), for � = 0, 1, 2 . . ., where ρ0 = σ 2. Then in
(D[h, T − h], d‖·‖) a.s. as n → ∞ we have
(
ρ̂le,�

)
t
−→ (ρ�)t and (ρ̂ri,�)t −→ (ρ�)t .

Proof Again we conclude (1/n)
∑n

i=1 ξiξi+� → E[ξ1ξ1+�]
a.s. as n → ∞. Using NnT → ∞, we find
(1/Nnt )

∑Nnt

i=1 ξiξi+� → E[ξ1ξ1+�] a.s. as n → ∞. With a
similar argument as in Eq. (23), we find for all 0 ≤ s < t

almost surely as n → ∞
1

Nnt − Nns − (� + 1)

Nnt−�∑

i=Nns+2

ξiξi+� → E[ξ1ξ1+�]. (25)

Together with the previous Lemma A.4 this implies the
almost sure convergence ρ̂ri,� → E[ξ1ξ1+�] − E[ξ1]2 =
ρ� for every fixed t and thus for the finite dimensional
marginals.

In order to obtain the convergence in (D[h, T −h], d‖ · ‖),
we show a.s. as n → ∞ that
⎛

⎝ μ

nh

Nn(t+h)∑

i=Nnt+2

ξiξi+�

⎞

⎠

t

−→ (E[ξ1ξ1+�])t . (26)

The convergence of the finite dimensional marginals fol-
lows from Eq. (25) together with Lemma A.3 and Slutsky’s
theorem. We show the uniform convergence (26) even for
t ∈ [0, T − h]. It suffices to show almost surely that

lim
n→∞ sup

t∈[0,T −h]
μ

nh

Nn(t+h)∑

i=Nnt+2

ξiξi+� ≤ E[ξ1ξ1+�], (27)

lim
n→∞ inf

t∈[0,T −h]
μ

nh

Nn(t+h)∑

i=Nnt+2

ξiξi+� ≥ E[ξ1ξ1+�].

Again, we make use of a discretization argument as in
Messer et al. (2014). We make it explicit here, since the mix-
ing terms ξiξi+� were not explicitly considered in the latter
article. For an ε > 0 with T/ε ∈ N, we decompose the time

interval [0, nT ] into equidistant sections of length nε. Using
the notation |�x�| := �x� + 1, x ∈ R,we bound

sup
t∈[0,T −h]

μ

nh

Nn(t+h)∑

i=Nnt+2

ξiξi+�

≤ max
j=0,1,...,T /ε−|�h/ε�|

μ

nh

Njnε+n|�h/ε�|ε∑

i=Njnε

ξiξi+�

≤ max
j=0,1,...,T /ε−|�h/ε�|

μ

nh

Njnε+n|�h/ε�|ε∑

i=Njnε+nh

ξiξi+�

+ max
j=0,1,...,T /ε−|�h/ε�|

μ

nh

Njnε+nh∑

i=Njnε

ξiξi+�.

For any δ > 0 we can choose ε > 0 so that
maxj=0,...,T /ε−|�h/ε�|(Njnε+n|�h/ε�|ε−Njnε+nh)/(δn/μ) →
1 a.s. for n → ∞. Then, for n → ∞, the first sum-
mand in the latter display converges to (δ/h)E[ξ1ξ1+�] a.s.
and the second summand to E[ξ1ξ1+�] a.s., since conver-
gence (26) holds for finitely many t . Since δ can be chosen
arbitrarily small, we find the first inequality of Eq. (27).
The second one follows analogously. Thus, the convergence
in Eq. (26) follows. We then exchange the normalization
according to Lemma A.3. Omitting �+1 summands does not
change the limit such that the uniform a.s. convergence of
(ρ̂ri,�)t is shown. Analogously, the uniform a.s. convergence
of (ρ̂le,�)t is shown.
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