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Abstract Integration of multiple sensory cues can improve
performance in detection and estimation tasks. There is an
open theoretical question of the conditions under which linear
or nonlinear cue combination is Bayes-optimal. We demon-
strate that a neural population decoded by a population vector
requires nonlinear cue combination to approximate Bayesian
inference. Specifically, if cues are conditionally independent,
multiplicative cue combination is optimal for the population
vector. The model was tested on neural and behavioral re-
sponses in the barn owl’s sound localization system where
space-specific neurons owe their selectivity to multiplicative
tuning to sound localization cues interaural phase (IPD) and
level (ILD) differences. We found that IPD and ILD cues are
approximately conditionally independent. As a result, the
multiplicative combination selectivity to IPD and ILD of mid-
brain space-specific neurons permits a population vector to
perform Bayesian cue combination. We further show that this
model describes the owl’s localization behavior in azimuth
and elevation. This work provides theoretical justification
and experimental evidence supporting the optimality of non-
linear cue combination.

Keywords Cue combination . Bayesian inference . Neural
coding . Sound localization . Barn owl . Population code

1 Introduction

Perception in natural environments depends on the integration
of multiple sensory cues within and across modalities. When
sensory cues provide complementary information or are
corrupted by independent noise, combining them can lead to
improved performance (van Beers et al. 1999; Ernst and
Banks 2002; Battaglia et al. 2003; Oruç et al. 2003; Alais
and Burr 2004; Hillis et al. 2004; Knill and Pouget 2004; Gu
et al. 2008; Landy et al. 2011; Ohshiro et al. 2011;
Hollensteiner et al. 2015). This occurs, for example, when
visual and auditory cues are combined to determine the posi-
tion of an object (Battaglia et al. 2003; Alais and Burr 2004;
Whitchurch and Takahashi 2006). Performance improvement
through cue combination can also occur within a single mo-
dality. For example, multiple visual cues are combined for
depth perception (Landy et al. 1995; Jacobs 1999) and multi-
ple auditory cues are combined for sound localization
(Moiseff 1989; Middlebrooks and Green 1991; Wightman
and Kistler 1993) or auditory scene analysis (Bregman 1994;
Roman et al. 2003). Although the performance benefit of cue
combination is well understood, whether cue combination by
neural populations approaches optimality is an open question.

Bayesian inference provides a framework for studying how
multiple sensory cues and prior information about the environ-
ment can be integrated optimally to drive behavior (Knill and
Pouget 2004; Angelaki et al. 2009). Bayesian inference relies on
a posterior distribution, which describes what is known about the
environment given the sensory input. In many studies of
sensory-cue combination, cues are assumed to be conditionally
independent (e.g., van Beers et al. 1999; Ernst and Banks 2002;
Battaglia et al. 2003; Jacobs 1999; Alais and Burr 2004; Hillis
et al. 2004). Conditional independence of sensory cues means
that the probability of one cue does not depend on the value of
the other, given the state of the environment. Bayes’ theorem
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specifies that the posterior distribution, given conditionally inde-
pendent sensory inputs, is determined by a product of sensory-
cue likelihoods and the prior over the environmental variables.

Previous studies have used linear and nonlinear approaches to
model Bayes-optimal cue combination in neural circuits. Several
proposals suggest that the neural basis of optimal cue combina-
tion for Bayesian inference is a linear combination of neural
responses (Ma et al. 2006; Fetsch et al. 2011). Multiplying the
likelihood functions in Bayes’ theorem can correspond to a linear
combination of firing rates when the distributions of neural re-
sponses are Poisson-like (Ma et al. 2006; Beck et al. 2007).
Alternatively, a linear combination of firing rates may also be
optimal if firing rates match the log-likelihood function, where
the product of the likelihoods is achieved through the sum of log-
likelihoods.Modeling work has shown that a networkmay com-
pute such an operation with a linear combination of firing rates
(Jazayeri and Movshon 2006). Nonlinear Bayes-optimal cue
combination models can be divided into classes of models. For
one, models that utilize a hidden layer of neurons acting as basis
functions for nonlinear computation (Eliasmith and Anderson
2004; Beck et al. 2011). These models rely on the presence of
neurons with nonlinear tuning to the cues that allow the network
to perform accurate function approximation (Eliasmith and
Anderson 2004) or information preservation (Beck et al. 2011)
but the specific form of nonlinearity remains undefined. A sec-
ond alternative class of nonlinear models for the neural imple-
mentation of Bayesian inference takes into account the ubiqui-
tous non-uniformity in neural representations. In these models,
referred to as non-uniform population codes, the statistical struc-
ture of the environment is encoded in the non-uniform distribu-
tion of preferred stimuli and tuning curve shapes across the pop-
ulation. Studies in birds and humans are consistent with this
theory (Fischer and Peña 2011; Girshick et al. 2011; Cazettes
et al. 2014). These studies have shown that the statistical rela-
tionship between environmental variables (such as image bound-
aries or the location of a sound source) and the sensory cues used
to make inferences about these variables (edge orientation
(Girshick et al. 2011) and interaural time difference (ITD) (Shi
and Griffiths 2009; Fischer and Peña 2011), respectively) could
be represented in the non-uniform tuning properties. In natural
environments, the visual and auditory tasks of scene segmenta-
tion and sound localization may rely on the integration of mul-
tiple sensory cues (Moiseff 1989; Landy and Kojima 2001).
However, the question of what operations neurons perform for
Bayes-optimal cue combination in the non-uniform population
code model also remains open.

Here we investigate the neural basis of optimal cue combi-
nation in the owl’s sound localization system. To localize
sounds, animals rely on the noisy and ambiguous sensory cues
ITD and interaural level difference (ILD) (Knudsen and
Konishi 1979; Moiseff 1989; Brainard et al. 1992). In the owl’s
external nucleus of the inferior colliculus (ICx), and its direct
projection site the optic tectum (OT), there is a map of auditory

space (Knudsen and Konishi 1978; Knudsen 1982). It has been
shown that the spatial selectivity of ICx and OT neurons de-
pends on the tuning to ITD and ILD, where ITD is used for
azimuth and ILD for elevation (Moiseff and Konishi 1983;
Moiseff 1989; Brainard et al. 1992). The combination selectiv-
ity to ITD and ILD has been shown to emerge by an effective
multiplication of inputs tuned to ITD and ILD (Peña and
Konishi 2001; Fischer et al. 2007). Estimating sound direction
from ITD and ILD involves several sources of uncertainty.
First, the ITD and ILD computed in the brain are corrupted
by noise from the environment (Spitzer et al. 2003; Cazettes
et al. 2014) and neural computation (Christianson and Peña
2006; Pecka et al. 2010). Second, ITD and ILD are not uniquely
related to a particular direction in space (Brainard et al. 1992;
Fischer and Peña 2011). Additional ambiguity arises because
the true ITD cannot be distinguished from other ITDs corre-
sponding to equivalent interaural phase differences (IPD) in the
owl’s early sound localization pathway, where ITD is computed
in narrow frequency bands (Wagner et al. 1987; Brainard et al.
1992; Peña and Konishi 2000).

The owl’s reliance on sound localization for survival
(Konishi 1993) and the observation that the owl’s localization
behavior in the horizontal dimension is consistent with
Bayesian inference (Fischer and Peña 2011) motivates the
hypothesis that neurons in the owl’s localization pathway
should combine the spatial cues IPD and ILD optimally.
Furthermore, the multiplicative integration of ITD and ILD
tunings underlying the spatial selectivity of the owl’s space-
specific neurons (Peña and Konishi 2001) offers the opportu-
nity to examine the role of nonlinear integration in optimal cue
combination. Here we derive the optimal form of cue combi-
nation in a non-uniform population code that matches the
statistics of the environment and is read-out by a population
vector (PV). We then show that IPD and ILD cues are approx-
imately conditionally independent and that the owl’s localiza-
tion behavior in the horizontal and vertical dimensions is de-
scribed by an optimal combination of these cues (Fig. 1).

2 Materials and methods

2.1 IPD and ILD estimated from head-related transfer
functions (HRTFs)

The HRTFs of ten barn owls were provided by Dr. Keller
(Keller et al. 1998) from the University of Oregon. The
ILD and IPD cues were computed from the HRTFs by
first convolving a white noise stimulus (0.5–12 kHz) with
the head-related impulse responses for the left and right
ears at the target direction. The left and right ear inputs
were then filtered with a gammatone filterbank having
center frequencies covering 2–9 kHz, equal gains across
frequency, and bandwidths estimated from barn owl
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auditory-nerve fiber responses (Köppl 1997b). IPD was
calculated in each frequency channel from the delay at
the peak of the cross-correlation of the left and right
filterbank outputs. ILD was calculated in each frequency
channel as the difference in the logarithms of the root-
mean-square values of the filterbank outputs.

2.2 Bayesian model of sound localization

To define the likelihood, we consider a model where the
sensory observation made by the owl is given by the ILD
and IPD spectra derived from barn owl head-related trans-
fer functions (HRTFs) after the spectra are corrupted with

additive noise. For a source azimuth θ and elevation ϕ,
the observation vector s is expressed as

s ¼ sIPD
sILD

� �
¼ IPDθ;ϕ

ILDθ;ϕ

� �
þ ηIPD

ηILD

� �
ð1Þ

where the ILD spectrum ILDθ,ϕ = [ILDθ,ϕ(ω1), ILDθ,ϕ(ω2),
…, ILDθ,ϕ(ωK)] and the IPD spectrum IPDθ,ϕ = [IPDθ,ϕ

(ω1), IPDθ,ϕ(ω2), …, IPDθ,ϕ(ωK)] are specified at frequencies
ωi between 3 and 9 kHz in steps of 0.6 kHz.

The noise corrupting the ILD spectrum ηILD is modeled as
a Gaussian random vector with independent components. The
variance of each component is frequency- and direction-de-
pendent. The IPD noise ηIPD is assumed to have a circular

Fig. 1 Bayesian cue combination. a, b Components of the Bayesian
model for two example stimulus directions a (0°,10°) and b (5°,80°).
The diamond plots show the frontal hemisphere measured in double-
polar coordinates corresponding to azimuth (horizontal) and elevation
(vertical) directions. Azimuth and elevation each change in five-degree
steps. The color scale ranges from zero (blue) to the maximum of the
plotted function (red). ILD and IPD provide complementary information
about sound location. Left, the IPD likelihood is primarily restricted in
azimuth and the ILD likelihood is primarily restricted in elevation. The
target direction is indicated by a white circle. Center top, the ILD-IPD

likelihood is a product of each cue’s likelihood. It has a peak at the true
source direction, but also has secondary peaks. Center bottom, the prior
emphasizes directions at the center in azimuth and below the center in
elevation. Right, the posterior is the product of the likelihood and prior
and has a single dominant peak. For a source direction near the center (a),
the posterior is more focused on the true source direction than is the
likelihood. In contrast, for a source direction in the periphery (b), the
posterior is biased away from the source direction toward the center of
gaze
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Gaussian distribution with mean zero at each frequency. As is
the case for ILD, the variance of each IPD noise component is
frequency- and direction-dependent. We assume that the ILD
and IPD noise terms ηILD and ηIPD are mutually independent
conditioned on the source direction.

We calculated the environmental variability of IPD and
ILD over different directions of concurrent noise sources
(Cazettes et al. 2014). For each target direction, a white noise
stimulus (0.5–12 kHz) was convolved with the head-related
impulse responses for the left and right ears at the target di-
rection. The directions of the target sounds covered the frontal
hemisphere using five-degree steps measured in double polar
coordinates, leading to 685 target directions. Additionally,
concurrent white noise sources were simulated as arising from
directions surrounding the owl by convolving the noise with
head-related impulse responses for the left and right ears at the
direction of the second source. The directions of concurrent
noise sources covered directions surrounding the owl using all
possible elevations in the frontal hemisphere and elevations
between −25 and 25° for directions in the rear hemisphere,
leading to 952 total directions. The signals from the two
sources were added together to form the input to the left and
right ears. The left and right ear inputs were then filtered with
a gammatone filterbank having center frequencies covering 2–
9 kHz, equal gains across frequency, and bandwidths estimat-
ed from barn owl auditory-nerve fiber responses, as above
(Köppl 1997b). We calculated the IPD σIPD,θ,ϕ

2 (ωi) and ILD
variances σILD,θ,ϕ

2 (ωi) and the correlation between IPD and
ILD over all directions of the second noise source. These
variances are a function of the azimuth θ, elevation ϕ, and
frequency ωi of the target sound.

The likelihood function of azimuth θ and elevation ϕ for
observed cues sIPD and sILD has the form

psjΘ;Φ sjθ;ϕð Þ ¼ psIPDjΘ;Φ sIPDjθ;ϕð ÞpsILDjΘ;Φ sILDjθ;ϕð Þ ð2Þ

where the ILD likelihood function is a Gaussian given by

psILDjΘ;Φ sILDjθ;ϕð Þ∝exp −
1

2

X N

j¼1

sILD ω j
� �

−ILDθ;ϕ ω j
� �

σθ;ϕ ω j
� �

 !2
2
4

3
5 ð3Þ

and the IPD likelihood function is a circular Gaussian given by

psIPDjΘ;Φ sIPDjθ;ϕð Þ∝exp
X N

j¼1
κθ;ϕ ω j
� �

cos sIPD ω j
� �

−IPDθ;ϕ ω j
� �� �� �

ð4Þ

where κθ,ϕ(ωj) is a direction- and frequency-dependent pa-
rameter that determines the variance. We assume that the
overall variance in IPD and ILD is a sum of the variance
due to concurrent sources and a constant variance due to
noise in neural computations: σθ,ϕ

2 (ωi) = σILD,θ,ϕ
2 (ωi) + vILD

and 1
κθ;ϕ ω jð Þ ¼ σ2

IPD;θ;ϕ ωið Þ þ vIPD. The constant variances

due to noise in neural computations vILD and vIPD do not
depend on direction or frequency and are parameters in

the model that are found by fitting the model to the owl’s
localization behavior. Behavioral data were taken from
published reports in (Knudsen et al. 1979) of the absolute
angular error for two owls performing head turns to
sounds presented from speakers.

The prior density pΘ,Φ(θ, ϕ) is proportional to the prod-
uct of an elevation component pΦ(ϕ) and an azimuth com-
ponent pΘ(θ): pΘ,Φ(θ, ϕ) ∝ pΘ(θ)pΦ(ϕ). The elevation com-
ponent of the prior density is a combination of two
Gaussian functions that may have different widths above
and below the mode μϕ:

pΦ ϕð Þ ¼
exp −

1

2σ2
ϕ1

ϕ−μϕ

� �2 !
ϕ≤μϕ

exp −
1

2σ2
ϕ2

ϕ−μϕ

� �2 !
ϕ > μϕ

:

8>>>><
>>>>:

ð5Þ

The azimuth component of the prior density is a Laplace
density

pΘ θð Þ∝exp −
θj j
β

� �
; ð6Þ

with variance 2β2. Parameters of the prior density were found
by fitting the Bayesian model to the owl’s localization
behavior.

The Bayesian estimate of stimulus direction in azimuth θ
and elevation ϕ from the noisy IPD and ILD spectra is given
by the mean direction under the posterior distribution
pΘ,Φ|s(θ, ϕ|s). The mean direction is found by first computing
the vector BV that points in the mean direction as

BV ¼ ∬u θ;ϕð ÞpΘ;Φjs θ;ϕjsð Þdθdϕ∝∬u θ;ϕð ÞpsjΘ;Φ sjθ;ϕð ÞpΘ;Φjs θ;ϕjsð Þdθdϕ
ð7Þ

where u(θ, ϕ) is a unit vector pointing in direction (θ, ϕ) and
the proportionality follows from Bayes’ rule. The direction
estimate is the direction of the mean vector.

3 Conditional independence of IPD and ILD

We analyzed the conditional independence of IPD and ILD by
comparing kernel density estimates of the full joint distribu-
tion and the joint distribution assuming conditional indepen-
dence. The kernel density estimate of the full joint distribution
at one frequency from observations {IPDn(ωj), ILDn(ωj)}n = 1

N

was given by

k IPD; ILDjθ;ϕð Þ∝∑N
n¼1exp αcos IPD−IPDn ω j

� �� �� 	
exp −

1

2β2 ILD−ILDn ω j
� �� �2� � ð8Þ
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and the kernel density estimate assuming conditional indepen-
dence was given by

kind IPD; ILDjθ;ϕð Þ∝∑N
n¼1exp αcos IPD−IPDn ω j

� �� �� 	
∑N

n¼1

exp −
1

2β2 ILD−ILDn ω j
� �� �2� �: ð9Þ

The parameters α = 11 and β = 1 were selected so that the
IPD and ILD components had widths that were the same per-
centage of the range of IPD and ILD, respectively. The simi-
larity of the kernel density estimates was assessed using the
Kullback–Leibler divergence (Kullback and Leibler 1951)
and the fractional energy in the first singular value of the
singular value decomposition of the joint density.

4 Neural model

The neural model consisted of a population of 1000 direction-
selective neurons that model the OT. The model population
size is small relative to the number of neurons in OT (Knudsen
1983). The preferred directions were drawn independently
from the prior distribution over direction pΘ,Φ(θ, ϕ).

The neural tuning curves are proportional to the likelihood
function and are given by

f n sIPD; sILDð Þ ¼ f maxpsIPDjΘ;Φ sIPDjθn;ϕnð ÞpsILD jΘ;Φ sILDjθn;ϕnð Þ: ð10Þ

The maximum firing rate was set to 10 spikes/stimulus
(Saberi et al. 1998). During simulations, the neurons have
independent Poisson distributed firing rates rn(sIPD, sILD) with
mean values given by the neural tuning curves fn(sIPD, sILD).

5 Population vector

The population vector is computed as a linear combination of
the preferred direction vectors of the neurons, weighted by the
firing rates

PV sIPD; sILDð Þ ¼ 1

N
∑N

n¼1 u θn;ϕnð Þrn sIPD; sILDð Þ ð11Þ

where u(θn, ϕn) is a unit vector pointing in the nth neuron’s
preferred direction. The direction estimate is the direction of
the population vector (PV).

6 Density of preferred directions in the midbrain

To determine the density of preferred directions in OT, we
used measurements of the shape of the OT auditory space
map (Knudsen 1982), as described previously for azimuth
(Fischer and Peña 2011). Briefly, assuming that cell density

is homogeneous in OT, the physical distance between points
corresponding to different preferred directions in the auditory
space map will be proportional to the number of cells that lie
between those directions. The relationship between preferred
elevation and position in the auditory-space map may be de-
scribed by a curve that is proportional to the cumulative dis-
tribution function of the density of preferred directions. To
estimate the density of preferred elevations, we fit the relation-
ship between preferred elevation and position in the OT space
map with a curve that is proportional to the cumulative distri-
bution function of a piecewise Gaussian density as used in the
Bayesian model (Eq. 5). We fit the relationship between pre-
ferred azimuth and position in the OT space map with a curve
that is proportional to a cumulative Laplace distribution func-
tion. The overall density of preferred directions in azimuth is a
mixture of the fitted Laplace density and its mirror image for
the other hemisphere (Fischer and Peña 2011).

7 Extracellular recording

Methods for surgery, stimulus delivery, and data collection
have been described previously (Fischer et al. 2007). Briefly,
four barn owls (Tyto alba) were anesthetized with intramus-
cular injections of ketamine (20 mg/kg; Ketaject; Phoenix
Pharmaceuticals, St. Joseph, MO) and xylazine (2 mg/kg;
Xyla-Ject; Phoenix Pharmaceuticals). Extracellular recordings
of single ICcl neurons (n = 77) were made with tungsten elec-
trodes (1 MΩ, 0.005-in.; A-M Systems, Carlsborg, WA). All
recordings took place in a double-walled sound-attenuating
chamber (Industrial Acoustics, Bronx, NY). Acoustic stimuli
were delivered by a stereo analog interface [DD1; Tucker
Davis Technologies (TDT), Gainesville, FL] through a cali-
brated earphone assembly. Stimuli for both intracellular and
extracellular recordings consisted of broadband noise (0.5–
12 kHz) 100 ms in duration with 5-ms linear rise and fall
ramps. Stimulus ILD was varied in steps of 3–5 dB.

8 Intracellular recording

Methods for in vivo intracellular recordings of ICx neurons
(n = 12) were described in detail and published previously
(Peña and Konishi 2001, 2002, 2004). Briefly, barn owls were
anesthetized by intramuscular injection of ketamine hydro-
chloride (25 mg/kg; Ketaset; Phoenix Pharmaceuticals,
Mountain View, CA) and diazepam (1.3 mg/kg; Steris
Laboratories, Phoenix, AZ). ICx was approached through a
hole made on the exoccipital bone, which provided easier
access to the optic lobe. All experiments were performed in
a double-walled sound-attenuating chamber.

Sharp borosilicate glass electrodes filled with 2 M potassi-
um acetate and 4 % neurobiotin were used. Analog signals
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were amplified (Axoclamp 2A) and stored in the computer.
The tracer neurobiotin was injected by iontophoresis at the
end of the recording (3 nA positive 300 ms current steps, 3
per second for 5 to 30 min). After the experiment owls were
overdosed with Nembutal and perfused with 2 % paraformal-
dehyde. Brain tissue was cut in 60 μm thick sections and
processed according to standard protocols (Kita and
Armstrong, 1991).

We computed the median membrane potential during the
first 50 ms of the response to sound and averaged it over three
to five stimulus presentations. Mean resting potentials are the
means of median membrane potentials averaged over all trials
within a period of 100 ms before each stimulus onset. ITD and
intensity response curves of median membrane potential re-
sponses were made by custom software written in Matlab.

9 Sound stimulation

Acoustic stimuli were digitally synthesized by a computer and
delivered to both ears through calibrated earphones. Auditory
stimuli consisted of broadband noise bursts (0.5–12.0 kHz;
50–100 ms duration and 5 ms rise and decay times; sound
level was 40–50 dB sound pressure level. The computer syn-
thesized three random signals to obtain different values of
binaural correlation. One noise signal was delivered to both
ears, making for the correlated component of the sound. The
other two signals were used as the uncorrelated component of
the stimulus by adding them to the correlated sound in varying
amounts, while keeping the sound level constant. Binaural
correlation varies with the relative amplitude of the uncorre-
lated and correlated noises by 1/(1 + k2), where k is the ratio
between the root-mean-square amplitudes of the uncorrelated
and correlated noises.

10 Results

Below, we first use a theoretical approach to demonstrate that
nonlinear combination of sensory cues allows for optimal
Bayesian estimation provided cues are conditionally indepen-
dent. Next, we confirm that neural responses perform nonlin-
ear cue combination and that ITD and ILD are approximately
conditionally independent. Finally, we show that the owl’s
localization behavior in azimuth and elevation is described
by the Bayesian model.

11 Nonlinear integration supports optimal cue
integration

We first examine whether in this particular Bayesian
framework optimal cue integration within (unisensory)

or across (multisensory) sensory modalities is nonlinear.
Consider the problem of inferring the value of an envi-
ronmental stimulus X from two sets of cues C1 and C2.
The cues are ultimately encoded by neurons that have
preferred stimuli Xn and mean responses to the cues given
by fn(C1, C2). An example multisensory problem of this
type is to infer the position of an object from auditory and
visual cues. An example unisensory problem is to infer
the position of a sound source from IPD and ILD. The
Bayesian solution to this inference problem is to estimate
the value of X from the posterior probability pXjC1;C2

X jC1;C2ð Þ: If the preferred directions of neurons in the
population Xn are drawn from the prior distribution pX(X)
and the population response is proportional to the likeli-
hood f n C1;C2ð Þ∝pC1;C2jX C1;C2jXnð Þ, then a readout

across the population with a PV will accurately approxi-
mate the mean of the posterior (Shi and Griffiths 2009;
Fischer and Peña 2011). This analysis predicts that opti-
mal cue combination is nonlinear because the likelihood
will be a nonlinear function of the cues: f n C1;C2ð Þ∝pC1jX
C1jX nð ÞpC2jX ;C1

C2jX n;C1ð Þ ¼ g C1ð Þh C1;C2ð Þ: In general,

cue combination can improve performance the most when
cues have independent noise or provide different pieces of
information about the stimulus. If the cues C1 and C2 are
conditionally independent given X, then the likelihood
factors and optimal cue combination is multiplicative:

f n C1;C2ð Þ∝pC1jX C1jXnð ÞpC2jX C2jX nð Þ ¼ gn C1ð Þhn C2ð Þ:

Thus the main theoretical result is that for the PV to accu-
rately approximate a Bayesian estimate, cue combination must
be nonlinear. In particular, multiplicative neural responses are
optimal for the combination of conditionally independent cues.

We now interpret this result in the context of estimating
the azimuth and elevation (θ, ϕ) from IPD and ILD, and
specify the combination rule that is optimal for neurons
commanding this task, in the owl’s ICx. Because the spa-
tial selectivity of ICx neurons results from their tuning to
IPD and ILD (Moiseff and Konishi 1983; Brainard et al.
1992), the response of an ICx neuron with preferred di-
rection (θn, ϕn) to IPD and ILD can be described by a
tuning function fn(IPD, ILD), where tuning to IPD and
ILD is different for neurons with different preferred
directions. If the sensory cues IPD and ILD are condition-
ally independent given the stimulus direction, then
the likelihood function factors as a product of an
IPD-based likelihood and an ILD-based likelihood:
psjΘ;Φ IPD; ILDjθ;ϕð Þ ¼ psIPDjΘ;Φ IPDjθ;ϕð ÞpsILDjΘ;Φ ILDjθ;ϕð Þ.
In the non-uniform population code model we consider
for the neural implementation of Bayesian inference (Shi
and Griffiths 2009; Fischer and Peña 2011), the optimal
neural representation of the sensory statistics requires
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tuning curves for IPD and ILD that are proportional to the
likelihood function: fn(IPD, ILD) ∝ ps|Θ,Φ(IPD, ILD|θn, ϕn).
Thus, optimal cue combination is given by a product of
one funct ion of IPD and one funct ion of ILD:
f n IPD; ILDð Þ∝psIPDjΘ;Φ IPDjθn;ϕnð ÞpsILDjΘ;Φ ILDjθn;ϕnð Þ ¼ gn IPDð Þhn ILDð Þ:

12 Statistics of spatial cues used for sound
localization

Testing the Bayesian model for optimal combination of IPD
and ILD cues requires a description of the variability in the
sensory input and neural computations determining the
likelihood functions of IPD and ILD. For this, we consid-
ered the sensory cues used by the owl for sound localiza-
tion, given by the IPD and ILD spectra derived from barn
owl head-related transfer functions (HRTFs), and how these
cues can be corrupted by noise. The relationship between
directions in space and IPD and ILD is known to be highly
frequency dependent (Brainard and Knudsen 1993; Keller
et al. 1998). The relationship is also ambiguous, where IPD
and ILD cues near the center of gaze may be similar to those
above and below the owl on the vertical plane (Fig. 2;
(Brainard et al. 1992)). In addition, the sound localization
cues that the owl uses to infer the source direction are sub-
ject to variability due to the nature of the sound, the pres-
ence of background noise (Nix and Hohmann 2006;
Cazettes et al. 2014), and noise in neural computation
(Christianson and Peña 2006; Fischer and Konishi 2008).
Neural noise is particularly important for IPD because it
limits the frequency range over which IPD cues are useful
for sound localization. While IPD is a well-defined param-
eter of the acoustic signals over the entire audible frequency
range in any animal, it is only useful in practice for sound
localization up to approximately 9 kHz in barn owls and
5 kHz or lower in mammals because of limits in the abilities
of neurons to phase lock to the stimulus at high frequencies
(Johnson 1980; Palmer and Russell 1986; Köppl 1997a).

We used owl HRTFs (n = 10, kindly provided by Clifford
Keller) to determine the form of the variability in IPD and ILD
as a function of frequency for different sound source direc-
tions, assuming naturalistic environments where concurrent
sounds are usually present. We computed the variability of
IPD for directions covering the frontal hemisphere, as previ-
ously shown on the horizontal plane (Cazettes et al. 2014), and
expanded the analysis to include variability of ILD cues over
different directions of concurrent noise sources. We calculated
the reliability of ITD and ILD, defined as the inverse of the
variance of each cue. The reliability of both IPD and ILD was
largest for central directions at frequencies above approxi-
mately 4 kHz (Fig. 3). At lower frequencies, the reliability
of ITD and ILD was less spatially dependent.

IPD and ILD are also subject to variability due to the
neural computation underlying the emergence of the
tuning for these cues. We used extracellular recordings
of neural responses to IPD and ILD to assess this vari-
ability. Because the selectivity to both IPD and ILD is
created by processing in narrow frequency channels
(Manley et al. 1988; Carr and Konishi 1990; Mogdans
and Knudsen 1994), we analyzed the tuning variability
to IPD and ILD on a frequency-by-frequency basis. A
previous study found that the variability of IPD tuning
was constant across frequency channels in the owl’s lo-
calization pathway (Cazettes et al. 2014), indicated by a
lack of correlation between the Fano factor of responses
to IPD and stimulus frequency in ICx. Here, we extended
this analysis to ILD coding by examining the neural

Fig. 2 Ambiguity of sound localization cues. a Sounds from three
different directions on the vertical plane (cyan, (5°,85°), red, (0°,0°) and
black (30°,25°)). b ILD spectra for sound directions in (a). c IPD spectra
for directions in (a). While the peripheral direction (cyan) has similar ILD
and IPD spectra than sounds from a frontal direction (black), a source at
an intermediate location (black) can have very different ILD and IPD
spectra
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variability of ILD tuning in the lateral shell of the central
nucleus of the inferior colliculus (ICcl), which projects
directly to ICx (Knudsen 1983). ICcl neurons are tuned
to ITD and ILD but, unlike ICx, they are narrowly tuned
to frequency. We used the average Fano factor over ILD

to quantify the variability of ILD tuning of each ICcl
neuron (min = 0.13, median = 0.77, max = 2.55, n = 77).
There was no significant correlation between the best fre-
quency and the average Fano factor in the sample of ICcl
neurons with best frequencies ranging from 500 to
7900 Hz (r = 0.11, p = 0.39, n = 77). Therefore, we as-
sumed a frequency-independent level of variability in
IPD and ILD due to neural computation.

13 Conditional independence of IPD and ILD

Our theoretical result specifies that multiplicative cue combi-
nation is optimal for conditionally independent sensory cues.
To test this result in the owl, we must first determine whether
IPD and ILD are conditionally independent cues. Dependence
between IPD and ILD can be due to environmental variability
or noise in neural computation.

We first examined whether IPD and ILD are condition-
ally independent when considering the variability due to
the presence of environmental noise induced by concurrent
sounds. For each target direction, sounds were filtered by
owl HRTFs at the target direction and other directions of a
second source, following the same approach used to mea-
sure the individual variability of IPD and ILD. Figure 4
shows kernel density estimates of the joint distribution of
IPD and ILD at three target directions, along with density
estimates assuming conditional independence. The exam-
ples are at the first, second, and third quartiles of the
Kullback–Leibler divergence between the joint density
and the condit ional- independence approximation
(Fig. 4a–c). The close match between the conditional-
independence approximation and the joint density is also
seen in the large fractional energy carried by the first sin-
gular value of the singular value decomposition of the joint
density, which is a measure of how accurately the joint
density can be approximated by a product of functions of
IPD and ILD alone (median = 0.98, interquart i le
range = 0.038). Additionally, we found low correlation be-
tween IPD and ILD variability over different concurrent
noise directions (mean absolute correlation = 0.15, s.d. =
0.12, p < 10−3). These results are consistent with the envi-
ronmental cues IPD and ILD being approximately condi-
tionally independent at the input. We then tested whether
IPD and ILD remained conditionally independent down-
stream in the sound localization pathway.

It is expected that IPD and ILD information remain condi-
tionally independent within the sound localization system be-
cause IPD and ILD are processed in separate pathways
(Takahashi et al. 1984). To test whether IPD and ILD cues
remained conditionally independent down to ICx space spe-
cific neurons, we examined in vivo intracellular responses of
these neurons to IPD and ILD. Specifically, we tested whether

Fig. 3 Reliability of sound localization cues ILD and IPD. The reliability
(inverse variance) of ILD (left) and IPD (right) at each target direction in
the frontal hemisphere in the presence of concurrent sources from other
directions is plotted separately for frequencies between 2 and 8 kHz. The
color axis is on the same scale for all ILD and IPD plots. Overall, the
reliability of both IPD and ILD was highest for central directions at high
frequencies

44 J Comput Neurosci (2017) 42:37–52



the ILD likelihood depends on IPD, i.e. whether
psILDjsIPD;Θ;Φ ILDjIPD; θ;ϕð Þ ¼ psILDjΘ;Φ ILDjθ;ϕð Þ. In the barn
owl’s auditory system, IPD and ILD are initially processed in
parallel pathways before converging in the inferior colliculus
(Moiseff and Konishi 1983; Takahashi et al. 1984). To test for
conditional independence of IPD and ILD, we examined mem-
brane potential responses of ICx neurons to ILD for different
conditions on IPD. Varying binaural correlation changes the
reliability of the IPD cue (Jeffress et al. 1962; Albeck and
Konishi 1995; Saberi et al. 1998; Egnor 2001; Peña and

Konishi 2004). When the sound signals at the left and right ears
are uncorrelated, the IPD is not defined because the sounds at
the left and right ears are not delayed versions of each other and
the responses of ICx neurons to ILD reflect the probability
distribution psILDjΘ;Φ ILDjθ;ϕð Þ. We therefore used responses

to ILD measured with uncorrelated sounds as an estimate of
the probability distribution of ILD that does not depend on IPD:
psILDjΘ;Φ ILDjθ;ϕð Þ. Conversely, we used responses to

ILD with correlated sounds as a measure of the probability
distribution of ILD given IPD psILDjsIPD;Θ;Φ ILDjIPD; θ;ϕð Þ. If

Fig. 4 Conditional independence of IPD and ILD cues. a-c
Environmental variability: (top) Kernel density estimates of the joint
distribution of IPD and ILD induced by the presence of concurrent
sources for three target sound directions; (bottom) Kernel density
estimates assuming conditional independence for the same directions.
The examples are at the first (a), second (b), and third (c) quartiles of
the Kullback–Leibler divergence between the joint density and the

independent approximation. d Three representative examples of
normalized recordings of intracellular ICx membrane potential
responses to broadband noise with varying ILD at a fixed IPD.
Responses to correlated noise (dashed grey, BC = 1) match the
responses when binaural correlation is 0 and IPD is undefined (solid
black, BC = 0)
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ILD and IPD are conditionally independent, ILD should have
the same distribution in these cases and the responses should be
highly correlated. In fact, the membrane potential responses of
ICx neurons to ILD for uncorrelated sounds were highly corre-
lated with the responses to ILD when IPD is present in the
stimulus (n = 12; median correlation 0.97, interquartile range =
0.045; Fig. 4d). Additionally, if ILD and IPD are conditionally
independent, then ILD should have the same distribution for
any value of IPD and, similarly, IPD should have the same
distribution for any value of ILD. This would predict that ILD
tuning is invariant to changes in IPD and vice versa. Previous
analyses have established that this holds in the owl’s ICx (Peña
and Konishi 2001, 2004).

Thus the ILD cue is transmitted to the midbrain inde-
pendently from IPD, consistent with the claim that the
cues IPD and ILD, as processed and encoded by the owl’s
sound localization pathway, are conditionally independent
(Egnor 2001; Peña and Konishi 2004). Together, the mea-
sures of correlated variability at the input signals and neu-
ral responses suggest that IPD and ILD cues are approx-
imately conditionally independent.

14 Sound localization in azimuth and elevation
predicted by a Bayesian model

Because ILD and IPD cues are approximately conditionally
independent, we modeled the noise corrupting these cues as
Gaussian and circular Gaussian random vectors, respectively,
with mutually independent components.With this noise model,
the likelihood function is a product of IPD and ILD likelihoods
(Eqs. 2–4). The noise variances are a sum of a frequency-
dependent component determined by the environmental vari-
ability of IPD and ILD that we described above and a
frequency-independent component modeling the neural noise
that was fit to the owl’s behavior (Materials and Methods).

The prior in the Bayesian model of the owl’s sound local-
ization predicts the bias for directions near the center of gaze
(Edut and Eilam 2004; Fischer and Peña 2011). We modeled
the prior as a product of two functions, one of azimuth and
another of elevation. Based on a previous study of localization
in azimuth (Fischer and Peña 2011), the azimuthal component
emphasizes directions in the front. The density in azimuth was
modeled as a Laplace density with zero mean and unknown
variance (Eq. 6). In contrast to azimuth, where directions to
the left and right of the owl have the same behavioral signif-
icance, directions above and below the owl may have different
significance. Perched owls will spend time localizing prey
from the perched position before flying to capture it
(Ohayon et al. 2006; Fux and Eilam 2009a, b). Thus, while
perched, directions below the owl may be more likely direc-
tions for prey. Therefore, we modeled the elevation compo-
nent of the prior as a piecewise combination of two Gaussians

with unknown variances and common mean to allow direc-
tions above and below the owl to be treated differently (Eq. 5).
The prior thus has four unknown parameters corresponding to
the variance in azimuth, the two width parameters in eleva-
tion, and the center in elevation.

After fitting the parameters of the model to the behavioral
data, the performance of the Bayesian estimator matched the
owl’s localization behavior (Fig. 5). The Bayesian model
underestimated source directions in azimuth and elevation, sim-
ilarly to the owl’s behavior (Knudsen et al. 1979). The root-
mean-square error between the average estimates reported for
two owls (Knudsen et al. 1979) and the Bayesian estimate was
2.4° in azimuth and 7.9° in elevation. The differences between
the Bayesian model and the owl’s behavior lie within the angu-
lar discrimination limits of the owl in azimuth and elevation
(Bala et al. 2007). Therefore, a Bayesian model relying on
conditionally independent IPD and ILD cues describes the
owl’s sound localization behavior in two dimensions.

15 Neural implementation of Bayesian sound
localization in azimuth and elevation

We tested the predictions of the neural implementation of opti-
mal cue combination using a neural model of the owl’s sound
localization pathway (Materials and Methods). In this model,
the tuning of the neurons to IPD and ILD was determined by
the form of the likelihood function (Fig. 6a), while the preferred
directions across the population were drawn from the prior that
was found by fitting the Bayesian model to the owl’s behavior
(Fig. 6b–d). The source direction in azimuth and elevation was
estimated by a population vector (PV; Eq. 11), which has been
shown to accurately predict the owl’s localization behavior in
azimuth (Fischer and Peña 2011). With this network, a PV
estimate of the source direction in azimuth and elevation
matched both the Bayesian estimate and the owl’s behavior
(Fig. 5). This result is expected, based on the mathematical
argument that the PV will accurately approximate the
Bayesian estimate when the preferred directions are drawn from
the prior and the population response is proportional to the
likelihood function (Fischer and Peña 2011).We then compared
the neural representation of IPD and ILD in the model network
to that found in the owl’s midbrain.

The modeled multiplicative responses of ICx neurons
encoded the product of IPD- and ILD-based likelihoods:
f n IPD; ILDð Þ∝psIPDjΘ;Φ IPDjθn;ϕnð ÞpsILDjΘ;Φ ILDjθn;ϕnð Þ. T h e

resulting multiplicative responses to IPD and ILD are consis-
tent with the multiplicative responses reported previously in
the owl’s midbrain (Peña and Konishi 2001, 2004; Fischer
et al. 2007; Takahashi 2010) (Fig. 6a). This shows that the
multiplicative responses observed in the owl’s midbrain can
support optimal Bayesian cue combination.
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The non-uniform prior distribution of direction in the
Bayesian model and the distribution of preferred directions in
the owl’s OT both emphasize directions near the center of gaze
(Fig. 6b) (Knudsen et al. 1977; Knudsen 1982). As shown
before (Fischer and Peña 2011), the density of preferred direc-
tions in azimuth predicted by the Bayesian model was consis-
tent with the measured density in OT (Fig. 6c). However, the
distribution of preferred directions in elevation was wider for
the Bayesian model than the estimated density based on the
shape of the OT auditory space map (Fig. 6d) (Knudsen
1982). The difference could be due to our method to estimate
the prior from the shape of the space map. There are fewer data
points in the periphery of the map for elevation than for azi-
muth, and this can cause more imprecision in the estimated

shape of the distribution in elevation than in azimuth. Yet, for
both the model and the owl’s space map, the highest density of
directions in elevation was located below the horizontal plane.
Therefore, the distribution of preferred elevations in OT is non-
uniform and emphasizes directions below the owl, as seen in
the prior distribution of the Bayesian model.

16 Nonlinear versus linear cue combination

To verify that multiplicative cue combination is necessary for
optimal localization performance of the PV decoder, we tested
this decoder on a population where model neurons combined
IPD and ILD inputs additively (Fig. 7). Whether cue

Fig. 6 Neural implementation of
the Bayesian model. a Model
responses (top) are multiplicative,
as seen in the owl’s ICx (bottom,
data from (Takahashi 2010),
reproduced with permission). The
ILD-alone and IPD-alone plots
are responses when only ILD or
IPD is allowed to vary. b The
Bayesian prior in two dimensions.
c, d The prior (red) matches the
distribution of preferred
directions in azimuth c in the
owl’s OT (dashed blue; (Knudsen
1982)). The prior in elevation is
wider than the distribution of
preferred elevations in OT, but
both emphasize directions slightly
below the center of gaze, which is
indicated by the vertical line (d)

Fig. 5 Bayesian model
performance in two-dimensional
localization. The Bayesian model
(Bayes) and population vector
(PV) match the performance of
two owls (Knudsen et al. 1979) in
elevation (a) and azimuth (b).
Error bars represent standard
deviations over trials
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combination is linear or multiplicative greatly influences how
sound source directions are represented in the auditory space
map (Fig. 7a–h). Linear cue combination predicts increased
activity at any place in the map where either preferred azimuth
or elevation is consistent with the sensory IPD and ILD. By
contrast, multiplicative cue combination predicts neural activity
only at points in the map where both the preferred azimuth and
elevation are consistent with the sensory IPD and ILD. With
linear cue combination, the error increased dramatically in the
periphery in both azimuth and elevation (Fig. 7i, j). This occurs
because with additive responses, neurons with preferred direc-
tions near the center of gaze also respond when the source
direction is in the periphery (Fig. 7g, h). Thus, additive re-
sponses cause source directions in the periphery to be confused
with directions at the center of gaze, leading to unrealistically
large errors in localization. These results show that for the PV
decoder to perform optimally, cue combination must be
multiplicative.

17 Discussion

This study specified the role that nonlinear operations can play
in optimal cue combination. We determined that conditionally

independent sensory cues combined multiplicatively can sup-
port optimal estimate of the value of an unknown stimulus.
This result predicts the robust multiplicative tuning to IPD and
ILD that is observed in the owl’s midbrain and provides fur-
ther meaning to the nonlinear integration of sensory cues with-
in and across sensory modalities.

We have previously shown that a Bayesian model describes
the owl’s localization behavior in azimuth for stationary
(Fischer and Peña 2011) and moving (Cox and Fischer
2015) sources. The current work is the first analysis of optimal
cue combination in this particular Bayesian framework. Here
we extended previous analyses to show that the Bayesian
model describes behavior in both azimuth and elevation. We
also derived conditions for the PV to perform Bayesian cue
combination. Therefore, the Bayesian framework explains lo-
calization in azimuth of stationary sources using ITD (Fischer
and Peña 2011), localization in azimuth of moving sources
using ITD (Cox and Fischer 2015), and, here, localization in
azimuth and elevation using IPD and ILD.

The primary assumptions of this modeling framework are
that the prior is represented in the distribution of preferred di-
rections, that the likelihood is represented in the pattern of ac-
tivity across the population and that the population is readout
through a PV. There is clear experimental evidence for a non-

Fig. 7 Localization with linear
cue combination. Two examples
(one in each row) of model ICx
neuron responses where only ILD
(a, b) or IPD (c, d) was let to vary
with space for computing the
responses. A nonlinear
(multiplicative) combination of
the ILD-alone and IPD-alone
responses (IPD × ILD; e, f)
produces a response only at
directions that are consistent with
both cues. A linear (additive)
combination (IPD + ILD; g, h)
produces responses at direction
that are consistent with either cue.
(i, j) The population vector fails to
match the owl’s performance
(Knudsen et al. 1979) in elevation
(i) and azimuth (j) when model
neurons combine ILD and IPD
inputs linearly
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uniform distribution of preferred directions in the midbrain
space-map that matches the prior distribution in the model
(Knudsen 1982; Fischer and Peña 2011). We have also found
experimental support for the likelihood being represented in the
pattern of activity across the population. In particular, the selec-
tivity of the neurons decreases when sensory noise increases, so
that activity is spread over more of the map (Cazettes et al.
2016). Moreover, the selectivity of neurons is lower in the
periphery of the space map, where IPD is a less reliable cue.
The present work highlights that the well-known multiplicative
tuning of space specific neurons (Peña and Konishi 2001;
Fischer et al. 2007) allows the space-map responses to match
the nonlinear combination of IPD and ILD joint likelihood.

While our analysis leads to the prediction that optimal cue
combination is nonlinear, some other approaches suggest that
optimal cue combination is linear (Jazayeri andMovshon 2006;
Ma et al. 2006; Beck et al. 2007). The differences are related to
the way probabilities are assumed to be represented in neural
populations. How probabilities are represented may depend on
the type of inference problem that involves the neural popula-
tion. Here, we describe optimal cue combination for a Bayesian
estimation problem where the goal is to estimate a continuous
variable (sound source direction) from the posterior distribu-
tion. Alternatively, others have studied cue combination in the
context of a discrimination task where the goal is to choose
between discrete stimulus conditions (Fetsch et al. 2011). An
optimal approach to solving the discrimination task is to com-
pare the log-likelihood ratio to a threshold (Van Trees 2004).
This operation may be computed in a neural circuit using linear
operations on neural responses (Gold and Shadlen 2001) and
could generalize to the case of cue combination. Our prediction
of nonlinear cue combination addresses the case of producing
an optimal estimate of a continuous variable using a PV; we
would not arrive at the prediction of nonlinear cue combination
if the goal was to represent the log-likelihood ratio in order to
perform a discrimination task. The different predictions for cue-
combining neuronsmay also be related to different assumptions
for how probabilities are represented in neural populations,
even for the same task. To specify the differences we will con-
sider an inference problem where the goal is to estimate an
environmental variable X (e.g. object location) based on two
sensory cues C1 and C2 (e.g. auditory and visual input) that are
initially encoded in two separate populations with responses r1
and r2 and then combined in a population with response r3. In a
probabilistic population code (PPC), it is assumed that the brain
produces an estimate of X from the posterior distribution pXjr3
X jr3ð Þ (Ma et al. 2006; Beck et al. 2007). It has been shown
that if the neurons have Poisson-like variability, then the opti-
mal cue combination strategy is for r3 to be a linear combination
of the input activities r1 and r2 (Ma et al. 2006; Beck et al.
2007). This prediction arises from the assumption that the brain
is drawing inferences from a posterior distribution pXjr3 X jr3ð Þ
that models the neural variability in the population r3. However,

the Poisson-like variability describes the neural variability for
repeated presentations of the same stimulus and does not in-
clude the statistical relationship between the environmental
cause X and the sensory stimulus, which is a major component
of the overall statistics of sensory information. Also, a distribu-
tion over the population response r3 is a very high-dimensional
distribution, where the dimensionality matches the number of
neurons in the population. Such a high-dimensional distribution
may be difficult to learn. A similar alternative model assumes
that inferences are computed using a log-likelihood function
ln pr1;r2jX r1; r2jXð Þ

 �

¼ ln pr1jX r1jXð Þpr2jX r2jXð Þ

 �

¼ ln pr1jX r1jXð Þ

 �

þ ln pr2jX r2jXð Þ

 �

(Gold and Shadlen 2001; Jazayeri and Movshon 2006).
Here, the logarithm transforms the nonlinear problem to
adding log-likelihood functions for the input populations.
Extending the model of (Jazayeri and Movshon 2006) for
the representation of a log-likelihood function to cue com-
bination would allow for optimal cue combination using
linear operations. This model also assumes that the brain
represents high-dimensional probability distributions that
only describe the Poisson-like neural variability. Our
approach is based on an alternative framework that
assumes that the population r3 represents the low-
dimensional distribution pXjC1;C2

X jC1;C2ð Þ that describes

the relationship between the environmental variables and
the sensory cues. In this framework, the neural Poisson-
like variability for repeated presentations of the same stim-
ulus is treated as noise. While this is suboptimal, it sim-
plifies the probability distribution that the brain must learn
while representing the statistical relationship between the
environment and the cues, which is the central component
of the perceptual inference problem. Furthermore, for large
populations, inferences made using the low-dimensional
distribution pXjC1;C2

X jC1;C2ð Þ may closely approximate

inferences made using the high-dimensional distribution
pXjr1;r2 X jr1; r2ð Þ (Cazettes et al. 2016).

Nonlinear combinations have also been used in models of
marginalization. In the PPC framework (Beck et al. 2011), the
sound localization problem could be viewed as a marginaliza-
tion problem, where the goal is to make inferences from the
posterior pΘ;Φjr3 θ;ϕjr3ð Þ as:

pΘ;Φjr3 θ;ϕjr3ð Þ ¼ ∫pΘ;Φjs θ;ϕjIPD; ILDð ÞpsjΘ;Φ IPD; ILDjr1; r2ð ÞdIPDdILD

¼ ∫pΘ;Φjs θ;ϕjIPD; ILDð ÞpsIPDjr1 IPDjr1ð ÞpsILDjr2 ILDjr2ð ÞdIPDdILD:

This may be accomplished using a basis function network
with parameters that are optimized to preserve information
(Beck et al. 2011). The basis function network may use mul-
tiplicative responses in the hidden layer, although a different
form of nonlinearity may possibly provide better performance.
In this framework, some form of nonlinear cue combination in
the basis function layer would be required, but the analysis
does not predict that multiplicative responses are optimal for
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cue combination in general. Experimental testing of the neural
basis of marginalization will be necessary to prove the plausi-
bility of these theories.

We propose that the responses of cue-combining neurons are
given by a product of functions of the separate cues. Therefore,
scaling the amplitude of one input scales the overall response.
For cue reliability to influence behavior, a decrease in reliability
must cause an increase in tuning widths for that cue. It has been
shown that changing the reliability of IPD causes IPD tuning
curves to widen, consistent with the widening of the likelihood
function as reliability changes (Cazettes et al. 2016). This is
distinct from a reweighting of inputs in linear neural responses
that is predicted by the PPC model (Fetsch et al. 2011). The
prediction of our optimal encoding model is that when the
reliability of the cues change, the optimal form of cue combi-
nation remains multiplicative. For example, changing the reli-
ability of IPD will affect the IPD-based likelihood
psIPDjΘ;Φ IPDjθn;ϕnð Þ, but it will not change the ILD-based like-
lihood psILDjΘ;Φ ILDjθn;ϕnð Þ, nor will it change the prediction
that neural responses should be multiplicative. Intracellular
in vivo recordings of responses to ITD and ILD in ICx showed
that multiplicative cue combination is in fact robust to changes
in cue reliability (Peña and Konishi 2004), which is consistent
with the optimal cue combination model. These results suggest
that ICx responses are consistent with the product of IPD- and
ILD-based likelihoods for conditionally independent cues at
different levels of reliability for IPD.

Linear and multiplicative cue combinations make different
predictions for how sound source directions are represented in
the midbrain auditory space and how source direction can be
optimally decoded. Multiplicative cue combination predicts that
activity is more localized over the map, compared to the activity
predicted by linear cue combination (Fig. 7). The multiplicative
model is thereforemore energy efficient than the linearmodel by
reducing the number of neurons that spike in response to a
stimulus (Niven and Laughlin 2008). The restricted activity in
regions of the map where both preferred IPD and ILDmatch the
sensory input allows the sound source direction to be estimated
optimally from the population responses with a PV. By contrast,
if a linear combination rule is used, then an operation to detect
the maximum is typically used to decode direction, which is a
highly noisy mechanism (Simoncelli 2009).

There are several possible mechanisms for generating mul-
tiplicative neural responses (Koch 2004). It is possible to ap-
proximate multiplication by addition and thresholding
(Fischer et al. 2009). Also, network mechanisms that depend
on stimulus saliency and descending inputs can select one
region of activity in the population response (Mysore and
Knudsen 2012, 2013) creating a multiplicative response. The
evidence is consistent with the hypothesis that multiplicative
tuning in the owl’s midbrain is generated in stages of linear-
threshold neurons that first produce nonlinear tuning to IPD
and ILD within frequency channels and then produce

nonlinear tuning across frequency (Fischer et al. 2009).
Further work is required to determine how nonlinear tuning
first arises in the midbrain and the role that recurrent connec-
tions play in shaping the responses.

In summary, we provided a theoretical justification for con-
ditions under which optimal cue combination must be nonlin-
ear and showed that these conditions are met in the owl’s
sound localization system. These results expand the functional
implication of the robust multiplicative tuning to IPD and ILD
that is observed in the owl’s midbrain (Peña and Konishi
2001, 2004) by showing that multiplicative responses can al-
low for neurons to represent environmental statistics of mul-
tiple conditionally independent cues. This finding may apply
to other cases of nonlinear cue integration within and across
sensory modalities (Stein and Stanford 2008; Xu et al. 2012).
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