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Abstract Neuron modeling may be said to have originated
with the Hodgkin and Huxley action potential model in 1952
and Rall’s models of integrative activity of dendrites in 1964.
Over the ensuing decades, these approaches have led to a
massive development of increasingly accurate and complex
data-based models of neurons and neuronal circuits.
ModelDB was founded in 1996 to support this new field
and enhance the scientific credibility and utility of computa-
tional neuroscience models by providing a convenient venue
for sharing them. It has grown to include over 1100 published
models covering more than 130 research topics. It is actively
curated and developed to help researchers discover and under-
stand models of interest. ModelDB also provides mechanisms
to assist running models both locally and remotely, and has a
graphical tool that enables users to explore the anatomical and
biophysical properties that are represented in a model. Each of
its capabilities is undergoing continued refinement and im-
provement in response to user experience. Large research

groups (Allen Brain Institute, EU Human Brain Project, etc.)
are emerging that collect data across multiple scales and inte-
grate that data into many complex models, presenting new
challenges of scale. We end by predicting a future for neuro-
science increasingly fueled by new technology and high per-
formance computation, and increasingly in need of compre-
hensive user-friendly databases such as ModelDB to provide
the means to integrate the data for deeper insights into brain
function in health and disease.
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1 Introduction

Neuroscience, like all fields of science, must be based on both
experiment and theory. Traditionally, experimental data has
dominated; theory has been difficult to develop due to the
complexity of neuronal structures and functions.
Computational models, however, face a challenge: they are
complex and difficult to describe completely and accurately
in a publication (as reviewed in McDougal et al. 2016). The
ModelDB repository was created to address this issue by act-
ing as a companion resource to traditional publications. Upon
acceptance of an article involving computational neuroscience
models, the authors can share their accompanying code on
ModelDB without restriction on simulator choice, modeling
topic, etc. This open-acceptance policy combined with active
model curation and the development of tools to aid in model
understanding has made ModelDB a one-stop resource for
researchers looking for computational neuroscience models.

Twenty years have passed since the first publication on
ModelDB (Peterson et al. 1996). We take this occasion of
ModelDB’s 20th anniversary to review ModelDB’s origins,
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its current state, and future plans for its development. It con-
tinues to grow and now hosts over 1100 published models.
ModelDB’s mission is to store the computer code associated
with published computational neuroscience models so that
they may be shared, in order to facilitate the verification, un-
derstanding, and extensions of the original paper, and so that
they may be reused as templates for new projects or building
blocks for new projects. To understand the scope of the
models in ModelDB, as well as ModelDB’s mission, it helps
to review its development in the context of historical develop-
ments in computational neuroscience, and the challenges it
faces as neuroscience enters a new era of high performance
computing and simulation.

2 ModelDB’s origins

Computational modeling in the nervous system has two ori-
gins. One origin was the model of Alan Hodgkin and Andrew
Huxley for the action potential in the squid giant axon.
Developed during the late 1940s and early 1950s, the model
represented the results of physiological experiments in a sys-
tem of four ordinary differential equations. These equations
not only reproduced the measured data, but they allowed
quantitative predictions of axon response to different stimuli
and introduced a framework for formalizing the response of an
ion channel to changes in membrane potential that remains
widely used. The second origin was compartmental modeling,
introduced by Wilfrid Rall to study the spread of synaptic
potentials in complex dendritic trees, initially of motor neu-
rons (Rall 1964). These two methods were first combined in
models of brain neurons in the olfactory bulb mitral cell and
its synaptic interactions with granule cells which incorporated
both synaptic potentials and Hodgkin-Huxley-like action po-
tential dynamics (Rall and Shepherd 1968).

In each of these cases, the models provided critical tests of
experimental data and made predictions that were confirmed
by experimental tests. This was a significant advance over
previous mathematical attempts to represent neuroscience da-
ta, which used analytical methods with limitations in
representing morphology and function. Using numerical
methods solved this problem, enabling arbitrary morphologies
and channel dynamics to be simulated, limited mainly – espe-
cially in the early years – by available memory and computing
power.

Early computers were room-occupying leviathans, expen-
sive, remote from the laboratory, and difficult to program.
These limitations greatly slowed the incorporation of model-
ing into experimental study. The olfactory bulb work was
followed in the 1970s with models for motor neurons
(Dodge and Cooley 1973; Traub and Llinas 1977), Renshaw
cells (Traub 1977), cortical pyramidal cells (Traub and Llinas
1979) and a two-neuron dendro-dendritic microcircuit

(Shepherd and Brayton 1979). Modeling effort picked up in
the 1980s, and began to be more common in the 1990s as
computers morphed into desk-sized equipment within exper-
imental laboratories, with adequate speed and memory to sim-
ulate neurons with realistic morphology and properties.

A new impediment arose, however, since each model often
had to be built from scratch, usually by a graduate student or
postdoctoral fellow in the research group, who might spend
several years developing it and then move on, so that any
attempt to test the model further was often prohibitively diffi-
cult. There was no infrastructure to allow modelers to readily
share the full details of their work. Space in journals was
limited, typesetting a full model was error-prone, and comput-
er networks were in a nascent state. Thus at that time, com-
puter modeling did not follow the rule that published work
must provide sufficient information about the methods to al-
low verification of the results. This limitation risked skepti-
cism about the results and threatened to limit the scientific
basis and use of computational modeling.

There was therefore an urgent need to create a database
where investigators could identify models already produced
in their area of interest, download and run them to test them in
a way analogous to testing results in any other area of science,
and build on previous work to generate new models for new
applications. The establishment of the US Human Brain
Project (Martin and Pechura 1991) provided the opportunity
to create such a database, since one of its aims was to advance
neuroinformatics in a way inspired by the recently established
gene and protein databases. It was recognized from the begin-
ning that the neuroscience domain was more challenging. In
contrast to the one-dimensional strings of letters used to rep-
resent major components of genomic data, neuroscience data
is characterized by its great diversity of data types, from spa-
tial images to temporal spike firing. This diversity combined
with a diversity of data formats presented challenges for ar-
chiving and searching.

SenseLab (http://senselab.med.yale.edu), one of the early
participants in the US Human Brain Project, committed itself
to attempting to address many of these challenges. Built on a
flexible EAV/CR architecture (Nadkarni et al. 1999),
SenseLab began by developing NeuronDB (Mirsky et al.
1998), a multidisciplinary resource combining data on mor-
phology, functional properties, and pharmacology, and
representing that data in the context of canonical neuronal
structures. In addition to facilitating comparisons of experi-
mentally measured properties between different neuron types,
NeuronDB serves as a starting point for building Rall-type
neuron models by providing a reference for what channels
are present in different parts of a neuron.

ModelDB, a freely-accessible repository for published neu-
roscience models in their original source code form, was cre-
ated in response to the increasing feasibility of neuroscience
simulations due to advances in personal computer technology.
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It was built by combining SenseLab’s informatics infrastruc-
ture with the neuronal modeling expertise of Michael Hines,
creator of the NEURON simulation environment
(http://neuron.yale.edu; Hines 1993) who joined the
SenseLab group in 1995. The decision to preserve models in
their original form allowed the ModelDB group to avoid the
need for special expertise to reproduce models in a
standardized format. Instead of converting code, they could
focus on infrastructure development and on collecting models
for all simulators and neuroscience topics. From the
beginning, each model in ModelDB was associated with
metadata linking it to the experimental resources in
NeuronDB and the rest of SenseLab. An archetype sample
process of collecting data, building models, and making
predictions along with the role of ModelDB is summarized
in Fig. 1.

3 ModelDB at present

Since 2000, ModelDB has grown steadily and now contains
over 1100 models (Fig. 2). Many of these models combine
traced morphologies with conductance based ion channel
models with experimentally derived channel distributions, in
order to make predictions about dynamics that are currently
impractical to test experimentally, such as calcium concentra-
tions in the fine oblique dendrites of a pyramidal cell (Fig. 3).

With its steady expansion, ModelDB has emerged as a
common place to seek out computational neuroscience
models, both for specific known models and to discover other

modeling work. For its recent renewal application, 30 users
provided comments on aspects of ModelDB. We summarize
some of those comments below.

Multiple platforms Including models that run on different
platforms is an attraction for many users. Unlike the CellML
repository (Lloyd et al. 2008) or Biomodels.net (Le Novere
et al. 2006), ModelDB hosts models expressed in any simula-
tor format or programming language. Over 80 simulators or
programming languages are represented. Approximately half
the models in ModelDB are coded in NEURON, followed by
MATLAB, Python, C/C++, and XPP (Table 1). Curation is
carried out regardless of simulator.

Multiple research topics Over 130 topics (for examples of
the most frequent, see Table 1) range over many scales, in-
cluding action potentials, calcium dynamics, influence of den-
dritic geometry, invertebrates, learning and memory, pattern
recognition, synaptic integration and synaptic plasticity. Over
150 models focus on pathophysiology of the nervous system.
By collecting this diversity in one location, ModelDB pro-
motes model discovery in a way that is not possible when
models are scattered across laboratory websites or general
purpose code repositories.

Model search and discovery ModelDB provides several
tools to assist withmodel discovery. As part of the model entry
and curation process (Hines et al. 2004), models are associated
with categorized tags indicating the model type (e.g., neuron
vs. network), brain region, cell types, channels, receptors,

Fig. 1 Experimental data can be combined via computer modeling to
make predictions about not-directly measurable dynamics (membrane
potential across the entire cell, intracellular chemical concentrations,
etc.) or the response to new experimental protocols. The experimental
data used as the basis of a model and for validation may come directly
from a research group, from the literature, or from a database such as

NeuronDB, NeuroElectro (Tripathy et al. 2014), or NeuroMorpho.Org
(Ascoli et al. 2007). ModelDB provides the infrastructure to allow
researchers to build on prior published models instead of having to
create a new virtual model system de novo. The morphology in this
figure is from (Barthó et al. 2007) via NeuroMorpho.Org
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genes, transmitters, simulation environment, and model con-
cepts (spatio-temporal activity patterns, calcium dynamics,
schizophrenia, etc.). Links in the left column of every
ModelDB page ((2) in Fig. 4) allow browsing by each of these
categories. Where appropriate (e.g., cell types, currents, and
model concepts) browsing is hierarchical. Clicking on a selec-
tion displays a new page listing all models so tagged and a
brief explanation of the tag. According to one user,

ModelDB’s Bcross-referencing with keywords and related lit-
erature, and a simple yet very effective ontology… can also
help to identify relevant related work that is not always easily
found by traditional methods such as PubMed searches.^
Some users have reported that their code being discovered
on ModelDB led to new collaborations.

Search tags A unified search box on the upper-left of each
page ((1) in Fig. 4) allows models to be searched by tag,
authors, full-text contents, or accession numbers.
Suggestions and matches are displayed as text is entered into
the search box, avoiding the need to fully enter the search
query. The full-text searching also supports searching for
words beginning with a given character sequence, case-
sensitive searches, and restricting searches to filenames
matching a pattern or from a model of a certain year. The
advanced search page allows more complicated queries.

Model viewing For most NEURON and some NeuroML
models, a Web tool called ModelView (McDougal et al.
2015; Fig. 4C) is provided in the Model Views tab which
allows a modeler to examine the run-time morphology, chan-
nel types, and values of parameters in a model. A browsable
tree ((17) in Fig. 4) provides information on both the basic
structure of the model (how many cells or compartments, and
which mechanisms such as ion channels or receptors, are pres-
ent) and also the values of parameters (such as conductance
densities, reversal potentials, specific membrane capacitance,

Fig. 2 ModelDB has grown steadily since 2001. The first five years of
ModelDB’s existence (1996–2001) focused more on defining the nature
of the platform and building the technology, so that period is omitted from
this figure. Inset: In 2015, 132 models were added, including 49 (or 37%)
on one day from the Allen Brain Institute (enlarged in inset). The solid
line indicates the total number of models; the dashed line shows the count
without this large contribution

Fig. 3 A typical morphologically detailed single neuron model
(modeldb.yale.edu/87284; Morse et al. 2010). a A traced neuron
(NeuroMorpho.Org c91662) is discretized into many (here 974)
compartments. Each compartment has been assigned a random color.
For visualization, the diameters have been expanded by a factor of 3
from the measured and simulated morphology. Numbered diamonds
indicate locations measured in (D). b Each compartment has some
density of a number of ion channels, modeled with Hodgkin-Huxley

style dynamics. The compartments are connected to each other via the
Cable Equation. C The conductances need not be uniform; here, A-type
K+ current (IA) conductance grewwith distance from the soma, and faster
on the oblique dendrites (above the main diagonal line, red) than on the
apical trunk (diagonal line). d The model makes a prediction; here: peak
calcium concentration increases in the presence of IA block (thick lines),
but the locations of the peaks are independent of IA blockade. Adapted
from Morse et al. 2010; used by permission
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etc.) at run time. This provides a quickly graspable overview
of the model helpful for modelers and experimentalists.

Reuse ModelDB automatically indicates when a file (e.g.,
describing a specific ion channel) is reused regardless of con-
text, thus allowing comparisons across models. One file, a
model of an A current (kaprox.mod in modeldb.yale.edu/
2796) has been reused in at least 26models; the corresponding
paper has been cited by the papers accompanying 52 other
ModelDB entries, as of August 1, 2016. This level of reuse
– in papers with a total of at least 50 distinct authors – would
likely be impossible if individual modelers had to contact the
original modeler and request code.

This highlights a key benefit of ModelDB. It facilitates the
reuse of model code. Reuse is possible at many scales: code
snippets, model components such as ion channels, and whole
models. In each case, reuse saves time and effort. As one user
wrote, BBy using well established model components in my
network model, I have saved myself the better part of a year of
work, reduced opportunities for error, and ensured that a great-
er proportion of my model has already been validated.^

ModelDB’s citation browser ((11) in Fig. 4) allows re-
searchers to quickly identify what modeling papers are cited-
by and cite the papers associated with a given model, provid-
ing another metric of reuse specific to the computational neu-
roscience community. Hodgkin and Huxley 1952, which
helped launch computational neuroscience, is cited by more
ModelDB models (185) than any other model. The next three
models most cited by other ModelDB models are from three
distinct areas of research: kinetic synaptic models for net-
works (ModelDB 18500; multiple papers including
Destexhe et al. 1994; 74 citing models, 372 downloads), the
Izhikevich model for spiking neurons (ModelDB 39948;
multiple papers beginning with Izhikevich 2003; 73 citing
models, 1219 downloads), and a model investigating the role
of morphology (ModelDB 2488; Mainen and Sejnowski
1996; 73 citing models, 1438 downloads). Citations counts
are as of August 1, 2016; download counts are as of July 20,
2016 and count only unique non-search engine IP addresses.

Reproducibility and replicability In addition to facilitating
reuse, sharing code on ModelDB or otherwise promotes re-
producibility and replicability in computational neuroscience
(Crook et al. 2013; McDougal et al. 2016). These are related
but distinct aspects of the scientific method. Reproducibility is
the ability to re-implement a model and get the same qualita-
tive result. Replicability is the ability to repeat a simulation
exactly. Replicability follows mostly from sharing code and
the deterministic nature of digital computers, but is assisted by
the curation process which seeks to ensure that models are run
on as many platforms as possible (Linux, Macintosh,
Windows, clusters, supercomputers), and that they contain
no bugs that restrict their ability to run on different simulator
versions. Reproducibility is assisted because the shared code
provides a reference implementation for debugging, and pa-
rameters that are necessarily the same as those used in the
simulation. Furthermore, ModelDB promotes both reproduc-
ibility and replicability by functioning as a stable, long-term
home for code, ensuring that it does not get lost over time as
individuals enter and leave research groups.

Running modelsModelDB currently offers several ways to
make models more accessible for assessment, thereby mak-
ing them more understandable. First, from the beginning,
users have been able to download any model entry’s source
code and run it on local hardware. This allows testing with
different inputs and/or recording and analysis of different
outputs than were used in the publication. Help pages in
ModelDB provide notes on how to run models (in general)
for many of the simulation environments. Second, many
model entries (246 as of February 28, 2016) have a link
that triggers interactive simulation over the Web on the
INCF Japan Node’s Simulation Platform (launched by (7)
in Fig. 4). Data generated during the interactive session
may be downloaded for further analysis. Third, most
NEURON model entries in ModelDB have an auto-
launch button; a single click on this button downloads,
compiles, and runs a simulation, provided that NEURON
is installed and the browser is configured correctly. Finally,
large network models that are impractical or impossible to

Table 1 The top five most frequently associated regions, cell types, model concepts, and simulation environments for model entries inModelDB as of
February 28, 2016

Region Cell Type Model Concept Simulation Environment

Neocortex (134) Neocortex layer 5–6 pyramidal cell (104) Action Potentials (194) NEURON (523)

Hippocampus (69) Hippocampus CA1 pyramidal cell (99) Activity Patterns (172) MATLAB (247)

Basal ganglia (23) Neocortex layer 2–3 pyramidal cell (58) Detailed Neuronal Models (144) Python (104)

Cerebellum (23) Hippocampus CA3 pyramidal cell (33) Ion Channel Kinetics (140) C/C++ (102)

Thalamus (23) Olfactory bulb main mitral cell (30) Simplified Models (139) XPP (87)

The numbers in parentheses are the number of associated models. For simulation environments, the count includes both models hosted locally on
ModelDB and those linked to from ModelDB
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run on a personal workstation may be uploaded and run on
a cluster using the freely available Neuroscience Gateway
resource (Carnevale et al. 2014).

Assisting review ModelDB assists in the review process.
Although public models must have an associated publication,
ModelDB allows authors to upload their unpublished models

Fig. 4 ModelDB offers many ways to find and explore models. a The
full web page showing theModel Information Tab. (1) Searchmodels. (2)
Browse models by category. (3) Download the model. (4) Auto-launch a
NEURON simulation. (5) Model file browser. (6) ModelView: visualize
model structure. (7) Simulation platform. (8) 3D printable versions of
cells from the model. (9) Summary of the model. (10) Paper(s)
describing or using the model. (11) Find models and papers cited by
this model’s paper or that cite this model. (12) Searchable metadata.

(13) Links to NeuronDB for related experimental data. b The Model
File tab allows exploring the model files. (14) Download the current
file. (15) Directory browser, showing model file names. (16) View pane
for the currently selected file. The readme file for model 87284 (Morse
et al. 2010) is shown; modeldb.yale.edu/87284. c The Model Views tab
displays a graphical representation of the model structure. (17) Interactive
tree for exploring the model structure
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privately and provide their reviewers with a read-only pass-
word that allows downloading (and thereby reviewing) the
code and examining the model’s output. ModelDB’s auto-
launch functionality further assists review by simplifying the
launching process for NEURON models, and is in principle
extendable to other simulation environments.

Creating a sharing community ModelDB’s existence and
the presence of over 1100 models on the site promotes sharing
of model source code, which has been noted to be less com-
mon than data sharing in fields such as molecular biology
(Ascoli 2006). Many journals now ask authors to explicitly
address whether or not they will share model code. The
Journal of Computational Neuroscience specifically suggests
that authors share their model code via ModelDB.

ModelDB and most submitting authors impose no restric-
tions on the use of models obtained from the database beyond
citing ModelDB and the model’s publication in any resulting
work. Most of the remainder release code under GPL or free
for non-commercial use licenses by including a file with the
appropriate license text.

Full model descriptions As one user summarized it, BI have
foundModelDB to be an essential complement to formal pub-
lications in computational neuroscience, since most articles
cannot provide the level of detail necessary to answer all ques-
tions that one may have about a particular model.^ Sharing
code provides a full description of a model in a way that a
paper cannot. Generally, space limitations in publications pre-
clude complete descriptions of model equations, parameters,
numerical methods, etc. Even if there were no space limita-
tions, typesetting and conversion back into source code risk
introducing errors. Sharing source code avoids such errors and
allows others to augment their own understanding of the mod-
el beyond the textual content of the associated publication. It
increases the chance that model errors will be found, their
seriousness examined, and the errors corrected.

Teaching In addition to its role in research, ModelDB facili-
tates teaching in computational neuroscience courses around
the world. Among its entries are many excellent examples of
how to write code for various simulators, and how to docu-
ment code so that others may understand it. In providing mod-
el source code linked to research publications, ModelDB
makes those publications’ models interactive and thus more
easily studied for both research and educational purposes.

4 ModelDB and the future of neuroscience

New trends are emerging that will shape the future of neuro-
science; ModelDB and modeling are poised to play key roles
in this development. New initiatives and new technology are

leading to data being collected at an increasing rate; this data
will need to be bound together with models to form coherent
frameworks to give insight and guide future experiments.
Advances in computer technology, especially the increasing
performance and availability of high performance computers
(HPCs) and graphics processing unit (GPU)-based parallel-
ism, will allow larger, more-realistic multi-scale models.
These models often will be built as a collaborative endeavor,
combining expertise and data from many interdisciplinary re-
searchers. Many of these more-realistic models will be used to
study pathophysiology of complex disorders.

More data Multiple factors are converging to lead to a rapid
increase in neuroscience data collection and availability.
Governments in many countries have prioritized developing
a better understanding of the brain, most famously in the
United States and Europe by funding the US Brain Initiative
(Insel et al. 2013) and the EU Human Brain Project (Markram
2012). Simultaneously, new methods such as CLARITY
(Chung and Deisseroth 2013) and Expansion Microscopy
(Chen et al. 2015) allow imaging the brain in novel ways.
Automated large-scale morphology reconstruction (Kasthuri
et al. 2015) will extract neuron morphologies from the images
and in additionwill provide insight into cell types and possible
connectivity within the local microcircuit. Electrophysiology
data sets will likewise become more numerous due to the
increasing use and availability of optogenetics techniques
(Deisseroth 2011), multi-electrode arrays (Najafi and Wise
1986), and voltage and calcium sensitive dyes (reviewed in
Baker et al. 2005). A gradually increasing expectation of data
sharing will makemore of the data that is gathered available to
all.

To address this explosion of data, ModelDB will increase
our outgoing links to related data resources (e.g., ModelDB
currently links to NeuronDB to allow exploring information
about what is experimentally known about a modeled cell
type) and standardizing the identification of what data led to
the model while simultaneously refining the specificity of our
links. These links have been historically hampered by the lack
of a widely adopted shared language (ontology) for identify-
ing neuroscience concepts, but NeuroLex (Hamilton et al.
2012) and the Computational Neuroscience Ontology (Le
Franc et al. 2012) offer the potential to overcome this
challenge.

New models and new modelers The explosion of data will
drive the development of newmodels as experimentalists seek
to infer concepts that can account for their own data and relate
it to observations by others. ModelDB already provides a
wealth of code examples and full mechanisms (e.g., ion chan-
nel models) associated with peer-reviewed publications that
can help those new to modeling get started. In the future it will
make discovering examples easier by manually and
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automatically adding more searchable metadata that identifies
parts of model code with specific biological context (e.g., rat
hippocampal CA1 pyramidal cell, Kv3.1 channel).

ModelDB’s ModelView tool is already creating the expec-
tation that simulators other than NEURON should make their
model structure graphically discoverable. This will become
increasingly necessary as new simulators are created that ad-
dress the specific needs of particular user groups. A big step in
this direction would be for simulator developers to adopt in-
teroperability with declarative model specification standards
such as NeuroML (Gleeson et al. 2010); once exported to
NeuroML, models originally written for arbitrary simulators
can then be visualized with the existing ModelView tool. This
standardization would facilitate comparing models and the
data they generate. By providing visualization and analysis
tools compatible with emerging model specification stan-
dards, ModelDB can further the adoption of such standards,
making it easier for more researchers to use tools to combine
and extend established models.

As the number of models produced increases, ModelDB
will expand to include them. At present, many new model
codes are never shared on ModelDB. Although some models
may never be shared, ModelDB will work to expand the per-
centage of models made publicly available both by general
advocacy and by actively soliciting models. Ascoli 2015
showed that for neuron morphology data, soliciting data in a
transparent way increased the prevalence of sharing. To ac-
commodate an increased volume of model submission,
ModelDBwill automate aspects of the curation process (meta-
data tagging, model testing) to continue to ensure quality and
discoverability without overwhelming available resources.

Larger, multi-scale researchMany new models will be larg-
er models spanning multiple spatial and temporal scales. This
will be driven by two factors: (1) increased availability and
discoverability of established model components on resources
like ModelDB will reduce the amount of effort involved in
building a multi-scale model, and (2) advancements in com-
puter technology and availability, in particular developments
in high performance computers (HPCs) and increased use of
GPU acceleration (e.g., Yavuz et al. 2016). Resources like the
Neuroscience Gateway (Sivagnanam et al. 2013) make HPC
technology freely available to all researchers.

Already neuroscience research, both modeling and experi-
ment, spans many scales, most of which are represented on
ModelDB or its companion SenseLab sites. The structure of
receptors is predicted using protein folding simulations (e.g.,
olfactory receptor structure in Man et al. 2004; ORModelDB
150627). MCell (Stiles and Bartol 2001) and Smoldyn
(Andrews et al. 2010) allow high-resolution stochastic explo-
rations of molecular dynamics in microdomains (e.g., Keller
et al. 2015; ModelDB 182142). Deterministic approximations
allow examining reaction-diffusion dynamics in whole

dendrites (e.g., Calcium Waves in Neymotin et al. 2015;
ModelDB 168874). Single cell models allow investigating
the effects of modulators on the electrophysiology of individ-
ual neurons (e.g., Morse et al. 2010; ModelDB 87284
explores the early effects of amyloid beta on a CA1
pyramidal neuron). Another class of single cell models focus-
es on gene expression (e.g., circadian rhythms in the suprachi-
asmatic nucleus of the brain, Kim and Forger 2012; ModelDB
145801). Network models explore emergent effects from the
interaction of multiple neurons (e.g., self-organization in the
olfactory bulb in Migliore et al. 2014; ModelDB 151681).
Functional aspects of the brain are explored with networks
spanning multiple brain regions (e.g., Eliasmith et al. 2012;
ModelDB 147103).

To date, these spatial scales have been largely studied in-
dependently; e.g., the multiple brain region model of
Eliasmith et al. 2012 does not directly incorporate protein
folding. Some work, however, is beginning to bridge these
scales. Neymotin et al. 2016 (ModelDB 185858), for instance,
incorporates ER calcium dynamics in a model of persistent
activity. That study was performed using a single simulator,
NEURON; others (e.g., Brandi et al. 2011) are building
multiple-scale models by connecting multiple simulators. As
this latter case becomes more common, ModelDB will begin
to identify what parts of the code is associated with which
simulator. In every case, ModelDB will expand its tools to
facilitate navigating between spatial scales while visualizing
the model structure and results.

Collaborative interdisciplinary research Multi-scale study
will require the collaboration of experimentalists and mod-
elers who specialize in many different subfields. Two strate-
gies for organizing these collaborations are emerging: formal
structures like the large research groups of the Allen Brain
Institute and the EU Human Brain Project, and ad-hoc collab-
orations such as the OpenWorm project (Szigeti et al. 2014) or
others using the Open Source Brain (Gleeson et al. 2012)
infrastructure.

The Allen Brain Institute and the EU Human Brain Project
conduct experiments to collect data on morphology, electro-
physiology, and connectivity which they use to build large
numbers of single cell models (e.g., on one day in 2015, the
Allen Brain Institute released 73 single cell models) and net-
work models. Although these models represent different cells,
they are not independent as they were developed with the
same methodology. For example, the Allen Brain Institute
models used the same set of ion channels. ModelDB will
adapt its tools to group related models together to allow them
to remain individually discoverable without impairing the
discoverability of models constructed using different
methodologies.

Ad-hoc alliances of researchers developing a shared model
are another emerging form of collaboration. In this strategy,
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promoted by the Open Source Brain and embraced by
OpenWorm, models are continually improved as new data
becomes available. General purpose code repositories like
GitHub (github.com) and Bitbucket (bitbucket.org) similarly
provide tools to facilitate ongoing development work.
ModelDB’s specialist nature will provide complementary
support for these collaborations by: hosting the code version
of record as used in a given publication, improving
discoverability by adding curated neurobiological metadata
in a standardized way, promoting model understandability
with tools likeModelView (McDougal et al. 2015) that graph-
ically present model structure and biological underpinnings,
and providingmodels and to be a source ofmodel components
(e.g., ion channel model code). To further the latter role,
ModelDB will provide tools to assist extracting code associ-
ated with biological concepts as this may be scattered across
multiple files.

New modeling domains Collaborative models will facilitate
the entry of modeling into relatively new areas of research
including the study of disease and eventually personalized
medicine. The nascent field of computational psychiatry seeks
to use models to better understand psychiatric conditions and
potentially personalize treatment (Montague et al. 2012;Wang
and Krystal 2014). Already ModelDB is home to seven
schizophrenia-related models. As new fields become compu-
tationally tractable, ModelDB will expand its supported meta-
data, will add links, and will add domain-specific tools to
welcome researchers from these fields into the modeling
community.

5 Conclusions

As the amount of neuroscience data continues to grow, there
will be an increased need for computational modeling to pro-
vide a rigorous basis for integrating the data into unified and
predictive theoretical frameworks. The availability of pub-
lished models within ModelDB, the enhanced ability to dis-
cover them, and the tools to understand them, help ensure that
these models will be built on strong, established, peer-
reviewed foundations. ModelDB will continue to become a
more comprehensive resource, representing a larger portion of
modeling research, and to make its models more accessible.
Our goal is to enable theoretical work to advance more quick-
ly, with fewer errors, in a way that will allow it to increasingly
support the field’s ability to understand the neural basis of
behavior.
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