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A minimum-error, energy-constrained neural code
is an instantaneous-rate code
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Abstract Sensory neurons code information about stimuli
in their sequence of action potentials (spikes). Intuitively,
the spikes should represent stimuli with high fidelity. How-
ever, generating and propagating spikes is a metabolically
expensive process. It is therefore likely that neural codes
have been selected to balance energy expenditure against
encoding error. Our recently proposed optimal, energy-
constrained neural coder (Jones et al. Frontiers in Compu-
tational Neuroscience, 9, 61 2015) postulates that neurons
time spikes to minimize the trade-off between stimulus
reconstruction error and expended energy by adjusting the
spike threshold using a simple dynamic threshold. Here,
we show that this proposed coding scheme is related to
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existing coding schemes, such as rate and temporal codes.
We derive an instantaneous rate coder and show that the
spike-rate depends on the signal and its derivative. In the
limit of high spike rates the spike train maximizes fidelity
given an energy constraint (average spike-rate), and the pre-
dicted interspike intervals are identical to those generated
by our existing optimal coding neuron. The instantaneous
rate coder is shown to closely match the spike-rates recorded
from P-type primary afferents in weakly electric fish. In
particular, the coder is a predictor of the peristimulus time
histogram (PSTH). When tested against in vitro cortical
pyramidal neuron recordings, the instantaneous spike-rate
approximates DC step inputs, matching both the average
spike-rate and the time-to-first-spike (a simple temporal
code). Overall, the instantaneous rate coder relates optimal,
energy-constrained encoding to the concepts of rate-coding
and temporal-coding, suggesting a possible unifying princi-
ple of neural encoding of sensory signals.

Keywords Rate coding · Temporal coding ·
Instantaneous rate · Sensory coding ·
Energy efficient coding

1 Introduction

The generation of action potentials, or spikes, by neurons
consumes a significant amount of metabolic energy (Attwell
and Laughlin 2001). Action potential generation and prop-
agation can consume 20–50 % of a neuron’s energy budget
(Sengupta et al. 2010; Laughlin 2001), imposing a consid-
erable constraint on information transmission by neurons
(Laughlin et al. 1998). Energy expenditure has been hypoth-
esized to provide selective pressure on the evolution of
neural codes (Niven and Laughlin 2008). It is reasonable
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to assume that neural codes have evolved which optimize
a trade-off between encoding signals with high fidelity and
minimizing metabolic energy expenditure.

Several previous efforts have been made to mathemat-
ically model the information capacity or rate of neural
models subject to energy or spike-rate constraints (Berger
and Levy 2010; Levy and Baxter 1996; Baddeley et al.
1997). Unlike these prior studies but similar to the formu-
lation of Boerlin et al. (2013), our previous work (Jones
et al. 2015) proposed that optimal neural encoding could
be achieved for a given mean spike-rate by timing spikes
such that the best possible reconstruction of the signal is
produced. This can be achieved by tracking the reconstruc-
tion error internally and timing spikes to minimize the error.
Spike-trains are reconstructed using a linear filtering opera-
tion, representing the possible filtering of the post-synaptic
cell membrane (Hille and et al. 2001). The reconstruction
error is tracked internally using a mechanism similar to
dynamic threshold models (Chacron et al. 2003; Brandman
and Nelson 2002; Kobayashi et al. 2009). By deriving the
optimal encoding parameters, our previous work showed
an optimal, energy-constrained encoding strategy replicates
experimental spike-times from peripheral and cortical neu-
rons with considerable accuracy. Here we call this neural
coder the optimal source-coding neuron.

How does the principle of optimal, energy constrained
neural encoding relate to the current understanding of
encoding by single neurons? Broadly, the two most com-
mon approaches to understanding encoding by individual
neurons advocate either for rate coding or temporal coding
(Eggermont 1998; Gautrais and Thorpe 1998; Van Rullen
and Thorpe 2001). Rate codes assume that information is
represented in the average spike-rate over some counting
window. For example, a higher stimulus intensity would
result in a higher average spike-rate. This is an idea dat-
ing back at least to Adrian (1926). Rate codes are robust to
variability in spike-timing, which have led many to believe
that rate-codes may serve as a fundamental coding strat-
egy in neural systems (London et al. 2010). On the other
hand, it has long been noted that rate-coding is not neces-
sarily efficient at transmitting information. Temporal codes,
which postulate that the precise timing of spikes carry infor-
mation, have the potential to transmit more information in
the same window of time (MacKay and McCulloch 1952).
For example, the time-to-first-spike can be used to reliably
distinguish between stimulus intensities with only a single
spike (Gollisch and Meister 2008; Van Rullen and Thorpe
2001). In the auditory system of non-human primates, it
has been shown that spike-trains with millisecond precision
carry more information about the stimulus than spike-trains
with coarser resolution (Kayser et al. 2010). In simulation, it
can also be shown that the precise pattern of spiking carries
more information than expected by a rate-code (Aldworth

et al. 2011). There is still considerable debate on whether
temporal codes or rate codes best describe the neural coding
scheme.

Prior work has attempted to bridge the gap between
these two, sometimes conflicting, approaches to understand-
ing neural encoding. As the width of the temporal window
decreases, the information entropy of a spike-train increases
(Strong et al. 1998). Rate codes with decreasing averaging
windows approach an instantaneous spike-rate code, which
can be estimated as the inverse of the sequence of interspike
intervals (Prescott and Sejnowski 2008). The instantaneous
rate can also be interpreted as the probability of observing a
spike at a particular time, and thus, can be estimated experi-
mentally as a rescaling of the Peri-Stimulus Time Histogram
(PSTH). Dayan and Abbott (2001) argue that observations
of a slowly varying instantaneous rate is consistent with
a rate-coding hypothesis and a more rapidly modulated
instantaneous rate suggests temporal coding. Experimen-
tally, it has been shown in the cricket auditory system that
the instantaneous spike-rate over a small window provides
a better estimate of responses to repetitive stimuli than
the average spike-rate (Nabatiyan et al. 2003) and that the
interspike intervals of short bursts of action potentials code
modulation intensity in the electrosensory lobe of a weakly
electric fish (Oswald et al. 2007).

This work seeks to reconcile some of these widely dif-
fering views. We connect the optimal source-coding neuron
(Jones et al. 2015) with the views of rate and temporal
coding. We derive, in the limit of high firing rates, an
instantaneous-rate coder which minimizes reconstruction
error subject to a constraint on energy expenditure. The
instantaneous rate depends on the input signal, input sig-
nal derivative, and the reconstruction filter. The predictions
of the instantaneous-rate coder are compared to data from
two systems. The first is a peripheral sensory neuron of a
weakly electric fish in vivo, and the second is the response
of a neocortical neuron of a rat in vitro. The results indi-
cate that estimates of the experimental spike-rate correspond
closely to the predicted instantaneous rate, modeling spike-
rate adaptation. Instantaneous rate coding also predicts the
time-to-first-spike (a simple temporal code) and average
spike-rate in the neocortical neuron. We conclude that the
optimal source-coding neuron shows some key aspects of
both rate and temporal coding.

2 An instantaneous-rate coder for minimum-error,
energy-constrained neural coding

Here we consider the encoding (generation of spikes) and
decoding (estimation of the input signal from spikes) of
a non-negative, twice-differentiable input signal s(t). The
coded spike train is composed as a sequence of spikes
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at times ti . For a given neuron, spike waveforms are
essentially identical and are simply represented as a sum
of impulses,

∑
i δ(t − ti ) (Gabbiani 1996). The decod-

ing process maps
∑

i δ(t − ti ) to r(t), an estimate of the
input signal s(t). In this work, the signal is recovered by
filtering the spike-train with a fixed, linear reconstruction
filter specified by the impulse response h(t), t ≥ 0. This
approach is consistent with the reconstruction of dynamic
signals by spike-triggered average filters (Eggermont et al.
1983) or stimulus reconstruction filters (Bialek et al. 1991;
Gabbiani 1996). A simple reconstruction filter is given by
the impulse response h(t) = A exp (−t/τ ), t ≥ 0. This
filter form is based on the classic idea of a pre-synaptic
and post-synaptic neuron, where the post-synaptic poten-
tial can by modeled by filtering the sum of impulses with
a low-pass filter representing the post-synaptic membrane
(Hille and et al. 2001). The decaying exponential corre-
sponds to a RC circuit model of the cell membrane, which
is commonly used to model the passive dynamics of a cell
membrane, for example in Hodgkin-Huxley models
(Hodgkin and Huxley 1952). The reconstructed signal is
then given by r(t) = h(t) ∗ ∑

i δ(t − ti ) = ∑
i h(t − ti ).

Our previous work (Jones et al. 2015) hypothesized that a
neuron encodes an input signal with minimal reconstruction
error given a constraint on the available energy. In neurons,
a major source of energy consumption over a period of time
(T ) is the number of spikes fired (Laughlin 2001; Sengupta
et al. 2010). Energy expenditure in a neuron can be largely
factored into generating post-synaptic potentials, maintain-
ing baseline potentials, generating and propagating action
potentials, and releasing and recycling vesicles. For a fixed
input signal, energy expenditure can be divided into costs
which do not depend on the number of action potentials,
and those which are proportional to the number of action
potentials. From the perspective of an encoding model, it is
therefore possible to model energy expenditure per unit time
as E = b + kR. Here E is the expended energy rate, b is
the baseline cost, k is the cost per spike, and R is the spike
rate. An optimal neural encoding strategy should therefore
minimize reconstruction error such that an average spike-
rate is maintained. In the proposed model, spikes are fired
when the error reaches a threshold level γ . This leads to the
following constrained optimization problem

min
A,τ,γ

1

T

∫ T

0
(s(t) − r(t))2dt

subject to R ≤ (E − b)/k. (1)

In this problem, the parameterA is the value of the filter h(t)

at time 0, the parameter τ is the time-constant of h(t), and
γ is the variable threshold level. Previously, we derived an
optimal strategy to solve this problem for the case of slowly
varying signals which are approximately constant between
spikes (Jones et al. 2015). In this case, an optimal strategy

is to track the reconstruction error e(t) = s(t) − r(t) and to
fire a spike when e(ti) = γ (s(t), r(t)), where γ is a level-
dependent firing threshold available in closed-form. This
leads to a code which times spikes to minimize error. In the
limit of large signals relative to the decoding filter parame-
ter A, this rule reduces to γ = A/2. The complete treatment
of this approach was given by Jones et al. (2015).

Here we propose an alternative method for generating
spike times which are, in the limit of high spike-rates, equiv-
alent to the neural source-coding model in Jones et al.
(2015). Given the parameters A and τ we derive an instanta-
neous rate function. This instantaneous rate is then encoded
as spikes with an integrate-and-fire model. For high rates,
the optimal neural source coder and instantaneous rate
coder have identical interspike-intervals. Since the intervals
are identical for high firing rates, the instantaneous rate
coder is an alternative approach to minimize reconstruction
error subject to a constraint on the expended energy. Thus,
in the limit of high spike-rates, the spike-timing code of
Jones et al. (2015) and the instantaneous rate code are two
different ways of describing the same code.

2.1 Instantaneous-Rate coding

For the case of a single-pole lowpass reconstruction filter
given by h(t) = A exp(−t/τ ), t ≥ 0 and the asymptotic
firing rule s(t) − r(t) = A/2, it is possible to derive an
analytic expression for the instantaneous firing rate, defined
as the inverse of the interspike interval, given the values of
A and τ .

Assuming a high enough spike-rate, the decoded signal
r(t) = ∑

i h(t − ti ) and input signal s(t) can be approx-
imated, with small error, by their first-order Taylor series
expansions at time ti

r(ti + t) = r(ti) + r ′(ti)t (2)

s(ti + t) = s(ti) + s′(ti)t (3)

where r ′(ti) is the first right derivative. Taking ti to be the
firing time of spike i, one can assume that r(ti+) = s(ti) +
A/2, if a spike was fired following the asymptotic spike-
firing rule. An example of s(t) and r(t) are shown in Fig. 1.
The linearization of r(t) is also shown. At time ti , the first
right derivative of the reconstruction is

r ′(ti) = −(s(ti) + A/2)/τ. (4)

Assuming that s(ti) >> A/2, this can be approximated as

r ′(ti) ≈ −s(ti)/τ. (5)
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Fig. 1 Illustration of the input signal s(t) and reconstructed waveform
r(t). A spike is fired at time ti and the next spike is fired at time ti+1,
following an interval of �t seconds. In this example, the input signal
is assumed to be approximately linear between spike times. At time ti ,
a spike is emitted, causing a discontinuity in the reconstructed wave-
form r(t) of height A. The value of r(ti+) = s(ti ) + A/2, as the spike
was fired when r(ti−) = s(ti ) − A/2. For t > ti , the reconstructed
waveform is given by r(t) = (s(ti ) + A/2) exp(−t/τ ). To derive the
time between spikes in Eq. (7), first-order Taylor series approxima-
tions of r(t) and s(t) are used. The linear approximation of r(t) is
shown as the dashed grey line. In this case, the predicted time between
spikes using the linear approximation is given by the black circle.
This leads to a slightly lower estimate of the time between spikes. As
spike-rate increases, the estimate of the time between spikes using the
linearizations approaches the true time between spikes

Given these approximations, it is possible to calculate the
time between the spikes.

s(ti) + s′(ti)(ti+1 − ti ) − A/2

= r(ti+) + r ′(ti)(ti+1 − ti )

= s(ti) + A/2 − (s(ti)/τ )(ti+1 − ti ). (6)

Rearranging Eq. (6) to solve for the time between spikes
gives

(ti+1 − ti ) = A

(s′(ti) + s(ti)/τ )
. (7)

Inverting the expression for (ti+1 − ti ) gives the instanta-
neous spike-rate, i(t)

i(t) = s(t)/τ + s′(t)
A

. (8)

The relationship of the instantaneous rate to the energy con-
straint in Eq. (1) is apparent if we consider a constant signal
S̄ = s(t). Then the rate is constant and given by

i(t) = S̄

Aτ
= R. (9)

This expression agrees with the results from Jones et al.
(2015) for the optimal neural source coder, where the rate
generated by a constant stimulus was estimated from the
average output level of the reconstruction filter. The instan-
taneous rate function i(t) given by Eq. (8) captures the

spike-rate in the limit of high firing rates, when h(t) can
be approximated linearly with low error. The rate func-
tion depends on the input signal, the derivative of the input
signal, and the filter parameters A and τ .

The expression for the instantaneous rate suggests a new
method to generate a spike-train which achieves the min-
imum (asymptotically in the limit of high spike-rates) of
Eq. (1). First, generate the instantaneous rate function i(t)

from s(t) using Eq. (8). Next, fire spikes proportionally to
i(t) using a simple integrate and fire model. Given a spike
at time ti , the next spike will be fired after an interval Δt

defined by

∫ (ti+Δt )

ti

i(t)dt = 1. (10)

When a spike is fired, the output of the integrator is reset
to 0. This model is compared to the optimal neural source
coder proposed previously (Jones et al. 2015) in Fig. 2. The
neural source-coder computes the error between the recon-
struction r(t) and input signal s(t) to generate a spike-train
which is the solution of Eq. (1) in the limit of high spike-
rates. For high spike-rates, we show both coders produce
spike sequences with identical interspike intervals.

Fig. 2 Comparison of two neural encoding models. a shows the
schematic of the optimal neural source coder proposed by Jones et al.
(2015). The encoder is implemented using a dynamic threshold with a
decoding filter impulse response of h(t) = A exp (−t/τ ), t ≥ 0. The
dynamic threshold encoder generates an internal error signal which is
compared to a threshold firing rule. When the threshold is exceeded,
a spike is fired. The decoder filters these spikes to generate the recon-
structed signal. In the limit of high firing rates, this strategy achieves
minimal error subject to a constraint on the spike rate. b shows an alter-
native interpretation of optimal, energy-constrained encoding which is
also valid at high spike-rates. In this case, an instantaneous rate i(t) is
computed from the signal s(t). Spikes are then fired proportionally to
this function using an integrate and fire model. In the limit of high fir-
ing rates, the instantaneous rate approach generates a spike-train with
interspike intervals identical to the encoder in A. Therefore, in the limit
of high firing rates, this approach is an equivalent solution to Eq. (1)
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In the limit of high spike rates, the asymptotic expres-
sion for the interspike intervals of the optimal neural source
coder shown in Fig. 2a is (Johnson et al. 2015)

Δt = A

(s′(ti) + s(ti)/τ )
. (11)

For the spike-firing rule defined in Eq. (10), the inter-spike
interval, at high firing rates, can be approximated as
∫ (ti+Δt )

ti

i(t)dt ≈ (ti + Δt − ti )i(ti) = 1

Δt = 1

i(ti)
= A

(s′(ti) + s(ti)/τ )
. (12)

The instantaneous rate is �t
−1. Since both methods pro-

duce spike-sequences with the same interspike intervals, in
the limit of high spike rates, the instantaneous rate coder
is also an asymptotically optimal solution to Eq. (1). This
derivation holds for high firing rates because h(t) can be
approximated as linear in this limit. The solution to the opti-
mization problem can be viewed either as the optimal neural
source coder, which computes reconstruction error inter-
nally, or an instantaneous rate coder defined by the signal,
the signal derivative, and the filter parameters.

3 Methods

Responses of the proposed instantaneous rate coding model
and a rate coding model were generated for three sets of
data: 1) a simulated input with known functions for the
signal and signal derivative, 2) responses of a P-type pri-
mary electrosensory afferent of a weakly electric fish, 3)
responses to current injection from a rat somatosensory
cortical neuron in an in vitro preparation (Gerstner and
Naud 2009). This data was collected by Thomas Berger
and Richard Naud in the laboratory of Henry Markram
at the École Polytechnique Federale de Lausanne (EPFL),
Switzerland and is publicly available from the International
Neuroinformatics Coordinating Facility (INCF) 2009 Quan-
titative Spike-Time Prediction competition (www.incf.org).
The data from the P-type electrosensory neuron and the
somatosensory cortical neuron were previously used to val-
idate the neural source coder (Jones et al. 2015). Here we
will study the predictions of the instantaneous rate coder
against these experimental data in order to better understand
how minimum-error, energy-constrained encoding is related
to rate and temporal coding.

Figure 3 shows the simulated function, which was mod-
eled as two sigmoid functions with known slope parameters.
The first sigmoid simulated a sudden positive change. By
subtracting the second sigmoid from the first, a smaller neg-
ative step was simulated. The simulated function provided
an example with known signal and signal derivative terms

to test the instantaneous rate coding. Responses were sim-
ulated at a sampling rate of 5000 Hz for a duration of one
second.

The responses of P-type afferents of a weakly electric
fish were recorded in response to modulations in the fish’s
Electric Organ Discharge (EOD) waveform. The experi-
mental methods used to collect the data presented in this
section are described in full in previous work (Nelson
et al. 1997; Jones et al. 2015). Action potentials were
recorded from pALLN afferents in a Brown Ghost Knife
Fish (Apteronotus leptorhynchus) of unknown sex using
glass micropipettes filled with 3M KCl solution. Spiking
events were detected by a threshold, and the spike-times
were stored for later analysis in the Matlab programming
environment at a sampling rate of 16667Hz. The EOD
waveforms were recorded using a silver wire electrode
placed under the skin of the fish.

Stimulation was provided by modulating the EOD with
raised cosine waveforms of approximately 100ms duration
delivered by carbon electrodes near the head and tail of the
fish. An important detail to note is that the raw stimulus
waveform recorded from the silver wire electrode does not
necessarily correspond exactly to the transdermal potential
at the electroreceptor. The stimulus strength depends on the
distance and the orientation of the stimulus electrode rela-
tive to the electroreceptor (Nelson et al. 1997; Yager and
Hopkins 1993). To compensate for this uncertainty, a scal-
ing factor, aEOD, was introduced to correct the size of the
stimulation. Any deviation from the baseline stimulus level
was multiplied by this scaling factor.

The second set of experimental data was recorded in
vitro from a regular spiking L5 pyramidal cell from rat
somatosensory neocortex. This publicly available data (see
above) consisted of 60 s of current injection stimulus and
13 voltage recordings of length 38 s digitized at 10kHz. The
remaining 22 s of data were reserved for testing by the com-
petition organizers and are not publicly available. The first
17.5 s of the current-clamp stimulus consisted of four step
current inputs with a duration of 2 s and an inter-stimulus
time of 2 s. This was followed by an injection of 2 s of
white noise. The remaining 42.5 s consisted of six simulated
spike trains generated by an inhomogeneous Poisson pro-
cess. The intensities were chosen randomly to elicit firing
rates between 5 and 10 Hz.

3.1 Parameter selection

To generate the instantaneous rate code, it is first necessary
to determine the parameters A and τ , as well as the dataset
specific parameters. In our previous work (Jones et al.
2015), the parameters of the optimal neural source coder
shown in Fig. 2a were determined to maximize the spike-
time coincidence factor between the model spike times
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Fig. 3 Encoding of a simulated waveform consisting of a sigmoid
function centered at 500ms added to a second sigmoid function cen-
tered at 750ms, with a negative amplitude. This waveform had sudden
changes but well-defined derivatives. The waveform was used as the
input for the proposed instantaneous rate coder and a rate coder (inte-
grate and fire model). a shows the reconstructed waveforms and result-
ing rate functions for A = 0.002 and τ = 50ms. The instantaneous
rate code reconstruction tracks the input signal, providing minimum-
error encoding. The rate code produces significant distortion. The
theoretical instantaneous rate (Eq. (8), calculated using the sigmoid
functions and their derivatives) and the rate of the instantaneous rate
coder (estimated from the simulated spike-times, generated using the
encoder specified by Eq. (10)) show nearly identical spike-rates, as
expected. Both methods show spike-rate adaptation in response to the

signal at the onset and offset of the waveform. The inset (a1) shows
a small section of the simulation which emphasizes the spike-rate
adaptation at the onset. The rate-code predicts a spike-rate which is
proportional to the signal, resulting in worse reconstruction error. b
shows the response of the instantaneous rate coder using the parame-
ters A = 0.008 and τ = 10ms. Different parameter values change the
instantaneous rate function predicted by Eq. (8). In this case, the term
proportional to the signal s(t) is much larger than the term propor-
tional to the signal derivative. This results in an optimal instantaneous
rate function which is closer to the rate encoding approach. The inset
(b1) shows the onset of the signal, where the instantaneous rate code is
much closer to the rate code. Depending on the situation, the optimal
instantaneous rate coder can show strong spike-rate adaptation or rate
encoding

and the experimental spike times. The coincidence factor
(Kistler et al. 1997) compares two spike trains by counting
the number of spikes which occur within a window of �

seconds of a spike from the other spike train. The coinci-
dence is then defined between an experimental spike train
(data) and a predicted spike train (model) as

Γ = Ncoinc − E[Ncoinc]
Ndata + Nmodel

2

1 − 2νΔ
(13)

where Ncoinc is the number of coincident spikes, E[Ncoinc]
is the expected number of coincident spikes if the model was
a homogenous Poisson process with the same spike rate as
the model spike train, Ndata is the number of experimental
spikes and Nmodel is the number of spikes from the model.
The second term normalizes the result, where ν is the spike
rate of the model.

In this work, the optimal parameters derived by Jones
et al. (2015) were also used to generate the instantaneous
rate code. Briefly, spike-time coincidence was optimized by
sweeping over τ and the stimulus-specific parameters. The
neural source coder (Fig. 2a) with γ = A/2 was simulated

for this parameter set. For each value of τ and the stimulus
parameters, the following two steps were performed.

1. Select A so that the average spike-rate constraint is
satisfied.

2. Use the optimal value of γ to generate an encoded
spike-train using the optimal source coder. Compute the
coincidence between the encoded spike-train and one
experimental trial.

The parameter values which resulted in the highest coin-
cidence were also used as the parameters for the proposed
instantaneous rate coder.

For the experimental data from the P-type afferent of a
weakly electric fish, the raw waveform was filtered with
a second-order bandpass filter with a 3dB bandwidth of
approximately 50Hz, centered at the EOD frequency. The
values of A, τ , and aEOD were found for the stimulus levels
(0dBV through -30dBV) in order to maximize the coin-
cidence averaged over all stimulus levels. The value of
aEOD was 5.30. The values of τ and A were 24.0ms and
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2.92 × 10−4V. The same parameters were used for all 20
trials at all stimulus levels.

For the current-clamp injection data, the current wave-
form was first filtered with a first-order lowpass filter with
unity gain and a time-constant of τm. The parameter val-
ues were chosen to maximize average coincidence with
the spike-times in response to the three positive DC steps
included in the data. The optimal parameters were τm =
26.3ms, τ = 75ms, and A = 487.4.

3.2 Instantaneous rate coding

For each set of data, the instantaneous-rate function was
calculated using the reconstruction filter parameters, input
function, and input function derivative following Eq. (8).
For the simulated data, the input function was assumed to be
the simulated waveform. For the weakly-electric-fish data,
the input signal was taken to be the envelope of the EOD
waveform after the band-pass filter. For the INCF data, the
input signal was assumed to be the current-injection wave-
form after low-pass filtering. For the simulated data and
the DC step stimuli in the current-clamp injection data, the
signal derivative was computed analytically. For the mod-
ulations of the EOD waveform, the input signal derivative
was found by filtering the input signal with an eleventh-
order differentiating filter, implemented digitally with a
frequency cut-off of π/2. These signals were used to cal-
culate the theoretical instantaneous-rate function following
Eq. (8). Using the instantaneous rate function, spikes were
generated using Eq. (10). The integrator output was initial-
ized to 0 for the weakly electric fish data. For rat cortical
neuron data, the integrator output was initialized to 0.5. This
is because the input signal value starts at 0. The error only
needs to accumulate to a level of A/2 before the first spike
should be fired.

A rate-coding strategy was also implemented using a
simple integrate-and-fire model, which fires spikes propor-
tional to the signal level. For each set of data, the input
signal was rescaled by the mean firing rate from the exper-
imental data, fexp, divided by the mean input signal level,
S̄. Given a spike at time ti , the next spike is fired after an
interval Δt such that

∫ ti+Δt

ti

fexp

S̄
s(t)dt = 1. (14)

When a spike is fired, the output of the integrator is set to
0. Spikes were reconstructed by filtering with the impulse
response h(t) = A exp(−t/τ ), t ≥ 0, using the values
of A and τ described above. To generate the spike-trains,
the initial value of the integrator was set identically to the
instantaneous rate coder.

The error between the reconstructed waveforms and stim-
uli was computed using the RMS value of the error divided
by the RMS value of the stimulus, reported in dB as

10 log10

(∫ T

0 (s(t) − r(t))2dt
)1/2

(∫ T

0 s(t)2dt
))1/2 . (15)

This metric allows for better comparison across stimulus
levels.

4 Results

The proposed instantaneous rate coder and a standard rate
coder were applied to study the simulated data set, different
modulation levels of the EOD waveform of a weakly elec-
tric fish, and current-clamp injection in the INCF data. The
reconstructed waveforms and spike-times were compared to
the experimental stimuli and spike-times.

First, the instantaneous rate coder was applied to a simu-
lated waveform, consisting of two sigmoid functions, using
the parameters A) A = 0.002 and τ = 50ms, B) A = 0.008
and τ = 10ms. Figure 3a and b show the reconstructed
waveforms and spike-rates for these two sets of parame-
ter values. The spike-rates were estimated using the inverse
of the interspike interval. Panel A shows the case where A

is smaller and τ is larger. These parameters emphasize the
derivative term in Eq. (8). This leads to an increase in firing
rates when the signal derivative is positive and a decrease
in firing when the derivative is negative. The instantaneous-
rate function predicts a constant rate whenever the signal is
not changing (when the derivative is zero). This behavior
is similar to spike-rate adaptation observed in many pri-
mary sensory neurons (Kiang et al. 1965). The rate coder,
on the other hand, predicts a spike rate which is exactly
proportional to the stimulus. Firing spikes proportionally
to the signal leads to large errors in the reconstruction.
Panel B shows the encoding for a larger value of A and a
smaller value of τ . In this case, the term of Eq. (8) which is
proportional to the signal dominates the rate. The instanta-
neous spike rate is close to the rate coder. The instantaneous
rate coder predicts observed encoding behaviors, such as
spike-rate adaptation and rate coding.

The proposed instantaneous rate coder and rate coder
were applied to the weakly electric fish data to gener-
ate reconstructions of the signal envelope. Figure 4 shows
reconstructed waveforms, Peri-Stimulus Time Histograms
(PSTHs), and spike-time rasters for the instantaneous rate
coder and rate coder. The instantaneous rate coder (red)
closely follows the instantaneous-rate function for the
−10dBV and −20dBV steps and matches the experimental
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Fig. 4 Instantaneous rate coding and rate coding in response to AM
modulation of the EOD waveform of a weakly electric fish. The pre-
dictions of the instantaneous rate code are shown in red, the predictions
of the rate code in green, the experimental data is shown in black, and
the instantaneous rate function Eq. (8) in blue. The fish was stimulated
with three amplitudes of EOD waveform modulations (row (a), black
traces) of duration 100ms. Row (a) shows the reconstructed waveform
for the instantaneous rate code (red) and rate code (green). For the
three stimulation levels, the reconstructed signal of the instantaneous
rate code closely follows the signal envelope. The reconstruction of
the rate code shows significant lag in reconstructing the signal, lead-
ing to higher error. Row (b) shows the Peri-Stimulus Time Histograms
(PSTHs) for the experimental spikes, the instantaneous-rate-coded

spikes and rate-coded spikes, calculated over 20 trials, along with the
theoretical instantaneous-rate function from Eq. (8). Row (c) shows
the spike-time rasters for the experimental, instantaneous rate coded,
and rate coded spikes. For the −10dBV and −20dBV cases, the PSTH
of the experimental spike-times, the PSTH of the instantaneous-rate-
coded spikes, and instantaneous rate function coincide very closely.
In the 0dBV case, it is clear that the experimental spikes are driven
into saturation by firing once per EOD cycle. The instantaneous-rate
function predicts a rate which is not realizable by the experimental
neuron. In the case of−10dBV and−20dBV stimulation, however, the
instantaneous-rate function is a very close match to the experimentally
observed PSTH, suggesting that the instantaneous-rate coder closely
models the spike-times recorded from the P-type afferent

PSTH (black, Fig. 4b). The rate coder (green) fires spikes
proportionally to the signal envelope. This pattern of spik-
ing does not follow the pattern seen in the experimental
spikes. The reconstructed waveforms for the instantaneous
rate code closely follow the signal envelopes for all three
stimulus levels. The reconstructions of the rate code produce

significant distortions in the signal envelope. The recon-
struction lags the change in the input signal, resulting in
higher error. Mean reconstruction errors (RMS) for the
instantaneous rate code and rate code were: −12.8 dB and
−4.0 dB (0dBV),−13.4 dB and−7.0 dB (−10dBV),−12.7
dB and −10.2 dB (−20dBV). These differences were all
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found to be significant using a Wilcoxon rank-sum test (20
trials, p < 10−6).

An interesting phenomenon can be observed in the
responses to the 0dBV stimulus in Fig. 4b. Due to the
rapid change in the input stimulus, the theoretically calcu-
lated instantaneous rate function predicts spike rates that
exceed the maximum and minimum possible spike-rate for
real neurons. In weakly electric fish, P-type afferents fire
no faster than once per EOD cycle and can fire no slower
than zero spikes per second. The instantaneous-rate func-
tion for the 0dBV stimulus predicts a spike rate that is too
large at the onset of the stimulus. As the stimulus falls
off, the theoretical function predicts a negative spike-rate.
The instantaneous rate coder also predicts rates above the
maximum allowable rate, but cannot fire with a negative
spike-rate. Further constraints would be required to ensure
the instantaneous rate function predicts spike-rates which
are physically realizable.

It is important to note that over the entire window of
0.3 s shown, both rate coding models predict a stimulus-
dependent change in the spike rate. Figure 5 shows the
spike-rate for the rate coder, instantaneous rate coder, and
experimental data. The rates are all quite close except at the
0dBV stimulus level, when the neuron is driven into satura-
tion. In this case, the instantaneous rate coder predicts a rate
which is too large. The increase in spike-rate with stimulus
intensity is typically expected of a rate code. In this sense,
the instantaneous rate code is consistent with observations
of rate-coding in different sensory neurons, unless the neu-
ron is driven into saturation. The instantaneous rate code,
however, also follows the spike-rate at shorter time-scales
and leads to lower reconstruction error, as seen in Fig. 4.

4.1 Response of a cortical neuron to current-clamp
stimulation

The proposed instantaneous rate coder and rate coder were
used to predict spike times in response to DC current-clamp
injections. Figure 6 shows the response of the instanta-
neous rate coder, rate coder, and experimental neuron to
three levels of DC stimulation. The reconstructed wave-
forms, spike-time rasters, and spike-rates are shown. The
spike-rates are estimated using the inverse of the inter-spike
interval. For the DC stimulation, the experimental data show
an initial increase in spike-rate which returns to a constant
level. This is also apparent in the instantaneous-rate func-
tion. The spikes are timed to code the sudden change in
the signal level then maintain this new level. The instan-
taneous rate coder predicts this behavior at the two larger
stimulus levels. The rate coder does not predict the initial
increase in spike-rate. Because the initial spike-rate is not
high, the change is not coded with low error by the rate
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Fig. 5 Shown here are the spike-rates for the experimental (black),
instantaneous-rate encoded (red) and rate encoded spikes (green),
averaged over a 0.3 second window. These are plotted as a function of
five stimulus levels ranging from−30dBV to 0dBV. Error bars indicate
the standard deviation over twenty trials. Both the instantaneous rate
coder and the rate coder show a long-term average spike-rate close to
the experimental data, except for the 0dBV case. As seen in Fig. 4, the
instantaneous rate code does not show the saturation seen experimen-
tally, leading to a higher spike-rate. The spike-rate varies with stimulus
intensity. This suggests a possible rate-coding scheme, at least when
the signal is not saturated. However, as seen in Fig. 4, the adaptation in
the instantaneous spike-rate over shorter time windows leads to lower
reconstruction error

coder, as seen in the reconstructed waveforms. The recon-
struction errors for the instantaneous rate coder and rate
coder were: −3.2dB and −2.4dB (Level 1), −5.8dB and
−5.3dB (Level 2), −7.1dB and −6.7dB (Level 3). For this
data, a single deterministic waveform was encoded with
deterministic models, so a significance test was not appro-
priate. At the lowest signal level, the predicted instantaneous
rate is somewhat higher than the experimental spike-rate.
This is likely due to the derivation of the instantaneous rate
using a linearization of the reconstructed waveform. At very
low spike-rates, the exponential decay is not well modeled
as a linear function.

Figure 6b shows two interesting properties of both the
experimental data and the instantaneous rate coder. Aver-
aged over the full two seconds of stimulation, the instanta-
neous rate coded, rate coded, and experimental spike trains
all show a level-dependent change in firing rate, or rate-
coding. Also interesting is the level-dependent change in the
time-to-first-spike due to the interplay of the low-pass fil-
tered input signal and the instantaneous rate function. The
time-to-first-spike is determined by the increase in the sig-
nal derivative at the onset of the step. Larger steps have
a steeper derivative and a faster first spike. The rate code
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predicts long first spike times. The times-to-first-spike are
often interpreted as a simple temporal code (Gollisch and
Meister 2008). The theory of minimum-error, energy con-
strained neural encoding is consistent with both experi-
mental observations, suggesting that the instantaneous-rate
function can help explain some aspects of both rate coding
and temporal coding.

5 Discussion

The proposed instantaneous rate coder provides a method
for firing spikes with ISIs determined by the instantaneous
rate function in Eq. (8). This strategy is an alternative
method, in the limit of high spike-firing rates, for gener-
ating spike trains with intervals which match our previ-
ously proposed optimal neural source coder (Jones et al.
2015, shown in Fig. 2a). Although the generated spike trains
are asymptotically equal, these two methods give different
insights about minimum-error, energy-constrained encod-
ing. The optimal instantaneous rate is actually a function of
the stimulus, stimulus derivative, and reconstruction filter
parameters. Note that in the datasets considered here, such
as the cortical neuron, the spike rate is often not high. Never-
theless, we find the instantaneous rate coder generates spike
trains which show many features of the experimental data.

Comparing the modeled spike-times with the experimen-
tal data from a P-type afferent of a weakly electric fish
(Fig. 4) and DC current injection (Fig. 6) of a rat corti-
cal neuron, the instantaneous rate coder closely predicts the
experimental spike-rates. The pattern of spiking observed
experimentally is consistent with the proposed instanta-
neous rate function. For these stimuli, the instantaneous-
rate coder makes much more accurate predictions than
a rate coder which is proportional to the input stimulus.
The rate-coding approach produces poor reconstructions
as well.

For cases where the spike-rate is not saturated, Fig. 4b
shows that the instantaneous rate function can be used as
an estimator for the PSTH. Here, the PSTH is scaled by
the bin size and the number of trials to produce units of
spikes/s. After rescaling, the PSTH corresponds closely to
the predicted instantaneous rate. This suggests an interpreta-
tion of experimental PSTHs from primary sensory neurons
as a measure of the instantaneous rate. The high spike-rates
observed in the primary neuron may be due to the require-
ment of encoding sensory signals in the periphery with high
fidelity.

The concept that neural encoding performance must be
optimized for a given energy constraint (a given spike-rate),
is not necessarily a new one. Previous work has suggested
that neurons attempt to maximize spike-train entropy for a
given rate (Baddeley et al. 1997). Alternative approaches

have maximized ratios of entropy or channel capacity
to energy expenditure in simple neural models (Levy and
Baxter 1996; Berger and Levy 2010). The neural source
coder model is closely related to prior work on predic-
tive coding in spiking networks (Boerlin et al. 2013). This
study also proposed an optimization problem which bal-
anced fidelity against spiking activity (as a surrogate for
energy), where the goal was to encode the state variables
of a dynamical system in the activity of a population of
spiking neurons. This population was meant to simulate
cortical networks. Assuming a fixed threshold, a neural
model similar to the neural source coder was derived and
studied in simulated populations of cortical neurons. Our
previous work (Jones et al. 2015), derived a more gen-
eral stimulus-dependent threshold for a single neuron and
provided a detailed comparison to experimental data from
sensory neurons. Our current analysis builds upon prior
work by predicting a stimulus-specific instantaneous spike
rate which, in the limit of high spike rates, produces a
spike train which minimizes reconstruction error for a given
energy constraint.

The predicted instantaneous-rate function is determined
by two terms– one proportional to the signal level and
one proportional to the signal derivative. For a constant
or slowly varying signal, the instantaneous rate is propor-
tional to the signal level. This is essentially rate coding. For
more rapidly fluctuating signals, the signal derivative plays
a role in determining the spike rate, typically leading to high
spike rates for a brief period when the signal level changes.
This spike-rate adaptation leads to spikes which are closely
timed to changes in the signal. Instantaneous rates which are
slowly varying favor a rate-encoding hypothesis, whereas
rapidly varying instantaneous rates are thought to imply
temporal codes (Dayan and Abbott 2001). The responses of
the instantaneous rate coder to the DC step inputs (Fig. 6),
match both the average spike-rate and time-to-first-spike.
Due to the adaptation in the instantaneous spike-rate, the
resulting code shows some properties of both rate and
temporal coding. Previously, coding strategies have been
developed which show aspects of both rate and temporal
coding depending on the regime being tested (Panzeri and
Schultz 2001). It has also been shown that neural models
can be tuned on a continuum to act as coincidence detectors
or integrators (Rudolph and Destexhe 2003). Populations
of neural models can be tuned between synchronous fir-
ing (a kind of temporal code) and rate coding, depending
on the model parameters (Masuda and Aihara 2003). Our
result shows that an instantaneous rate code can operate in
different regimes of a single underlying mechanism.

One important aspect of neural encoding which was
not explicitly explored in our study was correlations
between ISIs. Negative correlations between adjacent
ISIs have been observed in a wide range of neurons
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Fig. 6 Instantaneous-rate encoding and rate encoding of three ampli-
tudes of DC step stimulation of a cortical neuron in vitro using a
current-clamp configuration. a shows the input steps (top row, black
trace), which are filtered with a first-order low-pass filter. The step
is coarsely represented by the reconstructed signal of the instanta-
neous rate coder (red). The rate coder reconstruction (green) results
in higher reconstruction error due to the lag in tracking the onset of
the signal. The second row shows the spike-times from 13 experi-
mental trials along with the instantaneous-rate-coded and rate-coded
spike-trains. The third row shows the theoretical instantaneous-rate
function from Eq. (8), the rate function of the experimental spikes (esti-
mated using the inverse of the interspike interval), the rate-function
of the instantaneous-rate-coded spikes and the rate-function of the
rate-coded spikes. For the two larger stimuli, the experimental data,

instantaneous-rate-coded spikes, and theoretical instantaneous rate
function are in close agreement. All three show a sharp increase in
spike rate, followed by a decay to a new baseline level. At the low-
est stimulus level, the instantaneous rate function predicts a spike-rate
which is higher than the experimental rate. This may be due to the lin-
earizations and assumptions made in deriving Eq. (8), which do not
hold for long interspike intervals. b shows that the instantaneous rate
coder exhibits some characteristics of both a rate and a temporal code.
The time-to-first-spike and the average rate (calculated over 2 s) both
match the experimentally observed spikes. Although the rate-coded
spikes match the experimental spike-rate, they do not show the same
time-to-first-spike. Optimal encoding with an instantaneous rate coder
can model some aspects of both temporal and rate codes

(Farkhooi et al. 2009), and have been implicated as partic-
ularly important for encoding in P-type sensory afferents

(Ratnam and Nelson 2000; Lüdtke and Nelson 2006). Previ-
ous studies of neural models which generate negative serial
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correlation coefficients have been shown to improve infor-
mation transmission (Chacron et al. 2001) and detection
of weak sensory signals (Goense and Ratnam 2003). More
recent work has shown that a neural model with adaptation
currents results in negatively correlated ISIs and uncorre-
lated adaptation current levels, leading to improved infor-
mation transmission with low decoder complexity (Nesse
et al. 2010). Our neural source coder is mathematically sim-
ilar to some adaptive threshold models (Chacron et al. 2001;
Brandman and Nelson 2002). As these adaptive thresh-
old models produce negatively correlated ISIs, the neural
source coder will likely result in similar ISI correlations.
Our results show that the instantaneous rate coder generates
the same ISI sequence as the neural source coder in the limit
of high spike rates; therefore, the instantaneous rate coder
should also produce negatively correlated ISIs. Further anal-
ysis will be required to understand the relationship between
the instantaneous rate, negative ISI correlations, and optimal
signal encoding.

Although the proposed instantaneous rate coder shows
some aspects of both rate and temporal encoding, it is
important to note that the temporal coding observed is due to
the adaptation in spike-rate caused by the term proportional
to the signal derivative. The instantaneous rate is sensitive
to changes in the signal, which results in precise spike times
when the signal level changes rapidly. In general, tempo-
ral coding is often poorly defined and refers to different
observed phenomena which are not necessarily related to
spike-rate adaptation. Many experimental observations of
temporal encoding, such as encoding in spike-time corre-
lations or phase-locking, are not addressed here. Further
work will be needed to explore the proposed instantaneous
rate coder (and the optimal neural source coder) in these
contexts.

The instantaneous rate coder replicates many aspects
of the experimental data, but the generation of an instan-
taneous rate function is not necessarily a biophysically
plausible mechanism for implementing minimum-error,
energy-constrained encoding. However, the instantaneous
rate coder generates spike-intervals which are equivalent to
the source coding neuron shown in Fig. 2a as developed in
Jones et al. (2015). Previously, we have noted that adapta-
tion currents such as the M-current, corresponding to the
KCNQ/Kv7 family of channels (Brown and Adams 1980),
could be a possible implementation for implementing the
neural source coder (Jones et al. 2015), due to the fact that
these channels regulate neural excitability and are coupled
to metabolic processes (Delmas and Brown 2005). Benda
and Herz (2003) showed that M-currents, AHP-type cur-
rents, and slow recovery from inactivation of fast sodium
channels can introduce spike frequency adaptation in com-
putational models. The value of the instantaneous rate coder
is not as a possible biophysical mechanism, but rather as

a tool for understanding neural encoding. Further work
will be required to understand the biophysical mechanisms
underlying the trade-off between encoding error and energy
consumption.

6 Conclusions

We have shown that minimum-error, energy-constrained
neural encoding by individual neurons can be achieved
by a rate coder of an instantaneous-rate function which
depends on the input signal, signal derivative, and the
reconstruction filter parameters. In the limit of high spike-
rates, this approach generates interspike intervals which
are identical to the interspike intervals generated by an
optimal source-coding neuron (Jones et al. 2015). Promis-
ingly, the instantaneous-rate function closely models the
spike-rates recorded experimentally from a P-type affer-
ent of a weakly electric fish and reproduces the observed
PSTHs. The instantaneous-rate coder also predicts the aver-
age spike-rate and time-to-first-spike of a cortical neuron’s
response in vitro to DC step inputs. This result suggests that
the instantaneous-rate coder can capture some aspects of
both rate-coding and temporal coding at different levels of
the sensory pathway. Certain experimental observations of
rate and temporal coding may in fact arise from an under-
lying mechanism of optimal neural encoding subject to an
energy constraint. Further work will be required to explore
the encoding predicted by the instantaneous rate coder, for
neural systems which exhibit other temporal coding effects.
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