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Abstract The extent of anoxic depolarization (AD), the ini-
tial electrophysiological event during ischemia, determines
the degree of brain region–specific neuronal damage. Neu-
rons in higher brain regions exhibiting nonreversible, strong
AD are more susceptible to ischemic injury as compared
to cells in lower brain regions that exhibit reversible, weak
AD. While the contrasting ADs in different brain regions
in response to oxygen–glucose deprivation (OGD) is well
established, the mechanism leading to such differences is
not clear. Here we use computational modeling to elucidate
the mechanism behind the brain region–specific recovery
from AD. Our extended Hodgkin–Huxley (HH) framework
consisting of neural spiking dynamics, processes of ion
accumulation, and ion homeostatic mechanisms unveils that
glial–vascular K+ clearance and Na+/K+–exchange pumps
are key to the cell’s recovery from AD. Our phase space
analysis reveals that the large extracellular space in the
upper brain regions leads to impaired Na+/K+–exchange
pumps so that they function at lower than normal capacity
and are unable to bring the cell out of AD after oxygen and
glucose is restored.
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1 Introduction

Anoxic depolarization (AD) is characterized as a sudden
and profound loss of membrane potential that drains resid-
ual stored energy in compromised gray matter. In vivo,
temporary global ischemia can lead to the electrophysio-
logical event of AD (Dijkhuizen et al. 1999; Murphy et al.
2008). The susceptibility of neurons to injury from AD
depends crucially on the brain region (Falini et al. 1998;
Luigetti et al. 2012). Brainstem neurons have a good chance
to fully recover after normal blood flow is restored. In
higher brain regions, however, cells remain depolarized and
can get severely damaged in a stroke–like scenario (Falini
et al. 1998; Luigetti et al. 2012).

This distinctly different behavior is also found in brain
slice experiments, in which oxygen–glucose deprivation
(OGD) is used to trigger AD (Brisson and Andrew 2012;
Brisson et al. 2013; Brisson et al. 2014). Such isolated cor-
tex preparations rule out local differences in blood flow as
a cause for the observed phenomenon. Brain slice experi-
ments confirm that hypothalamic neurons are intrinsically
more resistant to injury and are more likely to exhibit recov-
erable AD (Fig. 1a). In contrast, the thalamus and neocortex
show high vulnerability and permanent depolarization that
fails to recover after oxygen–glucose is restored (Fig. 1b).
The thalamic–hypothalamic interface marks the boundary
between tissue that is susceptible to ischemic injury and tis-
sue that is resistant (Brisson et al. 2013). The mechanism
leading to neuronal failure to recover from AD in the upper
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Fig. 1 Observed membrane potential during and after OGD. In the
hypothalamus (upper trace), the neuron recovers and repolarizes right
after normal oxygen and glucose supply is restored. In the thalamus
(lower trace), the cells remain depolarized. The plots are adopted from
Brisson and Andrew (2012) with permission

brain regions remains incompletely understood.
AD is only one example of a pathology that goes along

with huge changes of ion concentrations in the neural
microenvironment (Centonze et al. 2001; Somjen 2004).
Others are seizure–like bursting activity and spreading
depolarizations (SD) (Kager et al. 2000, 2007; Cressman
Jr. et al. 2009, 2011; Krishnan and Bazhenov 2011; Ingram
et al. 2014; Wei et al. 2014a, Hansen and Zeuthen 1981;
Hübel and Dahlem 2014; Somjen 2004). All of these
dynamics can be studied in surprisingly simple mathemat-
ical models. Already, single cell Hodgkin–Huxley–based
neuron models with dynamical ion concentrations in two
spatial compartments—the intracellular (ICS) and extracel-
lular (ECS) spaces—exhibit all of these pathologies (Hübel
and Dahlem 2014; Wei et al. 2014a; Ullah and Schiff 2009,
2010; Ullah et al. 2015). So even such reduced models seem
to capture the essential mechanisms that govern neural ion
dynamics.

The mathematical structure of single neuron models
is well understood and it is possible to determine exact
parameter ranges for epileptic seizure dynamics, SD, and
permanent depolarization which leads to cell injury (Hübel
and Dahlem 2014; Ullah et al. 2015). The earlier compu-
tational studies involving ion dynamics of single neurons
focused independently on epilepsy (Cressman Jr. et al. 2009,
2011; Barreto and Cressman 2010; Bazhenov et al. 2004;
Frohlich and Bazhenov 2006), SD (Kager et al. 2000), and
AD (Zandt et al. 2011; Dahlem et al. 2014; Hübel et al.
2014). The richness of dynamical behaviors that is seen in

one neuron model—showing different types of oscillations
and fixed points—has been pointed out early (Cressman
Jr. et al. 2009, 2011; Barreto and Cressman 2010) and has
been explored in more detail recently (Hübel and Dahlem
2014; Ullah et al. 2015; Wei et al. 2014a). Neural pro-
cesses ranging from normal spiking to pathologies like
seizures, SD, and AD can be described simultaneously
in a single model.

While some studies have dealt with AD scenarios in
single cell models before, a systematic study of recovery
requirements after ischemia– or OGD–induced depolariza-
tion has not been performed yet, which is the subject of this
paper. We here investigate the effect of the volume fraction
between the ECS and the ICS on the model dynamics. It
has been shown already that under certain conditions a large
ECS may inhibit recovery from AD and lead to permanent
depolarization (Ullah et al. 2015), and also that the size of
the ECS may affect the susceptibility to SD–like depolariza-
tions (Barreto and Cressman 2010). From the macroscopic
perspective, changing the size of the ECS or the extracel-
lular volume fraction, which is defined as the fraction of
ECS in whole tissue consisting of neurons, glia cells, and
the space between, corresponds to different cell packing or
cell density. This is a brain region–dependent tissue property
(Schüz and Palm 1989; Herculano-Houzel and Lent 2005;
Collins et al. 2010).

In the model, temporary OGD depolarizes the membrane
and causes the breakdown of ion gradients. Cells with a
normal ECS recover after restoring normal oxygen–glucose
supply while cells with a large ECS do not. We use a
recently developed method of threshold analysis (Hübel and
Dahlem 2014) to determine the point of recovery failure—
and its nature.

The model predicts that for a larger extracellular volume
fraction, the depolarized state tolerates lower concentrations
of extracellular K+. This implies a higher K+ clearance
demand by the vasculature or glia cells and weaker activ-
ity of the Na+/K+–exchange pumps at the threshold. For
SD it has been shown both theoretically and experimentally
that vascular K+ regulation has a much stronger recovery
effect on depolarized neurons than the ion pumps (Hübel
et al. 2014; Hübel and Dahlem 2014; Hoffmann et al. 2012;
Sukhotinsky et al. 2010). Theoretically, even fully restored
pump activity is not sufficient for recovering neurons from
their depolarized condition (Hübel et al. 2014; Hübel and
Dahlem 2014). Instead, temporary uptake of potassium by
glia cells or the vasculature are vital mechanisms without
which the cells would remain dysfunctional. Experimen-
tally, this is reflected in the observation that blood pressure
is inversely related to the duration of SD, while enhanced
tissue oxygenation—implying stronger pump activity—has
almost no effect (Hoffmann et al. 2012; Sukhotinsky et al.
2010). These theoretical and experimental studies show that
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vascular coupling can enhance recovery effectively, while
modifying the rate of pump activity within a certain range
does not change the course of events. The recovery failure
scenario in our model gives us a more precise picture of the
relative recovery contribution of pumps and other regula-
tion. It shows how recovery from AD is a combined effort
of the pumps and vascular coupling. Impairment of either
can lead to permanent depolarization. By investigating the
reason for recovery failure, we also gain new insights on
general properties of the recovery point at which the neuron
repolarizes. This enables us to prove in a final remark that
recovery fundamentally comes down to a bifurcation of the
membrane state.

2 Mathematical neuron model

We consider a simple Hodgkin–Huxley–based model for
neural ion dynamics. The full system comprises of the ICS
and the ECS that are separated by the neural membrane.
Different concentrations of Na+, K+ and Cl− ions in these
compartments characterize the neural microenvironment
under normal physiological conditions.

Transmembrane currents induce changes in ion concen-
trations. Ion pumps maintain the ion gradients. In addition
to that, glia cells and the vascular system regulate the extra-
cellular K+ concentration. We refer to the latter as ion
exchange with external (glial or vascular) reservoirs. The
same model was used by Hübel and Dahlem (2014) and the
setup is schematically summarized in Fig. 2.

Fig. 2 The neuron model consists of two spatial compartments, the
ICS and ECS. The neural membrane (dashed black line) separates the
compartments. Na+, K+, and Cl− ions are present inside and outside
of the cell in different concentrations. Transmembrane ion currents
(INa , IK , and ICl) and the K+/Na+–exchange pumps (current Ip)
transport ions across the membrane. In addition, K+can be buffered by
glia cells or diffuse into the vascular system, which are both external
reservoirs

2.1 The membrane model

The electrical properties of the membrane are described in
terms of an equivalent electrical circuit. In this picture a
capacitance Cm is assigned to the neural membrane. The
dynamics of the membrane potential V is governed by
the three currents Iion (for ion ∈ {K,Na,Cl}) through
ion channels, and a pump current Ip accounting for the
Na+/K+–exchange that is needed to maintain the physio-
logical equilibrium (see below).

According to the Hodgkin–Huxley (HH) formalism, the
channel conductances for K+ and Na+ depend on the gat-
ing variables n (K+ activation), m (Na+ activation), and
h (Na+ inactivation) (Hodgkin 1948: Hodgkin and Huxley
1952a, b, c; Hodgkin et al 1952) These variables describe
the voltage–dependent opening probabilities of the chan-
nels. The m–gate responds extremely fast to variations of
the membrane potential and can thus be approximated adi-
abatically by setting m = m∞ (see below). The full list of
membrane rate equations reads

dV

dt
= − 1

Cm

(INa + IK + ICl + Ip) , (1)

dn

dt
= φ

n∞ − n

τn

, (2)

dh

dt
= φ

h∞ − h

τh

. (3)

They contain the membrane capacitance Cm and a
timescale parameter φ. The asymptotic values x∞ and
timescale functions τx for x ∈ {n,m, h} are given by

x∞ = αx

αx + βx

, (4)

τ∞ = 1

αx + βx

, (5)

with the HH exponential functions

αn = 0.01(V + 34)

1 − exp(−(V + 34)/10)
, (6)

βn = 0.125 exp(−(V + 44)/80) , (7)

αm = 0.1(V + 30)

1 − exp(−(V + 30)/10)
, (8)

βm = 4 exp(−(V + 55)/18) , (9)

αh = 0.07 exp(−(V + 44)/20) , (10)

βh = 1

1 + exp(−(V + 14)/10)
. (11)

The channel conductances gion depend on the gating
variables in the following way

gK = gl
K + g

g
Kn4 , (12)

gNa = gl
Na + g

g
Nam

3h , (13)

gCl = gl
Cl , (14)
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Table 1 Model parameters

Name Value & unit Description

Cm 1 μF/cm2 membrane capacitance

φ 3/msec time scale parameter

gl
Na 0.0175 mS/cm2 Na+ leak cond.

g
g
Na 100 mS/cm2 max. gated Na+ cond.

gl
K 0.05 mS/cm2 K+ leak cond.

g
g
K 40 mS/cm2 max. gated K+ cond.

gl
Cl 0.02 mS/cm2 Cl− leak cond.

ωi 2,160 μm3 ICS volume

ωe 720 μm3 normal ECS volume

F 96,485 C/mol Faraday’s constant

Am 922 μm2 membrane surface area

γ 9.6e–2 μm3 mM
msec

cm2

μA conversion factor

ρ 6.8 μA/cm2 max. pump current

λ 3e–2/sec diffusion strength

Kbath 4 mM K+ conc. bath

where gl
ion is a small leak conductance and g

g
ion is the much

larger maximal conductance of the voltage–gated chan-
nels. We only consider a leak current for Cl−. With these
conductances the channel currents are

Iion = gion(V − Eion) . (15)

They depend on the concentration– and charge–dependent
Nernst potentials

Eion = 26.64

zion

ln(ione/ioni ) (16)

with the ion valence zion and concentrations ioni/e for
ion ∈ {Na, K, Cl}. Model parameters are found in Table 1.

Using a HH membrane description is the paradigmatic
and simplest possible ansatz to describe neural ion dynam-
ics. We would like to remark that particularly in the context
of epilepsy and SD much more detailed membrane mod-
els exist (Kager et al. 2000, 2002; Bazhenov et al. 2004;
Yao et al. 2011; Shandilya and Timme 2011). However, it
has been shown that the general mathematical structure of
ion–based neuron models that we review below is largely
independent of the specific choice of ion channels and gat-
ing dynamics (Hübel et al. 2014; Hübel and Dahlem 2014).

2.2 Ion dynamics

In the original HH model ion concentrations and Nernst
potentials are model parameters that do not change. If we
want to study actual ion dynamics we must take into account
that the transmembrane ion currents induce changes in ion

concentrations. To compute these changes, currents must be
be converted to ion fluxes by a factor

γ = Am

F
, (17)

which contains the membrane surface area Am and Fara-
day’s constant F . The ion fluxes must then be divided by the
volume ωi or ωe (ICS or ECS respectively) of the relevant
compartment.

Recall that we have included a pump current to the
first HH Eq. (1). Pumps are necessary, because physio-
logical resting conditions are characterized by large ion
gradients, i.e., concentration differences between ICS and
ECS, for Na+ and K+. To maintain these gradients, ion
pumps exchange intracellular Na+ for extracellular K+,
which is done at a 3/2–ratio. The rate equations for ion
concentrations in the ICS are

dKi

dt
= − γ

ωi

(IK+ − 2Ip) , (18)

dNai

dt
= − γ

ωi

(INa+ + 3Ip) , (19)

dCli

dt
= + γ

ωi

ICl− . (20)

The pump current Ip increases with Nai and Ke (Cressman
Jr. et al. 2009):

Ip = ρ

(
1 + exp

(
25 − Nai

3

))−1

(
1 + exp (5.5 − Ke)

)−1

(21)

Ip saturates to a maximum level only when both, Nai and
Ke, are high. Under physiological resting conditions the
pump operates at about 10% of the maximal pump rate ρ

(Attwell and Laughlin 2001).
Electroneutrality is an important symmetry of the model,

and it implies that the intracellular charge concentration

Qi := Nai + Ki − Cli = Na0
i + K0

i − Cl0
i (22)

is constant. Accordingly Nai , Ki and Cli are not indepen-
dent, and one of the rate Eqs. (18)–(20) can be replaced
by simply solving Eq. (22) for that variable. Note that
initial physiological resting conditions are denoted by a
superscript 0.

Also mass conservation holds and ion concentrations in
the ECS follow from values in the ICS by solving the
following constraint equations:

Naiωi + Naeωe = Na0
i ωi + Na0

eωe , (23)

Kiωi + Keωe = K0
i ωi + K0

eωe + 
NK , (24)

Cliωi + Naeωe = Cl0
i ωi + Cl0eωe . (25)
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We have added the quantity 
NK in Eq. (24). It accounts
for changes of the K+ content of the system due to par-
ticle exchange with external reservoirs. These reservoirs
can be the vasculature or glia cells, which both play an
important role in regulating the extracellular K+ level. A
positive/negative value of 
NK corresponds to K+ gain/loss
in the system.

Of course, Na+ and Cl− can also be exchanged with
external reservoirs, but the pathologies we study here are
most prominently characterized by a huge rise of K+ in the
ECS. Most studies emphasize the role of K+ regulation, but
a generalization to the other ions would be straightforward.

The type of reservoir coupling—vascular or glial—
determines the dynamics of 
NK . For simplicity we only
consider diffusive coupling to the vasculature in this study.
It has been shown that including glial buffering does not
lead to qualitatively different results (Hübel and Dahlem
2014) and also in the here presented study the specific pro-
cess of K+ reduction is irrelevant to explain the observed
behavior (see below).

To model vascular coupling, we assume that the blood
vessels provide an external bath to and from which K+ can
diffuse. The defining parameters in this scheme are the K+
concentration of the bath Kbath and the coupling strength λ.
The dynamics of 
NK is then proportional to the diffusive
flux Jdiff :

Jdiff = λ(Kbath − Ke) , (26)

d
NK

dt
= ωeJdiff . (27)

Note that in this model the K+ uptake capacity of the
vascular bath is unlimited.

In summary, the whole system is defined by the three
membrane rate Eqs. (1)–(3), two of the three rate Eqs. (19)–
(20) for the intracellular ion concentrations, and Eq. (27) for
vascular K+ regulation. All model parameters are listed in
Table 1.

With our choice of dynamical variables, ion dynam-
ics naturally decomposes into transmembrane ion changes
and exchange with the external vascular reservoir. Trans-
membrane ion dynamics are given by Eqs. (18)–(20) and
reservoir coupling by Eq. (27). We can see from the mass
conservation constraints for K+ that changes of Ke can
be due to changes of Ki and 
NK , so both mechanisms
are involved. Nae and Cle only change by transmembrane
fluxes.

The different processes come with distinct timescales
which makes it possible to interpret the model dynamics in
a slow–fast analysis (see below). Timescales can be derived
from the model parameters (Hübel and Dahlem 2014) and
are listed in Table 2.

Table 2 Timescales

Name Value & unit Description

τV 0.05 msec potential changes

τn 1 msec K+ activation

τh 1 msec Na+ inactivation

τNa 0.5 sec transm. Na+ fluxes

τK 0.5 sec transm. K+ fluxes

τCl 50 sec transm. Cl− fluxes

τ
K 35 sec K+ gain/loss

To model temporary OGD, we set the maximal pump
rate ρ and the diffusive coupling constant λ to zero. Both
vascular coupling and transmembrane pumping are energy
consuming processes that are interrupted or strongly weak-
ened during OGD (Zandt et al. 2011; Wei et al. 2014a; Ullah
et al. 2015). We analyze the response to OGD of systems
with different ECS volumes. It is conventional to quantify
this in terms of the extracellular volume fraction fe. In mod-
eling papers this quantity is often defined as the fraction of
the ECS in a system that is composed of the neuron and the
ECS only, and our normal ECS in Table 1 corresponds to a
value of 25 %. Experimentally measured values normally
relate the ECS volume to the whole tissue which includes
the glia cells too. If we assume neurons and glia cells to
make up approximately the same amount of volume, an ECS
as in Table 1 corresponds to about 14 % of the whole tissue.
All values of fe given in this paper will refer to whole tissue
including glia.

A computational study by Kager et al. (2000) on epilep-
tic seizures and spreading depression uses an extracellular
volume fraction of 15 % and refers to data of rat hippocam-
pus (McBain et al. 1990; Mazel et al. 1998) suggesting
values between 13 % to 20 %. Other studies report val-
ues ranging from 25 % in turtles (Krizaj et al. 1996) to 32
% in mice (Xie et al. 2013), and 27 % in human patients
with focal cortical dysplasias (Zamecnik et al. 2012). The
standard method in these measurements is real–time ion-
tophoresis, a method in which the diffusion profile of
externally applied cations is measured with electrodes at
different points in the tissue. With this data the extracel-
lular volume fraction and turtuosity can be derived from
a radial diffusion equation. Neural densities are normally
obtained by counting cells in small tissue volumes. While
both measures are reported to be strongly brain region–
dependent (Collins et al. 2010; McBain et al. 1990), there
is to our knowledge no study or review giving a compre-
hensive overview of typical values for different regions.
In this study we hypothesize differences in the extracel-
lular volume fractions to be the cause for the observed
brain region–dependent recovery behaviors from AD. We
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therefore vary ωe systematically with a starting value from
Table 1 which is on the lower side of the measured range.
However, this value is only used for one simulation example
and we will discuss the effect of the ECS volume on the neural
dynamics for a whole range of values up to almost 50 %.

We remark that it is irrelevant for our analysis if we
increase fe by increasing the ECS volume size, by decreas-
ing the size of neural and glial compartment or by a
combination of both. The only quantity that is dynamically
relevant is the volume fraction fe. In the program code we
have varied ωe and kept ωi constant for simplicity. Accord-
ingly our range of ωe variation is rather large (up to more
than 3,500 μm2). This is an artifact of our way of parameter
variation and the focus should rather be on the correspond-
ing volume fractions. These are within or close to the normal
physiological range.

Note that varying ωe or fe corresponds to different types
of tissue, and it must not be confused with cell swelling
as observed in ischemic edema (Lauderdale et al. 2015;
Rosenberg 1999). Such osmosis–driven volume changes
happen in AD, and they can be incorporated into the model
without any problems (Ullah et al. 2015; Wei et al. 2014b).
However, it can be shown that cell swelling is only a byprod-
uct of the other processes that govern depolarization and
recovery. Volume dynamics are not necessary to understand
the interplay of mechanisms that leads to different recov-
ery behaviors in different brain regions in AD. Ultimately
neural damage will be due to cell swelling and also exci-
totoxicity, which relates to the dynamics of calcium and

neurotransmitters. So to understand the details of longterm
neural damage such processes would have to be modeled.
In this study, however, we focus on the initial processes
that govern depolarization and recovery. For these events
swelling will only alter the numerical values of critical
parameters, but not the main course of events. That is why, it
is not included and instead we discuss the fundamental phe-
nomenon in a model that is as simple as possible. The effect
of swelling on derived critical parameter values is briefly
addressed in the discussion.

Simulation and bifurcation code is made available from
ModelDB (Hines et al. 2004) with accession number 187213.

3 Results

3.1 Response of the model to OGD

We compare the response to 200 sec of OGD for a system
with a normal ECS (14.3 %, 720 μm3) and one with a large
ECS (46.1 %, 3,700 μm3). In the experiments by Brisson
and Andrew (2012) and Brisson et al. (2013) the duration
of OGD is longer and depolarization only sets in after some
minutes of OGD. The pump activity gradually reduces with
OGD and since this effect differs between brainstem and
higher brain regions we see a delayed onset in the upper
trace of Fig. 1.

This effect is well understood and hence for simplicity
we do not model this transient onset behavior here. Instead

Fig. 3 Simulation of the neural
response to 200 sec of OGD
(shaded region). For the normal
ECS, we use fe = 14.3 % (with
ωe = 720 μm3), for the large
ECS, we have fe = 46.1 %
(with ωe = 3,700 μm3). The
upper panels (a) and (b) show
the evolution of the membrane
and Nernst potentials. The lower
panels (c) and (d) show the
corresponding changes in ion
concentrations. OGD leads to
AD with reduced ion gradients
and potential differences. The
cell is recoverable from AD for
the normal ECS and
non–recoverable for the large
ECS

a b

c d
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pump activity and vascular coupling immediately drop to
zero when OGD is applied and our focus is only on the
recovery dynamics.

The result of the simulations is shown in Fig. 3. The
upper panels (Fig. 3a and b) show the evolution of poten-
tials for the two cases. The corresponding changes of ion
concentrations are presented in the lower panels (Fig. 3c
and d). The initial response to OGD is similar in both cases.
The neuron quickly depolarizes and the Nernst potentials of
K+ and Na+ get very close to the membrane potential. The
Cl− potential is driven to the same point, but changes more
slowly. The most striking changes of ion concentrations are
the extreme elevation and drop of extracellular K+ and Na+,
respectively.

After OGD, pumps and vascular coupling are at work
again and the system with the normal ECS recovers from
the depolarized state (Fig. 3a and c). At first, the neuron is
slowly repolarized until it reaches a point of abrupt hyperpo-
larization. The membrane potential drops even below EK ,
because the K+ channels close and the pump current over-
powers IK for a brief moment. The sharp potential drop is
followed by the slow asymptotic return to the initial phys-
iological resting state. Nernst potential differences and ion
gradients are re–established. In contrast, the model with the
large extracellular volume fraction does not recover (Fig. 3b
and d). After a short phase of moderate repolarization, the
membrane potential and Nernst potentials settle at a still
strongly depolarized level, and most importantly, potential
differences remain very small. Accordingly, ion concen-
trations are still extremely far from normal physiological
conditions. Only the external K+ concentration returns to its
physiological resting value of 4 mM, because we assume an
idealized regulation scheme for K+.

We see that in both cases OGD induces AD, which is
characterized by membrane depolarization and drastically
reduced Nernst potential differences. For the normal ECS,
the combined effort of ion pumps and vascular coupling
brings the cell back to normal physiological conditions.
For the larger ECS, the neuron does not recover from AD
despite the presence of fully functional pumps and vascula-
ture. This is a reproduction of the experimentally observed
behavior in Fig. 1 and a similar result to Ullah et al. (2015).
In the following sections we will investigate the nature of
this recovery failure.

3.2 Recovery threshold and phase space analysis

Before proceeding to the threshold analysis, we need to
review the basic phase space structure of neural ion dynam-
ics. Ion exchange with the vascular system is a much slower
process than transmembrane ion fluxes (see Table 2). This

gives rise to a recently developed slow–fast analysis of the
dynamics in the system (Hübel and Dahlem 2014).

The idea behind the analysis is the following thought
experiment. We imagine a neuron model without the exter-
nal reservoirs, and instead of dynamical reservoir coupling
we modify the overall K+ content in the ICS and ECS by
hand. Formally this is done by treating 
NK as a parame-
ter rather than a dynamical variable and neglecting the rate
equation for vascular coupling. This provides us with a use-
ful perspective on the full model ion dynamics, since—as
mentioned above—reservoir coupling is slow in comparison
to membrane and transmembrane processes. Accordingly
at every instant of time we expect the variables other than

NK to behave as they would in a system where 
NK is
fixed as a parameter.

To make use of this perspective quantitatively we vary

NK to derive the fixed point structure of the transmem-
brane systems with different K+ contents. For the dynamics
of the full model we expect the fast variables of mem-
brane and transmembrane dynamics to have enough time to
settle near or to these fixed points. The phase space trajec-
tory of the model is hence guided by this underlying fixed
point structure. If this structure changes, the dynamics of the
system changes accordingly.

Figure 4 illustrates how this works in the normal case.
The black, s–shaped curve indicates where the fixed points

Fig. 4 Phase space plot for normal ECS (Fig. 3a and c). The black
curve shows the fixed point (FP) structure of the fast model dynamics
as a function of 
NK with fully functional pumps (i.e. normal oxygen–
glucose supply). The stable branches (solid lines) become unstable in
Hopf bifurcations (HB). The trajectory from Fig. 3a (turquoise curve)
follows the stable branches. The grey line around the HB point indi-
cates the threshold location for different values of Cli (higher values
to the right). The system repolarizes at a higher Cli–value (grey bullet)
than the one belonging to the HB of the exact transmembrane fixed
point curve (black bullet)
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of the fast dynamics, i.e. membrane dynamics and trans-
membrane ion fluxes, lie. We see that there are two stable
states (black solid lines) for a wide range of 
NK–values.
Conditions on the more polarized, stable branch are gen-
erally comparable to the initial physiological resting state
that is marked by the black diamond. In particular, the dif-
ferences between Nernst potentials are large (not shown in
Fig. 4) and the neuron is capable of normal spiking activity, for
example in response to synaptic input or background noise.

On the upper branch the situation is entirely different and
the depolarized fixed points are in many aspects comparable
to the thermodynamic Donnan equilibrium of the system.
The Donnan equilibrium is attained when the system is
completely isolated and there is neither particle exchange
with its surroundings nor energy supply for the ion pumps.
The membrane potential and all Nernst potentials are then
at the same depolarized Donnan potential.

The points on the depolarized branch in Fig. 4 are stable
and close to the Donnan equilibrium despite fully functional
pumps. For neural function, however, the crucial point is
only where spiking activity is possible. This requires a suf-
ficient amount of electrical energy that is stored in the ion
gradients such that potential differences are large. On the
depolarized branch the amount of available electrical energy
is too low for neural function and we refer to these dys-
functional conditions as free energy–starvation (FES). The
physiological resting state, the Donnan equilibrium, and
FES for 
NK = 0 fmol are compared in Table 3.

The fixed point lines are obtained by the continuation
software tool AUTO (Doedel and Oldeman 2009). Stabil-
ity changes occur via bifurcations. The two generic cases
are Hopf bifurcations (HB) and limit point bifurcations

Table 3 Physiological conditions, Donnan equilibrium and FES for

NK = 0 fmol

Phys. Donnan FES Units

V −67.1 −22.6 −23.7 mV

n 0.065 0.636 0.622 1

m 0.065 0.681 0.657 1

h 0.065 0.075 0.085 1

Nai 25.3 59.1 56.9 mM

Nae 126.8 25.3 32.0 mM

Ki 128.6 113.7 115.4 mM

Ke 4.0 48.6 43.5 mM

Cli 10.1 29.0 28.5 mM

Cle 124.6 67.8 69.4 mM

ENa 43.0 −22.6 −15.3 mV

EK −92.5 −22.6 −26.0 mV

ECl −67.1 −22.6 −23.7 mV

Ip 0.63 0.00 6.8 μA/cm2

(LP). We only indicate bifurcations to or from fully stable
fixed points and omit those that only change the degree of
instability.

Figure 4 provides the following interpretation of the neu-
ral response to OGD for the normal ECS (Fig. 3a and c).
During OGD the physiological resting state becomes unsta-
ble and the system evolves towards its Donnan equilibrium.
When OGD is over the cell is near the FES–branch and is
hence attracted by it. Ke is significantly elevated and the
vasculature starts taking up K+. Accordingly the K+ con-
tent decreases and the trajectory bends towards negative

NK–values. The FES–branch guides the trajectory until it
becomes unstable in a Hopf bifurcation, the cell repolarizes
and ion gradients are rebuilt. The final return to the initial
point is slow. Please note that we have added a grey line
around the Hopf bifurcation point. It indicates the thresh-
old location for different values of Cli (higher values to the
right). This is necessary because Cli is similarly slow as

NK (see timescales in Table 2) and the Cl− concentra-
tions cannot catch up with the changes of the K+ content
as quickly as the other variables. Hence Cli tends to remain
slightly higher than its fixed point value.

A first insight why the response for a larger ECS is com-
pletely different is given in Fig. 5. The underlying fixed
point structure has drastically changed. It differs from Fig. 4
in that the FES–branch remains stable. There is no recovery
threshold even for an extreme reduction of the K+ content.
Accordingly, after OGD there is no point at which the mem-
brane potential drops back to a normal physiological level.
The cell does not recover from AD.

Figures 4 and 5 show that the existence of a recov-
ery threshold crucially depends on the ECS volume size.
In Fig. 5b the two FES–branches are compared. In addi-
tion, we follow the recovery point for a continuously
increasing ECS volume, which yields the green Hopf line.
It shows that the FES–branches end in Hopf bifurca-
tions for extracellular volume fractions of up to 45 %
(marked by a green star). At this critical volume fraction
the recovery Hopf line vanishes in a fold–Hopf bifurca-
tion with a second Hopf line (dashed green line). This
formally proves that recovery is not possible for higher vol-
umes. The threshold value is higher than the typical values
around 20–30 % that we expect to find in living tissue
(McBain et al. 1990; Mazel et al. 1998; Krizaj et al. 1996;
Xie et al. 2013; Zamecnik et al. 2012). However, certain
model refinements can shift the critical volume fraction
well into this physiological range (see discussion). It has
been shown theoretically that recovery from FES is due to
external K+ uptake and cannot be accomplished by the ion
pumps alone (Hübel et al. 2014). This is also confirmed by
the inset in Fig. 5b, which shows the fixed point structure
for pump strength variation for both normal and large ECS
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a

b

Fig. 5 Phase space plot for large ECS and comparison with normal
ECS case. Panel (a) shows a phase space plot for OGD and a large ECS
(Fig. 3b and d). The pink curve indicates the underlying FP structure at
fully functional pumps (i.e. normal oxygen–glucose supply). The FES
branch does not become unstable for low values of 
NK . The trajec-
tory remains on the FES–branch. Panel (b) shows the FES–branch for
both cases and the location of the recovery point for all extracellular
volume fractions fe between 10 % at the right end of the Hopf (HB)
line and 45 % at the left end (marked by the star). The dashed HB line
indicates second Hopf bifurcations for ECS volumes less than 45 %.
At higher volumes no more Hopf bifurcations occur. The inset shows
the fixed point as the maximum pump strength is varied. The diamond
marks normal physiological conditions

volumes and 
NK = 0. On the depolarized branches, the
sigmoidal pump function of Eq. (21) is saturated and the
current Ip is about five times stronger than on the physi-
ological branches. The normal resting state with maximal
(but not saturated) pump strength ρ = 6.8 μA/cm2 is
again marked by a black diamond. In both cases, the depo-
larized branch becomes unstable only for very large pump
rates (ρ > 21 μA/cm2). This threshold is almost inde-
pendent of the ECS volume, and it corresponds to a pump
current that is more than 15 times higher than during nor-
mal physiological conditions. Although different isoforms
of Na+/K+ exchange pumps in different areas of the brain

have been reported (Blanco 2005; Dobretsov and Stimers
2005), we are unaware of such big region–specific differ-
ences in the pump activity. That is why we focus on how

NK facilitates recovery from FES in this study. How-
ever, the differences in the function of different isoforms of
Na+/K+ exchange pumps are more complicated than just
changing the maximum pump strength as done in the inset
in Fig. 5a of this paper and in Hübel et al. (2014). Thus, we
leave the investigation of whether different pump isoforms
could lead to cell’s recovery from AD for the future. This
point is highlighted further in the Discussion section.

3.3 Why recovery fails for a large ECS

Up to this point we have only reproduced the two types of
neural response to OGD from Fig. 1, and we have seen that
the dynamics is consistent with a change of the underlying
fixed point structure as shown in Fig. 5b. The major advan-
tage of the phase space perspective that we here provide
is that we can track the recovery point for all extracellular
volume fractions fe from 10 % up to 45 %, where recov-
ery fails. This threshold analysis will help us understand
why the model has a critical volume fraction beyond which
recovery becomes impossible. We have included the thresh-
old Hopf line already in Fig. 5b, but only the membrane
potential is shown and also the dependence on fe is not
explicit.

More detailed information on the system conditions at
the recovery threshold for different ECS volumes is given
in Fig. 6. Generally, for each extracellular volume fraction
for which recovery is possible, the cell slowly repolarizes—
coming from deep FES—until the recovery point is reached
(see the example in Fig. 4). The Nernst potentials EK

and ENa , and the extracellular concentrations Ke and Nae

decrease as the system evolves towards this point.
The first thing to note is that increasing the extracellular

volume fraction fraction goes along with shifts of the thresh-
old ion concentrations (Fig. 6a). The potentials remain at
almost exactly the same levels (Fig. 6b). The observed ion
shifts in Fig. 6a are indeed a consequence of the constant
threshold potentials. To see this let us for now assume that
recovery happens at certain levels of Nernst potentials that
are—as Fig. 6b suggests—independent of the ECS volume
size. If this is the case then recovery is about reaching the
threshold values of the ion concentration fractions

χ∗
Na = Na∗

e

Na∗
i

= 0.448 ,

χ∗
K = K∗

e

K∗
i

= 0.210 ,

that belong to these potentials. So we simply translate
what Fig. 6b shows into the following equivalent statement:
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b

c

Fig. 6 Values of dynamical variables and other quantities at the recov-
ery threshold obtained from the Hopf line continuation (green line in
Fig. 5b). The extracellular volume fraction fe is varied from 10 % up to
recovery failure at 45 % (marked by stars in each panel). Panels (a) and
(b) show ion concentrations and threshold potentials respectively. The
main part of panel (c) shows how much K+–uptake is needed to reach
the recovery point. The inset shows the pump activity at the threshold.
The maximal pump level (which is identical to ρ) is indicated by the
orange line

For every extracellular volume fraction fe between 10 %
and almost 45 % the two above conditions define the
repolarization point.

For our following argument it is not important how
exactly the neuron depolarizes and how the homeostatic
mechanisms take it to this repolarization point. We simply
need to understand that all these processes result in a redis-
tribution of ions compared to the initial resting state which
is given in the first column of Table 3 and is denoted by a
superscript 0 in the following. In our model these resting ion
concentrations are the same for each choice of fe. At these
initial concentrations we have χ0

Na = 5.012. So the thresh-
old concentration Na∗

e must be lower than Na0
e —regardless

of the volume fraction fe. However, how much lower Na∗
e

has to be will depend on the ECS volume.
To see this let us consider a system with a normal ECS

first. For this system to be at the recovery point, more Na+
ions must be inside the cell and accordingly fewer in the
ECS than initially. So let there be a redistribution of Na+
ions such that the system with the normal ECS is at thresh-
old and χ

(norm)
Na = χ∗

Na . For a clear distinction between
the situation with a normal and a large ECS we add super-
scripts (norm) and (large). In a system with a large ECS that
same redistribution will be insufficient. While the intracel-
lular concentrations Na

(norm)
i and Na

(large)
i will have the

same increased value, the redistribution does not reduce the
extracellular Na+ concentration as much, i.e. Na

(large)
e >

Na
(norm)
e , simply because the ECS is larger. Consequently

χ
(large)
Na will not be small enough and more Na+ in the ICS

is needed. This way the condition χ
(large)
Na = χ∗

Na will be
satisfied by two higher concentrations:

Na
∗(large)
i > Na

∗(norm)
i ,

Na
∗(large)
e > Na∗(norm)

e .

By electroneutrality, a higher concentration of Na+ in the
ICS implies a lower concentration of K+, i.e. K∗(large)

i <

K∗(norm)
i . Then the condition χ

(large)
K = χ∗

K implies that

K∗(large)
e must also be smaller:

K∗(large)
i < K∗(norm)

i

χ
(norm)
K = K∗(norm)

e

K∗(norm)
i

= χ∗
K

χ
(large)
K = K∗(large)

e

K∗(large)
i

= χ∗
K

⇒ K∗(large)
e < K∗(norm)

e

This simple effect that a larger ECS volume has is the key to
understand the change of the phase space. Most importantly
we see that FES in a system with a large ECS tolerates lower
extracellular K+ concentrations. This affects both homeo-
static mechanisms, the ion pumps and vascular K+–uptake.
Figure 6c shows that the decreasing Ke level at the thresh-
old goes along with a higher K+–uptake demand. This is
reflected in more negative 
NK–values for larger ECSs.
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a

b

c

Fig. 7 Simulations and thresholds for non–physiological, enhanced
pump activity and a large ECS. Panel (a) shows the response to
OGD (gray shaded region). After OGD the pump activity is kept at
the maximum level until the cell repolarizes (orange shaded region).
The cell recovers. Panel (b) gives the phase space picture. Along the
FES–branch a maximal pump activity that is independent of ion con-
centrations is assumed. FES becomes unstable in a Hopf bifurcation
(HB) and the trajectory returns to the physiological branch. In panel
(c) are threshold potentials for a continuous variation of ωe under the
assumption that the pump activity is maximal. Recovery is possible far
beyond the former critical value (star markers). Potentials at second
bifurcations are presented by the dashed lines

Our diffusive coupling scheme has an unlimited uptake
capacity, but in a physiologically more detailed descrip-
tion this high uptake demand could lead to recovery failure.

In our model, however, recovery failure must be explained
differently.

We should instead direct our attention to the inset of
Fig. 6c. It shows the magnitude of the pump current at
the threshold, and we see that it is maximal almost for the
entire range of ECS volumes. When recovery fails, how-
ever, it drops significantly. This is because Ke decreases
and the pump function Ip from Eq. (21) is no longer sat-
urated. Exchange of intracellular Na+ for extracellular K+
happens no longer at the maximal turnover rate, because the
concentration of K+ in the ECS is already rather low.

In summary, Fig. 6 shows that recovery from FES hap-
pens at certain values of the Nernst potentials and at max-
imal ion pumping for almost all ECS volumes up to the
critical value fe = 45% beyond which recovery becomes
impossible. Near this critical volume fraction both, the
Nernst potentials and the pump current are no longer con-
stant (with respect to fe). However, the relative changes
of Nernst potentials are clearly less pronounced than the
drop of the pump current, and we hence assert that recovery
failure is due to insufficient pump activity.

We formally prove this hypothesis by demonstrating that
enhanced ion pumps would prevent recovery failure. This
is shown in Fig. 7. For the simulation in Fig. 7a and b, we
apply the same OGD protocol as before to a cell with a large
ECS. However, after OGD we keep the pump activity at the
maximum level until the neuron repolarizes (orange shaded
region). The plot shows that with this modification recov-
ery is possible. The fixed point structure in Fig. 7b changes
accordingly and the FES–branch ends in a Hopf bifurcation.
Note that for the fixed point structure, we have assumed the
enhanced pump only along the FES–branch.

A threshold continuation as in Fig. 6b yields the thresh-
old potentials in Fig. 7c. This diagram shows that recovery
would always be possible if the pump activity would not
decrease with Ke. The former point of recovery failure is
still marked by a star, but the recovery line extends beyond
this point up to fe = 50% and higher. The diagram also
contains the potentials of a second bifurcation (dashed lines)
that takes over at fe = 47.3%, but such details are not
relevant to our discussion. Fig. 7 mainly illustrates that a
decrease in pump activity is the reason for recovery fail-
ure. This renders the region–specific differences in pump
activity contributing to the AD recovery failure as a critical
question for future investigations.

3.4 Recovery as switching of the membrane state

Our above discussion of recovery failure has implicitly
relied on the assumption that the recovery point is char-
acterized by the Nernst potentials and the pump activity.
While ion concentrations at threshold vary a lot between
models with different ECSs, the values of Nernst potentials
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and pump current are constant almost up to the critical vol-
ume. This naturally led us to assume and indeed confirm
that recovery fails because pumping gets weaker.

The pump current Ip and the Nernst potentials Eion fully
determine the membrane dynamics. So for all values of fe

between 10 % and almost 45 %, the membrane dynamics
at the repolarization point are the same. In other words, it
seems like recovery comes down to one specific process in
the membrane.

To see if this is really the case, we analyze the mem-
brane state around the recovery point separately for the
normal ECS. We therefore treat the Nernst potentials as
system parameters and vary them such that the values are
as on the FES–branch. The normally very slowly changing
Cl− concentrations are kept fixed at the values at thresh-
old. This variation is naturally parametrized by 
NK . Only
now 
NK indicates how the parameters Eion are varied, and
not where the dynamical quantities Eion have a fixed point.
The only dynamical variables in this adapted variation of
Nernst potentials are V , n and h. The pump current is kept
at maximum.

The result in Fig. 8 is as expected. The inset indi-
cates how the Nernst potentials are simultaneously varied.
The main part shows the fixed points of the separated
HH dynamics. There are two stable branches for 
NK >

−27.6 fmol. The depolarized branch guides the trajectory

Fig. 8 Phase space of membrane dynamics. Nernst potentials are var-
ied simultaneously such that values are like on the FES–branch in
Fig. 4. The variation is parametrized by 
NK as shown in the inset.
There are two fixed point branches. The depolarized branch becomes
unstable in a Hopf bifurcation (HB). The more polarized branch is sta-
ble for the full parameter range. The upper branch guides the trajectory.
Repolarization is onto the lower branch. Then processes beyond pure
membrane dynamics govern the further course of the trajectory

(turquoise curve) until it destabilizes in a Hopf bifurca-
tion. The lower, polarized branch is only a fixed point of
the membrane dynamics. On this branch the membrane
potential is stable because the sum of all currents vanishes.
However, the current terms (IK+ − 2Ip) and (INa+ + 3Ip)

governing the ion fluxes do not vanish individually. There-
fore the V –values on the lower branch are not compatible
with stable ion concentrations and the repolarization drop to
this branch is only the initial process, after which ion con-
centrations adjust themselves and ion gradients are rebuilt.
The trajectory then approaches the fixed point of membrane
dynamics and transmembrane ion dynamics as in Fig. 4.

The Hopf bifurcation in this separated HH system lies
exactly where the larger system of transmembrane ion
dynamics bifurcates (compare Fig. 8 main with Fig. 4). Con-
versely, we can consider the other subsystem for which the
membrane potential V and gating variables n and h are
varied as parameters and only ion concentrations are mod-
eled (not shown). This model of separated ion dynamics
remains stable at 
NK = −27.6 fmol. This proves that the
fundamental process at the repolarization point is a switch-
ing of the membrane potential according to the bifurcation
scenario of Fig. 8.

4 Discussion

Computational modeling has the potential to deepen our
understanding of real physical processes. In a modeling
approach we can separate mechanisms that cannot be sep-
arated in an experimental setup. Ideally this leads to novel
insights that go beyond current experimental results.

In neuroscience, because of the extreme complexity of
the real physical system, every mathematical model will
typically have to focus on a specific aspect of neural behav-
ior. AD is a pathological process that goes along with the
breakdown of ion gradients and the complete cessation of
neural electrical activity. It has been shown experimentally
and in other computational studies that for such extreme
processes, the biophysical details of the ion channels and
their gating dynamics play a minor role (Mulet and Mirasso
1999; Kager et al. 2000; Hübel et al. 2014; Hübel and
Dahlem 2014; Wei et al. 2014b). A simple HH set of ion
channels and gating variables is sufficient to describe neural
ion dynamics on a fundamental level.

Specifically, two processes left out in our model are cal-
cium dynamics and dynamic cell swelling. Both do not
change the phase space perspective we have presented
above. The role of calcium–induced glutamate release and
NMDA and AMPA receptor gating can be incorporated, but
would only be a minor modification of the gating dynamics.
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The direct effect of calcium currents is negligible in com-
parison to K+ and Na+ in our model. However, a model
for neurotransmitter release and synaptic communication
should take calcium dynamics into account. Also dynamical
cell swelling will modify the model dynamics quantitatively,
but will preserve the phenomenon and the general argument
presented here.

This is not to say that biophysical detail is unimportant.
Specific threshold values and parameter ranges of different
neural behaviors will depend on all model components, and
a quantitative assessment of these dependencies is beyond
the scope of this study. What we claim, however, is that the
simplified approach we chose here uncovers some general
connections between the homeostatic mechanisms and the
cell morphology. While the value of the critical ECS volume
size may be different in real nervous tissue, our explanation
for recovery failure is very general and will apply in every
more detailed model.

The subject of this study is to explain the observations
about the ischemia–induced AD, namely that there is a clear
connection between the brain region and the resistance of
the cell to recover from AD (Brisson and Andrew 2012;
Brisson et al. 2013). Non–recoverable AD is the physiolog-
ical process behind brain damage due to ischemia caused by
heart attack, near drowning, or traumatic brain injury. In a
related computational study, we suggested that the tissue–
dependent extracellular volume size could be a potential
cause for different extents of AD (Ullah et al. 2015). Here,
we systematically analyze how the recoverability depends
on the ECS and elucidate the mechanisms that lead to the
the cell’s failure to recover from AD.

For a small ECS, which corresponds to hypothalamic tis-
sue in our model, AD is recoverable, while for a large ECS
corresponding to model equivalent of neocortex or thalamic
tissue, the depolarization is permanent. This is consistent
with the experimental data in Fig. 1. To investigate the
transition between these behaviors, we applied a recently
developed slow–fast decomposition that separates trans-
membrane ion fluxes from vascular coupling. The recovery
point then becomes a bifurcation of the transmembrane ion
dynamics, and tracking this bifurcation shows that it dis-
appears for a critical ECS volume size. For a larger ECS,
the neuron cannot recover and the failure is hence abrupt
rather than gradual. Our model is thus consistent with exper-
imental data which shows that the thalamus–hypothalamus
interface is the distinct boundary between recoverable and
non–recoverable AD (Brisson et al. 2013).

Our slow–fast decomposition of ion dynamics suggests
a hierarchy of the homeostatic mechanisms during recovery
from AD. The most important process is K+ diffusion into
the vasculature uptake. Vascular coupling reduces the K+

concentration in the ECS until the repolarization point is
reached. We show that for a larger ECS, this point lies at a
more negative value and thus more K+–uptake is required.
While the uptake capacity of our model is unlimited, in a
real system this higher demand may cause recovery failure
in the higher brain regions.

Another key point is that a low extracellular K+ concen-
tration slows down the transmembrane Na+/K+–exchange.
While vascular K+–uptake is needed to reach the repolar-
ization point, the recovery process itself is mainly driven by
the ion pumps (Figs. 5 and 7). If these are too weak, recov-
ery fails regardless of the uptake capacity of the vasculature.
The conclusion that Na+/K+–ATPase does not function at
its full capacity in the upper brain regions is in line with the
hypothesis put forward by Brisson and Andrew (2012) and
Brisson et al. (2013) based on the their observations. The
authors hypothesized that the difference in pumps’ activ-
ity leading to the different AD strength and recovery in
response to temporary OGD or ouabain (Na+/K+ pump
blocker) application could be due to the different pump iso-
forms in the upper and lower brain regions. Our results show
that even with the same maximum capacity (isoform), the
pumps in the higher brain regions do not function up to their
full capacity due to the lower extracellular K+ concentra-
tion. This result in the AD recovery failure. The explanation
is independent of the question how different pump isoforms
may alter the course of AD. The effect of the latter can only
be addressed in more detailed pump model that accounts
for such differences between the brain brain regions. While
for this study we have exclusively focused on the role of
the extracellular volume fraction, the question of pump
isoforms is clearly a future challenge.

Our model predicts that for Na+/K+ATPase to lead to
cell’s recovery from AD, the pumps would have to func-
tion at a rate 15 times higher during ischemia than the
physiological value (Fig. 5b). Although this kind of vari-
ability seems very high, we cannot rule out the possibility
of different brain region-specific pump isoforms (Blanco
2005; Dobretsov and Stimers 2005) leading to AD recovery
either by itself or in some combination with other processes
such as vascular clearance or differential ECS. Our prelim-
inary data shows that higher brain regions strongly express
the vulnerable 1α1 while lower brain regions express a
higher proportion of the ischemia-efficient 1α3 isoform
(unpublished results). The 1α1 isoform has steep voltage
dependence in cortical neurons, so it quickly activates after
short action potential bursts. In contrast, 1α3 activation is
independent of voltage and displays low Na+ and high ATP
affinity, so it can continue functioning during prolonged
depolarization (Dobretsov and Stimers 2005). The differen-
tial voltage dependence and ATP, Na+, and K+ (Dobretsov
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and Stimers 2005) affinities make the theoretical representa-
tion of different pump isoforms more complex than simply
using different maximum pump rates as represented in our
model (see inset of Fig. 5b). Thus, a comprehensive model
for Na+/K+–ATPase is required to fully understand the
extent to which pumps play a role in the cell’s recovery from
AD. Na+/K+ pumps on glial and endothelial cells play a
major role in vascular uptake. The 1α2 isoform is glial and
is similarly ischemia–efficient as the 1α3 isoform. Hence a
related question would be, if the 1α2 isofrom exists in glial
and endothelial cells in lower brain region where it would
lead to efficient vascular uptake, which would partner with
more potent neuronal pumps to result in the cell’s recovery
from AD.

We remark that the general phenomenon, i.e. an
increased K+–uptake demand for a larger ECS and recov-
ery failure above a certain threshold, occurs in different
model variants that we have tested. For example, a differ-
ent set of initial conditions and pump rates may shift the
threshold, but does not alter the results qualitatively. Our
critical fe–value for recovery failure in Fig. 6 is at 45 %
which is rather high. One may hence conclude that the
phenomenon should not be seen in real tissue. However,
it turns out that including dynamical cell swelling lowers
this threshold significantly. Also an electroneutral descrip-
tion of the vascular unit by the inclusion of anion channels
reduces the threshold markedly. In such more realistic mod-
els, the critical ECS volume where recovery fails is as
low as 23 %.

For future applications of our theory like the quantitative
interpretation of real experimental data, a detailed analy-
sis of these threshold dependencies will become important.
At this point, however, we merely want to point out that
the phenomenon as such is very robust and that volume
fraction–wise the critical values can indeed be expected to
lie in a physiologically realistic range.

Part of our results go beyond understanding the differ-
ent recovery behaviors in AD. From a modeling perspective,
SD is very similar to recoverable AD, which has also been
pointed out in the experiments (Brisson et al. 2013) where
the authors call SD a “milder AD–like event”. Several stud-
ies suggest that recovery in SD is mostly accomplished
by vascular coupling. The recovery failure scenario which
we have analyzed here provides us with a more differenti-
ated picture in which recovery is a combined effort of the
Na+/K+–exchange pumps and the vasculature. We could
furthermore show that recovery from AD is fundamen-
tally due to one specific switching process in the neural
membrane.

It will be a future challenge to develop new neuroprotec-
tive strategies based on our results. While the extracellular
volume fraction cannot be changed easily, our simulation in

Fig. 7a suggests that enhancing the ion pump turnover rate
temporarily can be a way to support recovery. Certain adren-
ergetic agonists and antagonists that stimulate the Na+/K+
pumps are known and may be of help in these types of
pathologies (Berthon et al. 1983; Sawas and Gilbert 1981).
From a more general perspective this study should add to
our understanding of risk factors for neural damage.
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