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Abstract We introduce a method for computing probabili-
ties for spontaneous activity and propagation failure of the
action potential in spatially extended, conductance-based
neuronal models subject to noise, based on statistical prop-
erties of the membrane potential. We compare different
estimators with respect to the quality of detection, compu-
tational costs and robustness and propose the integral of the
membrane potential along the axon as an appropriate esti-
mator to detect both spontaneous activity and propagation
failure. Performing a model reduction we achieve a sim-
plified analytical expression based on the linearization at
the resting potential (resp. the traveling action potential).
This allows to approximate the probabilities for spontaneous
activity and propagation failure in terms of (classical) hit-
ting probabilities of one-dimensional linear stochastic dif-
ferential equations. The quality of the approximation with
respect to the noise amplitude is discussed and illustrated
with numerical results for the spatially extended Hodgkin-
Huxley equations. Python simulation code is supplied
on GitHub under the link https://github.com/deristnochda/
Hodgkin-Huxley-SPDE.
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1 Introduction

Noise is an inherent component of neural systems that
accounts for various problems in information processing at
all levels of the nervous system, see e.g. the review Faisal
et al. (2008) for a detailed discussion. In particular, channel
noise has been identified as an important source of var-
ious types of variability in single neurons. Examples are
the noise induced phenomena as observed in Faisal and
Laughlin (2007). The timing of action potentials can be
highly sensitive with respect to fluctuations in the opening
and closing of ion channels leading to jitter and stochastic
interspike intervals (Horikawa 1991). This effect becomes
important in thin axons with diameter of less than 1μ m.
Furthermore, there appear stochastic patterns in the group-
ing of action potentials, and action potentials can vanish
due to noise interference or spontaneously emerge without
apparent synaptic input.

When it comes to the mathematical modeling of the
membrane potential in axons, in particular in thin ones,
channel noise therefore has to be taken into account. For a
discussion and comparison of the various types of adding
noise to conductance-based neuronal models such as the
classical Hodgkin-Huxley equations we refer to Goldwyn
and Shea-Brown (2011). Concerning spatially extended
models, in e.g. Tuckwell and Jost (2010, 2011), Tuckwell
(2008) it has been shown that already simple additive noise,
uncorrelated in space and time, accounts for a large range of
variability in the action potential. That includes variability
in the repetitive generation of action potentials, deletion of
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action potentials or propagation failures and spontaneously
emerging action potentials or spontaneous activity. Because
of this observation, we restrict ourselves to such a sim-
ple model of the noise that—as a byproduct—reduces the
computational and analytical complexity. However, the pro-
posed detection and estimation method can be applied to
more complex models and e.g. even the full Markov chain
dynamics of channel noise can be used.

It is the purpose of this work to introduce a method
to compute in a mathematical consistent way the proba-
bilities of those last two events. This is done for general
spatially extended neuronal models with additive noise,
both numerically and theoretically, in terms of statistical
quantities of the membrane potential. A suitable statisti-
cal estimator for such kind of characteristics should have
the following desired properties: It is automatically evalu-
able to do Monte-Carlo simulations; it strictly separates the
considered event from different ones; it is a low dimen-
sional function of the observables; it is relatively robust
to stochastic perturbations and uncertainty in the observ-
ables. We compare different estimators with respect to the
quality of detection, computational costs and robustness. In
order to further reduce the computational costs and to obtain
a simpler analytical description, we perform a consistent
model reduction, with respect to these statistical quantities,
to a one-dimensional linear stochastic differential equation
that allows to compute the desired characteristics without
necessarily simulating the full system.

The method is illustrated in a case study using the
Hodgkin-Huxley equations (Hodgkin and Huxley 1952)
with two distinct parameter sets. With spatial diffusion, this
is a system of partial differential equations that can serve
as a model for the propagation of action potentials in the
neuron’s axon. In particular, depending on the size of the
stimulus there exist pulse-like solutions (action potentials)
to these equations propagating along the spatial domain.
Using these equations, we estimate the probabilities of
spontaneous activity and propagation failure. Although we
only focus on these two examples, the methods presented
here can be used for a broader range of problems, in par-
ticular, similar model reductions can also be performed in
order to compute time jitter and the variability in grouping
patterns of action potentials.

In our setting, we consider a simple spatial geometry
of the axon that is a cylindrical shaped fiber. Thus the
relevant spatial domain is an interval [0, L]. We propose
Φ(u) := ∫ L

0 u(x) dx as an estimator for the detection of
spontaneous activity and propagation failures. Here, u is the
space(-time)-dependent observable whose solution is pulse-
formed. In the cases at hand, this will be the membrane
potential. Φ(u) is the area under the pulse considered as a
graph with respect to the space variable that has the follow-
ing properties: It is easy to extract automatically from the

numerical simulations; it significantly separates the num-
ber of observed pulses; it is a linear functional of only one
observable; stochastic perturbations, in particular additive
noise that is white in space (or of low correlation length)
should cancel out through integration. The events of sponta-
neous activity and propagation failure can both be defined
as threshold crossings of the quantity Φ(u) and therefore
easily be estimated using a Monte-Carlo simulation. The
results can be found in Section 3. In Section 4, we do a
model reduction for this quantity, only assuming a reason-
able local stability of the pulse and resting solutions. In
particular, we deduce one-dimensional Ornstein-Uhlenbeck
processes, that captures both probabilities in particular for
small noise intensities remarkably well.

2 Hodgkin-Huxley type equations

In this article, we consider a spatially extended conduc-
tance based neuronal model with a simple one dimensional
domain (0, L) approximating the axon. This is most accu-
rate in the case of a long axon, shaped as a cylinder with con-
stant diameter. Our examples combine a Hodgkin-Huxley
type model with diffusive spatial coupling to describe the
evolution of the membrane potential u(t, x) in time and
space by a system of partial differential equations involv-
ing the dimensionless potassium activation, sodium activa-
tion and sodium inactivation variables n(t, x), m(t, x) and
h(t, x), respectively. This typically reads as

Cm∂tu = d
4Ri

∂2xu − gKn4(u − EK)

−gNam
3h(u − ENa) − gL(u − EL)

∂tn = αn(u)(1 − n) − βn(u)n,

∂tm = αm(u)(1 − m) − βm(u)m,

∂th = αh(u)(1 − h) − βh(u)h. (1)

Here, Cm is the membrane capacitance in μF/cm2, d the
axon diameter in cm, Ri the intracellular resistivity in �cm,
gK, gNa, gL the maximal potassium, sodium and leak con-
ductance in mS/cm2. To further specify units, all times are
in ms, voltages in mV and distances in cm. These standard
parameters from the original work of Hodgkin and Huxley
(1952) are used throughout: Ri = 34.5, Cm = 1, gK = 36,
gNa = 120, gL = 0.3, EK = −12, ENa = 115 and
EL = 10. Note that the membrane potential is shifted by
65 mV compared to the original values. In order to be in
the regime of thin, unmyelinated axons, we choose a diam-
eter of d = 0.5 μm for all simulations and consider an axon
length of L = 1 cm.
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2.1 Two parameter sets for the (in)activation variables

Equation (1) is missing the coefficients determining the evo-
lution of the (in)activation variables. In the standard model
following Hodgkin and Huxley (1952) these are

αn(u) = 10 − u

100
(
e
10−u
10 − 1

) , βn(u) = 1

8
e− u

80 ,

αm(u) = 25 − u

10
(
e
25−u
10 − 1

) , βm(u) = 4e− u
18 ,

αh(u) = 7

100
e− u

20 , βh(u) = 1

e
30−u
10 + 1

.

In the following, we refer to this model as (HH). A second
model (H̃H) with a different behavior can be obtained by
slight modification. Set

α̃m(u) = 36 − u

10
(
e
36−u
10 − 1

) , β̃h(u) = 1

e
21.5−u

10 + 1
,

that amounts to a change in the sensitivity of the sodium
(in)activation rates, and leave the rest unchanged. The result
is a neuron much less sensitive to input, i.e. with a higher fir-
ing threshold. In the next section, models (HH) and (H̃H) are
used to illustrate the phenomenon of spontaneous activity
and propagation failure, respectively.

2.2 A mathematical model

Noisy perturbations of Eq. (1) can be realized as a stochas-
tic partial differential equation (SPDE) on the Hilbert space
(H, ‖·‖) = L2(0, L) with inner product 〈·, ·〉. The variables
u(t), n(t), m(t) and h(t) are then function valued, thus we
omit the x dependence in the notation.

For the spatial diffusion, define the Laplace operator
�u := ∂2xu supplemented with Neumann boundary condi-
tions. We choose a sealed end at x = L, i.e. ∂xu(t, L) = 0
for all t ≥ 0 and model the input signal to the axon via an
injected current in form of a rectangular pulse

∂xu(t, 0) = −4RiJ (t)

πd2
, J (t) =

{
J, t ≤ T ∗
0, t > T ∗ (2)

Here, T ∗ ≤ ∞ is the duration and J > 0 the amplitude of
the signal.

The question of how to add noise to Eq. (1) has been
studied in the literature, see e.g. Goldwyn and Shea-Brown
(2011). Although it has been shown that current noise, i.e.
uncorrelated additive noise in the voltage variable, does not
accurately approximate a Markov chain ion channel dynam-
ics, we use this form of noise in our study. The reason is
twofold: First, already such a kind of noise can qualitatively
account for all of the phenomena observed in e.g. Faisal and
Laughlin (2007) and second, it allows further analysis due

to its simplicity. Mathematically speaking, current noise is
realized as a two-parameter white noise η that is defined in
terms of a cylindrical Wiener process W such that η = Ẇ .
W = (W(t))t≥0 is a function valued process that can be
formally represented by the infinite series

W(t)(x) :=
∞∑

n=1

en(x)βn(t),

where (βn(t))n∈N is a family of iid real valued Brownian
motions and

en(x) :=
√

2

L
cos

(
2π

n

L
x
)

is an orthonormal basis of H . For f, g ∈ H one can
calculate the covariance of this process as

E [〈W(t), f 〉〈W(s), g〉] = (t ∧ s)〈f, g〉,
thus E [η(t, x)η(s, y)] = δ(t−s)δ(x−y), i.e. no correlation
in either time nor space. Thus formally speaking, a cylin-
drical Wiener process is time-integrated space-time white
noise. Equation (1) then reads as

du(t) = [λ�u(t) + f (u(t), n(t), m(t), h(t))] dt

+σ dW(t),
dn(t)
dt = αn (u(t)) (1 − n(t)) − βn (u(t)) n(t),

dm(t)
dt = αm (u(t)) (1 − m(t)) − βm (u(t)) m(t),

dh(t)
dt = αh (u(t)) (1 − h(t)) − βh (u(t)) h(t). (3)

Together with suitable initial conditions, in our case the
equilibrium values (u∗, n∗, m∗, h∗), being u∗ = 0 for (HH)
and u∗ ≈ −0.820 for (H̃H), as well as

x∗ = αx(u
∗)

αx(u∗) + βx(u∗)
, x = n,m, h,

we refer to Sauer and Stannat (2014) for well-posedness of
Eq. (3).

2.3 Linear stability of pulse and resting state

If one injects an input above a certain threshold, the solu-
tion of Eq. (1) rapidly approaches a traveling pulse like
solution. Denote X = (u, n, m, h)T , then numerical simula-
tions show that this traveling pulse is well-approximated by
a solution of the form X(t, x) = X̂(x − ct) for a fixed ref-
erence profile X̂ and pulse speed c as long as the pulse did
not reach the boundary. Let us call this solution X̂(t).

Without any external input, the system (1) remains in
equilibrium if started there. Denote by X∗ this constant (in
time and space) solution to the equations.

The phenomena of interest in this work directly corre-
spond to the stability properties of those two solutions X̂

and X∗. Although this has only been shown for general
stochastic bistable equations, see e.g. Stannat (2014), we
assume a linear stability condition that should be possible
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to be extended to the higher dimensional Hodgkin-Huxley
system. This linear stability assumption is then only used
in Section 4 for a model reduction. For convenience of
notation, denote Eq. (3) in the following abstract form

dX(t) = (AX(t) + F (X(t))) dt + σ dW(t), (4)

where A = (�, 0, . . . )T , W = (W, 0, . . . )T and F is
the appropriate nonlinear part of the drift. Also, denote by
H = ⊗4

n=1H the state space of Eq. (4). Then, we assume
the following geometrical condition of Lyapunov type

〈 [
A + ∇F

(
X∗)] h, h

〉
H ≤ −κ∗‖h‖2H, (5)

implying that the resting solution is locally exponentially
attracting inH, i.e. linearly stable. Moreover

〈[
A + ∇F

(
X̂(t)

)]
h, h

〉

H
≤ −κ̂‖h‖2H + Ĉ〈h, d

X̂
(t)〉2H,

(6)

for all t ∈ [T0, T ], where d
X̂
(t) = ˙̂

X(t). Here T0 is the time

until X̂ is in pulse form and T denotes the time, when the
pulse has reached the boundary. The latter condition can be
interpreted geometrically as follows: once it is formed, the
traveling pulse solution is locally exponentially attracting in
the subspace ⊥t := {h ∈ H : 〈h, d

X̂
(t)〉H = 0} ⊂ H that is

orthogonal to the direction of propagation.

2.4 Numerical method

SPDE (3) is a reaction diffusion equation coupled to a set
of equations without spatial diffusion. Thus, the main issue
from a numerical perspective is the simulation of equations
of the form

du(t) = [λ�u(t) + f (t, u(t))] dt + σ dW(t)

with Neumann boundary conditions as in Eq. (2). The
numerical method chosen for the integration of such a SPDE
is a finite difference approximation in both space and time,
see Sauer and Stannat (2015, 2014) for details. For the space
variable x we use an equidistant grid (xi) of size�x = L/N

and replace the second derivative by its two-sided difference
quotient. Boundary conditions are approximated up to sec-
ond order, using the artificial points x−1 and xN+1. The time
variable t is discretized to (tj ) using �t = 1/M and a semi-

implicit Euler scheme. Approximating the variable u in the
point (xi, tj ) yields the following scheme.

u0,j+1 = u0,j + λ�t

�x2

(
2u1,j+1 − 2u0,j+1

)

+�tf
(
u0,j

) + 2λ�t
�x

Jj+1 + σ

√
�t
2�x

N0,j ,

ui,j+1 = ui,j + λ�t

�x2

(
ui+1,j+1 − 2ui,j+1 + ui−1,j+1

)

+�tf
(
ui,j

) + σ

√
�t
�x

Ni,j ,

uN,j+1 = uN,j + λ�t

�x2

(
2uN−1,j+1 − 2uN,j+1

)

+�tf
(
uN,j

) + σ

√
�t
2�x

NN,j

for 1 ≤ i ≤ N − 1, where Jj is the discrete applied current
and (Ni,j )0≤i≤N,j≥1 is a sequence of iidN (0, 1)-distributed
random variables. For details on convergence of this scheme
and error rates we refer to Sauer and Stannat (2015).

3 Reliability of signal transmission

Let us first specify numerical parameters. We use N = 500
gridpoints, i.e. �x = 0.02, and �t = 0.01 to simulate the
equations. Using the input of height J = 0.001 μA and
length T ∗ = 0.5, in both models (HH) and (H̃H) a pulse is
formed at the left boundary, traveling to the right, see Fig. 1.

The problem at hand is how the presence of noise affects
the generation and reliability of transmission of action
potentials in the axon, similar to the studies by Faisal and
Laughlin (2007) for the Hodgkin-Huxley equations and
Tuckwell (2008) for the FitzHugh-Nagumo equations. In
particular, this section concerns two distinct phenomena
observed in these two studies. Faisal & Laughlin found
that in the (HH) model action potential propagation is very
secure, but in certain cases there spontaneously emerge
action potentials somewhere along the axon due to the effect
of noise (spontaneous activity). This is illustrated in Fig. 2,
where an exemplary trajectory of such an event can be
found.

Fig. 1 The time evolution of u using (H̃H) at t1 = 10 (solid), t2 = 20
(dashed) and t3 = 30 (dotted) for the deterministic pulse (σ = 0) and
one perturbed by noise (σ = 0.5)
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Fig. 2 A realization of the event spontaneous activity is given by the
solid, light gray trajectory. The three plots are the membrane potential
u using (HH) at times t1 = 13.5, t2 = 14.5, t3 = 16.5 from top to
bottom. For comparison we include a trajectory, where there are only
fluctuations around the resting potential (dashed, dark gray). For all of
them, σ = 0.372

On the other hand, Tuckwell observed that a primary
effect of noise on the action potential can be a breakdown of
the pulse without any secondary phenomena such as sponta-
neous activity (propagation failure). An illustration is given
in Fig. 3 comparing a failure to a stable pulse. The equations
Tuckwell used to model the neuron are, of course, different
to the work by Faisal & Laughlin, however this discrepancy
is not due to the choice of the neuron model but rather due
to the choice of the particular parameter values describing
the model. These are directly linked to the stability of the
traveling pulse and resting state. Indeed, slightly modify-
ing sodium (in)activation in model (H̃H), we can observe

Fig. 3 A realization of the event propagation failure is given by the
solid, light gray trajectory. The three plots are the membrane potential
u using (H̃H) at times t1 = 14.5, t2 = 16, t3 = 18 from top to bottom.
For comparison we include a trajectory, where no propagation failure
occurs (dashed, dark gray). For all of them, σ = 0.504

occurences of propagation failure but no spontaneous activ-
ity. In this work, (HH) is always used to study spontaneous
activity and (H̃H) for the propagation failures, since these
are the prominent phenomena in the respective dynamical
system.

We aim to propose a simple statistical estimator that
allows for detection of both spontaneous activity and prop-
agation failures. A first educated guess might suggest that
checking for certain threshold crossings of the maximum
height of the membrane potential, i.e. supx∈(0,L) u(x) > θ ,
is a good choice. Note that such a criterion has been used in
Faisal and Laughlin (2007) to detect arrival times of action
potentials. However, we suggest a different method using
the following linear functional of the (shifted) membrane
potential,

Φ(u) :=
∫ L

0
u(x) − u∗ dx.

This describes the area below the pulse of the membrane
potential shifted by the resting potential u∗. Note that we
can always change variables so that in the following we
assume w. l. o. g. u∗ = 0. We choose the estimator Φ over
any other pointwise criterion as e.g. the supremum for the
following reasons. First, Φ is a linear functional of only
one observable. Second, the action potential is not a point
charge that propagates along the axon but it is rather spread
out along some part of it that may reach up to a few cm in
length. Thus, a global criterion as imposed by Φ is more
reasonable than a pointwise one. Moreover local fluctua-
tions due to the noise should have a less pronounced effect.
Third, Φ is not sensitive to fluctuations in the phase of the
traveling pulse, which will be explained in the discussion
section.

Consider the deterministic solution (i.e. σ = 0) û that is a
traveling pulse and denote Φ̂ := Φ(û). As long as the pulse
is formed, this quantity should stay more or less constant.
In the following, with abuse of notation we use Φ(u) :=
Φ(u)/Φ̂. Concerning the example paths in Figs. 2 and 3 we
can look at the corresponding time evolution of the area Φ,
see Fig. 4.

3.1 Spontaneous activity

Since the estimator Φ reliably discriminates between no,
one or more pulses, it can be used to observe the probability
of emerging secondary pulses. In this scenario, starting the
model (HH) at the resting potential without any input signal
through the Neumann boundary condition, we observe the
solution for the time T the deterministic pulse û would need
to reach the right boundary. For a given critical value θ we
define the event supt∈[0,T ] Φ (uσ (t)) ≥ θ as spontaneous
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Fig. 4 The evolution of the area Φ. (Top) For the same realizations as
in Fig. 2 using (HH). Spontaneous activity (light gray) and fluctuations
around the resting potential (dark gray). (Bottom) For the same real-
izations as in Fig. 3 using (H̃H). Pulse with propagation failure (light
gray), pulse without failure (dark gray)

activity for the noise amplitude σ. Similar, the probability of
spontaneous activity is

sσ := P

[

sup
t∈[0,T ]

Φ
(
uσ (t)

) ≥ θ

]

.

In this definition, the threshold θ still has to be specified.
Experience with different parameter sets and other neuron
models have shown that a suitable threshold depends heav-
ily on these. Suitable is used here in the sense that the
estimator indeed detects an emerging action potential when
there is one.

In the following we use T = 60 and M = 10 000 real-
izations of (HH) to estimate sσ . Figure 5 shows that the
curve σ �→ sσ shifts to the right as θ is increased and stays
unchanged for θ ≥ 0.52, which is in this case the suitable
threshold to detect spontaneous activity.

3.2 Propagation failure

Obviously, we can use Φ the other way round to detect a
propagation failure using the model (H̃H). Thus, we are in
principle able to easily reproduce and generalize the obser-
vations made in Tuckwell (2008) in terms of variation of
parameters, models and the number of Monte-Carlo realiza-
tions. Let T0 > 0 be a given, fixed initialization time until
the pulse is formed. Also, recall that T denotes the time
when the pulse has reached the boundary. Given a threshold
θ we define the event supt∈[T0,T ] Φ (uσ (t)) − Φ̂ > θ as a

Fig. 5 Plot of sσ vs. σ for different threshold values using the model
(HH)

Fig. 6 Plot of pσ vs. σ for different values of θ using the model (H̃H)

propagation failure for the noise amplitude σ . Similar, the
probability of propagation failure is

pσ := P

[

sup
t∈[T0,T ]

Φ
(
uσ (t)

) − Φ̂ > θ

]

.

Remark 1 Numerically the stopping time T is implemented
as follows. The axon is extended using a noiseless cable at
the right boundary that allows to keep track of the pulse even
if it already has left the original part of the axon. Apply-
ing the estimator Φ on both the noisy and noiseless part
makes it possible to determine whether and when a pulse
has successfully reached the axon terminal. With this, we
can compute a reference value pref

σ to evaluate the quality of
the estimator Φ.

With T0 = 10 Fig. 6 shows the probability of propagation
failure pσ versus σ for different threshold values compared
to pref

σ . As θ decreases, the curves converge to the reference
curve. In particular, θ = 0 seems like a suitable threshold in
this scenario.

4 Model reduction

Obtaining an analytical expression for pσ and sσ is out of
reach, considering these are the exit time probabilities of a
nonlinear infinite dimensional problem. However, one can
use the linear stability assumptions of both pulse and rest-
ing state made in Section 2.3 to obtain a simplified model.
In this part we show that a model reduction is indeed pos-
sible and propose a simple, one-dimensional equation that
mimics the behavior of the original problem and is able
to capture the desired quantities, such as the probabilities
of propagation failure and spontaneous activity. This has
the following implications: First, the computational costs
are reduced and second, we obtain a simplified analytical
expression in terms of classical, known quantities.

In view of assumption (6) our arguments for the use of
Φ can be strengthened by a simple observation. Let 1u =
(1, 0, . . . )T be the constant function equal to 1 in the u-
component, then

〈1u, dX̂
(t)〉H = d/ dt〈1u, X̂(t)〉H = 0
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for t ∈ [T0, T ] since the integral is invariant to translation
of the pulse. Thus, 1u ∈ ⊥t for all t ∈ [T0, T ].

The implications of this are the following. Consider the
solution Z(t) to the linearization of Eq. (4) neglecting
all higher order terms. In particular, Z(t) is an Ornstein-
Uhlenbeck process on H. Writing T (t, s) = exp[∫ t

s
A +

∇F(X̂(r)) dr] for the exponential of the linear operator, the
solution can be written using Duhamel’s principle as

Z(t) = T (t, 0)Z(0) + σ

∫ t

0
T (t, s) dW(s).

Z(t) is a Gaussian process, uniquely characterized by its
mean and variance

E [Z(t)] = T (t, 0)Z(0),

Var [Z(t)] = σ 2
∫ t

0
T (t, s)T (t, s)∗ ds,

where ∗ denotes the adjoint operator. Now, recall Φ(u) =∫ L

0 u dx, hence Φ(u(t) − û(t)) = 〈u(t) − û(t),1〉H ≈
〈Z(t),1u〉H. In particular, this is a linear functional of Z(t).
Since Z is Gaussian, so is 〈Z(t),1u〉H with mean and
variance

E [〈Z(t),1u〉H] = 〈T (t, 0)Z(0),1u〉H,

Var [〈Z(t),1u〉H] = σ 2
∫ t

0
〈T (t, s)T (t, s)∗1u,1u〉H ds.

Now, recall Eq. (6), i.e. the linear stability assumption
for the pulse state. Note that 1u ∈ ⊥t , i.e. orthogo-
nal to the direction of pulse propagation, and therefore
Ĉ〈1u, dX̂

(t)〉2H = 0. Hence, the linear operator T (t, s)

satisfies the following inequality:

‖T (t, s)1u‖H ≤ e−κ̂(t−s)‖1u‖H.

In particular it follows that

E [〈Z(t),1u〉H] ≤ e−κ̂ t‖Z(0)‖H‖1u‖H
≤ √

Le−κ̂ t‖Z(0)‖H.

Of course, this implies E [〈Z(t),1u〉H] → 0, which is
one of the main advantages of choosing the estimator Φ. In
contrast to this, the squaredL2-norm ‖u(t) − û(t)‖2H or also
supx∈(0,L) ‖u(t, x) − û(t, x)‖ might also serve as a measure
of how close u is to the pulse solution. However, both will
not converge to 0, since due to the noise u will never be
adapted to the right phase of û. In our approach, we integrate
the difference u− û with respect to a function orthogonal to
the direction of propagation, hence our estimator does not
perceive any phase shift and is locally exponentially stable
around 0. Concerning the variance, we compute

Var [〈Z(t),1u〉H] = σ 2
∫ t

0
‖T (t, s)1u‖2H ds

≤ σ 2
∫ t

0
e−2κ̂s ds‖1u‖2H ≤ σ 2L

2κ̂
.

With the considerations above, the following Ansatz for
a scalar valued stochastic differential equation for Φ is
reasonable.

dΦ
(
u(t) − û(t)

) = −αΦ
(
u(t) − û(t)

)
dt + σ̃ dβ(t),

where β(t) := √
L

−1〈W(t),1〉H defines a real-valued
Brownian motion and σ̃ := √

Lσ . Using linearity of Φ,
Φ̂ := Φ(û(t)) and Φ(t) := Φ(u(t)) it follows that

dΦ(t) = α
(
Φ̂ − Φ(t)

)
dt + σ̃ dβ(t), Φ(0) = Φ̂ (7)

is the approximating dynamics, a simple, one-dimensional
Ornstein-Uhlenbeck process around the mean Φ̂. Also, pσ

can be approximated by the exit time probability

p̃σ := P

[

sup
t∈[T0,T1]

Φσ (t) − Φ̂ > θ

]

,

T1 = E [T ], that is a first passage time of the Ornstein-
Uhlenbeck process. These are intensively studied in relation
to stochastic LIF neurons, see Alili et al. (2005), Sacerdote
and Giraudo (2013), and are in addition easily accessible
numerically.

In this Ansatz, the whole complexity of the SPDE
dynamics is reduced to the parameter α and the solution to
Eq. (7) can be written down explicitly as

Φ(t) = Φ̂ +
(
Φ(0) − Φ̂

)
e−αt + σ̃

∫ t

0
e−α(t−s) dβ(s).

Assuming the validity of this linear approximation, which
will be true for small σ , we can estimate α using mean and
variance of Φ(t). In particular,

E [Φ(t)] = Φ̂ +
(
Φ(0) − Φ̂

)
e−αt ,

Var [Φ(t)] = E

[(

σ̃

∫ t

0
e−α(t−s) dβ(s)

)2
]

= σ̃ 2
∫ t

0
e−2αs ds = Lσ 2

2α

(
1 − e−2αt

)
.

Hence, Var [Φ(t)] → Lσ 2/2α as t → ∞ can be used to
estimate α for large t , in our simulations t = 45, thus the
difference to the limit is negligible. We apply the standard
variance estimator

VarM := 1
M−1

M∑

k=1

(
Φk(t) − ΦM

)2
, ΦM := 1

M

M∑

k=1

Φk(t)

for σ = 0.024, the smallest σ used in the simulations
before. We arrive at

αM := Lσ 2

20VarσM
≈ 0.404, (8)

with again M = 10 000 realizations.
Using the linearization around X∗ and the same

Ansatz, we propose a similar Ornstein-Uhlenbeck process,
whose hitting probabilities approximate sσ . With Φ(t) :=
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Fig. 7 Top plot: s̃σ vs. σ for two threshold values θ in comparison to
the corresponding values for sσ using the model (HH). Bottom plot: p̃σ

vs. σ for two threshold values θ in comparison to the corresponding
values for pσ using (H̃H)

Φ(u(t)) = 〈u(t),1〉H and, of course, Φ(u∗) = 0 this reads
as

dΦ(t) = −βΦ(t) dt + σ dβ(t), Φ(0) = 0. (9)

Also, E [Φ(t)] = 0 and Var [Φ(t)] = Lσ 2/2β(1 − e−2βt )

and we estimate the rate β using σ = 0.012 via

βM := Lσ 2

20VarσM
≈ 0.334 (10)

with M = 10 000 realizations. Figure 7 shows the probabil-
ities p̃σ and

s̃σ := P

[

sup
t∈[T0,T1]

Φσ (t) > θ

]

as a function of σ for different thresholds θ compared to
the probabilities obtained using the SPDE. Note that the
approximation becomes worse as θ and σ increase, which
is expected since then the solution approaches the other
equilibrium state and the linearization is not valid anymore.

5 Discussion

In this article, we have introduced a method to compute
probabilities for spontaneous activity and propagation fail-
ure in a consistent way with underlying spatially extended,
conductance-based neuronal models, based on certain statis-
tical properties of the membrane potential. Since the action
potential in the neuron’s axon is not a point charge, but
rather spread out in space, we advertise the use of a non-
local criterion such as the one using Φ. It may be interesting
to find out how the axon’s length and diameter influence the

quality of detection, since these are the relevant parameters
concerning the width of an action potential.

A further reduction in computational costs and a sim-
plified analytical description can be achieved performing a
model reduction with respect to the chosen estimator Φ in a
consistent way with the underlying spatially extended neu-
ronal model. This is based on its linearization at the resting
potential (resp. the traveling action potential) and allows
to approximate the probabilities for spontaneous activity
and propagation failure in terms of (classical) hitting time
probabilities of one-dimensional linear stochastic differen-
tial equations. Since the linearization is valid only locally,
the approximations p̃σ and s̃σ become worse for growing
θ and σ as shown in Fig. 7. For reasonable small θ and
σ however, the hitting probabilities of the one-dimensional
stochastic differential equations are a solid approximation to
the full nonlinear, infinite dimensional SPDE. On the other
hand, Fig. 7 also shows that the model reduction can be used
to find upper bounds for sσ resp. pσ over a considerably
larger range of σ .

In this study, we used the modified model (H̃H) to illus-
trate propagation failures. Although Faisal and Laughlin
(2007) found action potential propagation to be very secure
with less than 1 % failures, we have shown that little change
in parameters produce a dynamical system with a totally dif-
ferent behavior. More precisely, rising slightly the sodium
inactivation rate as in the modified Hodgkin-Huxley sys-
tem (H̃H ) lowers excitability of the neuron and increases
the probability of propagation failure. It may even become
the predominant feature over spontaneous activation, similar
to the case of the FitzHugh-Nagumo system, see Tuck-
well (2008). It would be a interesting to see whether this
computational fact could be confirmed in experiments.

As generalizations, we may incorporate more general
noise, e.g. as suggested in Goldwyn and Shea-Brown (2011)
for the Hodgkin-Huxley model, and study how this affects
the signal transmission. Note, that in the development of
this study we have used e.g. conductance noise as presented
in Linaro et al. (2010). This does not qualitatively change
the behavior concerning pσ and sσ , but should be analyzed
in comparison to the results in Faisal and Laughlin (2007)
for the Hodgkin-Huxley equations with ion channels mod-
eled via Markov chains. Future work will also be concerned
with the effect of noise on the generation of repetitive spik-
ing, see Tuckwell and Jost (2010), and the estimation of the
speed of propagation.
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