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Abstract Determining the biological details and mecha-
nisms that are essential for the generation of population
rhythms in the mammalian brain is a challenging problem.
This problem cannot be addressed either by experimental or
computational studies in isolation. Here we show that com-
putational models that are carefully linked with experiment
provide insight into this problem. Using the experimental
context of a whole hippocampus preparation in vitro that
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spontaneously expresses theta frequency (3–12 Hz) popula-
tion bursts in the CA1 region, we create excitatory network
models to examine whether cellular adaptation bursting
mechanisms could critically contribute to the generation of
this rhythm. We use biologically-based cellular models of
CA1 pyramidal cells and network sizes and connectivities
that correspond to the experimental context. By expanding
our mean field analyses to networks with heterogeneity
and non all-to-all coupling, we allow closer correspondence
with experiment, and use these analyses to greatly extend
the range of parameter values that are explored. We find that
our model excitatory networks can produce theta frequency
population bursts in a robust fashion.Thus, even though our
networks are limited by not including inhibition at present,
our results indicate that cellular adaptation in pyramidal
cells could be an important aspect for the occurrence of
theta frequency population bursting in the hippocampus.
These models serve as a starting framework for the inclusion
of inhibitory cells and for the consideration of additional
experimental features not captured in our present network
models.

Keywords Mean-field theory · Network model · Theta
rhythm · Mathematical model · Computer simulation

1 Introduction

The emergent behaviour in networks of neurons depends on
the characteristics of the individual neurons, their connectiv-
ity profile and properties, as well as the size of the network.
Theoretical and modeling studies have shown that popula-
tion bursts can emerge from networks of neurons that are
coupled with excitatory synapses, when the isolated neurons

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10827-015-0577-1-x&domain=pdf
http://dx.doi.org/10.1007/s10827-015-0577-1
mailto:frances.skinner@gmail.com
mailto:sacampbell@uwaterloo.ca


290 J Comput Neurosci (2015) 39:289–309

themselves do not burst, but do express spike frequency
adaptation (Gutkin and Zeldenrust 2014). In this situation
it has been shown that network bursting arises if there is
an appropriate balance between excitatory drive and the
amount of spike frequency adaptation (Dur-E-Ahmad et al.
2012; Latham et al. 2000; van Vreeswijk and Hansel 2001).
Emergent network bursting can also occur if other slow pro-
cesses are present either internal to the cell (Butera et al.
1999b) or in the synapses (Tabak et al. 2000; Vladimirski
et al. 2008).

The hippocampus is a major communication hub for
memory processing (Battaglia et al. 2011) via its expres-
sion of population activities that include sharp wave and
theta frequency bursting (Buzsaki 2011). Bursting activ-
ity is thought to be important for synaptic plasticity and
brain coding mechanisms (Lisman 1997). However, it is
not clearly known how population bursts in hippocampus
emerge in order to play their essential communication roles
with other brain regions. That is, what mechanisms underlie
this emergence? Do cellular-based adaptation mechanisms
contribute to this emergence in the hippocampus?

There are many biological details that might be important
in the generation of population bursts in the hippocampus.
However, what the essential balances and mechanisms may
be are challenging to determine and cannot be extracted
from experimental studies on their own. To determine
whether cellular adaptation mechanisms are important in
the production of population bursts in the hippocampus, we
link experimental, modeling and theoretical studies. It is
clear that one cannot ignore cellular details in understand-
ing network dynamics (Skinner 2012), and at the same time,
there are many synaptic details that may play important
roles (e.g., see Tóth (2010)). As such, the interpretation of
model parameters and links to experiments require careful
consideration. In this work, we take a balanced approach
in which network size, cellular and connectivity properties
are designed to have biological linkages in a context of hip-
pocampal theta (3–12 Hz) population bursts. Even though
these linkages are (by necessity) limited, we clearly express
the rationale and limitations so that they can serve as a
foundation for future studies. In the present work, we limit
our considerations to networks in the absence of inhibition.
In this way, we can determine whether cellular adapta-
tion mechanisms in excitatory networks alone are able to
contribute to theta frequency population bursting.

Our work is based on a whole hippocampus prepara-
tion that spontaneously expresses population, theta rhythms
(Goutagny et al. 2009), and we use previously devel-
oped biologically-based cellular models of excitatory cells
(Ferguson et al. 2015). Several thousands of excitatory cells
are involved and thus fully exploring the model parameter
space would be challenging, even with our simplified
cellular representations. We therefore develop theoretical

mean-field analyses to efficiently explore the parameter
space. We focus on area CA1 of the hippocampus where
these theta rhythms occur and here, the excitatory cells
are minimally coupled. Due to the close correspondence
between the mean-field analyses and the full simulations,
it is possible to explore a very wide range of parameter
balances using the mean-field analyses, and the parameter
regimes which then need to be explored with full simula-
tions are much reduced. In this way, we are able to signifi-
cantly constrain the parameter regimes for which population
bursts could occur in large, excitatory networks of the hip-
pocampus. We find that robust, theta frequency population
bursts can occur in our biologically-based cellular exci-
tatory networks using physiologically reasonable synaptic
conductance strengths, time constants and connectivities.
This suggests that cellular adaptation mechanisms in excita-
tory networks could critically contribute to the generation of
theta bursts in the hippocampus. Our present models do not
include inhibition and so it is not surprising that they are not
able to capture all features of the experimental data such as
sparse firing. At this stage, we view our excitatory, pyrami-
dal cell networks as setting an experimentally-constrained
starting framework on which we can build. Our work can be
considered as a way to examine and determine mechanisms
that are in play in biological systems. That is, an inter-
twining of theoretical, modeling and experimental aspects
carried out at initial stages.

2 Methods

2.1 Experimental context and network size

An intact, whole hippocampus in vitro rodent preparation
that expresses theta rhythms (3–12 Hz) has been developed
(Goutagny et al. 2009). By blocking synaptic transmis-
sion in different regions, the minimum circuitry required
to independently generate theta rhythms in this prepara-
tion is estimated to be about a 1 mm3 volume of tissue in
the CA1 region of the hippocampus. For this volume of
tissue, there are approximately 30,000 excitatory, pyrami-
dal cells (Bezaire and Soltesz 2013), as well as thousands
of inhibitory cells of many different types. CA1 pyrami-
dal cells are connected to each other, but the connectivity is
minimal (Deuchars and Thomson 1996), estimated to be on
the order of 1 % or less (Bezaire and Soltesz 2013).

2.2 Cellular and network models

For the mathematical model of an excitatory, pyramidal
cell of CA1 hippocampus, we use our previously devel-
oped model which is based on experimental data from
the in vitro whole hippocampus preparation. The details
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underlying the rationale and development of our pyramidal
cell models are given in Ferguson et al. (2015). Briefly, the
experimental data showed clear evidence of spike frequency
adaptation in recordings from CA1 pyramidal cells when
synaptic activity was blocked, and this adaptation could
be strong or weak. Intrinsically bursting neurons were not
observed in the limited experimental datasets. It is interest-
ing to note that different amounts of adaptation have also
been found in CA3 pyramidal cells (Hemond et al. 2008).
We captured the spike frequency adaptation in our models
by doing ad-hoc fits to the experimental frequency-current
(f-I) curves which show both initial and steady state fre-
quency. As such, we consider our cellular models to be
biologically-based, but not biophysically-based, as they do
not include voltage-gated channels.

The cellular-based network model structure is given
below. The cellular model is based on that developed
by Izhikevich (2003). It captures the subthreshold behaviour
and the upstroke of the action potential, and uses a reset
mechanism to represent the spike’s fast downstroke. An
important advantage of this model is that it is relatively sim-
ple, but still allows us to choose parameters that have a
well-defined (albeit limited) relationship to the electrophys-
iological recordings. It has a fast variable representing the
membrane potential, V (mV ), and a variable for the slow
recovery current, u (pA). We used a slight modification to
be able to reproduce the spike width. The model is given by:

CmV̇ = k(V − vr)(V − vt )−u+Iapplied + Ishif t −Isyn

u̇ = a[b(V − vr) − u]

if V ≥ vpeak, then V ← c, u ← u + d

where k = klow if V ≤ vt , k = khigh if V > vt

(1)

The parameters are as follows:

Cm (pF) is the membrane capacitance.
vr (mV ) is the resting membrane potential.
vt (mV ) is the instantaneous threshold potential.
vpeak (mV ) is the spike cut-off value.
Iapplied (pA) is the applied current, and represents all

synaptic input to the cells that is not directly modelled
through Isyn.

Ishif t (pA) is a current that shifts the f-I curve laterally
to allow the model to easily capture the rheobase cur-
rent (for the strongly/weakly adapting models, rheobase
current is 0/5 pA respectively).

Isyn (pA) represents the synaptic input from the presy-
naptic cell population (further details below).

a (ms−1) is the recovery time constant of the adaptation
current.

b (nS) describes the sensitivity of the adaptation current
to subthreshold fluctuations. Greater values couple V

and u more strongly resulting in possible subthreshold
oscillations and low-threshold spiking dynamics.

c (mV ) is the voltage reset value.
d (pA) is the total amount of outward minus inward

currents activated during the spike and affecting the
after-spike behaviour.

k (nS/mV ) represents a scaling factor.
The parameters vr , vt , vpeak , and c were directly

based on the intrinsic spike characteristics derived from the
recordings. khigh was determined such that the width of
the action potential from threshold in the model matched
the average spike width at threshold in the biological cells.
The adaptation parameters a and d were determined such
that the model produced the amount of adaptation observed
experimentally. The parameters b and klow were varied sys-
tematically to determine values in which the slope of the
model f-I curve was within the range of slopes determined
from the experimental f-I curves. Further details can be
found in Ferguson et al. (2015). Parameter values for the
strongly and weakly adapting pyramidal cell models are
given in Table 1. For these parameter values the model
can only exhibit two types of behaviour, quiescence and
tonic spiking, depending on whether Iapplied is above or
below rheobase. Thus, any bursting observed is an emergent
network phenomenon.

Synaptic input is modelled through a chemical synapse
represented by:

Isyn = gs(V − Erev) (2)

where g (nS) is the maximal synaptic conductance of the
synapse from a presynaptic neuron to the postsynaptic neu-
ron, Erev is the reversal potential of the synapse, and V is
the membrane potential of the postsynaptic cell. The gating
variable, s, represents the fraction of open synaptic chan-
nels, and is given by first order kinetics (Destexhe et al.
(1994), and see p.159 in Ermentrout and Terman (2010)):

ṡ = α[T ](1 − s) − βs (3)

Table 1 Pyramidal cell model parameters

Parameter PYR

Weakly adapting Strongly adapting

vr (mV ) −61.8 −61.8

vt (mV ) −57.0 −57.0

vpeak (mV ) 22.6 22.6

a (ms−1) 0.00008 0.0012

b (nS) 3 3

c (mV ) −65.8 −65.8

d (pA) 5 10

klow (nS/mV ) 0.5 0.1

khigh (nS/mV ) 3.3 3.3

Cm (pF) 300 115

Ishif t (pA) −45 0
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The parameters α (in mM−1ms−1) and β (in ms−1) in
Eq. (3) are related to the inverse of the rise and decay time
constants (τR, τD in ms). [T ] represents the concentration
of transmitter released by a presynaptic spike. Suppose that
the time of a spike is t = t0 and [T ] is given by a square
pulse of height 1 mM lasting for 1 ms (until t1). Then, we
can represent

s(t − t0) = s∞ + (s(t0) − s∞)e
− t−t0

τs , t0 < t < t1

where

s∞ = α

α + β
and τs = 1

α + β
(4)

After the pulse of transmitter has gone, s(t) decays as

s(t) = s(t1)e
−β(t−t1) (5)

While we explicitly model the synaptic input through
Eq. (2), we represent the synaptic input that is not explic-
itly modelled through an applied current (Iapplied ). These
applied currents (in pA) are constant, tonic input to individ-
ual cells (usually heterogeneous across cells, such that the
input is normally distributed with a mean of Iapplied and a
standard deviation of σI ).

2.3 Paper focus and experimental constraints

While there are, of course, both excitatory and inhibitory
cells in hippocampal neuronal networks, we only consider
excitatory networks. This allows us to focus on the extent
to which it is possible to obtain population bursting in
such models when there are experimental constraints on
network size, connectivity and connection strengths. Fur-
thermore, in the experiments on which our constraints are
based, the theta rhythm is much more dependent on excita-
tory AMPA/kainate, compared with NMDA glutamatergic
synapses, since theta power is essentially diminished when
AMPA/kainate receptor blockers are applied but unaffected
when NMDA receptor blockers are used (Goutagny et al.
2009). Thus, our focus is on excitatory, pyramidal cell
networks connected with AMPA synapses, and for our sim-
ulations, we use the following terminology for the synaptic
currents:

Isyn = gpyrspyr (V − Epyr) (6)

where gpyr (nS) is the maximal synaptic conductance
of the recurrent excitatory synapses, the gating variable,
spyr , represents the fraction of open synaptic channels, and
Epyr (mV ) is the excitatory, pyramidal reversal potential.

Experimentally, it was determined that excitatory postsy-
naptic currents reversed around −15 mV (junction potential
corrected) (Huh et al. 2015). The rise and decay time con-
stants are taken to be τR = 0.5 ms and τD = 3 ms

respectively, based on Spruston et al. (1995). Given that
a single, excitatory AMPA channel has a conductance of

8-10 pS and that there are 300-500 channels per synaptic
connection (Spruston et al. 1995; Tóth 2010), the maximum,
possible range for biological synaptic conductance strengths
(gpyr ) is thus 0.008–5 nS.

2.4 Model simulations and analyses

The network simulations were done using the Brian sim-
ulator (Goodman and Brette 2009), and custom python
code was written for the analyses. The computing platform
used is the GPC supercomputer at the SciNet High Perfor-
mance Computing Consortium (Loken et al. 2010) (http://
www.scinethpc.ca/). The initial conditions of our membrane
potentials (V ) are chosen to be uniform random values from
−55 to −65 mV , and the other variables (u’s and s’s were
set at 0). We use the forward Euler method for integration
with a time step of 0.02 ms.

Simulations with networks of different sizes (1,000 to
30,000 cells) are done. The networks are heterogeneous in
that each cell receives a different input, with mean Iapplied

and variance σI , as chosen from a normal distribution. Sev-
eral of the network simulations are further analyzed by
determining a number of features about the network. We
first determine our population burst by plotting the (nor-
malized) spike time distribution, using a bin width of 10
ms. We use a defined threshold of 0.15 and the burst dura-
tion time would then be considered the time between the
upstroke and the downstroke considering this threshold of
the distribution. We use a fixed threshold to ensure a compa-
rable criteria in our burst definition. In this way, we obtain
(population) burst durations (i.e., burst widths) and inter-
burst durations, and burst periods (sum of burst duration and
interburst duration). From this, we further compute spiking
frequencies, number of spiking cells and number of spikes
per cell during the bursts (intraburst) and between the bursts
(interburst).

2.5 Theoretical mean-field analyses

We develop a mean-field model which consists of a three
dimensional system of non-smooth ordinary differential
equations. This model is used to predict regions in param-
eter space where bursting with specific frequencies occurs.
Our model is based on a population density approach and a
reduction due to time scale separation.

We have used this approach in various contexts: we have
derived mean-field models for both homogeneous (Nicola
and Campbell 2013a) and heterogeneous networks (Nicola
and Campbell 2013b) and in the presence of noise (Nicola
et al. 2014). In these papers, the neural models were of
the same type as the one we consider here: two dimen-
sional integrate-and-fire models (Izhikevich 2003; Brette
and Gerstner 2005; Touboul 2008). Further, the synaptic

http://www.scinethpc.ca/
http://www.scinethpc.ca/
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connections were modelled using pulse coupling, and the
coupling was all-to-all.

In this paper, we extend our derivation to deal with sev-
eral complications which appear in the model described in
the previous section: a slightly more complex neural model
due to the switching of the parameter k in Eq. (1), the
kinetic-based synapse model given in Eq. (3), and minimal
connectivity as opposed to all-to-all coupling.

We briefly review the derivation of mean-field model
in the case of all-to-all coupling, the linear double expo-
nential synapse model (Ermentrout and Terman 2010) and
heterogeneity in the applied current and maximal synaptic
conductance. Modifications to deal with the kinetic synapse
model and the minimal connectivity will be dealt with in the
Results section.

The network model in this case, with the cellular model
from the previous subsection is

V ′
i = 1

Cm

[F(Vi) − ui + Ii − gisi(Vi − Epyr)]
= G(Vi, ui, si; Ii, gi) (7)

u′
i = a[b(Vi − vr) − ui] (8)

s′
i = − si

τR

+ hi (9)

h′
i = − hi

τD

+ A

NτDτR

N∑

j=1

∑

k:tj,k<t

δ(t − tj,k) (10)

where there are jumps as defined in Eq. (1), N is the net-
work size, and A determines the magnitude of the synaptic
response. Further, gi is the maximal synaptic conductance
into neuron i. The double exponential synapse model, Eqs.
(9–10), is two dimensional to allow for different time con-
stants for the rise time (τR) and decay time (τD) of the
synaptic response. The variable si is the average synaptic
input to neuron i:

si(t) = 1

N

N∑

j=1

sij (t),

and hi is the corresponding auxiliary synaptic variable. The
equations for si and hi follow from those for the individ-
ual synapses, sij , hij , since the synapse model is linear.
Note that, to simplify the notation in the following, we have
dropped the subscript applied on the input current and pyr

on the synaptic conductance. We further note that the Ishif t

term has been absorbed into the Iapplied term for simplicity.
One aspect of the model developed in the previous

section that has not been dealt with in our prior work, is
the voltage dependent switching of the parameter k (see
Eq. (1)). This is easily taken care of by assuming that k is a
function of Vi , i.e.,

F(Vi) = k(Vi)(Vi − vr)(Vi − vt ).

This will not change any of our equations, but needs to
be taken into account when the expressions are evaluated
numerically.

In the population density approach, the behaviour of indi-
vidual neurons in a network is not tracked. Instead we study
the time evolution of a probability density function (pdf)
which represents the probability that any individual neuron
in the network is in a particular state, or, equivalently, the
proportion of neurons in the nework that have a particu-
lar state (Abbott and van Vreeswijk 1993; Apfaltrer et al.
2006; Hansel and Mato 2001; 2003; Knight 2000; Ly and
Tranchina 2007).

Let ρ(V, u, t; I, g) be the probability density function
for the network Eqs.(7–9). Since the number of neurons in
the network is fixed, the pdf must satisfy a continuity par-
tial differential equation (PDE). Supplementing this PDE
with differential equations describing the time evolution of
the network mean values of si and hi gives a full system of
equations for the network.

As shown in Nicola and Campbell (2013b), rewriting the
density using conditional probabilities and applying a first
order moment closure assumption leads to the following
model

∂ρV (V, t; I, g)

∂t
= −∂J (V, 〈u〉, 〈s〉, t; I, g)

∂V

〈u〉′ = a[b(〈V 〉 − vr) − 〈u〉]
+d

∫

I

∫

g

J (vpeak, 〈u〉, 〈s〉, t; I, g) dg dI

〈s〉′ = −〈s〉
τR

+ 〈h〉

〈h〉′ = −〈h〉
τD

+ A

τRτD

×
∫

I

∫

g

J (vpeak, 〈u〉, 〈s〉, t; I, g) dg dI

where ρV is the marginal density of V and J is a flux
defined by

J (V, 〈u〉, 〈s〉, t; I, g) = G(V, 〈u〉, 〈s〉; I, g)ρV (V, t; I, g).

Assuming that the time scales of the adapation and the
synapse are longer than that of the voltage ( 1

a
, τR, τD 	 1),

one can apply a quasi-steady state approximation to the PDE
to obtain an expression for the density ρV and hence the
flux, J . Using this in the equations for 〈u〉, 〈s〉, 〈h〉 gives the
mean-field model

〈u〉′ = a[b(〈V 〉 − vr) − 〈u〉] + d〈Ri(t)〉 (11)

〈s〉′ = −〈s〉
τR

+ 〈h〉 (12)

〈h〉′ = −〈h〉
τD

+ A

τRτD

〈Ri(t)〉 (13)
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where

〈Ri(t)〉 =
∫

I

∫

g

〈Ri(t)|I, g〉ρg(g)ρI (I ) dg dI (14)

〈Ri(t)|I, g〉 =

⎧
⎪⎨

⎪⎩

[∫ vpeak

vreset

Cm

k(V )(V −vr )(V −vt )−〈u〉−g〈s〉(V −Epyr )+I
dV

]−1
I > I ∗(〈u〉, 〈s〉, g)

0 I ≤ I ∗(〈u〉, 〈s〉, g)

(15)

and

I ∗(〈u〉, 〈s〉, g) = max
V

[−k(V )(V − vr)(V − vt ) + 〈u〉 +g〈s〉(V − Epyr)
]
. (16)

In later sections we will use the mean firing rate in the
more compact form

〈Ri(t)〉 =
∫

g

ρg(g)

∫ ∞

I∗(〈u〉,〈s〉,g)

ρI (I )

[∫ vpeak

vreset

Cm

k(V )(V − vr)(V − vt ) − 〈u〉 − g〈s〉(V − Epyr) + I
dV

]−1

dI dg

Our application of the mean-field models in this paper is
similar to our previous work (Nicola and Campbell 2013a,
b). As shown in that work, the transition from tonic firing
to bursting in these networks is associated with the emer-
gence of a limit cycle in the mean-field model. That is,
bursting solutions in the full network model correspond to
periodic solutions in the mean-field model. We thus predict
the frequency of bursting in the network by determining the
period of the limit cycle in the mean-field model. This is
done numerically in Matlab by computing the reciprocal of
the mean peak to peak time after transients are eliminated.
The peak to peak time is computed using the PeakFinder
algorithm (Yoder 2014) from the Matlab file exchange. Our
method can only determine the frequency if there are four or
more peaks (bursts) during the simulation, thus any simula-
tion with fewer than four peaks is classified as nonbursting.
As our standard simulation time was 3 sec, any simulations
with a burst frequency less than about 1.3 Hz is classified as
nonbursting.

Code for the mean-field analyses and network simula-
tions are available online via https://senselab.med.yale.edu/
ModelDB/enterCode.cshtml?model=184140 and https://sen
selab.med.yale.edu/ModelDB/showModel.cshtml?model=1
85021. Pyramidal cell models are available online via
http://modeldb.yale.edu/182515 or http://www.opensource
brain.org/projects/ca1-pyr-cell-ferguson-et-al-2014.

3 Results

From modeling and theoretical studies, it has been shown
that one can obtain population bursting in recurrently con-
nected, excitatory networks in which cellular adaptation is

present (Dur-E-Ahmad et al. 2012; Latham et al. 2000;
van Vreeswijk and Hansel 2001). The underlying mecha-
nism relies on a balance between the amount of cellular
adaptation and excitatory coupling. However, whether cellu-
lar adaptation features are sufficient to generate population
bursts in biological systems is unclear. Previously, we built
excitatory, pyramidal models that had spike adaptation char-
acteristics as observed experimentally in the CA3 region
of the hippocampus (Dur-E-Ahmad et al. 2012). However,
that work estimated adaptation features from the litera-
ture and used smaller networks with all-to-all coupling to
explore population bursting possibilities. Here, our pyrami-
dal models are based on the CA1 region of the hippocampus
and even though they also use a simple, one-compartment,
Izhikevich-type mathematical structure, they are developed
directly from the experimental data (Ferguson et al. 2015).
Furthermore, network size and connectivity are directly
considered in our models since we have an experimen-
tal, network context (see Methods) on which to base our
estimates.

The network size and connectivity characteristics are
important considerations as they will affect the amount of
excitatory interactions, which need to be balanced with
the amount of adaptation for the given underlying bursting
mechanism. The amount of connectivity between excita-
tory cells in CA1 and CA3 regions of the hippocampus is
quite different with CA3 networks having a higher degree
of connectivity (Hasselmo 2011). Excitatory cells in the
CA1 region of hippocampus are minimally connected -
less than 1 percent (Bezaire and Soltesz 2013) - and it
might seem unlikely that population bursting could arise
in networks with such minimal coupling. In addition to

https://senselab.med.yale.edu/ModelDB/enterCode.cshtml?model=184140
https://senselab.med.yale.edu/ModelDB/enterCode.cshtml?model=184140
https://senselab.med.yale.edu/ModelDB/showModel.cshtml?model=185021
https://senselab.med.yale.edu/ModelDB/showModel.cshtml?model=185021
https://senselab.med.yale.edu/ModelDB/showModel.cshtml?model=185021
http://modeldb.yale.edu/182515
http://www.opensourcebrain.org/projects/ca1-pyr-cell-ferguson-et-al-2014
http://www.opensourcebrain.org/projects/ca1-pyr-cell-ferguson-et-al-2014


J Comput Neurosci (2015) 39:289–309 295

the requirement of a very large network size to consider a
physiologically-relevant context (Goutagny et al. 2009),
it quickly becomes a huge, computational effort to fully
explore parameter ranges in which population bursts (of
theta frequency) might occur. To circumvent this, we build
on previous mean-field theory (MFT) analyses and show
that they can reasonably capture simulation results, thus
enabling an extensive parameter exploration via MFT to be
done, serving as guidance to the full simulations. We also
exploit a scaling aspect from the theory to reduce the net-
work size of our simulations and do detailed analyses of
network simulations of bursting and spiking characteristics.
In this way we are able to predict the required character-
istics for (theta frequency) network bursting to occur in
excitatory networks in the CA1 region of hippocampus,
identify limitations, and set a balanced framework on which
to expand with the addition of inhibitory networks. Our
work here can be viewed as an approach for exploration and
constraints (and mechanistic understandings) when exam-
ining large-scale networks with biologically-based cellular
representations.

3.1 MFT and predicting bursting regimes

The primary differences between the network under consid-
eration and previous networks for which mean-field systems
have been derived are the Destexhe synapse model and the
minimal connectivity. In the following we will show how
the mean-field systems shown in the Methods section can
be modified to take these differences into account.

First we consider the synapse model. Previously derived
mean-field systems assumed that the s variable was mod-
elled as a linear synapse. These synapses include the
single-exponential, double-exponential, and alpha-synapse
(Ermentrout and Terman 2010). See Methods section for the
mean-field model corresponding to a network with double-
exponential synapse model. Linear synapses are simpler to
average to obtain macroscopic mean-field equations, thus,
we will approximate the non-linear Destexhe synapse model
given by Eq. (3) with the linear double-exponential synapse
model used in Eq. (9). To do this, consider the effect of a
single spike at t = t0 on a single synapse:

ṡ = − s

τR

+ h (17)

ḣ = − s

τD

+ A

τDτR

δ(t − t0) (18)

We will approximate the Destexhe synapse by this model by
choosing values of the parameters τR, τD and A to satisfy
the following constraints:

1. The Destexhe synapse and the double exponential
synapse have the same synaptic rise and decay times.

2. The Destexhe synapse and the double exponential
synapse have the same area underneath a pulse

Both these synaptic models have analytical solutions. If a
spike occurs at time t = 0, then the pulses are given by:

EDestexhe(t) =
⎧
⎨

⎩
s∞

(
1 − exp

(
− t

τs

))
0 < t < t1

s∞
(
1 − exp

(
− t1

τs

))
exp(−β(t − t1))

(19)

EExponential (t) = A

τD − τR

(
exp

(
− t

τD

)
− exp

(
− t

τR

))
(20)

where

s∞ = α [T ]

α [T ] + β
and τs = 1

α [T ] + β
.

Now, it should be clear that the first constraint can be
satisfied, when τR � τD , if we set

τR = τs, τD = 1

β
. (21)

To force the second constraint, as the area underneath
EExponential(t) is A, then we can merely set A to be the area
underneath the Destexhe pulse, which is given by:

A =
∫ ∞

0
EDestexhe(t

′) dt ′

= s∞
[
t1 +

(
1

β
− τs

)(
1 − exp

(
− t1

τs

))]
. (22)

Given that we know how to choose A, τR and τD to
force the two constraints, we can see how the Destexhe and
double-exponential pulses compare for the parameter values
of our model: [T ] = 1 mM, t1 = 1 ms, τR = 0.5ms, τD = 3
ms. This is shown in Fig. 1a. The single pulses in Fig. 1a are
fairly accurate, however, to be useful, the synapses must per-
form similarly for more than a single spike. When 5, 50, and
100 Hz background spiking is provided to each synapse, the
steady state oscillation for the two synaptic types is similar.
See Fig. 1b. However, the similarity breaks down for spik-
ing faster than around 150-200 Hz (not shown). This does
not cause a problem for our present study as for the param-
eter set we are using, spike rates greater than 100 Hz do not
occur.

Now we consider how to address the minimal synap-
tic connectivity. Assuming the probability of two neurons
being connected is a Bernoulli random variable, the number
of incoming connections to any one neuron is a Binomial
distribution with N trials and probability parameter p. In
our model the probability of connection between two neu-
rons is small (p = 0.01), and the number of neurons is fairly
large (N ∼ 104). Given the values of these two parameters,
we are well justified in using the normal approximation for
Ni , the number of connections coming to neuron i:

Ni ∼ N (Np, Np(1 − p)) (23)
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Fig. 1 Numerical verification of the main approximations used to
derive the mean-field model. a Comparision of simulations of the
synaptic response to a single spike using the Destexhe model (red) and
the double exponential model (black). The parameters of the double
exponential synapse are set to reproduce both the rise and decay times
and the area under the curve generated by the Destexhe synapse. b
Same as (a) except the stimulus is a 100 Hz train of spikes. c A net-
work model of 10,000 neurons with minimal connectivity was set up
as follows. The nonzero elements of the connection matrix were set

randomly, with the probability of a connection between any two neu-
rons being 1 %. The number of connections to each neuron was then
computed and a probability density function for the number of connec-
tions was estimated by applying a kernel density estimator to the data.
This estimated pdf is shown in blue, while the normal approximation,
N (Np, Np(1 − p)), is shown in red. d The network described in (b)

was simulated for 2 sec. The value of gi(t) = ḡ
N∑

j=1
Cij sij , is compared

to the approximation ḡNi〈s〉 for five randomly chosen neurons

as both Np and N(1 − p) are large. This is shown for
example in Fig. 1c for a 10,000 neuron model with minimal
connectivity of 1 %.

As the mean-field systems previously derived assumed
all-to-all connectivity, we will need to relate our minimally
coupled network to an all-to-all coupled network. Let C be
the coupling matrix, i.e., Cij = 1 if there is a synapse from
neuron j to neuron i otherwise it is 0, and let ḡ be the max-
imal conductance on a single synapse. (So ḡ corresponds to
gpyr ). Then we make the following assumption:

ḡ

N∑

j=1

Cij sij ≈ ḡNi

1

N

N∑

j=1

sij = gisi ≈ gi〈s〉 (24)

where sij , si, gi are as described in the Methods. Here 〈s〉
is the mean s variable derived from all-to-all coupling, as
in the previous mean-field models. One may ask whether
or not this assumption is justified, as it effectively turns

minimal coupling into heterogeneity; gi = ḡNi is now a
heterogeneous quantity that is approximately distributed as:

gi ∼ N (ḡNp, ḡ2Np(1 − p)). (25)

Taking values of N and p such that the approximation (23)
is valid, we studied the assumption (24) numerically. We
found that it is fairly accurate for parameter values where
most of the neurons in the network are spiking/bursting.

This shown in Fig. 1d where we compare ḡ
N∑

j=1
Cij sij with

ḡNi〈s〉 for a 2 sec simulation of a 10,000 neuron network
with minimal connectivity of 1 %. The assumption is less
accurate when there are many neurons which do not spike,
i.e., where 〈I 〉 is near rheobase and/or σI ≥ 〈I 〉 (not shown).
These parameter regimes are not important for our study as
the network either does not burst or the burst frequency is
too low.
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We now show how this may be further simplified in the
appropriate large N limit. We consider p as fixed and such
that Np and N(1−p) are both large as N → ∞. We further
assume that the maximal synaptic conductance, ḡ, scales as
1
N
, so that in the limit N → ∞, ḡNp is fixed:

ḡ ∝ 1

N
, ḡNp ∼ g∗, N → ∞, (26)

which prevents saturation of the network. This in turn
implies that in the limit N → ∞ the normal distribution
(25) for gi tends to:

N (ḡNp, ḡ2Np(1 − p)) ∼ δ(gi − g∗), N → ∞

Using the fact that as N → ∞, the heterogeneity we intro-
duced in g becomes narrowly distributed like 1/

√
N , we

can assume that ρg(g) ∼ δ(g − g∗), its asymptotic limit
as N → ∞. In this case, the mean-field system (11)–(15)
becomes:

〈u〉′ = a[b(〈V 〉 − vr) − 〈u〉] + d〈Ri(t)〉 (27)

〈s〉′ = −〈s〉
τR

+ 〈h〉 (28)

〈h〉′ = −〈h〉
τD

+ A

τRτD

〈Ri(t)〉 (29)

where

〈Ri(t)〉 =
∫ ∞

I∗(〈u〉,〈s〉)
ρI (I )

[∫ vpeak

vreset

Cm

k(V )(V − vr)(V − vt ) − 〈u〉 − g∗〈s〉(V − Epyr) + I
dV

]−1

dI

with

I ∗(〈u〉, 〈s〉) = max
V

[−k(V )(V − vr)(V − vt ) + 〈u〉
+g∗〈s〉(V − Epyr)

]
.

Finally, we note that as b/(kvr) is small enough, we can
remove the term b〈V 〉 from the mean-field system with-
out drastically altering the behavior (Nicola and Campbell
2013b). However it can be computed with the mean-field
system if necessary.

We have run this mean-field system with various choices
of parameters, and compared it with the network mean adap-
tation 〈u〉 and network mean synaptic activity 〈s〉 computed
from simulation of the full network with the same param-
eters. As shown in Fig. 2, the behaviour of the mean-field
system is a good predictor of the behavior of the large net-
work, however, there is error in both the frequency and
amplitude of bursting in the mean-field system simulation
relative to the full network simulations. The inaccuracy
in the frequency is worse at low frequencies in the two
dimensional parameter map. Recall that our method of burst
frequency calculation is not accurate below 1.4 Hz for 3 sec
simulations. This inaccuracy can be seen for the simulation
associated with Point A. On the parameter map this point is
classified as non-bursting, while in the simulation it appears
to be bursting with frequency around 1 Hz. It is clear from
Fig. 2 that the lower (small 〈I 〉) boundary of the bursting
region is associated with low frequency bursting. Thus to
determine this boundary with high accuracy would require
longer simulations.

While there is noticeable error in both the frequency
and amplitude of the mean-field system simulation relative
to the full network simulations, this is not critical for the

purposes of parameter exploration. The mean-field system
is an accurate enough representation of the behaviour of the
network to allow us to use it to predict regions in parameter
space where the network will burst. Additionally, the mean-
field system gives a reasonably accurate prediction of the
bursting frequencies, and is hence useful for studying how
the burst frequency changes with respect to the parameters.

The real advantage of this small system of DE’s, how-
ever, is the simulation time. Using the standard Runge-Kutta
integrator in matlab ode45, one can simulate the mean-field
system significantly faster (near real time) than an actual
network.

3.2 Parameter exploration

With the speed gains we have made with regards to the
mean-field system, we do a parameter exploration. As the
cellular models were developed directly from experiments
in the given experimental context (see Methods), we con-
sider these parameters as fixed (see Table 1). In addition, the
synaptic reversal potential is determined in the same experi-
mental context and so is also not varied. From the literature,
a range of synaptic conductance values is estimated, as well
as values for the synaptic rise and decay, and the amount of
connectivity. We therefore focus our parameter exploration
on the parameters ḡ, β = 1

τD
, in addition to the parame-

ters that govern the distribution of applied input current (and
hence heterogeneity of the intrinsic neuron firing rates), 〈I 〉
and σI . Note that ḡ, N and p only appear as the product
g∗ = ḡNp in the mean-field model. This invariance allows
us to study the behaviour as one of ḡ, N or p, is varied and
then deduce corresponding behaviour for variations in all
three parameters. In our study, we vary the parameter ḡ, and
fix N = 30, 000 and p = 0.01.
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Fig. 2 Mean-field accuracy.
Top The mean-field system
described in the text was
simulated for 3 seconds using
values for the parameters ḡ and
〈I 〉 taken from a 40 × 40 mesh
on [0, 0.3] × [0, 600] with
σI = 5 pA and τD = 3 ms. The
burst frequency is computed at
each mesh point as described in
the Methods. Middle and
Bottom. Simulations of the
mean-field system (red) are
compared with those of a
network of 10,000 neurons with
1 % connectivity (blue) for four
representative parameter sets

We performed our exploration of the four dimensional
parameter space as follows. Values of ḡ ∈ [0, 0.14] nS and
〈I 〉 ∈ [0, 600] pA were chosen from a fine mesh and σI ∈
[0, 80] pA and τD ∈ [2, 5] ms were chosen on a coarser
mesh. We note that even though ḡ could be much larger and
still be within physiological estimates, a much lower upper
bound was sufficient to capture the population bursting
parameter regimes. We ran second mean-field simulations
with each parameter set and computed the predicted burst
frequency as described in the Methods. Contour plots of this

frequency as a function of ḡ and 〈I 〉 where made for each
set of σI , τD values. This is shown in Fig. 3. At a glance,
one can see that the maximal population bursts would be
predicted to be in the 6-8 Hz frequency range. We can
also easily see how the population burst frequency varies
with the parameters. With all the other parameters fixed, as
ḡ increases the frequency of bursting gradually decreases.
However, for increasing 〈I 〉 with the other parameters
fixed, the burst frequency gradually increases. The agrees
with previous work that shows that bursting requires the
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Fig. 3 MFT Parameter Exploration with strongly adapting cell net-
works. The mean-field system, with strongly adapting single cell
parameter values from Table 1, was simulated for a 3 sec time interval
using values for the parameters g and 〈I 〉 taken from a 30 × 30 mesh

over the ranges shown on the plot with σI = 0, 5, 10, 15, 20, 40, 80
pA and τD = 2, 3, 4, 5 ms. The burst frequency at each mesh point is
computed as described in the Methods
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right balance of synaptic drive (ḡ) and external drive (〈I 〉)
(Dur-E-Ahmad et al. 2012). Increasing the synaptic decay
time constant has the general effect of moving the bursting
region to lower ḡ values, while decreasing the burst fre-
quency. This makes sense as increasing τD means the cells
feel the effect of the synapses longer, so a lower synap-
tic conductance is needed to achieve bursting. Said another
way, increasing τD has a similar effect as increasing ḡ.
Finally, as the amount of heterogeneity increases (i.e., σI

increases) the bursting region moves to higher ḡ and 〈I 〉
values. The interpretation here is that with increasing het-
erogeneity there are more neurons with external drive too
high for their cellular adaptation to be able to contribute
to the bursting mechanism and more neurons with external
drive too low to be able to spike and be able to contribute to
the bursting mechanism. In other words, there may not be a
critical mass of neurons which can contribute to the bursting
mechanism, and so the network rhythm is lost.

3.3 Scale invariance: Direct comparisons between full
simulations and theory

The scaling invariance of the mean-field model carries over
to the full networks, but in an approximate way. Recall that
g∗ is the mean of the distribution of gi across the network.
Thus networks with the same g∗ will not be perfectly iden-
tical. However, when Np is large we showed above that
the distribution becomes more narrowly centered around its
mean, hence the scaling invariance should become more
accurate. Thus networks that have different values of ḡ, N

and p should behave similarly if they have the same g∗
and Np is suitably large. Given this and the wide param-
eter exploration done as described in the previous section
(see Fig. 3), we can give limits on the parameters for which
population bursting can occur. For example, from the σI =
15 pA, τD = 3 ms plot in Fig. 3, the lowest ḡ is about
0.04 nS. Given a 30,000 network size, and considering the
physiological range estimate (see Methods), this means that
ḡ can be as small as 0.008 nS if the connectivity is 5 % and
population bursting will still occur. Equivalently, the con-
nectivity can be as small as 0.04 % if the synaptic strength
is 1 nS.

Let us directly examine this theoretical scaling relation-
ship with full simulations. That is, networks with the same
g∗ where g∗ = ḡNp, should produce the same output. We
perform full simulations in which either the network size
or the connectivity is changed, and adjust ḡ in the scal-
ing relationship accordingly. Note that in describing the
full simulations, we refer to the maximal, excitatory con-
ductances as gpyr and the mean excitatory drive as mean
Iapplied (as given in the Methods) to distinguish from the
MFT analyses (which uses ḡ and 〈I 〉) In Fig. 4, we show
raster plots from simulations using six different network

sizes. For comparison and visualization purposes, 1,000
cells are shown in each raster plot regardless of the network
size. From these simulations, it is clear that the scaling rela-
tionship holds very well, although a network size of 1,000
may be a bit too small for the assumptions in the theoreti-
cal analysis to be in effect. In Fig. 5, we show raster plots
in which the network size is held constant at 10,000 and the
connectivity is changed. Again, it is clear that the scaling
relationship is very robust for these large networks. With
this robust scaling, we now focus on 10,000 cell networks
(rather than 30,000 as used in the MFT runs of Fig. 3) to
consider how our population bursts are affected by changing
parameters. We note that with network sizes beyond 10,000,
it becomes a bit more challenging to easily simulate the
network activity for long periods of time and for many dif-
ferent sets of parameters. Furthermore, to be able to do more
detailed analyses of the network simulations (as in the next
section), it is important to be able to run simulations for long
enough to remove transients and still have enough bursts to
do the analyses. Thus, this scaling relationship allows us to
be able to have a principled approach in doing parameter
explorations in these very large networks.

As described in the previous section, there should be
a reasonable match between numerical and MFT results,

Fig. 4 Scaling Relationship - changing network size. Raster plots of
six different network sizes are shown for 2 sec of simulation. Note that
each plot shows 1,000 cells regardless of the network size. Parameter
values are (left to right, top to bottom): 1,000 neurons, gpyr=1.425
nS; 5,000 neurons, gpyr=0.2850 nS; 10,000 neurons, gpyr=0.1425 nS;
20,000 neurons, gpyr=0.0713 nS; 25,000 neurons, gpyr=0.0570 nS;
30,000 neurons, gpyr=0.0475 nS. In all cases there is 1 % connectivity
and σI = 15 pA, mean Iapplied = 80 pA, τD = 3 ms
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although the frequencies are not expected to be exactly the
same (see Fig. 2). Let us consider an example of a direct
comparison between a full 30,000 cell network simulation
with parameter values as in Fig. 4 and the MFT using
exactly the same parameters. For the full simulation, the
burst frequency is close to 2.5 Hz (as estimated from Fig. 4),
whereas for the MFT scenario, it is found to be approxi-
mately 4.7 Hz (see Fig. 3 - burst frequency value extracted
from high resolution MFT plots). Thus, as already noted,
there is some error in the predicted frequency. However, the
trends when changing parameters are the same as we show
below.

A wide range of parameter sets were easily explored
using the MFT analysis (Fig. 3). As described above, in
the MFT runs we observed a gradual decrease in burst fre-
quencies with increasing excitatory conductance strengths,
and a gradual increase in burst frequencies with increas-
ing excitatory drive. Raster plots from the full simulations
are shown in Figs. 6 and 7 for changing gpyr and chang-
ing mean Iapplied parameter values, respectively. Similar to
the MFT runs, we see a decrease in burst frequency with
increasing gpyr , and an increase in burst frequency with
increasing mean Iapplied . Because of the scaling relation-
ship, we can simply deduce whether the burst frequency
would increase or decrease with changing network size and
connectivity, given the simulation runs of Fig. 6 without
needing to do additional sets of full simulations. That is, if
only the connectivity is reduced, the burst frequency would
increase, and if only the network size is reduced, the burst
frequency would increase. Although the burst frequencies

Fig. 5 Scaling Relationship - changing connectivity. Raster plots of
three different network connectivities are shown for 4 sec of simulation
with transients removed. Each raster plot shows 1,000 of the 10,000
cells in the network. Parameter values are: (top) 0.5 % connectivity,
gpyr=0.2850 nS; (middle) 1 % connectivity, gpyr=0.1425 nS; (bottom)
2 % connectivity, gpyr=0.0713 nS. In all cases there are 10,000 cells
in the network with σI = 15 pA, mean Iapplied = 80 pA, τD = 3 ms

obtained from the theory and from the full simulations dif-
fer, the trends are clearly the same so that the parameter
balances for which population bursting occurs are well cap-
tured by the MFT analyses. As such, the parameter ranges
for which full simulations would need to be explored can
be significantly reduced. However, the exact boundaries for
which population bursts occur would have to be carefully
explored with full simulations. We note that in the raster
plots of Figs. 4–7, the presence of population bursts is easy
to see and they are stable as judged by the extent of the sim-
ulation. However, outside of the boundary predicted by the
MFT analyses, population bursts that are initially seen are
not maintained (i.e., are unstable), so that by the end of the
simulation, no population bursts are apparent (not shown).

We previously examined this cellular adaptation bursting
mechanism, but with smaller networks and with all-to-
all coupling (Dur-E-Ahmad et al. 2012). Here, with much
larger networks that are not all-to-all coupled, we find
that population bursts can still occur if parameter balances
are appropriate. That is, the essential mechanism is still
in play. However, now the required balance (to get pop-
ulation bursts) does not only encompass the amount of
cellular adaptation and the excitatory drive and synaptic
strengths, but also the network size and connectivity (and
heterogeneity). Without the theoretical analyses, it would
be more difficult and much more time-consuming to deter-
mine what parameter balances allow population bursting to
emerge. These full simulations already indicate that pop-
ulation bursting can occur using physiologically relevant
synaptic conductance values and connectivities found in the
CA1 region of hippocampus, but at frequencies on the lower
end of theta rhythm. In the next section, we examine a full

Fig. 6 Increasing burst frequency with decreasing excitatory strength.
Raster plots of three network with different excitatory strengths are
shown for 5 sec of simulation with transients removed. Parameter val-
ues are: (top) gpyr=0.1425 nS; (middle) gpyr=0.1155 nS; (bottom)
gpyr=0.1020 nS. In all cases there are 10,000 cells in the network with
1 % connectivity and σI = 5 pA, mean Iapplied = 20 pA, τD = 3 ms
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Fig. 7 Increasing burst frequency with increasing excitatory drive.
Raster plots of three network with different excitatory drives are shown
for 5 sec of simulation with transients removed. Parameter values are:
(top) mean Iapplied=20 pA; (middle) mean Iapplied=40 pA; (bottom)
mean Iapplied=60 pA. In all cases there are 10,000 cells in the network
with 1 % connectivity and σI = 5 pA, gpyr = 0.1290 nS, τD = 3 ms

range of simulations and analyze the cellular spiking and
bursting characteristics of the network simulations.

3.4 Network simulation analyses

Given the robust scaling aspect, we do simulations with
10,000 cells rather than with 30,000 cells which would be
much more computationally intensive. We carry out simu-
lations for a range of parameters, and perform a detailed
analysis of the full simulations to parse out bursting and
cellular spiking characteristics. Because of the averaging
assumptions in MFT, these additional analyses cannot be
obtained from the MFT runs. However, because of the MFT
work, we know which parameter sets should be focused on.
In this way, we greatly reduce the amount of simulations
that need to be done for our analysis.

We focus on gpyr and mean Iapplied ranges for which
a population burst can be easily defined (criteria described
in Methods). With this, we can define a burst width and
interburst duration, and explore the spiking characteristics
during bursting (i.e., within the burst as defined by the burst
width) and between bursts. However, because of this, the
mean Iapplied ranges for which bursts are easily defined, are
different when using different amounts of heterogeneities
(i.e., with different σI ’s). This is to be expected as it can be
clearly seen from the MFT analyses that the lower bound-
ary for which population bursts occur shifts to larger mean
Iapplied values as the heterogeneity (i.e., σI ) increases (see
Fig. 3).

In Fig. 8 we plot the burst frequency along with the burst
duration and interburst durations for four different σI val-
ues. In comparison with burst frequency changes seen with
the MFT (Fig. 3), the trend is the same as expected, and as
shown in Figs. 6 and 7. However, in addition, it is clear from
Fig. 8 that the population burst frequency changes that occur
when the excitatory conductance strengths or the excitatory
drives change are mainly due to changes in the interburst
duration (middle column of Fig. 8 - between burst width)
and not to changes in the burst duration (right column of
Fig. 8 - burst width). Thus, for the cellular adaptation burst-
ing mechanism as described in (Dur-E-Ahmad et al. 2012),
we can say that in these larger networks (that are not all-
to-all coupled), the (population) burst frequency is largely
controlled by (non-spiking) neuronal processing (between
bursts). In other words, since the slowdown in burst fre-
quency occurs due to increasing interburst duration, a key
controlling factor for population bursts to emerge is due to
spike initiation. That is, the cells’ ability to spike again (after
the burst ends).

Although we identify spike initiation as a controlling fac-
tor in the emergence of population bursts, the underlying

Fig. 8 Burst frequency changes due to interburst interval changes.
First column shows the burst frequencies (Hz), second column shows
the interburst durations or the width between bursts (ms), and third
column shown the burst widths or durations (ms). σI = 5,10, 15, 20
pA (top to bottom). Note that mean Iapplied ranges from 40-100 pA
to allow for consistency for all σI values. Color ranges adjusted to be
the same for all σI values, but note that the time duration range for the
interburst intervals are not the same as for the burst width ranges. It is
much narrower for the burst widths
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mechanism clearly relies on a balance between the amount
of cellular adaptation and excitatory coupling. Specifi-
cally, the bursting depends on a slow cyclical increase and
decrease of adaptation in neurons coupled with the variation
in synaptic input. During the active part of the burst, the cells
are spiking and the adaptation (represented by the current
ui in our models) increases until it is high enough that the
effective input current to the neurons (Iapplied −ui −Isyn) is
below rheobase and the neurons cease to spike. This is com-
plicated as−Isyn is also increasing as the cell spikes. During
the quiescent phase, the cells become uncoupled (Isyn → 0)
and the adaptation slowly decays until the effective input
current (Iapplied − ui) goes above rheobase and they begin
to spike. In our models 1/a 	 τD 	 τR thus the decay
rate in the quiescent phase is determined by 1/a. The width
of the quiescent phase is determined by 1/a and the differ-
ence in the amount of adaptation at the beginning and end
≈ Isyn = ḡs(V − Epyr). There are two key aspects of this
mechanism in the homogeneous case. First, the applied cur-
rent, Iapplied , must be greater than rheobase (in the absence
of coupling the cells are tonically firing) so that the network
can leave the quiescent phase. Second there must be the
right balance of synaptic input and adaptation so that burst
termination can occur. However, with heterogeneity and not
all-to-all coupling, leaving the quiescent phase and the burst
termination depends on the variation of the effective input
into all the different cells. As some cells start to spike, they
provide other cells (that they are coupled to) with additional
input and they in turn can start spiking and have adaptation
and so on. The balance is thus dependent on the number
of cells and the connectivity also. With the MFT analysis,
this overall balance is captured in coming up with the burst-
ing regimes (as in Fig. 3). Thus, spike initiation (of enough
cells) is essential, and it is clear that there must be a non-
zero number of cells with effective input above rheobase for
population bursts to occur.

In Fig. 9 we show how the average spike frequency
and the number of cells spiking changes, during bursts
and between bursts for a particular level of heterogene-
ity. It is clear that the average spike frequency increases
during the burst more due to increasing gpyr and not due to
increasing mean Iapplied . This is consistent across different
heterogeneties (not shown). The average spiking frequen-
cies during the burst range from 10-60 Hz for the four
different heterogeneities examined (σI = 5, 10, 15, 20 pA),
and each cell spikes 1 to 6 times (not shown). It is also
very clear that during bursts, all of the 10,000 cells are spik-
ing for almost the entire range of parameters. Only in small
regions of low mean Iapplied and low gpyr do we find that
not all 10,000 cells are spiking. Between bursts, the aver-
age spiking frequency is much lower (as expected given the
raster plots shown in the earlier figures), with the average
number of spikes per cell mostly being less than one (not

shown). Also, as can be seen in Fig. 9, this interburst spik-
ing frequency is not sensitive to gpyr at lower mean Iapplied

values, and only a fraction of the cells are spiking between
the bursts. Not surprisingly, the number of cells spiking
between bursts increases as the heterogeneity increases, but
during the burst, it is still the case that all of the cells are
spiking (not shown).

3.5 Reduced bursting regimes with weakly adapting
excitatory cells

So far, all of the MFT runs and full simulations were done
using cellular models that had strongly adapting characteris-
tics. However, as described in the Methods, CA1 pyramidal
cells also exhibit weakly adapting characteristics (Ferguson
et al. 2015). Using these weakly adapting cellular models,
we take advantage of our MFT analysis to easily and quickly
examine a full range of parameter sets to see how popu-
lation bursting regimes change. This is shown in Fig. 10.
Given the model mechanism being dependent on adapta-
tion, we expect that with weakly adapting cells, population
bursting would be less prevalent relative to networks with
strongly adapting cells, as it is. It is also apparent that the
burst frequencies are lower. Compare Figs. 3 and 10, but
note that the color ranges encompass different frequency
ranges. In Supplementary Materials, we show the occur-
rence of population bursts in networks of weakly adapting
cells.

It is clear that while population bursts could still occur in
these minimally coupled networks, this behaviour is far less

Fig. 9 Cellular spiking characteristics. Average spike frequencies and
the number of spiking cells are shown for the time between bursts
(first column) and during bursts (second column). Note that the mean
Iapplied ranges are from 10-100 pA, which is wider than the mean
Iapplied range shown in Fig. 8, as only σI = 5 pA is shown. Note that
the color ranges for between and during bursts are different as the spike
frequency and number of spiking cells is much higher during the bursts



304 J Comput Neurosci (2015) 39:289–309

robust than in the networks of strongly adapting neurons. In
particular, for fixed values of τD and σI the region of burst-
ing in the ḡ, 〈I 〉 plane is considerably reduced and generally
lies at higher ḡ and 〈I 〉 values. (Note the change in scale on
the ḡ axis.) Further, while the effect of varying the parame-
ters is similar to what we observed in the strongly adapting
networks, the burst region and burst frequency are more sen-
sitive to variation of these parameters. All this points to the
fact that the balance of external and synaptic drive needed
to obtain bursting is considerably harder to achieve with
weakly adapting neurons. Finally, we note that the achiev-
able range of population burst frequencies is reduced. (Note
the change in scale on the bursting frequency colour bar).
This is consistent with our other observations as the range of
values of ḡ and 〈I 〉 where bursting can occur in the weakly
adapting network is where the lower bursting frequencies
occur in the strongly adapting network.

4 Discussion

Using biologically-based cellular models of CA1 pyramidal
cells in hippocampus, we have built large, excitatory net-
works in an effort to determine whether and how population
bursting can emerge. Our models were designed to represent
the experimental context of a whole hippocampus prepara-
tion that spontaneously exhibits theta frequency (3-12 Hz)
population bursts (Goutagny et al. 2009). This population
activity was shown to be generated in the CA1 region of the
hippocampus, a region where the coupling between excita-
tory cells is minimal. Taking advantage of mean-field anal-
yses, we were able to examine a very large parameter space.
We specifically examined whether spike frequency adapta-
tion that is present in the individual cells could generate
network population bursts, via cellular adaptation mecha-
nisms. The balance between cellular (adaptation) and synap-
tic (excitatory coupling) characteristics forms the essence of
the population bursting mechanism but due to heterogeneity
and non all-to-all coupling, the complexity of the bal-
ance is greatly increased, but with the mean-field analyses,
appropriate parameter regimes are easily found. We found
that theta frequency population bursts could emerge but
at low theta frequencies (< 4 Hz) in our experimentally-
constrained context. Thus, the required balance between the
amount of cellular adaptation with excitatory interactions
does exist in these excitatory networks, and a controlling
aspect of these population bursts lies in spikes being initi-
ated in a non-zero number of cells that have an effective
input above their rheobase. As such, we suggest that cellu-
lar adaptation mechanisms could be a critical component in
the generation of theta frequency population bursts in the

hippocampus. It would not be straightforward to directly test
our present results as adaptation currents cannot be blocked
in isolated and specific ways (e.g., many types of potas-
sium currents could contribute). Furthermore, inhibition is
not yet included in the models and some inhibitory cell types
are important contributors to the theta rhythm (Amilhon
et al. 2015). However, it is interesting to note that popula-
tion bursts in which inhibitory cells minimally contribute do
occur, but these are at frequencies that are lower than theta
(Wu et al. 2005). We view the present work as a starting
framework on which to build to understand the generation
of theta frequency population bursts in the hippocampus.
We expect to be able to suggest particular experimental
tests when, for example, excitatory-inhibitory networks are
considered in this experimental context.

4.1 Relation to our previous modeling work and other
considerations

Previously, we developed Izhikevich-based models of
pyramidal cells in the CA3 region of the hippocampus
(Dur-E-Ahmad et al. 2012). These models were based on
data derived from the literature (Hemond et al. 2008) and
were designed to capture experimentally recorded spike fre-
quency adaptation characteristics. As in the work here, we
were interested to know whether the amount of spike fre-
quency adaptation that is present in biological cells would
be appropriate to support population bursting in hippocam-
pal networks. That work was focused on CA3 cells because
of related experimental studies that showed a population
bursting pattern (in vitro sharp wave) initiating in the CA3
region of the hippocampus (Wu et al. 2005). That work
showed that it was possible that adaptation characteristics as
estimated from experimental records could support network
bursting. However, in that work, the cellular characteristics
were not derived directly from experiment, and the net-
work constraints in terms of size and connectivity were not
directly considered – smaller networks and only all-to-all
coupling was used. In the work here, our network models
are well-defined in terms of experimental context: the cellu-
lar models were developed in the same experimental context
with direct experimental data (Ferguson et al. 2015), and
the network size was based on estimates from the exper-
imental preparation exhibiting spontaneous theta rhythms
(Goutagny et al. 2009). We note that although our cellular
models still use an Izhikevich model structure as in (Dur-E-
Ahmad et al. 2012), we consider them as biologically-based
as the parameters were chosen to match characteristics
such as frequency-current profiles and rheobases, but not
biophysically-based as they do not have conductance rep-
resentations like Hodgkin-Huxley types. Even though there
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Fig. 10 MFT Parameter Exploration with weakly adapting cell net-
works. The mean-field system, with weaky adapting single cell param-
eter values from Table 1, was simulated for a 3 sec time interval
using values for the parameters g and 〈I 〉 taken from a 30 × 30

mesh over [0, 0.15] × [0, 600] with σI = 0, 5, 10, 15, 20, 40 pA and
τD = 2, 3, 4, 5 ms. The burst frequency at each mesh point is com-
puted as described in the Methods. Note that color ranges are not the
same as for strongly adapting networks shown in Fig. 3
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are other choices one could make for these simple models
(Gerstner and Brette 2009), the Izhikevich type works well
enough and is amenable for robust simulations of very large
networks.

The network models considered here only include exci-
tatory networks, and although we found that robust, theta
frequency population bursts could occur, they were at lower
theta frequencies for networks composed of strongly adapt-
ing cells (Figs.3 and 8). When only weakly adapting cells
were used in the excitatory networks, the regions in which
population bursts could occur were reduced and popula-
tion burst frequencies were much lower, and no longer in
the theta frequency range (Fig.10). We focused our detailed
network simulation analyses on the strongly adapting exci-
tatory cell networks. Relative to what is known about the
experimental data, the most obvious discrepancy between
model and experiment is the lack of sparse firing in the
models that is present in the experimental data (Huh et al.
2015). The full simulations showed that except for a small
regime at low values of gpyr and mean Iapplied , all of the
cells are spiking during the population burst (see Fig. 9). In
preliminary work, we have found that with the addition of
inhibitory cells, sparse firing of excitatory cells can occur at
the same time as robust population bursts (Ferguson et al.
2014).

An important aspect to consider is the amount of input
(i.e., excitatory drive) that is needed for population bursts to
emerge. For our strongly adapting cell models, the rheobase
is 0 pA, so that with a mean Iapplied greater than zero in
our network simulations, more than 50 % of the cells in
the network are above rheobase and would spike intrinsi-
cally. Interestingly, earlier work by Latham et al. (2000)
showed that an essential aspect needed for rhythmic burst-
ing is a non-zero fraction of endogenously active cells (as
demonstrated in model and experiment in their scenario).
Future studies of excitatory and inhibitory cell networks
building on the starting network framework here may be
able to estimate the required amount of endogenously fir-
ing cells for the emergence of theta frequency population
bursts.

In a previous modeling study we built networks to cap-
ture population activities from normal and Rett mouse
models (as given by MeCP2-null mice) (Ho et al. 2014).
To do this, we took advantage of cellular adaptation mech-
anisms in the excitatory network models. In earlier mod-
eling work we had found that model inhibitory networks
underlying the normal population activities were mainly
controlled by excitatory fluctuations, rather than (tonic)
excitatory drive (Ho et al. 2012). We translated this inter-
pretation to excitatory networks with different amounts of
heterogeneity (via the σI parameter) in Ho et al. (2014) –
Rett model output occurring when the excitatory fluctua-

tions were smaller (interpreted as smaller heterogeneity).
The model Rett (excitatory) networks (with smaller het-
erogeneity) exhibited population bursting at lower excita-
tory conductance strengths relative to the normal networks.
From our work here, it is clear that this is to be expected
now that we are able to see the wide range of parame-
ter sets easily obtained from the MFT runs (see Fig. 3).
With all parameters fixed except for the amount of het-
erogeneity, the boundary of where population bursts first
appear occurs at higher excitatory conductance values as σI

increases.
Ideally, one should use noisy (and not heterogeneous)

input with linkage to experimental measurements. While
we have done a linkage with experiment in previous work
(Ho et al. 2009), it can become quite challenging due
to technical extraction issues from the experimental data.
From a modeling viewpoint, we do not expect that our
essential network results would change if noisy rather than
heterogeneous input were used, based on our previous sim-
ulation studies of inhibitory networks using heterogeneous
(Ferguson et al. 2013) or noisy input (Skinner and Ferguson
2013) and our mean-field studies of all-to-all, excitatory net-
works with noise (Nicola et al. 2014). However, the essential
issue is being able to have interpretations for the model
parameters relative to experiment so that insight into the
biological system can be gained.

4.2 Theoretical aspects and relation to our other studies

In the work here, we extended our mean-field derivation
to deal with two new aspects: Destexhe (kinetic) synapse
model and minimal connectivity. To our knowledge this is
the first time that mean-field models have been derived for
networks with these properties. The Destexhe kinetic model
was dealt with by approximating it using the double expo-
nential model for which the mean-field derivation has been
done. This approximation is valid so long as the activation
time constant of the synapse is sufficiently faster than that
of the inactivation time constant - they differ by an order of
magnitude in the work here so this approximation is very
good. To deal with minimal connectivity we considered an
asymptotic limit as the number of neurons in the network
gets largeN → ∞. Assuming that the probability, p, of two
neurons being connected is such that both Np and N(1−p)

are large we showed that the number of connections com-
ing into a given neuron obeys a normal distribution. Making
the final assumption that the maximal synaptic conductance
scales as 1/N , we showed that for N sufficiently large the
mean-field for the minimally coupled network with maxi-
mal synaptic conductance ḡ is well approximated by that for
an all-to-all coupled network with maximal synaptic con-
ductance g∗ = ḡNp. This also showed that there is a scaling
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relation for the mean-field systems. Any two systems with
the same g∗ will have similar behaviour.

Our previous theoretical studies of all-to-all coupled net-
works showed that heterogeneity in applied current can lead
to sparse firing (Nicola and Campbell 2013b). In particu-
lar, sparse firing occurred in a small region where ḡ and
〈I 〉 are both low and the size of the region of sparse firing
increased with σI . In this work, all the neurons receive the
same excitatory drive due to the all-to-all coupling. Thus the
sparse firing must arise due to the heterogeneity in Iapplied .
With small enough 〈I 〉 the total drive of many neurons falls
below rheobase and the neuron does not fire. With a large
〈I 〉 many neurons have Iapplied high enough that the spike
frequency adaptation is not strong enough for bursting to
emerge (i.e., the neurons are tonically firing). A 〈I 〉 low
enough such that some neurons have strong enough spike
frequency adaptation is needed for the population burst to
emerge. If ḡ is too small, many neurons may have total
input below rheobase and do not fire so do not participate in
the burst. As ḡ increases, the number of neurons participat-
ing in bursts increases. Interestingly, the sparse firing region
seemed to be associated with the parameter values where the
Hopf bifurcation associated with the emergence of bursting
is supercritical. Where the Hopf is subcritical the whole net-
work seems to transition to bursting at the same parameter
values.

Here we showed that bursting is much harder to acheive
in networks of weakly adapting neurons than strongly adapt-
ing neurons. This is consistent with our previous work on
all-to-all coupled networks (Nicola and Campbell 2013b).
In that work we considered a case study of a population con-
taining both strongly adapting and weakly adapting neurons.
We showed that the higher the proportion of weakly adapt-
ing neurons in the network the smaller the set of 〈I 〉 and ḡ

values for which the network would burst.
One factor we have left out of our network models is

noise. It is possible to derive mean-field systems for network
with noise (Nicola et al. 2014; Nesse et al. 2008). The over-
all results are similar, with a region of bursting existing in
the ḡ, 〈I 〉 parameter space. Notably, this region can extend
below rheobase and as the strength of the noise increases
the bursting regions moves to lower values of 〈I 〉 and large
values of ḡ. We did not study sparse firing explicitly, but the
noise can cause the appearance of a supercritical Hopf bifur-
cation, thus it seems likely that small regions will occur as
in the case of heterogeneity in Iapplied .

4.3 Related studies

Work by Augustin et al. (2013) is similar to ours in that
adaptation-based bursting is considered with simple two-
variable neuron models and mean-field analyses. However,

the examination is generic with excitatory/inhibitory net-
works, synaptic delays and spike frequency adaptation, and
not focused on a particular brain region with experimentally
constrained cellular models. We have focussed on adapta-
tion induced bursting in the CA1 region of hippocampus.
Similar studies have been done focussing on other regions
and other mechanisms for population bursting. For exam-
ple, (Tabak et al. 2000; Vladimirski et al. 2008) studied
bursting in chick spinal chord induced by slow synaptic
depression. Further, (Butera et al. 1999a; 1999b) studied in
network bursting in the Pre-Botzinger complex. They pri-
marily focus on the role of intrinsically bursting cells in
producing population rhythms, showing that only a small
fraction of pace-maker cells is needed even in minimally
coupled networks. For us, one of the main goals of the theo-
retical MFT work was to guide the simulations, as we could
easily do a much more expansive parameter exploration
in the MFT model, in particular where the experimen-
tal constraints were limited. However, several experimental
constraints were clear as our model networks were designed
and developed using the whole hippocampus experimen-
tal preparation spontaneously expressing theta rhythms. The
MFT analyses here achieved a close correspondence with
the full simulations. We have focussed on bursting as a
mechanism for producing network theta rhythms. Other
authors have focussed on clustering as a means of produc-
ing population rhythms. Kilpatrick and Ermentrout (2011)
looked at how spike frequency adaptation was related to
clustering in excitatory/inhibitory networks the emergence
of higher gamma (30-100 Hz) frequencies, while a focussed
role of inhibition in a similar vein was done by Krupa et al.
(2014).

4.4 Concluding remarks

By taking an approach in which theoretical, modeling and
experimental aspects are considered together at early stages
we have been able to take advantage of MFT analyses to
quickly do expansive parameter explorations to guide full
network simulations. Importantly, these simulations are of
cellular-based network models that were developed using a
well-defined experimental context. In this way, it should be
possible to go back and forth between model and experiment
to identify critical aspects contributing to biologically-based
mechanisms in the generation of population rhythms in the
hippocampus. At this stage, our network models are focused
on excitatory networks, but this work constitutes a frame-
work on which we will build by the addition of inhibitory
networks, including inhibitory cells of different types.
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