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Abstract In this paper we show that the emergence of per-
ceptual units in V1 can be explained in terms of a physical
mechanism of simmetry breaking of the mean field neural
equation. We consider a mean field neural model which
takes into account the functional architecture of the visual
cortex modeled as a group of rotations and translations
equipped with a degenerate metric. The model generalizes
well known results of Bressloff and Cowan which, in
absence of input, accounts for hallucination patterns. The
main result of our study consists in showing that in presence
of a visual input, the stable eigenmodes of the linearized
operator represent perceptual units of the visual stimulus.
The result is strictly related to dimensionality reduction and
clustering problems.

Keywords Mean field model · Functional architecture ·
Primary visual cortex · Perceptual units

1 Introduction

One of the major challenges in neurobiology is understand-
ing the relationship between spatially structured activity
states and the underlying neural circuitry that supports them.

From the geometrical point of view the first accurate
models of the functional architecture of the primary visual
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cortex (V1) is due to Hubel and Wiesel (1977) (see Hubel
(1988) for a review of their work). Hubel and Wiesel dis-
covered that for every point (x, y) of the retinal plane there
is an entire set of cells, each one sensitive to a particular
instance of a specific feature of the image: position, orienta-
tion, scale, color, curvature, velocity, stereo. They called this
structure hypercolumnar organization. Horizontal connec-
tivity is responsible for the cortico-cortical propagation of
the neural activity between hypercolumns. Further insights
on the structure of the connectivity and the spatial arrange-
ments of cells were provided by Blasdel (1992), Bonhoeffer
and Grinvald (1991), Bosking et al. (1997). The association
fields of Field et al. (1993), discovered on a purely psycho-
physical basis, have been proposed as a phenomenological
counterpart of the cortical-cortical connectivity. Geometric
frameworks for the description of the functional architecture
of V1 were proposed by Hoffman (1989), Petitot and Tondut
(1999), Bressloff and Cowan (2003), Citti and Sarti (2006),
Zucker (2006), and Sarti et al. (2008). Application to image
processing can be found in Duits and Franklin (2010a, b),
Duits et al. (2011), and Boscain et al. (2012).

From the dynamical point of view the first neural field
models of the cortical activity are due to Wilson and Cow
(1972, 1973) and Amari (1972), and are expressed in terms
of integro-differential equations. Extensions of the mod-
els have been provided by Ermentrout and Cowan (1979,
1980). These mean field equations describe the activity on
a 2D plane and formally express the interaction between
cells through as a convolution kernel. Bressloff and Cowan
(2003) and Bressloff et al. (2002) proposed new models
taking into account the high dimensional cortical structure,
with position, orientation and scale as features. In their mod-
els the connectivity kernel satisfies the symmetry properties
of the cortical space, namely SE(2) for rotation and transla-
tion and the affine group for scale, rotation and translation.
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In absence of the external input these models successfully
account for hallucination patterns. More recently, Faugeras
(2012), Faye and Faugeras (2010) and Chossat et al. (2011)
modified the model in order to take into account delay and
the tensorial structure of the cortex.

Scope of this paper is to provide a possible computational
interpretation of cortical function by considering a mean
field neural model which takes into account the neurogeom-
etry of the cortex introduced in Citti and Sarti (2006) as well
as the presence of a visual input. It is known that when sta-
tionary solutions of the equation become marginally stable,
eigenmodes of the linearized operator can become stable.
In absence of a visual input the raising eigenmodes lead to
the hallucination patterns proposed by Bressloff and Cowan
(2003), Bressloff et al. (2002). The main result of our study
consists in showing that in presence of a visual input, these
eigenmodes correspond to perceptual units. While in the
case of hallucinations the emergence of eigenmodes is due
to the use of drugs, in the case of perceptual units it is due to
physiological variations of parameters during the perception
process. The whole process can be interpreted as a problem
of data segregation and partitioning, strongly related to the
most recent results of dimensionality reduction. In particu-
lar our model can justify on biological basis, the results of
Perona and Freeman (1998), Shi and Malik (1997), Weiss
(1999), Coifman and Lafon (2006), Coifman et al. (2005)
who directly faced the problem of perceptual grouping in
the description of a scene by means of a kernel PCA on an
affinity matrix.

If the aim of the paper is to provide a possible computa-
tional interpretation of cortical function, another motivation
is to show that the proposed neural computational model
performs a unification among four different scientific areas:
computational neuroscience, visual perception, computer
vision and machine learning. In facts the model is able to
extract perceptual units with a neurally plausible mechanism
and at the same time it formally corresponds to a computer
vision algorithm and to a machine learning technique. This
intersection could be important to integrate different scien-
tific communities and to share ideas and inspiration on the
base of a formal (mathematical and computational) analogy.

The paper starts with briefly recalling some results about
the neurogeometry of the primary visual cortex (Section 2).
The horizontal interaction between simple cells is repre-
sented by the fundamental solution of a Fokker Planck
equation, following Sanguinetti et al. (2010) and Barbieri
et al. (2014) In Section 3 the classical mean field model
of Ermentraut and Cowan is adapted to the SE(2) cortical
symmetry group with the previously computed connectivity
kernel. Stationary solutions are studied and a stability analy-
sis is performed, varying a suitable physiological parameter.
In the classical papers (Bressloff and Cowan 2003; Bressloff
et al. 2002) the variability of this parameter was due to

the presence of drugs. On the contrary in our model, the
variability of the same parameter is due to the physio-
logical variability of the transfer function in different neural
populations. In addition, the geometry of the problem
depends both on the invariance of SE(2) and the presence of
the input. In Section 4 the mean field equation is discretized
and the connectivity kernel reduced to a matrix induced by
the neurogeometry of the cortex as well as by the visual
input. Marginally stable solutions are computed as eigen-
vectors of this matrix, and we show that they represent per-
ceptual units present in the image. The result is very closely
related to the dimensionality reduction and clustering prob-
lems of Perona and Freeman (1998), and the connectivity
matrix can be interpreted as an affinity matrix. In Section 5
we present numerical simulation results. Finally in Section 6
we will discuss the model with regards to cortical function
and outline the disciplinary unification.

2 The functional geometry of V1

In this section we briefly recall the structure of the func-
tional geometry of the visual cortex. As discovered by
Hubel and Wiesel (1977) the visual cortex is organized
in hypercolumns of simple cells sensitive to the position
(x, y) and to variables which describe different proper-
ties of the stimulus: orientation, curvature, speed, velocity,
scale, disparity. We will describe in detail the structure
of the family of simple cells, sensitive to position and
orientation.

2.1 The SE(2) symmetry of the visual cortex

Many authors (Petitot and Tondut 1999; Citti and Sarti
2006; Zucker 2006) represented the hypercolumnar organi-
zation as a 3-dimensional space with coordinates (x, y, θ)

where each point corresponds to a specific population of
cells sensitive to a stimulus positioned in (x, y) and with
orientation θ . This leads to the description of the visual cor-
tex in the special Euclidean group SE(2) ≈ R

2 ×S1. This is
composed by the semi-direct product of the group of trans-
lations of the plane R

2 with the rotations and reflections
group of the plane O(2) (see Fig. 1).

This 3D model can be identified with the original ice cube
model (see Hubel-Wiesel) of the cortex. Later on a more
realistic model of the cortex has been proposed in terms of
the pinwheels structure (see Fig. 2 left), which codes for
position and orientations in the 2D cortical layer. The pin-
wheel structure of V1 has been reconstructed starting from
a set of cortical activity maps acquired with optical imaging
techniques in response to gratings with different orienta-
tions (see Bosking et al. (1997)). A color image has been
obtained from gray valued activity maps, associating a color
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Fig. 1 The ice cube model of SE(2): the basis (in gray) represents the retinal 2D plane, discretized with 4 values of the x and y variables. The
hypercolumns, coded in color represent the different orientations

coding representation to preferred orientations. This model
can be considered as the union of discrete patches each
one coding all orientations (see Fig. 2, top right). Different
mathematical models of this structure have been proposed
(see Berry and Dennis (2000), Durbin and Mitchison
(1990), Barbieri et al. (2014)). In particular using har-
monic analysis properties in the group SE(2) in Barbieri
et al. (2014) a model of the pinwheel structure was
expressed through the choice of an angle θ(x, y) at every
point (see Fig. 3). In computation we will always use the
continuous SE(2) model of the cortex, since it is sim-
pler to apply, but all computations operated in this setting
can be projected to the pinwheels structure by intersec-
tion with the graph of θ(x, y) allowing to check neural
compatibility.

2.2 The output of simple cells to the visual stimulus

The receptive profile of a simple cell has been modelled as a
Gabor filter or in terms of derivatives of a Gaussian function
(Daugmann). The whole set of simple cells ψ(x,y,θ) can be
obtained by rotation and translation from the mother filter
ψ(0,0,0), which amount to say that for every (x, y, θ) the
cell at position (x, y) sensible to the orientation θ can be
represented as

ψ(x,y,θ)

(
x′, y′) = ψ(0,0,0)

(
Rθ(x

′ − x, y′ − y)
)
. (2.1)

where Rθ represents the rotating of an angle θ . This trans-
formation formally attests that the cortex is the SE(2) group
of rotation and translaton.

Fig. 2 The pinwheel structure
of the primary visual cortex
measured by in vivo optical
imaging taken from Bosking
et al. (1997). Orientation maps
are coded with the colorbar on
the bottom. On the right we see
that all the orientations are
coded around a pinwheel
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Fig. 3 The model of pinwheel
proposed in Barbieri et al.
(2014) (left) It is expressed as
the 2D projection of the graph of
a function θ(x.y) (right)

The response of simple cells to a visual stimulus I (x, y)

can be obtained as an integral of the RP with the image I :

h(x, y, θ) =
∫

ψ(x,y,θ)

(
x′, y′) I

(
x′, y′) dx′dy′. (2.2)

Note that the action of the cells is to associate to the 2D
retinal image I (x, y) a function h(x, y, θ) defined on the
motion group SE(2), which describes the visual cortex.

2.3 Geometry of the horizontal connectivity

Hypercolumns are connected by means of the so called
horizontal connectivity. Experimental measures of this con-
nectivity have been obtained by Bosking et al. (1997)
by injecting a chemical fig4 (biocytin) and observing its
propagation in the cortical layer (see Fig. 4).

The scope of this section is to recall the geometric instru-
ments which can describe a trajectory in the ideal SE(2)

cortical space, from which we will deduce a model of the
horizontal neural connectivity, to be compared with the
physiological data.

Fig. 4 Cortico-cortical connectivity measured by Bosking et al.
(1997). The Fig. 4 is propagated through the lateral connections to
points in black. These locations are plotted together with the orienta-
tion maps

In order to do so, the authors in Citti and Sarti (2006)
introduced the following vector fields

�X1 = (cos θ, sin θ, 0), �X2 = (0, 0, 1) (2.3)

which describe respectively the propagation in the direction
of the orientation θ and the rotation.

For the reader interested in the geometric aspects of the
problem we note that these vector fields are the genera-
tors of the Lie algebra associated to SE(2) (see Sugiura),
but this remark can be skipped since it is not necessary for
the comprehension of the rest of the paper. The points of
the structure are connected by integral curves of these two
vector fields:

c : R → SE(2), c(s) = (x(s), y(s), θ(s))

such that

dc

ds
(s) =

( �X1 + k �X2

)
(c(s)), c(0) = 0. (2.4)

More precisely the cortical connectivity can be modeled
with the probability of connecting two points in the cortex.
Hence we need consider the stochastic counterpart of the
curves defined in Eq. (2.4):

(x′, y′, θ ′) =
(

cos(θ), sin(θ),N(0, σ 2)
)

= �X1 + N
(

0, σ 2
) �X2

(2.5)

where N(0, σ 2) is a normally distributed variable with zero
mean and variance equal to σ 2.

This approach, first introduced by Mumford (1993) for
describing the probability of co-occurrence of edges, has
been further discussed by August-Zucker (2000, 2003),
Williams (1995), and Sanguinetti et al. (2010), and we
shortly recall it here. Let’s denote v the transition probabil-
ity that the stochastic solution starting from the point (x′, y′)
with orientation θ ′ at the initial time reaches the point (x, y)

with orientation θ at the time s. This probability density
satisfies a deterministic equation known in literature as the
Kolmogorov Forward Equation or Fokker-Planck equation
(FP):

∂tv = X1v + σ 2X22v (2.6)
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Fig. 5 The fundamental solution of the Fokker Planck equation is
strongly biased in direction X1 and not symmetric

where X1 is the directional derivative cos(θ)∂x + sin(θ)∂y

and X2 = ∂θ , while X22 = ∂θθ is the second order
derivative.

This equation has been largely used in computer vision
and applied to perceptual completion related problems. It
was first used by Williams (1995) to compute stochastic
completion field, by August and Zucker (2000, 2003) to
define the curve indicator random field, and more recently
by Duits and Franken (2010a, b) to perform contour com-
pletion, de-noising and contour enhancement. Its stationary
counterpart was proposed in Sanguinetti et al. (2008) to
model the probability of co-occurence of contours in natural
images:

FP = X1 + σ 2X22 (2.7)

This operator has a nonnegative fundamental solution �

satisfying:

X1�((x, y, θ), (x′, y′, θ ′))
+ σ 2X22�((x, y, θ), (x′, y′, θ ′)) = δ(x, y, θ), (2.8)

The kernel is strongly biased in direction X1 and not
symmetric. Its symmetrization can be obtained as:

ω
(
(x, y, θ), (x′, y′, θ ′)

) = 1

2

(
�((x, y, θ), (x′, y′, θ ′))

+ �((x′, y′, θ ′), (x, y, θ))
)
. (2.9)

Since the fundamental solution of Eq. (2.8) is shift invari-
ant with respect to rotation and translation, the kernel ω

inherits the same property of invariance. Calling

T−(x′,y′,θ ′)(x, y, θ) = (
R−θ ′(x − x′, y − y′), θ − θ ′)

the group law in SE(2), the kernel in any point can be
obtained from the kernel centered at the origin applying this
transformation:

ω
(
(x, y, θ), (x′, y′, θ ′)

)=ω
(
T−(x′,y′,θ ′)(x, y, θ),(0, 0, 0)

)
.

(2.10)

We explicitly recall that the general results of Rothschild
and Stein (1976) and Nagel et al. (1985) provide a local esti-
mate of the fundamental solution. In addition, starting from
the paper of lanconellipascucci, the level sets of the Fokker
Planck fundamental solutions have been used to define a
distance dc, so that the kernel ω is estimated as follows:

ω
(
(x, y, θ), (x′, y′, θ ′)

) � e−d2
c
(
(x, y, θ), (x′, y′, θ ′)

)
.

(2.11)

An isosurface of the simmetrized kernel ω is visualized in
Fig. 5, where it is visible its typical twisted butterfly shape.
In Fig. 6 the kernel is superimposed to the to the structure
of the SE(2) group, representing the cortical space and it
is projected onto the patchy pinwheel structure in Fig. 7.
In this image the pinwheels structure is the outcome of a

Fig. 6 When the fundamental
solution (in gray) is
superimposed to the SE(2)

cortical structure (in color), it
tends to intersect the region with
the same orientation as its pole
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Fig. 7 Superimposing the fundamental solution to the patchy pin-
wheel structure, the solution is sampled by the pinwheel orientations,
obtaining the patchy distribution of the connectivity (in black in the
figure), accordingly with the distribution of Fig. 3

simulation following (Barbieri et al. 2014). In Fig. 8 (left)
the kernel was visualized by means of black points gener-
ated with a probability density proportional to the value of
the kernel at the point (x, y, θ̃(x, y)). The comparison of
the image with the results of Bosking presented in Fig. 8
(right) shows that the kernel ω provides a good estimate of
the measured cortical connectivity. Let’s also recall that this
model closely matches the statistical distribution of edge
co-occurence in natural images as obtained in Sanguinetti
et al. (2008). In Fig. 9 right it is visualized the probabil-
ity density of edge cooccurrences measured from a huge
data base of natural images. Its resemblance with the Fokker
Planck fundamental solution (left) is proved both at a qual-
itative and quantitative level in Sanguinetti et al. (2008).
This argument strongly suggests that horizontal connectiv-
ity modelled by the fundamental solution of the Fokker
Planck equation is deeply shaped by the statistical distribu-
tions of features in the environment and that the very origin
of neurogeometry has to be discovered in the interaction
between the embodied subject and the world.

We would like to note that, even though the connectivity
is strongly anisotropic, if we consider it in a pinwheel point,
at the population level there is no orientation preference so
that the corresponding horizontal connections are isotropic.
This fact can be clearly observed in the model. Indeed
for every fixed point we have an anisotropic Fokker Plank
kernel. However over each point (x, y) we have a whole
family of kernels, each one with a different orientation: their
2D projection gives rise to an isotropic configuration as
represented in Fig. 10.

Let us also mention the fact that the functional archi-
tecture of tree shrew is not the same as primates. Indeed,
primates appear to have approximately isotropic horizontal
connections (once ocular dominance is taken into account).
An isotropic version of the previous model can be obtained
completing the basis X1, X2 with an orthonormal vector

X3 = −sin(θ)∂x + cos(θ)∂y.

Propagation in the direction of this vector field has been
used in Sarti et al. (2008) while describing simple cells
depending on parameters of orientation and scale and while
modelling perception of parallel lines. In order to model
isotropic diffusion Eq. (2.5) has to be modified as following

(
x′, y′, θ ′)=N

(
0, σ 2

1

) �X1+N
(

0, σ 2
2

) �X2+N
(

0, σ 2
3

) �X3,

(2.12)

where N(0, σ 2
i ) are normally distributed variables with zero

mean and variance equal to σ 2
i .

Consequently the associated time independent Fokker
Planck equation reduces to an elliptic differential equation:

L = σ 2
1 X11 + σ 2

2 X22 + σ 2
3 X33. (2.13)

The associated fundamental solution is depicted in
Fig. 11 left and it can be considered as a model (Fig. 11
right) for the isotropic connectivity found for example in
Angelucci et al. (2002).

Fig. 8 The fundamental
solution superimposed to the
patchy pinwheel structure and
represented in gray (left) and the
connectivity map measured by
Bosking (right)
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Fig. 9 Comparison between
fundamental solution (left) and
distribution of edges
cooccurrences in natual images
(right). Both images are taken
from Sanguinetti et al. (2008)

3 Mean field equation in the cortical space

The evolution of a state of a population of cells has
been modelled by Wilson and Cowan (1972, 1973), by
Ermentrout and Cowan (1980), and subsequently by
Bressloff and Cowan (2003). Recent results are due to Faye

Fig. 10 Over a point (x, y) we have a whole family of kernels, each
one with a different orientation (left). The 2D projection of these
kernels gives rise to an isotropic configuration (right)

and Faugeras (2010) and Chossat et al. (2011). The Ermen-
traut Cowan mean field equation rewritten in the cortical
space reads

da(ξ, t)

dt
=−αa(ξ, t)

+ σ

(∫
μω(ξ, ξ ′)a(ξ ′, t)dξ ′ + h(ξ, t)

)
in M (3.1)

where ξ = (x, y, θ) is a point of the cortical space M,
the coefficient α represents the decay of activity, h is the
feedforward input which coincides with the response of the
simple cells in presence of a visual stimulus described by
Eq. (2.2).

The function σ is the transfer function of the popula-
tion, and has a piecewise linear behavior, as proposed in
Kilpatrick and Bressloff (2010) (see Fig. 12).

σ(s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, s ∈] − ∞, c − 1
2γ

[

γ (s − c) + 1
2 , s ∈ [c − 1

2γ
, c + 1

2γ
]

1, s ∈]c + 1
2γ

, +∞[

, (3.2)

where γ is a real number, which represents the slope of the
linear regime and c is the half height threshold.

The kernel μω(ξ, ξ ′) is the contribution of cortico-
cortical connectivity introduced in Eq. (2.9). Note that in
particular that the kernel is invariant with respect to the
group law in SE(2), so that the equation is equivariant. It
is compatible with the model of Bressloff and Cowan who
only assumed that ω is invariant with respect to rotation
and translations. For the reader interested in mathematical
properties, we state the following remark
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Fig. 11 A map of horizontal
connectivity found by Angelucci
et al. (2002) on macaques (left).
The connectivity pattern is
almost isotropic. This pattern is
modelled with the isotropic
fundamendal solution of
Eq. (2.13) (right)

Remark 3.1 We explicitly note that using the expression Eq.
(2.10) the operator associated to the kernel ω becomes

Aa(ξ)=
∫

ω(ξ, ξ ′)a(ξ ′, t)dξ ′ =
∫

ω(T−ξ ′ξ, 0)a(ξ ′, t)dξ ′

Hence it is a convolution in the group SE(2), where the
Euclidean translation is replaced in the argument of ω by
the group transformation. The choice of ω as a symmetrized
fundamental solution ensures that it is locally integrable, so
that the associated SE(2)−convolution operator is compact
on square integrable functions on bounded sets. The asser-
tion, known in the Euclidean setting (see for example Brezis
(2011)), holds also in SE(2) since the properties of the con-
volution are the same (see for example Rothschild and Stein
(1976), Proposition B, pag 265).

The parameter μ is a coefficient of short term synaptic
facilitation and generally increasing during the perceptual
process.

We also outline the following existence result:

Fig. 12 The piecewise linear transfer function, compared with the
classical sigmoid

Remark 3.2 Existence of the solution. The solution is
defined for all times and satisfies

|a(ξ, t)| ≤ 1

α
for all ξ, ∈ M, t > 0.

See for example Faugeras et al. (2009).

3.1 Restriction to the domain defined by the external input

The main novelty of our model is to split the cortical domain
M in a subdomain � characterized by the presence of the
input, and the complementary set. We will show in the fol-
lowing that under suitable assumptions the activity in this
complementary set will be negligible and the domain of
Eq. (3.1) reduces to �.

By simplicity we will assume that h can attain only two
values: 0 and c, and we call � the set of points in the visual
cortex activated by the presence of an input

� = {ξ : h(ξ) = c}. (3.3)

We require that μω satisfies an assumption of weak con-
nectivity, which means that when the activity is around the
points 0 and c, the dynamics does not change regime due to
the connectivity contribution.

Remark 3.3 Formally we will require that the integral of μω

is sufficiently small to satisfy:
∫

M

μω(ξ, ξ ′)dξ ′ ≤ α min

(
1

2γ
, c − 1

2γ

)
. (3.4)

Under this assumption, if the activity a is identically 0
at the initial time, then the activity remains identically 0
outside � for all t > t0:

a(ξ, t) = 0 for ξ ∈ M\�.

On the other hand on the set � the argument of σ always
remains in the linear regime for all t > t0:
∫

μω(ξ, ξ ′)a(ξ ′)dξ ′+c ∈
[
c − 1

2γ
, c + 1

2γ

]
, for ξ ∈ �.

(3.5)
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Proof Let us choose ξ in M\�. Using the boundness of
a asserted in Remark 3.2, and the assumption of weak
connectivity Eq. (3.4) on ω we get

∣
∣
∣∣

∫
μω(ξ, ξ ′)a(ξ ′)dξ ′

∣
∣
∣∣ ≤ α max(a) min

(
1

2γ
, c − 1

2γ

)

≤ min

(
1

2γ
, c − 1

2γ

)
. (3.6)

It follows that
∫

μω(ξ, ξ ′)a(ξ ′)dξ ′ ≤ c − 1

2γ
.

so that, by the properties of σ , we get:

σ

(∫
μω(ξ, ξ ′)a(ξ ′)dξ ′

)
= 0,

if ξ ∈ M\�. Inserting this in the right hand side of Eq. (3.1)

d

dt

(
eαta(ξ, t)

) = eαta′(ξ, t) + αeαta(ξ, t)

= eαtσ

(∫
μω(ξ, ξ ′)a(ξ ′)dξ ′

)
= 0,

This implies that

eαta(ξ, t)

is constant, and since it vanishes for t = t0, it is identically
0 for all t > t0. From Eq. (3.6) it also follows that
∫

μω(ξ, ξ ′)a(ξ ′)dξ ′ + c ≤ c + 1

2γ

and
∫

μω(ξ, ξ ′)a(ξ ′)dξ ′ + c ≥ c − 1

2γ
.

Hence the mean field activity equation reduces to

da(ξ, t)

dt
= −αa(ξ, t)

+γ

(∫
μω(ξ, ξ ′)a(ξ ′, t)dξ ′ + c

)
in �. (3.7)

Note that the Eq. (3.7) is similar to the one in Bresslof
Cowan model, but the Bresslof Cowan model is defined in
the whole cortical space, while Eq. (3.7) is defined on the
domain �.

3.2 Stability analysis

The stationary states a1 of Eq. (3.7) satisfy

−αa1(ξ) + γ

(∫
μω(ξ, ξ ′)a1(ξ

′)dξ ′ + c

)
= 0 in �

(3.8)

and have been studied by Faugeras et al. (2009).

In order to study their stability we need to study small
perturbation around the stationary state. Hence we will call
u = a−a1 the perturbation, and obtain the equation satisfied
by u subtracting the equations for a and a1:

d(a − a1)(ξ, t)

dt
= −α(a − a1)(ξ, t) + γ

×
(∫

μω(ξ, ξ ′)(a − a1)(ξ
′, t)dξ ′

)
(3.8)

in �. Note that the function u is a solution of the homoge-
neous equation associated to Eq. (3.7):

du(ξ, t)

dt
= −αu(ξ, t)+γ

(∫
μω(ξ, ξ ′)u(ξ ′)dξ ′

)
in �

(3.9)

The stability of the solution of this linear equation can
be studied by means of the eingenvalues of the associated
linear operator:

Lu = −αu + μγ

∫
ω(ξ, ξ ′)u(ξ ′)dξ ′ = λu. (3.10)

Let us note that the parameter μ increases since it is
a short term synaptic facilitation. For this reason we now
study this eigenvalue problem by varying μ. The system
will be stable if λ is negative. This condition depends on
the value of μ and on the eigenvalues of the convolution
operator with μω. Indeed condition Eq. (3.10) is equivalent
to

∫
ω(ξ, ξ ′)u(ξ ′)dξ ′ = 1

γμ
(λ + α)u.

and implies

λ + α

γμ
= λ̃

for an eigenvalue λ̃ of ω. Imposing that λ is negative we get:

λ = −α + μγ λ̃ < 0

Hence

μ <
α

γ λ̃

for every eigenvalue λ̃ of ω. Remember that the operator
associated to ω has a sequence λ̃k of eigenvalues. This is
satisfied if

μ <
α

γ λ̃1
,

for the largest eigenvalue λ̃1. The uniform solution becomes
marginally stable when μ increases beyond the critical
value α

γ λ̃1
. due the excitation of the linear eigenfunctions,

solutions of
∫

ω(ξ, ξ ′)u(ξ ′)dξ ′ = λ̃ku. (3.11)
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Fig. 13 Estimate of the
fundamental solution � of
Eq. (2.8) with the Markov Chain
Monte Carlo method. It is
visualized the projection of �d

in the (x, y) plane. On the left
with 6 random paths and on the
right with 3000 with σ = 0.08,
and H = 100

The saturating nonlinearities of the system can stabilize the
growing pattern of activity.

4 Patterns of activity and spectral clustering

4.1 The discrete mean field equation

Due to the discrete structure of the cortex, the input configu-
rations are constituted by a finite number N of position-
orientation elements, with coordinates ξi = (xi, yi, θi). On
these points the input h takes the value c. As a consequence,
the set �, defined in Eq. (3.3) is discretized, and becomes

�d = {ξi : h(ξi) = c}. (4.1)

Analogously the linear operator (3.10) reduces to:

Ldu(ξi) = −αu(ξi) + γμ

N∑

j=1

ω(ξi, ξj )u(ξj ) in �d.

(4.2)

The model of Bressloff and Cowan (2003) has been
developed in the whole cortical space without an input and
the activity patterns have the symmetry of SE(2). Here
the symmetry is lost due to the presence of the input,
hence the activity patterns inherit geometric properties of

Fig. 14 A level set of the kernel ω, obtained via the simmetrisation of
the fundamental solution �d

the domain �d . The eigenmodes will be defined precisely
on that geometry.

In particular the kernel ω is reduced to a matrix A, whose
entries i, j are:

Aij = γμω(ξi, ξj ), (4.3)

and the eigenvalue problem (3.11) becomes:

Au = λ̃ku. (4.4)

This matrix can be considered as the equivalent of the
affinity matrix introduced by Perona and Freeman (1998) to
perform perceptual grouping. Perona proposed to model the
affinity matrix in term of an euristic distance d(ξ), facilita-
ting collinear and cocircular couple of elements. Indeed by
Eq. (2.11) we see that

Aij � e−dc
2(ξi,ξj),

where dc is the distance defined in Eq. (2.11).

4.2 Spectral clustering and dimensionality reduction

In Perona and Freeman (1998) the problem of perceptual
grouping has been faced in terms of reduction of the com-
plexity in the description of a scene. The visual scene is
described in term of the affinity matrix Aij with a com-
plexity of order O(N2) if N discrete elements are present
in the scene. The idea of Perona and Freeman is to describe
the scene approximating the matrix Aij by the sum of matri-
ces of rank 1 and complexity N , each of which will identify
a perceptual unit in the scene. If the number of the percep-
tual units present in the scene is much smaller than N , this
procedure reduces the dimensionality of the description. A
rank 1 matrix will be represented as the external product of
a vector p with itself.
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Fig. 15 The experiment of
Fields, Heyes and Hess. The
proposed stimulus (on the left)
and the perceptual unit present
in it (right) Field et al. (1993)

The first one will be computed as the best approximation
of Aij minimizing the Frobenius norm as follows:

p1 = argminp̂

N∑

i,j=1

(Aij − p̂i p̂j )
2

where the term
∑N

i,j=1 p̂i p̂j is a rank one matrix with
complexity order O(N).

Perona proved that the minimizer p1 is the first eigen-
vector v1 of the matrix A with largest eigenvalue λ1 : p1 =
λ

1/2
1 v1.

Then the problem is repeated on the vector space ortho-
gonal to p1. The minimizer will correspond to the second
eigenvector, and iteratively the others eigenvectors are
recovered. The process ends when the associated eigenvalue
is sufficiently small. In this way in general only n eigenvec-
tors are selected, with n < N , leading to the dimensionality
reduction.

Then the problem of grouping is reduced to the spectral
analysis of the affinity matrix Aij , where the salient objects
in the scene correspond to the eigenvectors with largest
eigenvalues.

We just showed in the previous paragraphs that this spec-
tral analysis can be implemented by the neural population
equation in the functional architecture of the primary visual

cortex. We can now interpret eigenvectors of Eq. (4.4) as the
gestalten segmenting the scene.

5 Numerical simulation and results

5.1 Numerical approximation of the kernel

We numerically evaluate the connectivity kernel ω, defined
by Eq. (2.9), in a descrete (x, y, θ) volume, whose cells
will be denoted �i,j,k . Since the kernel is invariant with
respect to rotation and translation it will be computed at the
point 0, and the kernel in any other point will be obtained
via rigid transformation. Hence we will consider the dis-
crete fundamental solution �d as well as ωd function of an
unique variable (i, j, k). These kernels will be numerically
estimated with standard Markov Chain Monte Carlo meth-
ods (MCMC) (Robert and Casella 2004). This is done by
generating random paths obtained from numerical solutions
of the system (2.5). This system is discretized as follows

⎧
⎪⎪⎨

⎪⎪⎩

xs+�s − xs = �s cos(θ)

ys+�s − ys = �s sin(θ)

θs+�s − θs = �sN(σ, 0)

, s ∈ {0, . . . , H } (5.1)

Fig. 16 In the image on the left
a random distribution of
segments and a coherent
structure are present. On the
right the first eigenvector of the
affinity matrix is shown. In red
are visualized the segments on
which the eigenvector is greater
than a given threshold
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Fig. 17 On the left is visualized
the affinity matrix. On the right
its eigenvalues are shown

where H is the number of steps performed by the random
path and N(σ, 0) is a generator of numbers taken from a
normal distribution with mean 0 and variance σ . Solving
this finite difference equation n times will give n differ-
ent realizations of the stochastic path. The estimated kernel
�d(i, j, k), is computed averaging their passages over dis-
crete volume elements, and smoothing the results with local
weighted means. More precisely at a fixed time value s we
count the number of paths that passed through each grid cell
Mijk . Dividing by n, this provides a distribution which, for
large values of n gives a discrete approximation of the solu-
tion of Eq. (2.6) that we will denote ρ(M, i, j, k, s|0). The
fundamental solution of its stationary counterpart which
approximates the connectivity kernel (2.7) will then be
computed integrating in the s variable:

�d(i, j, k) = 1

H

H∑

s=1

ρ(M, i, j, k, s|0).

We refer to (Higham 2001) where the code for the imple-
mentation of a similar Stochastic differential equation is
provided.

In Fig. 13 a projection of the fundamental solution �d

is visualized with different number of paths. In Fig. 14 a
level set of the connectivity kernel ω is represented (a dif-
ferent level set had been anticipated in Fig. 6). In Fig. 7
the connectivity kernel was superimposed to the pinwheels
structure outcome of a simulation following Barbieri et al.
(2014). In Fig. 9 (left) the kernel was visualized by means
of black points generated with a probability density propor-
tional to the value of the kernel at the point (x, y, θ̃(x, y)).
The comparison of the image with the results of Bosking
presented in Fig. 8 (right) shows that the kernel ω provides
a good estimate of the measured cortical connectivity.

The numerical approximation of the isotropic ver-
sion of the kernel proposed by Angelucci et al. (2002),

and discussed in section 2 follows the same strategy. Equa-
tion (2.12) is approximated by
⎧
⎪⎪⎨

⎪⎪⎩

xs+�s − xs = �sN(σ1, 0)

ys+�s − ys = �sN(σ2, 0)

θs+�s − θs = �sN(σ3, 0)

, s ∈ {0, . . . , H } (5.2)

where σ1, σ2, σ3 are the variances in the x, y, θ directions.
By integrating this system the isotropic fundamental solu-
tion is computed and the kernel visualized in Fig. (11) is
obtained.

5.2 Results of grouping

In Field et al. (1993) experimented the ability of the human
visual system to detect perceptual units out of a random dis-
tribution of oriented elements. In Fig. 15 (left) it is shown
the stimulus proposed to the observer, from which the visual
system is able to individuate the perceptual unit shown in
the right. In the following we will test our grouping model
on similar stimuli to individuate the perceptual units present
in the images.

In the first experiment we considered 150 position-
orientation patches, with coordinates ξi . A subset of ele-
ments is organized in a coherent way and the large majority
is randomly chosen, in a way similar to the experiment of

Table 1 Main steps of the algorithm.

1. Define a domain �d, which is the array

(ξi )i=1,··· ,n
2. Build the affinity matrix Ai,j = γμω(ξi , ξj )

3. Solve the eigenvalue problem Au = λu

4. Detect the eigenvector associated to the

largest eigenvalue, and represent in the �d

domain
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Fig. 18 A stimulus containing 2
perceptual units (top left) is
segmented. After that the first
eigenvector of the affinity
matrix is computed (top right),
the affinity matrix is updated
removing the detected
perceptual unit. The first
eigenvector of the updated
affinity matrix is visualized
(bottom left). The procedure is
iterated for the next unit (bottom
right)

Field et al. (1993) (see Fig. 16, left). These points define a
domain �d = {ξi : i = 1, · · · n} as in Eq. (4.1), and we
will define the input stimulus h as a function defined on the
whole cortical space M , which attains value c on � and 0
outside.

The connectivity among these elements is defined as in
Eq. (4.3), by means of the connectivity kernel γμω(ξi, ξj ).
The entries of the associated matrix Aij are visualized in
Fig. 17. It is evident the quasi block structure of the matrix
with a principal block on the top left and small blocks on the
quasidiagonal structure. The principal block corresponds to
the coherent object and the diagonal to the correlated ones.
The eigenvalue problem (4.4) is faced and eigenvalues of
the associated affinity matrix are computed.

Figure 17 right shows the ordered distributions of eigen-
values, where a dominant eigenvalue is present. The corres
ponding eigenvector is visualized in Fig. 16. The algorithm
is summarized in Table 1. (right) and individuates the
coherent perceptual unit.

In the second experiment a stimulus containing 2 percep-
tual units is present. As before we compute the connectivity
kernel γμω(ξi, ξj ) and the associated matrix Aij . The
eigenvalue problem (4.4) is faced and eigenvalues of the
associated affinity matrix are computed. The first eigenvec-
tor of the affinity matrix is computed and shown in Fig. 18
(top right). After that the affinity matrix is updated remo-
ving the detected perceptual unit. The first eigenvector of the
updated affinity matrix is visualized in Fig. 18 (bottom left).

Fig. 19 A classical Kanizsa
triangle (left) and the first
eigenvector in red (right). The
successive eigenvectors account
for the circles, showing that the
triangle is more salient than the
circles
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Fig. 20 Segmentation with the
isotropic kernel of Eq. (2.13)
applied to the stimulus of
Fig. 18. The first two
eigenvectors of the operator are
visualized, showing that the
segmentation is achieved but
spuriuos segments are generated

The procedure is iterated for the next unit which only
contains two oriented element (bottom right).

Figure 19 shows the selection of the most salient struc-
ture of the Kanizsa triangle. When applying the model, the
first eigenvector corresponds to the 3 inducers of the trian-
gle linked together that indicates which boundaries should
be completed tfor the perception of the triangle. The circles
correspond to less salient eigenvectors.

Finally we show the results of a numerical experiment
with an isotropic kernel in the cortical space (x, y, θ), cor-
responding to an isotropic connectivity pattern between
simple cells. An isosurface of the kernel is visualized in the
top of the figure. The segmentation model is applied to the
stimulus of Fig 18. The two perceptual units are detected as
principal eigenvectors (Fig. 20), but the result is more noisy
then in case of the Fokker Planck based kernel.

6 Discussion

We have shown that a mathematical model of the functional
architecture of the primary visual cortex, expressed in term
of a mean field equation and of suitable horizontal connec-
tivity kernels, gives rise to neural activation patterns that
appear as perceived units. The real cortical function of V1
suggested by the model consists in 3 basic features: a) The
cortex provides a space whose connectivity embeds gestalt
rules (good continuation in our model). This connectivity
space is learned by statistics of natural images. b) This space
is sampled by the visual input, generating a subspace that
is a stimulus dependent connectivity graph. c) Eigensolu-
tions of mean field equations on this subspace corresponds
to visual units.

A first comment concerns the nature of visual percep-
tion that is suggested by the poposed model. The symmetry
breaking mechanism of the mean field equations has been
introduced by Bressloff and Cowan as a model for visual
hallucinations that are produced by the use of psychotropic
drugs. In that model drugs are exciting the entire corti-
cal space in an unconstrained manner and hallucinations

emerge as eigenvectors in the full SE(2) structure. In our
model the visual input excites a subdomain of SE(2) and
visual units emerge as eigenvectors constrained to the new
domain. Then the suggestive idea of Jan Koenderink that
visual perception is a constrained hallucination (Koenderink
and van Doorn 2008) seems to be strongly supported by
the model, suggesting that a common mechanism is at the
base of hallucinations and perception of visual units. The
difference between the two is just due to the different shapes
of the excited domains of V1.

Let’s outline that the proposed model has the following
properties:

1) it is compatible with the emergence of percep-
tual units as in classical phenomenology of percep-
tion. In our model the connectivity kernel encode
the good continuation law of the Berliner gestalt
school and the association field of Field, Heyes and
Hess. Moreover when figure-ground articulation is
performed, the emergent figure corresponds to the
most salient gestalt present in the visual stimulus, as
in classical theory of phenomenology of perception
(Merleau-Ponty 2012).

2) it is formally equivalent to the mechanism of grouping
proposed in computer vision by basic spectral methods
for figure segmentation (Perona and Freeman 1998). In
spectral methods, segmentation is performed by com-
puting eigenvectors of an affinity matrix. We show here
that the solutions of the neural mean field equation cor-
respond to eigenvectors of the horizontal connectivity
operator, that plays the role of the affinity matrix in
computer vision.

3) it corresponds to kernel principle components
analisys of the connectivity matrix activated by
the visual input, allowing to interpret the neu-
ral/perceptual process of emergence of gestalt in terms
of dimensionality reduction of graphs as in machine
learning.

The neural model implemented in the functional geome-
try of V1 performs a grand unification among four different
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scientific areas: computational neuroscience, visual percep-
tion, computer vision and machine learning. It is not our
intention to judge if the spectral computer vision technique
is the best in performing grouping or to evaluate its per-
formance in comparison to others. Nor it is our interest to
compare different machine learning techniques (for exam-
ple PCA, independent component analysis, sparse coding).
We would like just to note how the basic features 1) 2)
3) naturally emerge from a simple model of the brain in a
unified and integrated setting.

As a last comment let’s note that Bressloff and Cowan
have shown in Bressloff et al. (2002) that the emerging of
patterns by symmetry breaking of the mean field equation
is formally equivalent to the morphogenetical process intro-
duced by Turing in his mailstone paper on the chemical
basis of morphogenesis (Turing 1952). We propose in this
paper that the constitution of perceptual units underlines the
same principle of symmetry breaking of the evolution equa-
tion, where the equation is now defined on a continously
varying domain defined by the visual input. This situation
is even closer to the original paper of Turing, where the ori-
gin of the symmetry breaking is due to the deformation and
growing of the domain of the equation.
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