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Abstract This numerical study documents and analyzes
emergent spiking behavior in local neuronal populations.
Emphasis is given to a phenomenon we call clustering, by
which we refer to a tendency of random groups of neurons
large and small to spontaneously coordinate their spiking
activity in some fashion. Using a sparsely connected net-
work of integrate-and-fire neurons, we demonstrate that
spike clustering occurs ubiquitously in both high firing
and low firing regimes. As a practical tool for quantifying
such spike patterns, we propose a simple scheme with two
parameters, one setting the temporal scale and the other the
amount of deviation from the mean to be regarded as signif-
icant. Viewing population activity as a sequence of events,
meaning relatively brief durations of elevated spiking, sep-
arated by inter-event times, we observe that background
activity tends to give rise to extremely broad distributions
of event sizes and inter-event times, while driving a system
imposes a certain regularity on its inter-event times, pro-
ducing a rhythm consistent with broad-band gamma oscil-
lations. We note also that event sizes and inter-event times
decorrelate very quickly. Dynamical analyses supported by
numerical evidence are offered.
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This paper is about emergent dynamics in a network of
integrate-and-fire neurons intended as a toy model for a
local population somewhere in the brain. Our focus is on
population activity rather than the dynamics of individual
neurons, and we are interested in spiking behavior both in
spontaneous activity and under drive. These patterns are
the results of very complex neuron-to-neuron interactions,
a rigorous analysis of which is out of reach at the present
time. Reported in this paper are results of a numerical study
the aim of which is to document the widespread occur-
rence of a phenomenon we call spike clustering, referring to
the tendency for neuronal populations to have brief periods
of elevated spiking separated by relative lulls. An extreme
form of clustering is when the entire population, or a signif-
icant fraction of it, synchronizes its activity; that has been
studied by many authors and will not be considered here.
Another example of clustering – a strong form of it – is the
production of rhythms when a system is under drive. But
clustering can also occur in more subtle ways; for a sneak
preview, see the bottom three panels in Fig. 2. We will show
that both in background and under drive, it is quite natu-
ral for a randomly connected population of excitatory and
inhibitory neurons to produce structured, inhomogeneous
dynamics that are nowhere close to synchronization, and we
propose a unified dynamical explanation.

First, we acknowledge previous works related to syn-
chronization as an emergent phenomenon: For a small sam-
ple of the vast literature, see Kuramoto and Arakai (1975),
Mirollo and Strogatz (1990), Tsodyks et al. (1993, 2000),
Hansel et al. (1993), Whittington et al. (2000), Börgers
and Kopell (2003, 2005), Börgers et al. (2005), Deville and
Peskin (2008), Kilpatrick and Ermentrout (2011), and Mark
and Tsodyks (2012). Section 5 contains a brief discussion
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of these and other results. In most of the papers cited above,
either the entire population or a significant fraction of it
is synchronized or phase-locked for a good fraction of the
time. Structured dynamics that do not involve synchroniza-
tion or partial synchronization of any kind are studied in
the the experimental papers of Plenz (see e.g. Beggs and
Plenz 2003; Hahn et al. 2010; Plenz et al. 2011), which
coined the term “neuronal avalanches”. Independently, Ran-
gan and Young discovered in their computational modeling
of V1 (Rangan and Young 2013a, b) a similar phenomenon
which they called “multiple firing events”, or MFEs.

The phenomena studied in the present paper are much
closer to those studied in (Beggs and Plenz 2003; Hahn et al.
2010; Plenz et al. 2011; Rangan and Young 2013a, b), but
there are differences in emphasis and characterizations. For
this reason, we have elected to use a different terminology.
It is likely that all are attempts to capture, from one angle or
another, the same general phenomena.

Clustering of this kind studied here produces spike pat-
terns that are highly irregular yet clearly structured. Tem-
porally localized elevations in spike rate can be due to the
coordinated activity of any number of neurons, ranging from
a handful to a sizable fraction of the population, with the set
of participating neurons varying from event to event. In par-
ticular, the population is not divided into groups that spike
together, as is the case in e.g. (Kilpatrick and Ermentrout
2011; Hansel et al. 1993). With regard to time gaps between
clusters, not only do they vary nontrivially in duration, the
rises and falls in local-in-time spike rates are generally
untidy, sometimes ill defined. The dynamics are very far
from periodic, a fact that is evident even if one observes the
system for only a small fraction of a second.

What exactly, then, constitutes a cluster? There are
no right or wrong answers to this question, though some
answers are more satisfactory than others. Without a formal
definition, however, one cannot begin to collect statistics.
In this paper we take an operational approach, designed to
handle data (experimental or numerical) without a priori
assumptions. While clusters are easy to identify by visual
inspection, it is more challenging to come up with a for-
mal definition that is both meaningful and inclusive. A good
definition should be effective not only in obvious situations
such as synchronous spiking involving substantial fractions
of the population, it should be able to detect oscillations on
various timescales, as well as more ambiguous types of clus-
tering such as those discussed in the last paragraph – and it
would be good to treat all these situations under an umbrella
framework. Multiple tests were conducted on many differ-
ent regimes of our network, and a definition that performed
acceptably is proposed in Section 2.

With a definition of clusters in hand, we propose to view
population activity in terms of “events”, i.e., identifiable
clusters of spikes, separated by “pauses”. We find that event

sizes and inter-event times are very broadly distributed in
background, and that external stimulation fosters a certain
regularity in inter-event times. But even these narrower dis-
tributions have considerable spread, and are qualitatively
consistent with broad-band gamma oscillations (which, in
cortex, are known to correspond to elevated frequencies
in the range of 25-80 Hz, see e.g. Henrie and Shapley
2005). We propose that the mechanisms discussed here
are more realistic than PING (Börgers and Kopell 2003;
Whittington et al. 2000), which produces essentially time-
periodic rhythms. A more detailed comparison is given at
the end of Section 4.1.

To recapitulate, the aim of this paper is to shed light
on the phenomenon of clustering, and we are especially
interested in inhomogeneous, structured dynamics that do
not rise to the level of synchronization. In addition to
proposing metrics to systematically capture and calibrate
spike patterns, we seek to elucidate underlying dynami-
cal mechanisms. Our understanding of these very complex
phenomena is far from complete, but whenever we can,
we try to offer explanations in terms of neuron-to-neuron
interactions, and to support our heuristic arguments and
conjectures with further numerical simulations.

Codes used to generate all the figures in this paper can be
downloaded from ModelDB.

1 Model description

This section contains a detailed description of the mod-
els and parameters we use. Very briefly, we consider a
homogeneously connected network of leaky integrate-and-
fire neurons intended to model a local neuronal population.
Such a model involves a nontrivial number of parameters.
As it is not feasible to systematically explore a high dimen-
sional parameter space, we will, for the most part, fix all
but one or two of these parameters carefully chosen to
allow for a wide range of dynamical behaviors, and inves-
tigate the low dimensional slices of parameter space so
defined.

1.1 Model equations and specifications

We consider a network of NE excitatory and NI inhibitory
neurons, with NE + NI in the hundreds, and NE/NI = 3.
The simulations shown are for NE = 225 and NI = 75.
Each E-neuron is assumed to be presynaptic to 15 % of the
E-population and to 30 % of the I-population, while I-to-
E and I-to-I connectivities are taken to be 50 %. For each
neuron in the network, its set of postsynaptic neurons is ran-
domly drawn, leading to different realizations of random
graphs, which are fixed for the duration of the numerical
studies discussed in the sections to follow.
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Each neuron is modeled using standard integrate-and-fire
equations. Its membrane potential, V, which we have nor-
malized to have a reset value of VR = 0 and a spiking
threshold of VT = 1, evolves according to the equation

V̇ = − 1

τleak
V − (V − VE)gE − (V − VI )gI . (1)

Here, time is measured is ms, and gE, gI ∈ [0, ∞) are the
excitatory and inhibitory conductances of the neuron; they
are time-dependent variables governed by Eqs. (2) and (3)
below; VE = 14/3 and VI = −2/3 are excitatory and
inhibitory reversal potentials, and τleak = 20ms is the leak
rate. These numbers follow commonly accepted biophysical
parameters, normalized to put [VR, VT ] = [0, 1], see e.g.
Koch (1999). The meanings of VT and VR are as follows:
As we will see, most of the time, V (t) ∈ [VR, VT ]. There
is an overall upward trend, and when V reaches VT = 1,
the neuron fires an action potential, or a spike, after which
its V-value is reset to VR = 0, and will remain there for an
absolute refractory period of 4ms.

For a neuron n of type Q ∈ {E, I }, its conductances
satisfy

τEġE = −gE +SQE

∞∑

i=1

δ
(
t − t

syn,E
i

)
+Sdr

∞∑

i=1

δ
(
t − tdr

i

)

(2)

τI ġI = −gI + SQI
∞∑

i=1

δ
(
t − t

syn,I
i

)
. (3)

These equations can be understood as follows. First there is
the synaptic input received by neuron n: We assume a synap-
tic failure rate of 1/2 for all neurons, so that a spike from
a neuron presynaptic to n will affect n with probability 1/2,
independently from spike to spike. In Eqs. (2) and (3) above,
{tsyn,E

i , i = 1, 2, . . . } are the times at which a kick from one
of the excitatory neurons in the network is (successfully)
received by neuron n. Likewise, {tsyn,I

i , i = 1, 2, . . . } are
the times at which inhibitory kicks are received. Rise time
in conductance upon arrival of an impulse is assumed to
be instantaneous, hence the δ-function in front of the sum-
mands in Eqs. (2) and (3), while decay times for excitatory
and inhibitory conductances are taken to be τE = 2ms and
τI = 3ms, respectively. (Convention regarding δ-functions:
the second term in Eq. (2), for example, should be inter-
preted to mean gE jumps up by an amount equal to SQE/τE

at time t
syn,E
i ). The constants SQE and SQI represent the

amplitudes of the kicks; they depend only on the types (i.e.,
E or I) of the pre- and postsynaptic neurons, and SQQ′

means from type Q′ to type Q.
Additionally, neuron n receives a drive in the form of

small Poisson kicks the arrival times of which are denoted
by {tdr

i , i = 1, 2, . . . }; this is the third term on the right
side of Eq. (2). These kicks are delivered at rate γ Qηdr and

coupling constant Sdr; here ηdr and Sdr are system constants
and γ Q ≥ 1 is a constant that can be varied. We assume
the arrival times of these kicks are independent for different
neurons, and think of this term as representing the combined
effect of a background drive and an external stimulation: the
background drive has rate ηdr, and the external stimulation
is modeled as an increase in the rate of this drive.

1.2 Remaining parameters

The parameters we have yet to discuss are

– the coupling strengths SQQ′
, Q, Q′ ∈ {E, I },

– parameters related to background drive, namely Sdr and
ηdr, and

– parameters corresponding to the strengths of external
stimulation, i.e. γ Q, Q ∈ {E, I }.

We have tried to use accepted biophysical parameters when-
ever we can, but there is little experimental guidance for
these remaining parameters, and our choices below are not
based on compelling biological reasons. Nevertheless, we
explain how we arrive at the numbers we use, and introduce
the two main parameters to be varied.

First we fix the quantities related to background drive.
We assume Sdr is very small, and would like the firing rate
of a neuron in the absence of synaptic input to be very low.
In our simulations, we use Sdr = 0.0028 and ηdr = 3.8
ms−1, which gives a firing rate of 0.5 spikes/s.

Next we choose SEE . It is sometimes said that “15-20
excitatory kicks in quick succession should lead to a spike”,
though the precise meaning of this statement is up to inter-
pretation. We choose SEE = 0.02. To give a sense of what
this means, observe that the impact of an excitatory kick
that arrives at time t0 depends on (i) the voltage V of the
receiving neuron at time t0, (ii) its conductances gE and
gI at time t0, (iii) the Poisson input received by this neu-
ron after time t0, and (iv) other synaptic inputs received in
the several ms before and after t0. First we simplify the
situation by eliminating (iv) from the picture: in a low-firing
regime, it is entirely possible to have no other synaptic event
shortly before or after the arrival of the kick in question.
Without (iv), it suffices to consider a single neuron. The
following numerical experiment was performed: We subject
a single neuron to background drive (only), fix a number
V0, and deliver an SEE-size excitatory kick to it at various
times when its V = V0, making sure that these kicks are
far enough apart that gE and gI have ample time to return
to their natural values. We then compute the probability that
this neuron spikes within 4ms after receiving the kick. For
SEE = 0.02, we find that at V0 = 0.96, the probability of
eliciting a spike is about 55 %, and for V0 = 0.92, it is about
15 %. These are theoretical values. For a neuron embed-
ded in a network, (iv) above generally cannot be ignored,
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and taking (iv) into consideration, these spiking probabili-
ties have to be revised upwards or downwards depending on
the balance of excitation and inhibition received around the
arrival time of the kick in question.

Next we set SIE = 1
2SEE . This is to compensate for the

fact that in our system, an I-neuron is postsynaptic to twice
as many E-neurons as an E-neuron is (30 vs 15 %). That is
to say, other things being equal, we would like the overall
excitatory input into an E-neuron to be similar to that into
an I-neuron.

With SEE fixed, we will permit SEI to vary, but instead
of using it as our free parameter, we think it is more intuitive
to consider the following: As τE, τI → 0, each synaptic
input would cause the voltage of the postsynaptic neuron to
“jump”, and the size of this jump, denoted δV QQ′

, could
be indicative of the synaptic strength from neurons of type
Q′ to neurons of type Q – assuming for definiteness that
V = 1 for the postsynaptic neuron when the synapse arrives.
Thus for instance, δV EE = SEE ∗ (14/3 − 1) = 0.073, and
δV IE = 0.073/2. Using this notation, we now define our
first parameter, α, to be

(δV EE, δV IE, δV EI , δV II ) = 0.073∗(1, 1/2, −α, −α/3).

Thus α = 1 means that under the idealized condi-
tions above, an I-kick decreases the voltage of an excitatory
neuron near threshold by an amount roughly equal to the
increase in voltage caused by an E-kick.

We have taken SII = 1
3SEI . This choice was made for

reasons of conceptual simplicity: When SII is comparable
to SEI , increasing SEI (keeping all else constant) has the
effect that each I-spike is more suppressive, but there are
fewer I-spikes due to the increase in SII ; thus the net effect
of increasing SEI on the E-population is unclear. Letting
SEI be somewhat larger than SII reduces this competition,
and enables us to think in the following simplistic way: in-
creasing α increases the amount of inhibition in the system.

The second parameter we consider is γ = γ E . We will
allow this constant to vary, but recall that γ = 1 corresponds
to the absence of external stimulation, and (γ − 1)ηdr is the
drive rate for E-neurons due to external stimuli. Finally we
assume (γ I − 1) = 1

3 (γ − 1), the 1
3 -factor taken in part to

offset the ratio in SII /SEI .

With the exception of Section 4.2, where some additional
parameters are explored, the two parameters that will be
varied in this paper are α and γ :

• increasing α means increasing SEI (and SII ),
• γ = 1 and > 1 will be referred to as the “undriven” and

“driven” cases respectively;

all other parameters will remain fixed.

1.3 Firing rates

To give an idea of the combined effect of the parameter
choices we have made, we show in Fig. 1 the firing rates of
the networks as α and γ are varied. As expected, firing rates
decrease as α increases for the undriven network, and they
go up with γ for a fixed value of α.

2 Emergent phenomenon of clustering

The goal of Section 2.1 is to demonstrate, through the
presentation of several raster-plots, that spikes from a popu-
lation such as ours tend not to occur homogeneously in time
but in clusters. The goal of Section 2.2 is to formalize suit-
able definitions of “clusters”, and to devise metrics to aid in
their statistical study.

2.1 Phenomenology

We have examined the spiking patterns of networks corre-
sponding to many values of α and γ ; a representative sample
is presented in Figs. 2 and 3. Figure 2 shows raster-plots
of five regimes with increasing α from top to bottom. The
regime in the top panel has very little inhibition and is not
intended to be realistic (except possibly in special situations
such as epileptic seizures), but we have found it instructive
to use its relatively simple dynamics as a departure point to
investigate the more complicated spike patterns that develop
as the strength of inhibition is increased gradually.

Shown in the top panel of Fig. 2 are population spikes,
i.e. near-synchronous spikes that involve nearly all of the
neurons in the network, occurring semi-regularly at roughly
100 ms apart. This picture is typical of systems with very

Fig. 1 Firing rates for
excitatory (red) and inhibitory
(blue) neurons: (a) as functions
of α with γ = 1, and (b) as
functions of γ , for α = 3.
Shown in each panel are the
superposition of 4 graphs,
corresponding to 4 different
realizations of our network
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Fig. 2 Raster-plots of the
undriven network (i.e. γ = 1)
for various values of α. From
top to bottom:
α = 0.1, 0.45, 0.75, 1.5 and 3.
Within each panel, the
horizontal axis is time, in ms.
Rasters for all I-neurons are
shown on top (blue), E-neurons
at the bottom (red)
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low inhibition (e.g. α < 0.35, see Fig. 1a), and the dynam-
ical mechanisms behind it are relatively simple: When one
excitatory neuron spikes, it raises the conductance of a num-
ber of postsynaptic E-neurons, making them more likely to
spike, and when sufficiently many excitatory neurons cross
threshold within a short time, just about the entire popu-
lation will get pulled over. Here the effects of inhibitory
neurons are minimal. Notice that the time lapses between
consecutive population spikes are variable but have char-
acteristic lengths. To understand the lengths of these time
intervals, consider first the case α = 0, SEE sufficiently
large, and τE, τI → 0. In this limit, the crossing of thresh-
old by one excitatory neuron will cause the entire population
to spike immediately. This implies that the times between
population spikes are first arrival times for the population
of E-neurons under independent background Poisson drive.
More precisely, by “first arrival time”, we mean the time it
takes the first of the 225 E-neurons to reach threshold when
they all start at t = 4ms (end of refractory) with V = 0 and a
value of gE equal to what remains of the rise in conductance
caused by a population spike at t = 0.1 In the panel shown,

1If the refractory period is absent or too short, gE may increase
with each population spike. Our 4ms refractory period was chosen to
quench this build-up in conductance and subsequent runaway spiking.
It has virtually no effect on regimes other than those with very small α.

the mean of the first arrival time distribution is about 0.1s,
much smaller than the mean arrival time of 2s for a single
neuron (see Section 1.2). The situation considered here is an
approximation of this limiting regime: τE,I are small rela-
tive to other timescales in the system, and α is small. The
parameter SEE , however, is also quite small; consequently
it usually takes the spiking of a number of E-neurons to set
off an avalanche.

The next panels show the breaking up and continued
degradation of population spikes as α is increased. At
α = 0.45, while large scale spiking events involving nearly
the full population continue to occur, meddling by I neu-
rons leads to a less tidy picture. At α = 0.75, population
spikes are no longer feasible, but instances of temporar-
ily localized, coordinated spiking that involve substantial
numbers of both excitatory and inhibitory neurons are still
clearly visible. As α increases, these numbers become
smaller, the events become less clearly defined and occur
with less regularity, but even at α = 3 (bottom panel),
where each neuron fires only once per sec, one sees more
coordinated firing than one would as a result of random
chance alone.

We remark here on the strong nonlinearity of firing rates
and firing statistics as functions of α. Returning to Fig. 1a,
one sees that between α = 0.4 and 0.6 − 0.7, there is
a sharp drop in firing rates. Increasing α further, firing
rates level off; as a matter of fact the last 3 panels in
Fig. 2 also do not change dramatically. The situation can
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Fig. 3 Raster-plots of the
driven network at α = 3 over 1
sec intervals. Top: γ = 1.33;
bottom: γ = 2
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be summarized as follows: For very low inhibition, the sys-
tem fires in near-synchrony; such regimes are quite stable,
meaning not very sensitive to small changes in parame-
ters. As inhibition increases, the system settles down to a
much lower firing regime which is also very stable qual-
itatively, and the transition from the first to the second is
quick.

Figure 3 shows two sample raster-plots for the driven
case. These plots are much “busier” as firing rates are con-
siderably higher (hence we show only a 1 sec stretch),
but columns of raster points that are vertically aligned are
clearly visible in the weakly driven regime (top panel) and
less clearly but still visible in the more strongly driven
regime (bottom panel), suggesting temporally localized
coordinated spiking events.

Discussion By just about any standard, the network regimes
depicted in Figs. 2 and 3 exhibit very different dynamical
behaviors. What they do have in common are instances of
coordinated spiking involving various subpopulations, i.e.,
the tendency to spike in clusters. We will demonstrate in
the pages to follow that the dynamical mechanisms behind
many seemingly different spike patterns can be seen in a
unified light if one is willing to accept a broad enough
definition of “clusters”, namely one that permits (i) the
involvement of subpopulations of variable sizes, and (ii)
variable degrees of regularity and frequencies for inter-event
times.

The 2-parameter family of networks defined in Section 1
will be used throughout to illustrate the ideas proposed.
This family was not chosen for its clustering properties,
but we do not know to what degree our model choice
has favored the emergence of clusters. In addition to this
family, we have examined many other examples of simi-
larly constructed neuronal networks for different choices of
connectivities and SQQ′

, and have found them to exhibit
spike patterns qualitatively similar to those illustrated in
Figs. 2 and 3; in particular, some degree of clustering
is seen in virtually all of them. (For examples of larger

networks, see Rangan and Young 2013a, b). We have
not conducted a systematic search in parameter space, as
that would not be feasible, though some of the parame-
ters that we have looked at are quite far apart. We also
do not claim that spike patterns quantitatively resemble
those shown, only that a certain basic phenomenon, namely
what we call clustering, appears to be ubiquitous and
recognizable.

2.2 Defining clusters

Clustered spiking is about the collective behavior in a pop-
ulation of neurons; it has to do not just with how individual
neurons behave but how they relate to one another. From
close-up examination of the rasters, we know it is not the
case that the population in question is divided into distinct
subgroups that co-activate; see Fig. 5b below. How, then,
would we define a “cluster”? The examples shown tell us
what not to do: We cannot require the participation of a
fixed number of neurons or a fixed fraction of the pop-
ulation, nor can we require periodicity, and we certainly
cannot dictate how frequently clusters occur. Requirements
of the type above will unnecessarily restrict the scope of our
definition.

The following properties, on the other hand, are rele-
vant: First, if our definition is to be effective in detecting
rises and falls in spike rates that occur on arbitrary tempo-
ral scales, then the investigator must be able to choose a
resolution at which to view the patterns. Second, if our defi-
nition is to capture relevant behavior, then depending on the
nature of the study, the investigator must be able to set the
scale, meaning how large a burst of activity, or how far it
has to deviate from the mean, for it to be considered a sig-
nificant event. Thus our proposed definition will carry two
parameters: ε, which represents the resolution, and δ, which
represents the amount of deviation from the mean. For def-
initeness, all discussions of clusters will involve only the
E-population, and we assume the time axis is partitioned
into 1ms bins.
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Fig. 4 Population activity of
several regimes. Shown in the
top 3 panels are population
activity as defined by the
function φ in the cluster
algorithm above for 3 of the
networks considered. Their
parameters ((α, γ ), (ε, δ)) are
((0.75, 1), (8, 1.5)),
((3, 1), (8, 1.5)), and
((3, 2), (4, 0.33)) respectively
from top to bottom; inset shows
a zoom-in of panel 3. In each of
these panels, horizontal lines at
height μ and μ(1+δ) are shown;
and yellow regions are above
bin-intervals defining clusters
according to the algorithm. For
comparison, we have included
an analogous plot for a network
of unconnected neurons (bottom
panel) with independent
background Poisson drive
elevated to give a firing rate of
15 (similar to that in panel 3);
the function φ with ε = 4 is used

Algorithmic definition of a cluster for given
(ε, δ) ∈ (Z+,R+)

1. ε-convolutions: Let φ0(n) be the number of E-spikes
that occur in the time interval corresponding to bin
n. If ε is odd, we let φ(n) = ∑n+(ε−1)/2

n−(ε−1)/2φ0(i), i.e.,
each spike in bin n contributes a “1” to φ(i) for n −
ε−1

2 ≤ i ≤ n + ε−1
2 . The even case is dealt with

similarly.

2. Candidate clusters: Let μ be the expected value of φ,
i.e. μ = rNEε/1000 where r is the firing rate per sec
for individual excitatory neurons and NE is the total
number of E-neurons in the population. Let J be an
interval of time bins. We say J defines a candidate
cluster if

(a) φ(i) ≥ μ(1 + δ) for some i ∈ J and
(b) J is the largest interval with the property that

φ(i) ≥ μ for all i ∈ J .

3. Getting rid of short intervals: Let J denote the set of
intervals J from above. The following two operations
are performed, in the order indicated:

(a) If J1, J2 ∈ J are such that the number of
bins between them is ≤ ε/2, then we replace

J1 and J2 by the shortest interval J ′ containing
J1 ∪ J2.

(b) If J ∈ J contains ≤ ε/2 bins, we remove it from
J . (Such a J can, e.g., arise from two volleys,
both insignificant, occurring slightly < 2ε bins
apart).

Let J̃ denote the resulting collection of intervals.
4. We declare that each J ∈ J̃ defines a cluster of size

1
ε

∑
i∈Jφ(i).

This is admittedly an ad hoc definition, but it is simple
conceptually and the algorithm is simple to implement. Nor
do we claim that the ideas here are completely novel: algo-
rithms that are not markedly different have been used by
experimentalists to capture inhomogeneous spike patterns
before. In Hahn et al. (2010), for example, time bins of a
few ms are considered; bins containing at least one spike
recorded from an electrode array are marked, and contigu-
ous bins separated by blank ones are considered as “events”.
The idea of a “multiple firing event” (MFE) in Rangan and
Young (2013a, b) is a little different: since the fast synaptic
time constants τE, τI have been taken to zero, it is possi-
ble to determine if one spike directly “causes” another, and
an MFE is defined to be a maximal sequence of firings that
are caused by a single neuron. Without claiming that one
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algorithm is better than another (that, needless to say, is
dependent on circumstance), our goals are to propose some
general ideas in the hope of facilitating comparisons and
promoting theoretical studies.

We now demonstrate that the algorithm above “works”,
meaning for suitably chosen (ε, δ) it captures in a reason-
able way what we set out to capture, and is flexible enough
to incorporate a wide range of circumstances.

For illustration, we have included in Fig. 4 the outputs of
this algorithm for three quite different regimes: at α = 0.75
and 3 (undriven) and for a driven regime with γ = 2.
Regimes that produce population spikes are straightforward
and omitted. The rationale behind our choices of the param-
eters (ε, δ) in Fig. 4 is as follows: In the top two panels,
firing rates are so low that had we used a smaller value of
ε, say ε ≤ 5, the relevant number of spikes used to deter-
mine bin intervals would be no more than one or two, and
that is not meaningful unless one wishes to consider sin-
gle spikes as clusters. On the other hand, clusters in these
regimes are sufficiently far apart that a larger ε does no
harm. As for δ, we chose to consider only moderately large
deviations (again because firing rate is low), requiring that
φ rise to at least 2.5 times the mean before registering the
event as a cluster. The third panel together with its zoom-
in are for a strongly driven regime. Here we did not wish
to use ε much larger than 4, as the distances between clus-
ters as they naturally occur may not be much larger. Also,
in driven regimes, there is a constant stream of E-neurons
crossing threshold, so that φ is, on average, nontrivial even
in the valleys. For such regimes, one would expect the fluc-
tuations to be smaller, and numbers on the order of δ = 1/3
are likely to capture better the inherent oscillations in the
system.

The bottom panel in Fig. 4 is included not as illus-
tration of the cluster capture algorithm but to show how

summed population activity might look in a network in
which the neurons are unconnected to one another, i.e.
there is no neuron-to-neuron interaction, and each neuron
is driven by an independent Poisson drive. The feature that
most strongly distinguishes this “null” case from the net-
work regimes shown is that its fluctuations occur in multiple
timescales, ranging from very small (a few ms) to quite
large (more than 50), whereas in the panels above, consec-
utive clusters are separated by recognizable characteristic
timescales.

To be clear, we do not assert, or even suggest, that for all
choices of ε and δ, there is significant clustering in our net-
work model (compared to the null model). For each regime,
there are choices that will accentuate the clustering prop-
erty, and others for which it will be less prominent and
even statistically insignificant. Thus all statements regard-
ing clustering (as defined in this paper) pertain to specific
values of ε and δ.

Figure 5a provides further confirmation that our clus-
ter capture algorithm along with our choices of resolution
and scale are meaningful: In the undriven network (left),
where clustering is strong, large fractions of spikes are
concentrated in small fractions of time bins. In the driven
case (right), given that there are constant streams of volt-
ages crossing threshold, one cannot expect the numbers to
be as clear-cut, but even at (α, γ ) = (3, 2), for exam-
ple, more than 55 % of the spikes are contained in a
little over 35 % of the bins. Such scales of fluctuation are
still fairly visible and not unrealistic. In Fig. 5b, we pro-
vide strong evidence to our assertion at the beginning of
this subsection that in the clustered spiking observed, neu-
rons are not divided into groups that spike together. In
the regime shown, each neuron has, on average, a prob-
ability of about 0.18 of appearing in any one cluster.
From Fig. 5b, we see that during the 3s following a
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Fig. 5 a Coverage: Upper graph in each panel shows the fraction of
spikes captured in clusters, and lower graph shows the fraction of bins
they occupy. Left panel shows undriven network with (ε, δ) = (8, 1.5);
right panel shows the α = 3 network with (ε, δ) = (4, 1/3). b Con-
ditional distribution of participation in cluster: For 1000 randomly

chosen pairs of neurons, named A and B, we compute the conditional
probability that neuron B participates in a cluster given that neuron A is
a participant, during the 3s following a joint participation. The regime
is α = 0.75, γ = 1, the middle panel in Fig. 2
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joint appearance by 2 neurons A and B in a cluster, the
conditional probability of B spiking in a cluster given that
A spikes in it is, on average, only slightly higher than
0.18. Moreover, there is a nice spread in these conditional
probabilities for different pairs, depending on their network
connectivities and other circumstances.

The regimes in Fig. 4 exhibit quite obvious cluster-
ing. In situations with greater ambiguity, one may wish
to carry out an analysis to determine if the amount of
clustering seen is statistically significant. There are many
ways to do this. One possibility is to compare to a null
model as seen through the lens of our cluster capture
algorithm. That is to say, given a regime for which we
wish to establish (ε, δ)-clustering, we proceed as follows.
Suppose r is the mean firing rate per sec of individual
E-neurons, and NE is the number of excitatory neurons
in the system. We divide a time window of n sec into
1ms bins, and independently for each of the rnNE spikes,
we pick one of the 1000n bins with uniform distribu-
tion and put the spike into this bin. Then for the same
(ε, δ) as above, we determine the collection of clusters
using the algorithm at the beginning of this subsection,
and from that we compute the percentages of spikes that
are contained in clusters (as was done in the top curves
of Fig. 5a). Figure 6 shows histograms of fractions of
trials corresponding to these percentages for n = 3.
In (a), the parameters used are those for (α, γ ) = (3, 1)

and (ε, δ) = (8, 1.5), the same regime and scales as in
the second panel of Fig. 4. As can be seen, for a null
model with these parameters, typically 20 − 36 % of the
spikes occur in clusters, and the probability that clusters
account for > 41 % of all spikes is < 0.001, compared
to the ∼ 70 % of spikes in clusters in our model regime
(see Fig. 5a). Similarly, panel (b) corresponds to (α, γ ) =
(3, 2) and (ε, δ) = (4, 0.33), as in the third panel of
Fig. 4.

For related works on statistical significance in relation to
firing patterns, see e.g. Okun et al. (2012).

3 Statistics of clusters

In this section we view population activity in terms of clus-
ters and times between clusters. We will call a cluster an
event, the size of a cluster as defined in the last section (item
4 under “algorithm”) its event size (ES), and the distance
between the midpoints of the time intervals corresponding
to two consecutive clusters as their inter-event time (IET).
In the discussion to follow we will view population activity
as a sequence of

event → pause → event → pause → event → · · ·

and will examine the probability distributions for ES and
IET and relevant correlations.

3.1 Event sizes, inter-event times and their correlations

Distributions of event sizes and inter-event times for two
sample networks, one driven and one undriven, are shown in
Fig. 7a. Corresponding plots for networks with other values
of α and γ are not too different qualitatively– except for the
case of undriven networks with very small α, which we do
not discuss (events there involve nearly full populations, and
IET distributions are explained in Section 2.1).

We observe from Fig. 7a that the distribution of ES in
this undriven network (top left) is very wide: cluster sizes
can range from a few neurons to a third of the E-population.
With such large variations, it makes little sense to speak
of a “typical” event size. The IET distribution of this net-
work (top right) is also extremely wide: they run from about
10 to over 300ms even as we discard outliers at the two
ends. Similar comments apply to the ES distribution of the
driven case (bottom left). The most Gaussian-like of the
four is the IET distribution of the driven network, in which
external forcing has imposed a certain amount of regular-
ity on its spiking activity. Here, the bulk of the data points
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Fig. 6 Histogram of fraction of spikes captured in null model match-
ing (a) undriven and (b) driven firing rates, over 10,000 trials. For
each trial, a number of spikes corresponding to the firing rates of each
regime are distributed uniformly over a 3 second interval, and the

cluster capture algorithm is applied with the same (ε, δ) as previously
used with each regime. Specifically, (a) corresponds to (α, γ ) = (3, 1)

with (ε, δ) = (8, 1.5), and (b) corresponds to (α, γ ) = (3, 2) with
(ε, δ) = (4, 0.33)
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Fig. 7 Event sizes and
inter-event times. The 4 panels
in (a) show distributions of ES
and IET. Left: ES; right: IET.
Top: undriven network with
α = 1.5; bottom: network with
α = 3 and γ = 2. For ES plots,
the mean of the distribution is
marked by a red line; for IET
plots, the largest 5 % of
inter-event times are discarded
(as they may be artifacts of our
algorithm) and the median is
marked by a red line. The 4
panels in (b) show scatterplots
of X followed by Y where (X, Y)
range over all possible pairs of
“ES” and “IET”; data shown are
from the α = 3, γ = 2 network
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falling between 10 to 35 ms, a range that is reminiscent of
broad-band gamma oscillations observed in real cortex
(Henrie and Shapley 2005).

We remark that the wide distributions of ES for undriven
networks reported above are consistent with experimental
observations in e.g. Hahn et al. (2010) and with the emer-
gent dynamics in the computational model of V1 in Ran-
gan and Young (2013b). Both papers reported power-law
distributions, which are in fact part of the definition of “neu-
ronal avalanches” in Hahn et al. (2010). We have not shown
our probability density functions in log-log scale or dis-
cussed power laws because with our limited population size,
it is not clear how meaningful power law distributions for
ES will be, nor are we especially interested in very low
probability events.

We consider next the correlations between consecutive
ES and IET. From the scatterplots shown in Fig. 7b, we
observe that some correlations clearly exist, the most obvi-
ous one of which being that large events cannot be either

preceded, or followed, by short IET; a proposed explanation
will be given in the next section. All in all, however, corre-
lations between current ES and the next IET, or current IET
and the next ES, is not strong. Moreover, another half-step
later, i.e. from one ES to the next ES, or from one IET to the
next IET, biases have subsided considerably, as evidenced
by the fact that the joint distributions shown look very much
like product distributions.

To document these observations, we compute the varia-
tional distances between the joint distributions shown and
product measures. More precisely, we view each of the scat-
terplots shown as representing a probability distribution in
the x-y plane. Discretizing the space by putting m spikes
into one bin for ES and n ms into one bin for IET, we work
with discrete probability distributions supported on a finite
grid. The grid sizes used are chosen on a case-by-case basis
to ensure that there are enough data points for meaningful
comparisons but that local variations, which do not inter-
est us, will not be too dominant. Defining the variational
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Table 1 Distance from product measure (driven)

Next E.S. Next I.E.T.

Current E.S. 0.011 0.12

Current I.E.T. 0.11 0.032

distance between two discrete probability distributions μ

and ν by the formula

d(μ, ν) = 1

2

∑

z

|μ(z) − ν(z)| (4)

where the summation runs over all grid points, we com-
pute, for the distribution corresponding to each one of the
scatterplots, d(μ, μ1 × μ2) where μ is the joint proba-
bility distribution discretized, and μ1 and μ2 are its two
marginals. By definition, then, 0 ≤ d(μ, μ1 ×μ2) ≤ 1, and
a distance of 0 means that μ is a genuine product measure.

Table 1 below shows d(μ, μ1 × μ2) for the driven net-
work whose distributions are depicted in Fig. 7b, with IET
time bins of size 2ms and ES bins of size 5 spikes. The val-
ues shown were computed from a simulation lasting 600 sec
during which about 35,000 events occurred. Corresponding
variational distances for the undriven network with α = 1.5
using IET time bins of size 20ms and ES bins of size 5
spikes are shown in Table 2.

To summarize, our observations regarding ES and IET
distributions in driven and undriven regimes are consistent
with experimental and modeling data. As for their time
correlations, to our knowledge the rapid decorrelation in
ES/IET has not been documented before.

3.2 A stochastic model of population activity

The discussion above suggested the following stochastic
model for describing the population activity of a large class
of networks for integrate-and-fire neurons. It consists of a
sequence of random variables

X1, Y1, X2, Y2, X3, Y3, . . .

where Xi is the size of the ith event and Yi is the inter-event
time between Xi and Xi+1, these numbers being drawn
from computed distributions of ES and IET for the network
in question. In a simplest version of this model, one can
assume, based on the weak correlations seen in Section 3.1,

Table 2 Distance from product measure (undriven)

Next E.S. Next I.E.T.

Current E.S. 0.026 0.13

Current I.E.T. 0.055 0.042

that these random variables are independent (perhaps requir-
ing that a large value of Xi cannot be accompanied by small
values of Yi−1 and Yi). A slightly more sophisticated ver-
sion of the model might be to view the process as Markov,
with conditional probabilities given by the “ES and next
IET” and “IET and next ES” scatterplots. For a more refined
model still, one can consider the duration of an event in
addition to its size, and so on, adding any amount of detail
that one desires.

It is not our aim here to advocate any one specific model.
The message we wish to convey is that since clustering
is a salient characteristic of population activity in many
neuronal systems, and since both event sizes and inter-
event times appear quite random with rapidly decaying time
correlations, stochastic models of the type above may be
a simple yet reasonable way to describe their collective
spiking behavior.

Our proposal offers an alternative to the usual power
spectra approach, in which one seeks to tie semi-regular
behavior to periodicity and preferred frequencies. While
spectral densities summarize voltage fluctuations in a tidy
way, the stochastic models above are easier to interpret and
possibly easier to implement when IETs have very wide dis-
tributions. The most significant difference between the two,
however, is that the models we have proposed contain infor-
mation on event sizes as well as inter-event times, and these
two pieces of information together give a more complete
description of neuronal population activity.

4 Dynamical mechanisms

This section contains some dynamical explanation for the
phenomena observed. As discussed in the Introduction, the
phenomenon of clustering is similar, though not identical,
to the “multiple firing events” or MFEs in Rangan and
Young (2013a, b). This section will have some small overlap
with these two papers. As a rigorous analysis of clustering
is currently out of reach, we would like to present here some
simulation results that we hope will illuminate the dynami-
cal picture and serve as supporting evidence as we test out
some simple hypotheses.

4.1 Dynamics of voltage and spike-rate fluctuations

To understand how these fluctuations come about, we con-
sider first the driven case, where the rhythm is more regular.
A highly averaged “movie” illustrating the prelude to clus-
tered spiking and the aftermath of such an event is shown
in Fig. 8. When interpreting this figure, it is important
to remember that the histograms shown are averaged over
many events; what happens in each event is much less tidy
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Fig. 8 Time evolution of
voltage densities. a Driven
network with α = 3, γ = 2. b
Undriven network with α = 1.5.
Shown are (normalized) voltage
densities taken at the 7 points in
time indicated, T being the point
in time at which the cluster
peaks; E on left, I on right. Each
of the pdfs shown is the average
of such snapshots over a large
number of clusters

a

b

and there is great diversity from event to event; see Fig. 10.
Nevertheless, we think this averaged version makes trans-
parent the mechanism of the up-down swings in spike rates
seen in rasters and other plots shown earlier:

Looking at the voltage distribution of the E-population in
Fig. 8a, we see in the top 3 snapshots an obvious rightward
drift, brought about by recurrent excitation triggered by the
crossing of threshold by one or more E-neurons. This surge
in E-spiking triggers a surge in I-spiking, but that peaks
about 2 ms later. The surge in I-spiking then pushes both the
E- and I-voltages back, away from threshold. The pushback
is completed by the 6th snapshot. In the last 2-3 snapshots,
the main action is the rightward march toward the main

bulge of voltages that were set to 0. Since the mean IET for
this network is 15 − 20 ms, a new cycle will, on average,
begin in several ms. We summarize the action depicted as

E-spike → recurrent excitation → surge in E/I-spikes

→ I-pushback → recharge → · · ·
This mechanism is reminiscent of the rhythm generation
mechanism known as PING. Similarities and differences are
discussed in some detail at the end of this subsection.

We now attempt to explain the larger off-diagonal entries
in Table 1 (Section 3.1); corresponding scatterplots are
shown in Fig. 7b. Looking at the scatterplot for ES vs
next IET, we observe that a significant contribution to the
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correlation computed appears to be that the lower bound for
“next IET” increases monotonically with event size. This is
likely due to the fact that the larger an event, the larger is the
minimum number of I-spikes needed to bring an end to the
E-spiking. Since I-neurons are more densely connected to
all other neurons, the I-pushback described above is likely
felt by all neurons. With the voltages of all neurons some
distance from threshold, there is a minimum recharge time,
and we propose that this is reflected in the lower bound seen
in Fig. 7b.

The aftermath of a smaller event is more complicated, as
not all neurons are uniformly affected by the I-pushback,
and what happens in the 5 − 20 ms thereafter depends to
a nontrivial degree on “luck”, meaning the configuration of
E and I-voltages that remain close, or relatively close, to
threshold and how the corresponding neurons happen to be
connected to one another. Indeed, even following a medium
size event, it is possible for some E and/or I-neurons to be
less affected by the I-pushback than others. (We stress that
the plots in Fig. 8 are averaged over many events; unaver-
aged “movies” can be very messy. See Fig. 10). A partial
explanation for why large events almost never follow small
IET may have to do with this: Since a short IET is likely
to be preceded by a not-so-large event, the situation is, as
explained above, likely to be “messy”: since smaller events
can leave behind neurons near threshold, the smallness of
the next event can be due to intervention of I-neurons hover-
ing near threshold, or a group of E-neurons crossing thresh-
old while the bulk is not yet fully recharged. Scenarios of
this kind have been observed time and again in the “movies”
that we have viewed, though there are likely myriad other
possibilities.

The dynamical mechanism described above applies also
to undriven networks (Fig. 8b). There are, however, notable
differences between the driven and undriven cases, resulting
in more regular rhythms in driven regimes and wider dis-
tributions of IET for undriven populations: In an undriven
network, between events voltages appear to collect near an
equilibrium some distance below threshold (at V slightly
> 0.8 for the regime shown), where they remain until, pos-
sibly by chance, a large enough E-spiking event occurs to
trigger what we define to be a cluster — in contrast to the
driven case where the voltages are in a constant march from
reset to threshold (as a result of the drive). Thus undriven
networks fire volleys at more random times, i.e., their IET
distributions are wider, because the occurrence of the next
event relies more on random fluctuations than in the driven
case. This also explains why, unlike the driven case, corre-
lations between current IET and next ES are smaller; see
Table 2.

Discussion: comparison with PING We digress here to
comment on the relation to PING (pyramidal-interneuronal

network gamma), a previously known mechanism for
rhythm generation. To the degree that both involve the
interplay between excitatory and inhibitory populations, the
ideas above and PING have much in common. Their out-
puts, however, are quite different, and we will argue that our
mechanism produces voltage fluctuations that show greater
resemblance to gamma band oscillations in the real brain.

PING was first proposed in Whittington et al. (2000), in
an attempt to explain EEG oscillations in terms of synchro-
nized activity in neuronal populations. This mechanism was
subsequently studied in much greater detail in a series of
computational papers of Kopell et al; see e.g. Börgers and
Kopell (2003, 2005) and Börgers et al. (2005). In Kopell’s
terminology, PING refers to the phenomenon in which near-
periodic population spikes are produced in a network of
excitatory and inhibitory neurons: E-cells receive identi-
cal input in the form of a strong steady current driving
them significantly above their spiking threshold, while I-
cells are primarily driven by E-cells. A population spike
by E-cells triggers a population spike of I-cells, which then
inhibits the E-population, leading to a period of low activ-
ity. When this inhibition wears off, the E-population spikes
again in a synchronized fashion, and the cycle is repeated.
Kopell also discussed a phenomenon she called “weak-
PING” (Börgers et al. 2005). In weak-PING, E-cells are
stochastically driven, and only a fraction of them participate
in each event in which the entire I-population spikes (this
was also discussed in Whittington et al. (2000)).

The mechanism discussed in this subsection is quite far
from PING, as it generally does not involve population
spikes. It is closer to weak-PING both in terms of the
stochastic drive and the participation of subsets of E-
neurons, but differs from weak-PING in that our I-cells do
not produce population spikes. For the most part, Kopell’s
models are based on the idea that E-cells are driven by exter-
nal input, I-cells are driven by E-cells, and once aroused
they totally suppress all E-cells. In our models, both SEE

and SII are present, and the competition between the E- and
I-populations is more even; neither one is able to overwhelm
the other.

We now turn to comparison with experimental data.
Gamma oscillations of LFP in cortex are well known to
be broad-band, with elevations in a frequency range of
roughly 25 Hz to 80 Hz (Henrie and Shapley 2005). PING
produces a highly regular rhythm, in the sense that its E-
spikes (whether they involve the entire population as in
PING or a fraction of the population as in weak-PING) are
evenly spaced in time. This corresponds to a power spec-
trum that is very close to a delta function. Our much wider
IET distributions for driven networks are more consistent
with broad-band gamma oscillations. For this reason, we
propose that our mechanism may be an improvement over
PING.
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4.2 Further illustrative evidence

We provide here two sets of numerical evidence in support
of the ideas discussed earlier.

(1) The role of recurrent excitation in the dynamical
mechanism described in Section 4.1. To understand
the role played by SEE , we start with the (3,2)-
network, i.e., the network corresponding to α = 3
and γ = 2, and investigate the effects of exchanging
SEE for external drive. The second plot in Fig. 9 has
the same parameters as the simulation from panel 3 in
Fig. 4 without the yellow markers for clusters, i.e., it
shows the function φ in the cluster algorithm for the
(3,2)-network, with ε = 4.

First, we investigate the effect of setting SEE equal
to 0 – while keeping SIE, SEI and SII exactly as
they are in the (3,2)-network, i.e., severing the ties of
these parameters to SEE . In the interest of maintain-
ing the amount of synaptic input to the I-population,
we increase the external drive to the E-population
(keeping the drive to the I-population unchanged) to
bring E-firing rate to roughly the same level as in
the (3,2)-network. The φ function with ε = 4 for
a 500ms stretch of the resulting regime is shown in
the top panel of Fig. 9. The dynamical mechanism
discussed in Section 4.1 is still at work, producing
rises and falls in local spike rates, but we now see
a faster rhythm involving smaller clusters, consistent
with the fact that in the absence of recurrent exci-
tation, the number of excitatory neurons aroused in
each event is smaller (though the external stimulus is
still driving a steady stream across threshold). That
in turn leads to smaller surges in I-neurons, weaker
I-pushbacks than in the (3,2)-network, and shorter
recharge times.

The third panel shows a regime in which SEE is
50 % larger than that in the (3,2)-network, and exter-
nal drive to the E-population is adjusted to maintain
the same E-firing rate, while all other parameters are
unchanged. As a consequence, cluster sizes are larger,
with stronger pushbacks and slightly larger IET.

(2) Competition between the E- and I-populations. Here
we hypothesize that much of what happens hinges on
the outcome of the “race” between E- and I-voltages,
first to reach threshold and then to act on their postsy-
naptic neurons. To test this hypothesis, we start with
the undriven network with α = 1.5, change one of the
parameters in each of the examples below to put the
I-population at either an advantaged or disadvantaged
position in this competition, and confirm numerically
the predicted outcomes.

(a) Changing τ I
leak := τleak for I-neurons (while keep-

ing τE
leak = 20ms). Decreasing τ I

leak to 18ms, for
example, has the effect of putting the equilib-
rium voltage distribution in Fig. 8b farther from
threshold. One would anticipate that this should
give an edge to the E-neurons, which can arouse
one another with less interference from I-neurons,
whose arrival times have been delayed. If so,
larger clusters should result, and vice versa. This
is indeed the case; see Table 3.

(b) Changing (τE, τI ). Another way to alter the effec-
tiveness of the E- or I-population is to change
how quickly a neuron can affect its postsynap-
tic neurons when it spikes. Recall that we have
used (τE, τI ) = (2, 3) throughout. Examples of
a few other (τE, τI )-configurations are studied.
Setting (τE, τI ) = (4, 1), for example, will delay
the impact of E-spikes, and permit I-neurons to
exert their influence considerably sooner. That

Fig. 9 Summed spikes for three
different regimes. Middle: the
(3,2)-network. Top: SEE in the
(3,2)-network is set to zero in
exchange for larger external
drive. Bottom: SEE in the (3,2)-
network is increased by 50 % at
the expense of external drive.
See the main text for detail
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Table 3 Influence of τ I
leak on mean cluster size

τ I
leak 18 19 20 21

mean cluster size 94 53 23 5.1

should discourage cluster formation, a prediction
confirmed in Table 4 below. By a “single firing
event”, we refer to an E-neuron crossing threshold
without another one to follow within 5ms.

4.3 Why are cluster sizes so broadly distributed?

We have seen in Fig. 7a that the distributions of cluster sizes
in both driven and undriven networks are extremely broad.
This is because when an excitatory neuron spikes, the num-
ber of possibilities of what can follow is enormous: The
spiking neuron has a number of postsynaptic neurons, both
E and I, which may or may not be affected due to synap-
tic failure. Those that are affected may or may not spike
depending on their voltages and conductances at that point
in time. That determines the first round of action. Those
postsynaptic neurons that spike then go on to affect other
neurons, which may affect yet others, and so on. In a popu-
lation of a few hundred neurons such as ours, the number of
possible scenarios in the 10ms or so following the spiking
of an E-neuron is innumerable, and many of them give rise
to clusters of various sizes.

To showcase the complexity of the situation, we present
in Fig. 10 three dramatically different pictures following an
excitatory spike. In each case, we have included the distribu-
tion of E-voltages on (0.8, 1), marked in red those neurons
that spike within 10ms or so of the initial spike, and shown
(to the degree that is possible) the combinatorial tree of how
one spike leads to the next. It must be stressed that this is
far from the full picture: we have included neither the action
of inhibitory neurons nor the conductances of the excita-
tory neurons shown. Finally, we remark that not only are
the three scenarios shown in Fig. 10 taken from the same
undriven network (with parameters (α, γ ) = (1.5, 1)), they
in fact occurred within 3 seconds of each other, nor did we
have to try hard to locate such scenarios.

5 Discussion and conclusions

The goals of this numerical study are to shed light on inho-
mogeneous spike patterns in local neuronal populations. We

Table 4 Influence of (τE, τI )

(τE, τI ) (4,1) (3,2) (2,3) (2,7)

mean cluster size 2.3 9.2 23 27

single firing event percentage 57 % 30 % 16 % 14 %

propose practical tools for quantifying a population’s ten-
dency to spike in clusters. Then, using a simple network of
integrate-and-fire neurons, we collect statistics on clusters,
study them, and propose dynamical explanations whenever
we can.

Clustering in this paper refers to temporally localized
elevations in spike activity that occur repeatedly, separated
by relative lulls in between. Synchronization or partial syn-
chronization is a well recognized form of clustering, on
which there is a considerable literature. Notable results
include, but are not limited to, the following: First, there
is Kuramoto’s model of coupled phase oscillators and his
prediction of the dichotomy between phase-locked regimes
and “incoherent” regimes (Kuramoto 1975). This is fol-
lowed by rigorous results, such as Mirollo and Strogatz
(1990), as well as extensions and variants of the Kuramoto
model, such as Tsodyks et al. (1993) and Hansel et al.
(1993). Focusing on various properties of (real) neurons,
other researchers have constructed models that also show,
as an emergent phenomenon, some form of synchroniza-
tion. We mention in particular the use of synaptic depression
to synchronize a mostly excitatory network by Tsodyks
et al. (2000) and Mark and Tsodyks (2012), the produc-
tion of rhythms via PING by Whittington et al. (2000) and
later Kopell and Börges (2003, 2005), the use of synap-
tic failure in excitation-only populations by DeVille and
Peskin to produce synchronous and asynchronous dynamics
as well as regimes that can drift back and forth (Deville and
Peskin 2008), and more recently, the use of spike frequency
adaption by Kilpatrick and Ermentrout (2011) to separate
neuronal populations into finite groups of neurons that spike
together.

Though synchronized or partially synchronized spiking
can be considered a special case of clustering, we have
not focused on this topic as it has already received a
fair amount of attention. We are primarily interested in
structured dynamics in the form of temporally localized bar-
rages of spikes that occur at irregular times. These ideas
were explored in the experimental work of Plenz et al,
see e.g. Beggs and Plenz (2003), Hahn et al. (2010) and
Plenz et al. (2011), and were discovered independently in
the computational modeling of Rangan and Young (2013a).
Plenz et al. emphasized criticality and power law dis-
tributions while Rangan and Young stressed the role of
dynamical causality. The present work can be seen as a
more systematic development of the ideas that originated in
Rangan and Young (2013a, b).

There are many other experimental papers reporting
on structured dynamics, see e.g. Samonds et al. (2005),
Churchland et al. (2010), Leinekugel et al. (2002),
Mazzoni et al. (2007) and Luczak et al. (2013), to cite only
a few. On the modeling, theoretical and analytical level,
papers that investigate various kinds of spike correlations
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Fig. 10 Three different
scenarios. Horizontal axis shows
the membrane potentials of all
E-neurons whose voltages are in
(0.8, 1) when the neuron marked
“1” spikes. Black markers depict
neurons which do not fire in the
next 10ms, and red markers
depict those that do, the
numbers underneath indicating
the order of spiking (in the 3rd
scenario, only the first 10 spikes
are labeled). A green arc is
drawn between a spiking neuron
and all postsynaptic neurons
which received its action
potential; the arc is colored dark
green if the postsynaptic neuron
eventually fires. Note that initial
voltage distributions are roughly
the same in all three cases, yet
the outcomes are very different

1

neurons involved: 1
spikes descended from first: 0

12 3456

neurons involved: 7
spikes descended from first: 6

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

12354 6 7 810

neurons involved: 45
spikes descended from first: 44

include (Litwin-Kumar and Doiron 2012; Yu et al. 2011;
Shew et al. 2011; Dehghani et al. 2012; Brunel 2000; Hansel
and Sompolinsky 1996; Kriener et al. 2008; Battaglia and
Hansel 2011; Trousdale et al. 2013; Staude et al. 2009),
again citing only a sample, the literature being much larger.

Our first order of business in this paper was to try to
identify a notion of clustering that is both precise and
meaningful. A proposal for such a definition is made in
Section 2.2. It involves two parameters: one gives the
relevant resolution and the other a criterion for what
constitutes a notable deviation from the mean. The first
parameter permits an investigator to focus on events that
occur on any temporal scale of his or her choosing,
and the second permits one to give emphasis to small
fluctuations or large deviations as the situation warrants.
Such a definition is flexible enough that it has the potential

of being applicable to a wide range of circumstances, and
we demonstrated that using a simple network of integrate-
and-fire neurons.

A precisely formulated notion of clusters opened the door
to their statistical analysis, which we carried out using our
network models. We have found it productive to view pop-
ulation activity as a sequence of events, characterized by
clustered spiking, and relative lulls between events called
inter-event times. Our first observation is that undriven sys-
tems have extremely broad distributions of event sizes and
inter-event times (consistent with previous works), while
driving a system imposes a certain regularity on its inter-
event durations, making them more narrowly distributed
and fitting the description of broad-band gamma oscilla-
tions in real brains (Henrie and Shapley 2005). We have
argued, based on comparison with experimental data, that
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the dynamical mechanism presented here is more realis-
tic than PING (or weak-PING) as a generator of gamma
rhythms in cortex. Our second observation is that event sizes
and inter-event times decorrelate very quickly, becoming
essentially independent after one full cycle. These obser-
vations have led to a probabilistic description of collective
neuronal activity in the form of two sequences of i.i.d.
random variables as explained in Section 3.2.

With regard to dynamics, careful study of our network
model has brought home the following two messages: The
first is that regimes that exhibit a wide range of behaviors
can sometimes be rationalized, up to a point, by a common
dynamical mechanism (see Figs. 2, 3 and 8). The second
message is the diversity in voltage and conductance config-
urations that can occur within a regime, leading to endless
possibilities each time an excitatory neuron crosses thresh-
old (Fig. 10). The first message gives optimism to theorists.
The second highlights the following challenge: how to sort
out which aspects of this infinitely complex dynamical land-
scape matter, in the sense of impacting neural computation
downstream?

Finally, the work we have presented is based on a toy
model of integrate-and-fire neurons. While there are hints
here and there of compatibility with experimental data on
cortical dynamics, we do not know the extent to which
clustering occurs in the real brain, or what its biological sig-
nificance may be – and that is precisely why we wish to
bring our findings to the neuroscience community.
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