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Abstract Neuronal gamma oscillations have been descri-
bed in local field potentials of different brain regions
of multiple species. Gamma oscillations are thought to
reflect rhythmic synaptic activity organized by inhibitory
interneurons. While several aspects of gamma rhythmoge-
nesis are relatively well understood, we have much less
solid evidence about how gamma oscillations contribute
to information processing in neuronal circuits. One popu-
lar hypothesis states that a flexible routing of information
between distant populations occurs via the control of the
phase or coherence between their respective oscillations.
Here, we investigate how a mismatch between the frequen-
cies of gamma oscillations from two populations affects
their interaction. In particular, we explore a biophysical
model of the reciprocal interaction between two cortical
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areas displaying gamma oscillations at different frequen-
cies, and quantify their phase coherence and communication
efficiency. We observed that a moderate excitatory coupling
between the two areas leads to a decrease in their frequency
detuning, up to ∼6 Hz, with no frequency locking arising
between the gamma peaks. Importantly, for similar gamma
peak frequencies a zero phase difference emerges for both
LFP and MUA despite small axonal delays. For increas-
ing frequency detunings we found a significant decrease in
the phase coherence (at non-zero phase lag) between the
MUAs but not the LFPs of the two areas. Such difference
between LFPs and MUAs behavior is due to the misalign-
ment between the arrival of afferent synaptic currents and
the local excitability windows. To test the efficiency of com-
munication we evaluated the success of transferring rate-
modulations between the two areas. Our results indicate that
once two populations lock their peak frequencies, an opti-
mal phase relation for communication appears. However,
the sensitivity of locking to frequency mismatch suggests
that only a precise and active control of gamma frequency
could enable the selection of communication channels and
their directionality.

Keywords Gamma neuronal oscillations · Frequency
detuning · Communication through coherence

1 Introduction

Neurons in cortical, subcortical, and cerebellar areas have
been observed to engage in oscillatory activity at different
frequency bands (Buzsáki and Draguhn 2004). In particu-
lar, upon sensory stimulation many cortical regions exhibit
oscillations at the neuronal population level, as measured
by local field potentials (LFP), in the beta (12-30 Hz)
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Universitat Politècnica de Catalunya, Edif. Gaia,
Terrassa, Spain

R. Vicente
Max-Planck Institute for Brain Research,
Frankfurt am Main, Germany

R. Vicente
Institute of Computer Science, Faculty of Mathematics
and Computer Science, University of Tartu,
50409 Tartu, Estonia

mailto:belen.sancristobal@gmail.com


194 J Comput Neurosci (2014) 37:193–208

and gamma (30-90 Hz) range (Tallon-Baudry et al. 1997;
Pulvermüller et al. 1997; Gruber et al. 1999). During gamma
oscillations in vivo, individual neurons spike irregularly and
at much lower rates than the population oscillation, exhibit-
ing a so-called cycle skipping dynamics. However, despite
not participating at every cycle the spikes of a neuron can
be precisely locked to a narrow phase of the recorded LFP.
The mechanisms generating gamma-band oscillations have
been extensively investigated both experimentally and via
computational and theoretical models. In particular, phar-
macological and optogenetic manipulation of fast-spiking
interneurons has demonstrated a key role of such neurons
in the generation of gamma rhythms (Whittington et al.
1995; Fisahn et al. 1998; Cardin et al. 2009). Hence, it is
believed that local recurrent inhibitory networks are respon-
sible for modulating the excitability of neurons in a periodic
manner and generating gamma activity. Computational and
theoretical models have been useful in predicting how cell
membrane and synaptic properties give rise to gamma oscil-
lations and its properties such as frequency or fine spiking
structure (Brunel and Wang 2003; Buzsáki and Wang 2012;
Sancristóbal et al. 2013).

Given the ubiquity of gamma activity and the correla-
tion of its power or frequency with distinct perceptual and
cognitive outcomes, a pressing question is whether gamma
rhythms play any fundamental role in information pro-
cessing (Singer 1999; Shadlen and Movshon 1999). Some
hypotheses on the role of gamma oscillations capitalize on
the rhythmic susceptibility of an oscillatory area to incom-
ing input, i.e., synaptic input arriving at the high excitability
phase will have a higher probability of triggering a spike,
in comparison with input arriving at the low excitability
phase. Specifically, it has been proposed that given two
oscillatory populations a change of their phase difference or
coherence could implement an efficient and dynamic gain
modulation, and thus serve a mechanism for flexible rout-
ing of information. This is known as the communication
through coherence (CTC) hypothesis (Fries 2005). The CTC
hypothesis requires that two oscillating populations of neu-
rons have a well-defined phase relationship between their
collective oscillations. Spikes sent by one population must
reach the other population at appropriate time windows,
and do so systematically, in order to lead to an effec-
tive transmission of information between the two groups
of neurons. Thus, an important constraint for the CTC is a
precise matching of the phase difference (�φ), axonal con-
duction delay (τaxo) and frequency (f ) of the oscillations,
which should fulfill the condition �φ = 2πf τaxo (Fig. 1a)
(Eriksson et al. 2011). When this relationship holds, spikes
fired in the emitting population at a specific phase of the sig-
nal (for instance at the troughs of the LFP, which correspond
to the maxima of excitability) arrive at the receiving area

at the same phase (and thus at the same excitability maxi-
mum), triggering a maximal response in the receiving area.
On the contrary, if �φ does not fulfill the relationship given
above (or if it randomly varies), effective communication
will not be achieved.

A possible test for such hypothesis comes from a class
of paradigms of selective attention where identical sen-
sory stimulation must be processed differently depending
on task demands. In particular, it has been found that dur-
ing a spatial visual attention task, V4 neurons engaged in
gamma oscillations are selectively phase coherent with the
V1 oscillatory population processing the attended stimu-
lus but not with the population processing the unattended
stimulus (Bosman et al. 2012). However, whether the ner-
vous system actively regulates the phases of oscillations to
route information or they simply reflect the routing itself
is a critical distinction that deserves further research. In
this paper we study two coupled neural populations with
bidirectional (but not necessarily symmetrical) coupling,
similar to the one existing between dissimilar areas, with the
aim of investigating the interplay between phase coherence
and information transmission between two generic cortical
regions.

The relation between phase coherence and frequency
locking has been intensively investigated in models of oscil-
lators. It is well known that simple interacting oscillators
with well defined frequencies are able to synchronize their
rhythms, thus leading to phase coherence, provided that
their intrinsic frequencies are similar enough (Pikovsky
et al. 2001). Conversely, given a strength of interaction there
is a maximum frequency detuning above which coupling-
induced frequency locking is forbidden (dashed curve in
Fig. 1b). However, the broad-band power spectrum of neu-
ronal oscillatory processes might allow for more complex
phenomenology. In particular, it can sustain phase coher-
ence despite a mismatch between the peak frequencies
(solid curve in Fig. 1b).

In this article we investigate how the interaction between
gamma oscillations is affected by a mismatch in their fre-
quencies. This situation arises not only due to an expected
natural variability of the intrinsic cell and network prop-
erties, but also due to the stimulus dependency of gamma
oscillations. For example, the frequency of gamma activity
in the primary visual cortex depends on the size, eccentric-
ity, and contrast of the visual stimulus (Ray and Maunsell
2010). It is thus important to study how the communica-
tion efficiency between two oscillatory areas depends on
their frequency detuning. In the following we shall explore
a biophysical model of two reciprocal interacting cortical
areas to study this question, with the aim of constraining
potential mechanisms that exploit the coherence of neuronal
oscillations.
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Fig. 1 a The two networks are represented by circles and the synap-
tic bidirectional coupling by thin arrows. The LFP signal filtered at
a frequency f is plotted in red. At the bottom of the LFP troughs
(peaks of excitability in our case), the vertical ticks stand for the
elicited spikes. Each bundle of spikes reaches the other population after
a time delay, τaxo. If the difference in phase settled by the synaptic
coupling, �φ, satisfies the relationship �φ = 2πf τaxo, an effective

communication (like the one represented in this figure) is achieved.
Adapted from (Fries 2005). b Frequency detuning before, �f , and
after, �F the coupling of two oscillators. For the dashed curve, only
at relatively small �f values, a frequency locking region is resolved
by the coupling (for more information see (Pikovsky et al. 2001)). On
the contrary, the solid curve does not show frequency locking, even at
small �f

In our model we control the gamma frequency peak of
one of the areas by slowing down the inhibitory postsy-
naptic currents (IPSCs), i.e. by increasing the GABAergic
synaptic decay time, τdGABA. The use of τdGABA as the con-
trol parameter determining the frequency peak of one of the
two populations does not presume, however, the existence
of a patched distribution of inhibitory currents with differ-
ent kinetics throughout the cortex. Nevertheless, previous
works have revealed a wide heterogeneity among inhibitory
neurons (Buhl et al. 1994; Kang et al. 1994; Puia et al.
1994; Kawaguchi and Kubota 1997; Houston et al. 2009).
We note that a shift in the gamma frequency peak can also
be induced by changes in the input rate (Brunel and Wang
2003; Mazzoni et al. 2008). However, we will use external
rate variations only to probe the communication across two
networks. Since an increase in the synaptic input impinging
on a neuronal population boosts its firing activity, trigger-
ing as well a change in its oscillatory frequency, we have
dissociated both effects by tuning two different parameters.
In particular, τdGABA modulates the gamma frequency peak,
while the input rate regulates the spiking activity. We note
that changes of τdGABA make the neurons unresponsive for
longer periods of time (longer IPSCs) without changing the
number of spikes elicited in a given cycle (with a period
given by τdGABA). Using the same structural connectivity

through all the simulations, we have computed the phase
coherence between the LFP and eMUA (MUA from excita-
tory neurons) of the two networks for varying τdGABA, and
thus for varying frequency detuning.

Our results show that low frequency detuning entails
zero-lag LFP synchronization, while higher frequency
detuning leads to a non-zero phase lag. In the latter case the
population with the smallest τdGABA, and thus with the fastest
dynamics, becomes the leader, showing a phase advance-
ment with respect to the slowest population. In addition, as
the difference in τdGABA increases, the AMPA synapses from
the leader to the laggard area are less effective in triggering
spikes and the eMUA-eMUA phase coherence drops. How-
ever, we observe that LFPs phase coherence is maintained
for larger detunings between the peak frequencies, possibly
reflecting that the LFP captures afferent synaptic currents
regardless of their efficiency in triggering action potentials.
Finally, we tested the effective connectivity between the two
populations under frequency detuning by modulating the
external input to one area and measuring the response of
the other. Our results reveal an important requirement for
the CTC hypothesis, namely that interactions that lead to
near in-phase relationship during small frequency detunings
provide a scenario for maintaining communication across
areas. Otherwise, the observed phase coherence between
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LFPs reflects synaptic contributions that do not result into
an effective reciprocal routing of information via spikes.

2 Methods

2.1 Description of the neuronal model

The evolution of the membrane potential for neuron i is
given by the following conductance-based model:

Cm
dVi

dt
= −gKn

4
i (Vi − VK)− gNam

3
i hi (Vi − VNa)−

−gL (Vi − VL)+
∑

j

Isyn,j i , (1)

where gK, gNa and gL are the maximum conductances for
the potassium, sodium and leak current, respectively, and
are assumed equal for all neurons. Isyn,j i is the synaptic cur-
rent on neuron i caused by a spike fired by neuron j. The
summation runs over all neighbors of neuron i. The dynam-
ics of the potassium and sodium channels is represented by
the time-varying probabilities that a channel is open:

dxi

dt
= φ [αx(Vi)(1 − xi)− βx(Vi)xi] ,

where x stands for n in the case of the potassium current,
and for m and h in the case of the sodium current. α(V )

and β(V ) are voltage-dependent rate constants, and φ is the
temperature factor, defined by φ = 3(T−6.3)/10, where T is
measured in degrees Celsius. The temperature factor φ is set
to 21, which corresponds to T = 34 ◦C.

The parameter values used throughout this study are
those reported in Gutfreund et al. (1995): gK = 4.74 μS,
gNa = 12.5 μS and gL = 0.025 μS. The reversal potentials
of the different channels are VK = −80 mV, VNa = 40 mV
and VL = −65 mV, and the membrane capacitance is
Cm = 0.25 nF. The leak conductance defines an effective
membrane time constant for the isolated neuron according
to the expression τ = Cm/gL, which is taken to be 20 ms.

The rate functions α and β for each gating variable are:

αn(V ) = 0.01
V + 20

1 − e−(V+20)/10

βn(V ) = 0.125e−(V+30)/80

for the gating variable n,

αm(V ) = 0.1
V + 16

1 − e−(V+16)/10

βm(V ) = 4e−(V+41)/18

for the gating variable m, and

αh(V ) = 0.07e−(V+30)/20

βh(V ) = 1.0

1 + e−V/10

for the gating variable h. Due to the rapid activation of m
we replace it by its steady-state value m∞ = αm

αm+βm
.

2.2 Description of the network model

To simulate two cortical populations we have built a
network composed of two connected modules of 2000
conductance-based model neurons each (Eq. (1)). The pop-
ulation is divided into 80 % excitatory and 20 % inhibitory
neurons (Mountcastle 1998). Only AMPA and GABAer-
gic chemical synapses are considered –no gap junctions are
included– and each neuron connects to 200 other neurons
on average. The intra-module connections are determined
by the Watts-Strogatz small-world algorithm (Watts and
Strogatz 1998), with a rewiring probability of 0.5. There-
fore, the connectivity within each module shows a certain
degree of clustering, as closest neighbors are favored. The
same criteria has been applied for the coupling between
modules: in this case, 60 % of the excitatory neurons
have been randomly chosen as long-range-projecting neu-
rons making synapses to 10 % of the neurons from the
other module (bidirectional coupling), which mostly belong
to the same cluster (i.e. they are coupled between them).
Therefore, exciting a subpopulation of adjacent excitatory
neurons from an area triggers a response in a well-defined
subpopulation of neighboring neurons in the receiving area.
The existence of long-range patchy connections relies on
wiring-optimization assumptions, and is a common consid-
eration in coupled cortical neurons with similar receptive
field properties (for a review of both experimental evi-
dences and models see Voges (2010a, 2010b)). This type
of interareal coupling minimizes the divergence of connec-
tions across networks, and thus allows that perturbing one
subset of neurons in one population has a local effect on the
other population without altering the overall LFP/MUA sig-
nal. Thus, by perturbing only a limited number of neurons,
the relative phase difference between the global activities of
the two networks is not reset by the input.

We considered axonal conduction delays taken from a
gamma distribution (Vicente et al. 2008) of mean 1 ms
(2 ms) and variance 1 ms2 (2 ms2), within the network
(across networks). The synaptic current is described using
again a conductance-based formalism:

Isyn,j i = gsyn,j i (t)(Vi(t)− Esyn,j ) ,

where gsyn,j i is the synaptic conductance between neurons j
and i and Esyn,j is the reversal potential of the synapse. For
Esyn,j greater than the resting potential Vrest,i the synapse
is depolarizing, i.e. excitatory, otherwise it is hyperpolariz-
ing, i.e. inhibitory. The nature of each synapse is determined
by the excitatory or inhibitory character of the presynap-
tic neuron j. We consider two time constants, τdj and τ rj



J Comput Neurosci (2014) 37:193–208 197

Table 1 Synaptic time constants and reversal synaptic potential values

Synapse τ r τ d Esyn

AMPA 0.5 ms 2 ms 0 mV

GABA 2 ms 5 ms −70 mV

The equilibrium potential without synaptic coupling for Eq. (1) is
Vrest = −65 mV

(decay and rise synaptic time, respectively, see Table 1), for
the dynamics of the synaptic conductance, updated as

gsyn,j i (t) =
g′syn,j i

τ dj − τ rj

⎡

⎣e
− t−tj−τaxo

τd
j − e

− t−tj−τaxo

τr
j

⎤

⎦ ,

a time τaxo after each presynaptic spike tj fired by neuron
j. g′syn,j i is shown in Table 2 and depends on the excita-
tory/inhibitory character of the presynaptic neuron j. We
have chosen the maximal conductances, g′syn, to maintain
the postsynaptic potential (PSP) amplitudes within phys-
iological ranges: the excitatory PSP in the range from
0.42 mV to 0.83 mV, and the inhibitory PSP from 1.54 mV
to 2.20 mV. It is important to note that increases of τd

diminish the maximum amplitude of gsyn(t), thereby main-
taining the area under a PSP.

Additionally, all neurons receive an heterogeneous Pois-
son train of excitatory presynaptic potentials, with a mean
event rate that varies following an Ornstein-Uhlenbeck
process. This incoming external current mimics the thala-
mocortical input coming from non-simulated neurons. The
instantaneous rate, λ(t), of the external excitatory train of
spikes is generated according to an Ornstein-Uhlenbeck
process as considered in Mazzoni et al. (2008):

dλ

dt
= −λ(t)+ σ(t)

(√
2

τ

)
η(t) ,

where σ(t) is the standard deviation of the noisy process and
is set to 0.6 spikes/s. τ is set to 16 ms, leading to a power
spectrum for the λ time series that is approximately flat up
to a cut-off frequency f = 1

2πτ = 9.9 Hz. η(t) is a Gaussian
white noise. In all simulations 〈λ(t)〉 = 7300 spikes/s, and
increases to 〈λ(t)〉 = 12000 spikes/s for the 200 ms window
of perturbation to the fast/slow population.

Table 2 Synaptic conductances, g′syn, for all the possible connections

Synapse Conductance on Conductance on

inhibitory neurons excitatory neurons

GABA 240 nS 240 nS

Recurrent AMPA 2.5 nS 2.5 nS

External AMPA 3.2 nS 3.2 nS

Excitatory synapses outnumber inhibitory ones, and yet
the brain avoids epileptic states because inhibition is able
to balance excitation, and thus neurons remain below
threshold, firing only occasionally. GABAergic (inhibitory)
synapses are stronger than glutamatergic AMPA (excita-
tory) synapses to compensate their relative small number
(Markram et al. 2004). Therefore, the high firing activity
triggered in the inhibitory population elicits a strong recur-
rent inhibition capable of balancing excitation, and therefore
neurons fire sparsely and irregularly, mostly fluctuating
below threshold. This process, in which the inhibitory cur-
rent follows the excitatory current leading in turn to another
surge in inhibitory current, results in an oscillating LFP
(Brunel and Wang 2003).

2.3 Numerical simulations

The model has been integrated using the Heun algorithm
(Garcia-Ojalvo and Sancho 1999), with a time step of
0.05 ms. All the simulations represent 3 seconds of activity,
and the identity of the connected neurons, initial conditions,
and noise realization were varied from trial to trial. The code
that performs the simulations was custom-made in Fortran,
while the data analysis described below was performed in
Matlab.

2.4 Model of MUA and LFP

We quantify the population activity of the network in two
different ways. The multi-unit activity (MUA) series is
defined as the total number of spikes produced by a popula-
tion in 5-millisecond windows shifted in steps of 1 millisec-
ond (Buehlmann and Deco 2010). When convenient we dis-
tinguish between the MUA due to 80 excitatory (eMUA) or
80 inhibitory (iMUA) neurons from the whole population.
The local field potential (LFP) is estimated from the sum of
the absolute values of the excitatory and inhibitory synaptic
currents acting upon the excitatory neurons (Mazzoni et al.
2008; Buzsáki et al. 2012):

LFP = Re 〈|IAMPA| + |IGABA|〉 , (2)

Here 〈· · · 〉 denotes an average over all excitatory neurons
(Berens et al. 2012). The term IAMPA accounts for both
the external excitatory heterogeneous Poisson spike train
and the recurrent excitatory synaptic current due to net-
work connectivity, while IGABA corresponds to the recurrent
inhibitory synaptic current. Re represents the resistance of a
typical electrode used for extracellular measurements, here
chosen to be 1 M�.

Averages of eMUA signals were computed over 200 tri-
als when required (Fig. 9). As each trial implies a different
realization of the noise and network connectivity, the phase
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of this signal at a given instant varies randomly across simu-
lations. Therefore, in order not to cancel out the time series
when adding them up in a certain time window, eMUAs
were averaged aligning the first maximum.

2.5 Computation of power spectra and phase coherence

The power spectra were estimated applying the multita-
per method (Thomson 1982), commonly used to reduce the
variance of the spectra of recorded signals, which are usu-
ally very noisy. This estimator was implemented in Chronux
2.10 (Bokil et al. 2010). The multitapered power spectrum,
S(f ), is the average of the power spectrum of the signal
multiplied by K orthogonal Slepian functions (in our case
K = 5), and further averaged over N trials:

S(f ) = 1

N

N∑

n=1

sn(f ) = 1

N

N∑

n=1

(
1

K

K∑

k=1

| ˜LFP n,k(f ) |2
)
.

(3)

Here ˜LFPn,k(f ) is the discrete Fourier transform of the
LFP(t) signal of the n-th trial, multiplied by the k-th
Slepian function (or taper). We have considered data seg-
ments within a 500-ms sliding time window with an overlap
of 50 ms, padded with zeros up to a length of 512 in order to
obtain an increased sampling rate in the frequency domain.
The resolution bandwidth is thus ±6 Hz. The MUA power
spectra are also obtained by the multitaper algorithm, with
the same sliding time window, overlap, and padding.

The phase coherence, Fig. 4, and phase difference plots,
Fig. 5, are obtained with the coherencyc.m function for
continuous signals implemented in Chronux 2.10. The nor-
malization convention was taken as in Womelsdorf et al.
(2007):

Cxy(f ) = 1

N

N∑

n=1

Sxy(f, n)

|Sxy(f, n)| , (4)

where x and y denote the two signals whose coherence is
being calculated. Sxy(f, n) is the cross-spectrum between
these two signals. All power spectra (Fig. 2) are averaged
over 20 trials and phase coherence (Fig. 4) results over
200 trials.

3 Results

In the following we quantify the spectral and communi-
cation properties of two oscillating areas as a frequency
detuning is induced. We also analyze the impact of such
a frequency mismatch in the propagation of a transient
increase in the firing activity from one neuronal network to
the other.

3.1 Spectral properties: non-interacting populations

We begin by showing the characteristics of the power spec-
trum of a neuronal population when it is isolated (not inter-
acting with another population). Figure 2a and c show the
power spectrum of the LFP and MUA signals for increas-
ing values of the GABAergic synaptic decay time, τdGABA.
Larger values of τdGABA give rise to slower oscillations
(Whittington et al. 1995), as revealed by a linear decrease
of the gamma frequency peak of ∼ 10 Hz towards the left,
from 33 to 23 Hz. Thus, the variation of τdGABA allows us to
scan the peak frequency from low gamma to high beta. A
similar modulation of the gamma peak frequency has been
experimentally observed in the visual cortex when the con-
trast of the stimulus decreases (Ray and Maunsell 2010). We
notice also that the peaks of the MUA spectra show a good
correlation with those of their LFPs. To filter out the 1-over-
f contribution of the signals, we normalize the power spectra
of Fig. 2a and c with respect to the case of a vanishingly
small gamma rhythm (τdGABA = 11 ms).

Similar normalized LFP spectra have been reported to
be up-modulated in visual areas for increasing stimulus
contrast, (Henrie and Shapley 2005). This effect has been
attributed to a raise of average firing rate at the lateral
geniculate nucleus (Kaplan et al. 1987). Accordingly, most
computational studies (Brunel and Wang 2003; Mazzoni
et al. 2008) have modeled a variation in contrast by means
of a change in the rate of the external spike train exciting the
population. However, varying the external firing rate pro-
duces changes in the average LFP, thereby mixing the effect
of the external signal with that of the intrinsic dynamics
of the population. To dissociate the two contributions, we
have used τdGABA instead of the external firing rate to tune
the network oscillation frequency. Figure 2b and d show the
power spectrum modulation corresponding to the LFP and
the excitatory and inhibitory MUA for increasing τdGABA.

Both strong external input to an area and low intrinsic
or effective τdGABA, (Houston et al. 2009; Roepstorff and
Lambert 1994) are consistent with increases in the LFP
oscillatory frequency. Indeed, both changes in τdGABA and in
the external rate have a similar effect on the network prop-
erties despite the fact that one of them (the external firing
rate) acts in first term upon the excitatory synaptic current
and the other one (τdGABA) affects the inhibitory current.
In the present study, increasing τdGABA induces a decrease
in the amplitude of the inhibitory postsynaptic potential
(IPSP) without changing the total area under an IPSP (see
Section 2). Thus, different values of τdGABA produce differ-
ent gamma frequency peaks without substantially varying
the mean LFP nor the mean firing rate per cycle (see
discussion in Section 3.2).
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Fig. 2 a LFP power spectrum
and c MUA power spectrum (for
the excitatory population in the
top panel and the inhibitory
population in the bottom panel)
of the neuronal network for
different values of the
GABAergic synaptic decay
time, τdGABA. b and d show the
corresponding power spectrum
modulation with respect to the
spectra obtained for
τdGABA = 11 ms

a

c d

b

3.2 Spectral properties: interacting populations

Here we consider two neuronal populations reciprocal-
ly connected via long-range excitatory synapses (see
Section 2). In all simulations the decay time in one of the
two populations is always held constant at τdGABA,f = 5 ms
(we refer to it as fast population or with the f subscript). For
the other population (slow population, s subscript) the decay
time τdGABA,s is varied from 5 ms to 11 ms. Figure 3a shows
the peak frequencies for both populations, with and without
coupling (circles on solid and dashed lines, respectively), as
a function of τdGABA,s.

The frequency detuning in the absence of coupling
(which corresponds to the vertical distance between the
blue and colored circles on the dashed lines in Fig. 3a, and
to the �f magnitude in Fig. 1b) increases with τdGABA,s.
The excitatory interareal connectivity enhances the spiking
activity of each population, and thereby speeds up the LFP
and MUA oscillations. In the presence of coupling between
the two populations, the interaction induces a frequency
shift for the slow population that ranges between 2 and
7 Hz. The fast population, in turn, increases its frequency
in 2 Hz. Thus, the slowest population shows a larger range
of frequency shifts induced by the interaction with a faster
population.

Despite the fact that larger τdGABA,s increases the inter-
vals between peaks of excitability (phases of enhanced

spiking probability), the number of spikes triggered by the
excitatory neurons remains constant across the different
oscillation periods tuned by τdGABA,s (Fig. 3b and c). Thus,
within a given time window, the fast population fires more
spikes only because of its faster rhythm. Due to its higher
rhythm the fast population is able to induce a larger fre-
quency shift upon the slower population than viceversa. As
a result, the excitatory interaction between areas promotes
a decrease in the frequency detuning. Note that an increase
of 1 ms in τdGABA,s produces a decrease of ∼1.6 Hz in the
frequency peak of the isolated slow population (slope of
the dashed line connecting the colored circles in Fig. 3a)
and of ∼0.97 Hz when interacting with the fast popula-
tion (slope of the solid line connecting the colored circles
in Fig. 3a). Hence, we observe that small changes in the
dynamics of the GABAergic synapses prevent frequency
locking in reciprocally connected populations.

As shown in Fig. 3a, no frequency-locking region
appears due to the coupling between the two networks.
A frequency-locking regime can only occur when the
coupling-induced frequency shift compensates the natural
frequency detuning between the isolated populations. Since
the coupling-induced shift for the slow population never
exceeds ∼ 7 Hz, and this value is smaller than the nat-
ural frequency detuning caused by differences in τdGABA,
frequency locking does not occur. That is, in our case the
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a
b

c

Fig. 3 a The frequency at the maximum peak in the beta-gamma
region (20 Hz - 36 Hz) of the LFP power spectrum is plotted against
τdGABA,s for the two networks before (dashed lines) and after (solid
lines) coupling. Blue circles and colored circles correspond to the fast
(τdGABA,f = 5 ms) and slow population (varying τdGABA,s along the x-
axis) respectively. The intrinsic frequency detuning is the difference

between the blue and colored circles on the dashed line. b Number of
spikes elicited by the excitatory neurons of the fast and slow population
after coupling, the latter corresponding to the area under the eMUA
signal shown in c. c Both the blue and gray area (τdGABA,s = 5 ms and

τdGABA,s = 11 ms respectively) are equal. Color legend as in Fig. 2a

frequency mismatch after coupling is zero only for two net-
works with the same decay in the GABAergic synapses, i.e.
τdGABA,f = τdGABA,s = 5 ms. For all other values of τdGABA,s,
the gamma peak of the fast population (blue circles on the
solid line of Fig. 3a) remains at frequencies larger than the
one of the slow population (colored circles on the solid line
of Fig. 3a).

Given the lack of frequency locking between peak fre-
quencies discussed above, one might expect that two neu-
ronal populations would not exhibit phase coherence (unless
their intrinsic frequencies were very similar). This expecta-
tion does indeed hold for the case of coupled self-sustained
oscillators with a well-defined period, whose phase differ-
ence outside the frequency synchronization region varies in
time (Pikovsky et al. 2001). However, LFP measures of one
area capture not only synaptic currents due to local neu-
rons but also afferent synaptic currents originated in other
populations. Even in the absence of locking between peak
frequencies, afferent synaptic currents will contribute to the
coherence between LFP measures, since all afferent sig-
nals, regardless of their rhythm, affect the local subthreshold
synaptic activity. We observe that the coherence between
LFPs is maximal around the frequency peak of the slower
population. On the contrary, eMUA signals only capture
suprathreshold activity (i.e. action potentials) but they will
poorly reflect spike activity from an afferent area that is not
able to arrive consistently within the local excitability win-
dows. In our case, the fast population maintains its peak
around 33 Hz, and since it has a faster rhythm than the
slow population, the latter is being perturbed multiple times

within its particular cycle, and thus at different phases of
its local excitability cycle. In particular, in the absence of
locking the afferent activity can arrive at any phase of the
local gamma cycle, rendering such activity hardly effective
in triggering action potentials. Thus, MUA activity mainly
follows the local rhythm and shows a marked decrease in
coherence as soon as a natural detuning appears.

The coherence values for LFP and eMUA are shown
in Fig. 4a and b, which display in a colormap the phase
coherence at different frequencies. We use here the eMUA
signal, a measure of the spiking activity of the excitatory
neurons, because the synapses between neurons belonging
to different networks are always excitatory. In agreement
with experiments (Schoffelen et al. 2005; Womelsdorf et al.
2007; Ray and Maunsell 2010; Bosman et al. 2012), phase
coherence between LFPs is highest at a frequency near their
maxima in the power spectra.

The contrasting behavior between LFPs and MUAs
coherence can also be seen in Fig. 5, which shows the his-
togram of phase differences, �φ, between the signals of
both populations. In each case, the histogram is plotted
for the frequency at which the phase coherence is max-
imal. The figure shows that while there is a relatively
well defined phase difference between the LFP signals for
increasing τdGABA,s (top row in Fig. 5), the distribution

becomes broader for large τdGABA,s (large detuning) in the
case of the eMUA signals (bottom row in Fig. 5).

To grasp the origin of the different behavior of the phase
coherence for the LFP and eMUA signals, we computed
the effective time delay τe between the two pairs of signals
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Fig. 4 Phase coherence, in
color code according to the
vertical bar, as a function of
frequency (y-axis) and of the
intrinsic frequency detuning
(bottom x-axis), which is
controlled by varying τdGABA,s
(top x-axis), between a the LFPs
and b eMUAs of the two
populations. The circles in panel
a correspond to the colored
circles connected by the solid
line in Fig. 3a. The two insets
show the maximum phase
coherence values, found within
the gamma range, at each �f

a b

as τe = �φ/2πfmax, where �φ is again the phase differ-
ence at the frequency fmax of maximum phase coherence.
The results are shown in Fig. 6 for increasing frequency
detuning, and reveal that the maximum phase coherence
occurring at small and large detuning (Fig. 4a) corresponds
to two different values of τe. Specifically, only identical
populations (τdGABA,s = τdGABA,f) show zero frequency
detuning and their LFP gamma rhythms oscillate in phase
(τe � 0), while at large frequency detuning there is a phase
shift between the two populations (τe ≤ −4 ms, negative
meaning that the fast population precedes the slow one).
Thus Fig. 6a reveals two scenarios: simultaneous or zero-
lag synchronization between the LFPs for small frequency
detuning, and a leader-laggard regime for large detunings,
with the slow oscillation (laggard) following the fast one
(leader) with a lag partially determined by the time it takes
the neuronal signals to travel from the leader to the laggard
population (the axonal delay τaxo).

A pure zero-lag synchronization (τe ∼ 0 ms) only
occurs when both neuronal populations are identical, i.e.

the parameters used to define each network are equal, lead-
ing as well to zero frequency detuning. An effective time
delay τe < τaxo between the two populations (measured
by the relative time shift of either the LFP or eMUA sig-
nals) reveals quasi-synchronous dynamics. Therefore, we
consider here the region τdGABA,s ≤ 6 ms (see Fig. 6) to be
the zero-lag synchronization regime, since the mean axonal
delay across neurons belonging to different networks is set
to τaxo = 2 ms (see Section 2). By contrast, the broader
region τe > τaxo for τdGABA,s ≥ 7 ms, reveals a significant
time lag with respect to τaxo = 2 ms and is attributed to a
leader-laggard regime.

Note that for a fixed τdGABA,s, fmax might be different
for LFP and eMUA. Thus both the phase lag, �φ (Fig. 5),
and time delay, τe (Fig. 6), show corresponding differences
between LFP and eMUA. In the first scenario (small detun-
ings), the zero-lag phase synchrony occurs for small axonal
delays while an anti-phase synchrony can occur for axonal
delays comparable to the period of the gamma oscillation
(Bush and Sejnowski 1996). In both cases, spikes produced

Fig. 5 Angle histogram of the
phase difference between a the
LFPs and b eMUAs of the fast
(τdGABA,f = 5 ms) and slow

oscillations [τdGABA,s = 5, 8,
11 ms for left, middle and right
panels respectively]. For each
τdGABA,s, the phase differences
are computed at the frequency at
which a the LFP-LFP and b
eMUA-eMUA phase coherence
is maximal

a

b
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Fig. 6 The effective time delay,
τe, computed at the frequency of
maximum phase coherence of
Fig. 4a and b, is shown as a
function of the intrinsic
frequency detuning (bottom
x-axis), which is controlled by
varying τdGABA,s (top x-axis),
between a the LFPs and b the
eMUAs of the two populations.
The mean and sample standard
deviation are calculated over
four groups of 50 trials

a b

by one area arrive at a maxima of excitability of the other. In
the second scenario (large detunings), despite the fact that
the structural connectivity is bidirectional, the functional
connectivity is closer to a unidirectional coupling since the
firing activity of one excitatory population is synchronized
at a recurrence period different than that of the other excita-
tory population. Thus, the slow oscillatory population firing
rate is less effective to perturb the faster oscillatory activ-
ity at every cycle, while the activity of the faster population
impinges on the slow population at each cycle. As a result,
the fast population drives almost unidirectionally the slow
one, which adjusts its LFP phase to that of the leader for
a range of frequencies. Indeed, in the presence of strong
frequency detuning, the frequency at the maximum of the
LFP-LFP phase coherence, ∼30 Hz, is close to the fre-
quency peak of the LFP power spectrum of the laggard
population (see colored circles in Fig. 4a). In this case, given
the different oscillatory frequencies, spikes produced by the
fast population can arrive at any phase of the slow oscilla-
tion but its effect is only significant at the troughs of the
slow LFP (i.e. the peaks of excitability as shown next).

Importantly, the MUA activity of each population is
locked (Fig. 7) close to the troughs of its own LFP signal at
the gamma frequency peak. Therefore, the lack of gamma
frequency locking in the leader-laggard regime prevents
the LFP synchronization from triggering eMUA synchro-
nization. Accordingly, the eMUA-eMUA phase coherence
(Fig. 4b) shows the loss of synchronization between the
excitatory spikes of the two populations as the frequency
detuning increases. On the other hand, at low frequency
detunings both the LFP-LFP and eMUA-eMUA display
synchronization with significant phase coherence at zero-
lag, as shown by the blue circles in Fig. 6.

3.3 Communication

Above a certain level of phase coherence, provided the
phase difference between the peaks of the signals from the

two neuronal pools is close to the axonal delay, we expect
that an enhancement of the firing activity in one population
(the emitter) will be efficiently transferred to the dynamics
of the other population (the receiver). Reciprocal informa-
tion transmission between two populations will be success-
ful if an appropriate phase relationship between them exists
in the two directions of communication. For this to happen
reciprocally between the two symmetrically connected pop-
ulations at short interareal delays, phase coherence should
occur at zero lag.

Below we study a communication paradigm in which the
message being propagated from one network (emitter) to
the other (receiver) is considered as an increase in the firing
rate of the emitter triggered by a surge of the external rate.
Therefore, using τdGABA and the external rate for different
purposes helps to better isolate the specific role of frequency
detuning in the interpretation of the results.

To understand the consequences of the phase coherence
results reported above on the transmission of information,
we have studied how rate perturbations propagate between
two bidirectionally connected neuronal networks as a func-
tion of their frequency detuning. To that aim we increased
during 200 ms, the rate of the external Poissonian spike
train impinging on a subpopulation of 200 long-range exci-
tatory neurons from one network (see sketch from Fig. 8). In
those conditions, neurons belonging to that subpopulation
fire synchronously (see upper blue raster plot from Fig. 8),
increasing the amplitude of the oscillatory eMUA. Figure 9
shows the averaged eMUA signal for both the fast and
slow populations at distinct τdGABA,s. Averaged eMUAs for
the interacting populations are displayed at three different
situations, one for each column: (A) the unperturbed sce-
nario, (B) when perturbing the fast population and (C) when
perturbing the slow population. In Fig. 9A, averages were
computed across 200 trials aligning the first maxima of a 1
second time window, and thus resulting in a phase-triggered
average. Since the increase in the external rate boosts the fir-
ing activity of both populations (see raster plots in Fig. 8), a
local maximum of the eMUA signal appears right after the
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Fig. 7 a Angle histogram of the phase difference between the LFP
and eMUA at different τdGABA,s values of the slow population at the fre-
quency of maximum LFP-eMUA phase coherence. Note that regard-
less of τdGABA,s, the phase difference between the LFP and eMUA is
∼ 5π/4. b LFP and eMUA signals (thick and thin lines respectively)
for τdGABA,s = 5 ms (top) and τdGABA,s = 11 ms (bottom). Despite the

fluctuations in the eMUA time trace, due to the irregularity in
the spiking times and to the small size of the measured subpop-
ulation, the signal clearly peaks right after the troughs (∼ π)
of the LFP almost in anti-phase. To better compare the two
time traces we have subtracted the DC component of the LFP

Fig. 8 Left The two neuronal networks are represented by circles
and the synaptic coupling by arrows. The vertical ticks next to each
circle stand for the external Poisson train of spikes, whose mean fir-
ing rate is qualitatively plotted with a line at the right of the input

label, i.e. 〈λ(t)〉. Top-right Raster plot and LFP for the fast population
(τdGABA,f = 5 ms). Bottom-right Raster plot for two different behaviors

of the slow population [τdGABA,s = 5 ms (left) and τdGABA,s = 11 ms
(right)] showing distinct levels of spike-to-spike synchrony
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a b c

Fig. 9 Averaged eMUA time traces over 200 trials for the fast popu-
lation (blue traces) and the slow population (colored traces) a before
applying any perturbation, and during the first 195 ms of the pertur-
bation time interval applied b to the fast population and c to the slow

population. Detuning decreases from top (τdGABA,s = 11 ms) to bottom

(τdGABA,s = 5 ms). Note that the bottom panels in B and C are the same

since there τdGABA,f = τdGABA,s = 5 ms

onset of the perturbation (see eMUA time traces in Fig. 8).
Therefore, Fig. 9b and c show the first 195 ms of the 200 ms
perturbation window in which the eMUA are already lined
up, maximum to maximum (phase-triggered average).

In order to quantify the rate modulation transfer, we
compute the linear correlation between the spiking activity
of the two populations. The frequency mismatch between
the oscillatory firing activity of both populations is cap-
tured in Fig. 10a as a decrease in the amplitude of the
peaks of the cross-correlation with increasing time lag. The
increase in the effective time delay, τe, between the fast
and the slow network at larger τdGABA,s (or equivalently,
at larger frequency detunings) is confirmed by the gradual
shift of the maximum peak of the cross-correlation away
from the zero time lag (in phase condition, vertical dashed
line in Fig. 10a). Note that the horizontal distance between
two consecutive maxima is approximately the same for all
detunings (∼30 ms, corresponding to the gamma frequency
peak ∼33 Hz of the faster rhythm as shown in Fig. 3a),
although the cross-correlation decreases for larger �f .

The decrease in the mean of the eMUA signal (colored
traces in Fig. 9a) is caused by the increase in the duration
of the oscillatory cycle (the number of spikes is constant

over a cycle, through all values of τdGABA,s). During the
perturbation interval of the fast population (Fig. 9b), the
amplitude of the eMUA oscillatory signals increases signifi-
cantly and the slow population mimics the time course of the
fast. This frequency entrainment is revealed by the eMUA
cross-correlation shown in Fig. 10b.

Figure 10b shows that, in contrast with Fig. 10a, the
cross correlation between the eMUA signals of both pop-
ulations is always high during the transient perturbation
of the faster rhythm, being basically independent of �f .
Therefore, the faster rhythm is reliably propagated to the
receiver. However, the firing activity of the neurons in the
receiver population is scarcely affected, as can be seen by
comparing the colored circles in Fig. 11b with the hori-
zontal dashed line. As shown in the figure, the number of
spikes fired by the excitatory neurons of the receiver pop-
ulation over two cycles of the faster rhythm decays only
slightly with increasing τdGABA,s. This happens because at
large intrinsic frequency detunings �f , intense barrages of
excitatory presynaptic action potentials are able to speed up
the slower gamma rhythms, although no postsynaptic spikes
are further triggered. At small �f , on the other hand, the
enhanced incoming excitatory synaptic current raises the
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a b c

Fig. 10 Averaged cross correlation between the eMUA time trace
of the fast population and the slow population over 200 trials a
before applying any perturbation, and during the first 195 ms of the

perturbation time interval applied b to the fast population and c to the
slow population. The vertical dashed line marks the zero time lag

number of postsynaptic spikes. In addition, this strong exci-
tatory drive temporally sets a non-zero phase lag between
the two eMUA signals as shown by the highest peak of
Fig. 10b.

In the case in which the perturbation is applied to the slow
population (now the emitter), the amplitude of its oscillatory
eMUA is increased with respect to the fast population (now
the receiver). However, at large detunigs the fast population
only experiences a transient enhancement of its spike-to-
spike synchrony and cannot tune its rhythm to the slow
population (compare bottom and top panels of Fig. 9c). The
maximum cross-correlation in this case is also high with
respect to the unperturbed case for small detunings, simi-
larly to the situation in which the perturbation acts upon the
fast population (Fig. 10b). Now, however, in contrast with
the latter case, the cross-correlation between the eMUA sig-
nals of both populations decreases with �f , as shown in
Fig. 10c. Therefore, the slower rhythm cannot be reliably
propagated to the receiver, and at large detunings the emit-
ter and receiver population lock their rhythms weakly. The

number of spikes fired by the excitatory neurons of the fast
population (blue circles of Fig. 11c) increases with increas-
ing τdGABA,s because the spikes are being added up within
periods longer than the faster gamma collective oscillation
(since now the slow gamma frequency only describes the
dynamics of the emitter). Note that regardless of which pop-
ulation is being directly perturbed, the number of spikes
per cycle is kept constant (see blue circles in Fig. 11b and
colored circles in Fig. 11c). Nevertheless, in contrast with
Fig. 10b, Fig. 10c shows that when the slow population
leads the firing activity, a zero time lag is fostered between
the two eMUA signals.

When the spiking activity is greater in the slow pop-
ulation (compare blue and colored circles of Fig. 11c),
communication at large �f is impaired, since the rhythms
of the emitter and receiver population show a weaker fre-
quency locking than at small �f , as discussed above. In
the former case, intense barrages of spikes of the emitter
population occur at slower frequencies than the receiver’s
rhythm, and skip the fast cycle. On the contrary, when the

a b

Fig. 11 Number of spikes of the excitatory neurons from the fast pop-
ulation (blue circles) and the slow population (colored circles) a before
applying any perturbation, and during the first 195 ms of the pertur-
bation time interval applied b to the fast population and c to the slow
population. Panel a as in Fig. 3b. Note that the cycle (or equivalently,
the time period) considered in panel a corresponds to the fast rhythm

for the blue circles and to the slow rhythm for the colored circles. On
the contrary, in panels b and c, the number of spikes are computed
over the fast and the slow rhythm respectively for both the blue and the
colored circles. Dashed line in panel b and c corresponds to circles in
panel a
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spiking activity is dominated by the fast population (com-
pare blue and colored circles of Fig. 11b), synchronous
spikes from the emitter population are still able to entrain
the receiver population to a sustained faster rhythm at large
�f (see Fig. 10b and top panels in Fig. 9b) since at each
cycle, the slow population is being perturbed. These results
show that an asymmetry in the efficiency of communication
arises due to distinct gamma rhythms and despite a sym-
metric structural connectivity. Similar results were found
by Battaglia et al. (2012) for weak to moderate coupling
between neuronal networks in which the control parameter
was the probability of establishing a long-range excitatory
connection across populations. In the present study, we pro-
pose that routing of information can be efficiently adjusted
by the extent of frequency locking between two interact-
ing networks. Moreover, for a given interareal coupling, the
system can either settle on a leader-laggard configuration
or synchronize at zero-lag, taking advantage of the strong
sensitiveness of phase coherence to frequency detuning.

4 Discussion

We have discussed a simple connectivity scenario between
two neuronal networks, varying the decay time of the
GABAergic synapses τdGABA in one pool, while keeping
it constant in the other. Larger durations of the inhibitory
synapses entail a slowing down of the gamma rhythm of
the LFP and MUA. At the same time, the number of spikes
per cycle is maintained despite the fact that the period of
such cycle increases with τdGABA. The effective connectiv-
ity across cell assemblies might differ from the structural
implemented connectivity as τdGABA increases. Specifically,
the number of presynaptic spikes arriving to a given net-
work during one period of its oscillatory eMUA (or LFP)
depends on the rhythm of the afferent eMUA and thus, on
the frequency detuning between both signals.

The incoming spikes might trigger a suprathreshold
response, enlarging the amplitude of the local eMUA, if
they arrive at an optimal phase of high excitability. Other-
wise, they will only produce a phase shift of the postsynaptic
LFP. Therefore, the LFP-LFP phase coherence depends only
moderately on the degree of frequency detuning since those
signals influence each other continuously. On the other hand
the eMUA-eMUA phase coherence decays rapidly with
increasing frequency detuning, since a frequency mismatch
implies changes in time of the phase difference which gov-
erns the extent of the spiking response. Moreover, close
beta/gamma frequency rhythms approach a zero-lag syn-
chronization between them despite a small non-zero axonal
delay, while large detunings involve synchronization at a

non-zero phase lag. In the latter case, the slower oscilla-
tion is then enslaved to the faster oscillation following a
leader-laggard configuration.

It has been recently shown (Roberts et al. 2013) that LFP
signals recorded simultaneously in macaque areas V1 and
V2 speed up their gamma rhythm in response to a grat-
ing stimulus of increasing luminance contrast. In addition,
phase coherence between V1 and V2 is always maximal
at the gamma frequency peak of the LFP power spectrum,
following an identical shift towards higher frequencies at
greater contrasts. The authors obtain similar results with a
computational model of unidirectionally coupled networks
driven by a noisy injected current of constant mean, I0.
Changes in the gamma frequency peak correspond to differ-
ent values of I0, always carried out in the presynaptic neu-
ronal population which entrains the postsynaptic neuronal
population to its rhythm.

In contrast, we have focused on a bidirectional coupling
scenario between modeled neuronal networks, imposing an
intrinsic frequency detuning independent of the structural
connectivity and further adjusted by the interaction between
areas. When the perturbation is applied just to a subpopu-
lation of excitatory neurons of one of the neuronal popula-
tions, the increase in the firing rate is higher on that network
–the emitter– than in the receiver (compare Fig. 11a with b
and c), thus making the effective connectivity asymmetric
(stronger in the feedforward direction from the perturbed to
the unperturbed area). In our model, similar to the results
in Roberts et al. (2013), the receiver population could be
especially entrained to the rhythm of the emitter population,
thus achieving frequency locking, when the emitter corre-
sponds to the fast population. Figures 9b and 10b show that
the enhancement of the spike-to-spike synchrony of the fast
population is able to entrain the slow oscillation into its
own rhythmicity, something that happens only weakly in
the asynchronous irregular behavior of the interacting pop-
ulations discussed in Section 3.2 (Figs. 9a and 10a). The
relative response of the two populations when either the
feedforward or feedback projections are strengthened, relies
on the mismatch of rhythms.

The mechanisms behind the combination of sen-
sory information processing with attention, memory and
other cognitive tasks requires coordinated communication
between different cortical areas. Our model shows a graded
effective connectivity across networks that is endogenous
to the system. We do not claim that our one-parameter
control of the mutual influence between populations under-
lies effective cortical interactions, but consider it instead
as a simple procedure to dissect the underpinnings of the
communication through coherence hypothesis. The phase
relationship achieved by the two LFP signals is meant to
regulate the effectiveness of communication (Fries 2005).
In particular, an unreliable phase difference will always
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lead to a failure in communication, in what can be called
non-communication through non-coherence (Bosman et al.
2012). We have shown that successful transmission of
a rhythmic pattern between two populations in the two
directions of coupling (reciprocal communication) in the
presence of short delays relative to the oscillatory period,
requires zero-lag synchronization occurring only for small
frequency detuning. Non zero-lag synchronization caused
by large frequency detunings, allows for a locking of gamma
frequencies, which is particularly significant in the entrain-
ment of the slow to the fast rhythm. In those conditions,
the maximum firing activity of the slow neuronal popula-
tion (laggard), locked to the troughs of its LFP, does not
arrive consistently at every recurrence cycle of the fast net-
work (leader) and is unable to drive these neurons above the
spiking threshold, thus hindering backward communication.

In the present study, a modulation of the frequency mis-
match, instead of a direct control of the phase difference
between two signals, appears as a sensitive mechanism to
route the effectiveness of information transmission. In sum-
mary, we observe that CTC mechanisms can only hold
between two mutually coupled similar neuronal networks
undergoing zero-lag synchronization between LFP-LFP and
eMUA-eMUA. On the other hand, for different gamma
rhythms of the two populations, phase coherence is only
achieved between the LFP signals (or to a smaller degree
between the eMUA signals) at non-zero phase-lag. Both
populations maximally lock their rhythms when the per-
turbation is strong enough and boosts the firing activity of
the fast rhythm. Importantly, high amplitude slow signals
arriving at faster receiver populations are able to reduce the
relative time lag. Therefore, the excitatory synaptic cou-
pling displays a variety of effects, which depend on both
the frequency detuning between pre- and postsynaptic local
oscillations and the relative firing activity of both interact-
ing populations: faster dominant gamma rhythms trigger
frequency locking regimes, while slower dominant gamma
rhythms cause in-phase transitions.

In conclusion, frequency locking or entrainment, as
observed by Roberts et al. (2013) and under some conditions
of our model, might lead to an efficient communication
between areas. However, this observation hardly solves
the critical question of how flexible routing of informa-
tion arises in the brain. Even if locking would support
the maintenance of communication, it is clear that previ-
ous interactions, and therefore communication, is necessary
to establish the locking itself between the areas. The fun-
damental question seems to be what mechanisms decide
which one of several competing areas manages to lock
to a destination area. While several possibilities, includ-
ing selective feedback and neuromodulatory systems, can
lead to symmetry-breaking between competing areas, more
research will be needed in this direction. A second caveat

is that coherence analysis from LFPs might be difficult
to interpret in terms of communication, since this quanti-
fier captures synaptic currents that might not contribute to
efficient spike generation.

We believe that the modeling and theoretical analysis of
constrains of CTC and other hypothesis can help in deter-
mining their feasibility and experimental test. Future work
will be devoted to assess the constrains that arise when mul-
tiple phase relations need to be met simultaneously across
several areas.
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