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Abstract A computationally efficient, biophysically-based
model of neuronal behavior is presented; it incorporates ion
channel dynamics in its two fast ion channels while preserv-
ing simplicity by representing only one slow ion current.
The model equations are shown to provide a wide array of
physiological dynamics in terms of spiking patterns, burst-
ing, subthreshold oscillations, and chaotic firing. Despite its
simplicity, the model is capable of simulating an extensive
range of spiking patterns. Several common neuronal behav-
iors observed in vivo are demonstrated by varying model
parameters. These behaviors are classified into dynamical
classes using phase diagrams whose boundaries in parame-
ter space prove to be accurately delineated by linear stability
analysis. This simple model is suitable for use in large
scale simulations involving neural field theory or neuronal
networks.
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1 Introduction

The most important factor influencing neural spike gen-
eration is the presence of ion channels embedded in the
cell membrane. These channels enable influx and efflux of
ions, thereby changing the membrane potential and leading
to spike generation. Investigations have shown that human
neocortical neurons employ at least twelve distinct ionic
currents (McCormick 2004). The interplay between these
currents produces complex spiking phenomena; though the
diverse variety of spiking neurons can be classified into four
main groups (Gray and McCormick 1996). Regular neu-
rons begin firing at a high rate with respect to time before
decreasing to a lower steady rate of firing, which mimics
neuronal adaptation. Fast neurons maintain a rapid firing
rate (> 400 Hz) with no adaptation. Intrinsic bursting neu-
rons fire a burst of more than two spikes, briefly pause
then resume a steady spike frequency. Continuous bursting
neurons produce periodic bursts of spikes—spiking clus-
ters occurring at periodic intervals separated by periods of
quiescence.

The four main spiking classes can be observed in neu-
rons due to membrane potential oscillations generated from
different combinations of ionic currents; in addition to the
main dynamics mentioned above, neuromodulatory effects
from cellular signalling can also lead to changes in fir-
ing patterns. It is important to distinguish the neuronal
bursting modeled here from bursting behavior that arises
from network interactions which involve interconnected
neurons interacting through excitatory and inhibitory con-
nections; the bursting in our present model arises solely
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from individual neurons as there are no networks involved.
Subthreshold oscillations, which are small fluctuations in
the membrane potential that do not generate spikes, and
chaotic firing are also observed in neuronal physiology
(Izhikevich 2007).

Simple mathematical models of neuronal dynamics
aid understanding and are computationally tractable for
exploring large ensembles of dynamically linked neurons
(Izhikevich 2007; Robinson and Kim 2012). Ultimately, we
aim to understand neurophysiology on a large-scale level,
starting from individual neurons, so computationally effi-
cient neuron models that are based on biophysics are the
most appropriate for simulations involving large networks
of neurons (Izhikevich 2007; Robinson et al. 2008).

Numerous neuronal models for bursting have been devel-
oped, with earlier work focusing on idealized mathematical
representations (Plant and Kim 1976; Hindmarsh and Rose
1984). Later authors then began to increase the realism
of single-cell bursting neurons with the addition of ionic
currents and calcium dynamics in several different organ-
isms (Canavier et al. 1991; Bertram 1993; Guckenheimer
et al. 1993; Traub et al. 1991; Wang et al. 1991). Recent
modeling work have emphasized modeling bursting in spe-
cific organ systems as more relevant biological detail has
emerged from ongoing experimental studies (Xu and Clancy
2008; Sherman 1996; Butera et al. 1999). In the current
work we have chosen to focus on a minimal bursting model
of three dimensions. Other three dimensional bursting mod-
els have been analyzed previously in different biological
contexts such as glucose mediated signal transduction in β-
cells (Sherman 1996; Bertram et al. 1995; Coombes and
Bressloff 2005), a minimal model of pre-Bötzinger pace-
maker neurons (Butera et al. 1999; Coombes and Bressloff
2005) and idealized thalamic neurons (Hindmarsh and Rose
1984). Our model differs from previous three dimensional
bursting models in that we focus on preserving biophysi-
cal dynamics in the fast variables. Furthermore, to maintain
simplicity we use a slow variable that is a representation
of the negative feedback common to all three dimensional
bursting models, thereby offering robust generation of
diverse bursting rhythms across different parameter spaces.
This serves the purpose of analytical tractability especially
for those interested in using the model in neural field theory
(Robinson et al. 2008; Robinson and Kim 2012).

Models based on ion channel dynamics nominally
involve Na+ and K+ channels for fast modulation of spik-
ing dynamics, coupled to negative feedback operating on
much slower timescales (Ermentrout 1998a, b; Rinzel and
Ermentrout 1998). One of the earliest models (Hindmarsh
and Rose 1984) used three coupled differential equa-
tions to simulate bursting; these equations were formu-
lated mainly to investigate the mathematical properties of
bursting dynamics and thus did not focus on providing

biophysical units. Wilson developed a more realistic model
of neuronal bursting (Wilson 1999a) by retaining ion chan-
nel dynamics, though the channels were kept to just four to
retain the simplicity necessary for for in-depth analysis of
its dynamics.

In this paper we seek to retain the elegance and simplicity
of Rose and Hindmarsh’s three-variable model (Hindmarsh
and Rose 1984), while incorporating the fast ion channel
dynamics of Wilson’s model. We combine the fast spik-
ing dynamics of Wilson’s model (Wilson 1999a) with Rose
and Hindmarsh’s equation for the slow negative feedback
dynamics. This results in our three-variable model, which
explicitly separates fast and slow channel dynamics. The
current model represents a compromise between biophys-
ical realism and computational simplicity as it lies on a
continuum between the biophysical complexity captured
by full Hodgkin-Huxley models and the idealized neuronal
dynamics of leaky integrate-and-fire models.

We show that our resulting model reproduces bifur-
cations and numerous experimentally observed neuronal
behaviors (Izhikevich 2007). We explore the effect of the
slow variable dynamics and changes to an external input
current. Both are amenable to experimental control and
important for inducing bursting. Furthermore, we empha-
size the advantages our model provides over the widely
studied integrate and fire model (Izhikevich 2007), which
requires an artificial resetting mechanism for spikes back
to equilibrium values. In contrast, our model is capable of
generating physiologically realistic spike profiles from the
interactions described by our three ion channel equations
and is of a form that can be incorporated in a straightforward
manner into neural field theory (Robinson and Kim 2012).

The current study into a single neuron model will allow
further exploration and deeper insight into various clinical
disorders. Bursting neurons play an integral role in normal
brain physiology and have been implicated in sleep (Lu et al.
2006; Steriade et al. 2001), epilepsy (Timofeev et al. 1998;
Timofeev and Steriade 2004) and attention-deficit hyperac-
tive disorder (Rowe et al. 2005). Understanding our bursting
neuron’s dynamics will also lead to an appropriate averag-
ing of its fast channel dynamics for use in fast-slow analysis
(Coombes and Bressloff 2005; Best et al. 2005) and neu-
ral field theory (Robinson and Kim 2012; Robinson et al.
2008).

The model is described in Section 2, followed by exam-
plar firing patterns demonstrable from changes in model
parameters in Section 3, these include a dozen commonly
occurring neuronal firing behaviors. We present detailed
linear stability analysis of our three dimensional model
and compare with results from numerical simulations in
Section 4. Stability condition changes are used to explore
qualitative changes in firing patterns. Bifurcation scenarios
are discussed and phase diagrams are used to visualize the
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boundaries. We conclude in Section 5 with a brief discus-
sion of our main findings and possible future applications in
large scale simulations.

2 Three-variable neural model

We propose a three variable model of neuronal bursting,
which is a hybrid of the Rose–Hindmarsh (Hindmarsh
and Rose 1984) and (Wilson 1999a) models. Rose and
Hindmarsh proposed a three-equation model neuron that
was extremely simple and hence tractable for analysis, but
did not adhere to Ohm’s law and was not formulated in
standard units. While Wilson’s model ameliorated some
of these shortcomings it was still expressed in terms of
nonstandard units; furthermore, it required a fourth equa-
tion, hence rendering analysis less tractable. Our model
retains the simplicity of three equations while still adher-
ing to essential biophysical constraints such as Ohm’s law
for our fast variables V and R. Our slow variable H is
more abstract and is not strictly in the form of Hodgkin-
Huxley channel dynamics in order to maintain the model’s
simplicity and is a qualitative representation of bursting
properties. As bursting is a complex phenomena involv-
ing multiple ionic currents, biochemical messenger sys-
tems and dendritic activity (Dowling 2001) we opted for
a simplifying abstraction of these processes which follows
previous authors (Hindmarsh and Rose 1984). Despite its
simplicity, our model is capable of reproducing diverse
firing patterns which have been observed empirically
Section 3.

2.1 Equations

The general rate of change in membrane potential V for a
neuron can be described as

C
dV

dt
= −INa − IK + Ileak + Iext , (1)

where C is capacitance per unit area, t is time, Iext is an
externally applied current per unit area, Ileak is a leakage
current per unit area and INa and IK are the K+ and Na+
currents per unit area respectively (Hodgkin and Huxley
1952). We assume each current obeys Ohm’s law

Ij = gj (V )(V − Vj ) (2)

where gj (V ) is the conductivity per unit area and Vj

is the equilibrium potential of the j th ion. Hodgkin and
Huxley (1952) found that gj (V ) could be approximated by
relatively simple functions of V . Mammalian neocortical
neurons exhibit an additional transient potassium current
that allows firing to occur at very low spike rates when
Iext is small. This led to a simple two-equation model first

proposed by Connor et al. (1977) and later simplified by
Hindmarsh and Rose (1984), from which we take an expres-
sion below for the slow variable. We use the fast variables
from Wilson’s model (Wilson 1999a, b) and add the dynam-
ics of the aforementioned slow variable, as discussed below.
Our model equations for the fast dynamics are (Robinson
et al. 2008; Wilson 1999a, b)

C
dV

dt
= −g(V )(V − VNa) − gRR(V − VK)

−H + Iext , (3)

dR

dt
= − 1

τR

[R − R∞(V )], (4)

g(V ) = ν0 + ν1V + ν2V
2, (5)

R∞(V ) = 0.79 + r1V + r2(V − V3)
2 (6)

= 0.17 + r2(V − V4)
2. (7)

The values of the parameters and coefficients C, V0−V4,
VH , τR , τH , ν0, ν1, ν2, r1, and r2 are given in Table 1.
Equations (3)–(7) have been discussed in detail elsewhere
(Wilson 1999a); here we offer a brief summary of
their underlying mechanisms. The first equation describes
changes in the membrane potential V , that arise from inter-
actions of ionic currents, the capacitance per unit area C

and the externally applied current per unit area Iext . VNa

Table 1 Nominal values of model parameters, adapted from
Hindmarsh and Rose (1984), Robinson et al. (2008), Wilson (1999a, b)

Parameter Value Unit

C 0.03 F m−2

V0 0.0001 V

VNa 0.048 V

VK −0.095 V

V3 −0.038 V

V4 −0.058 V

VH −0.07504 V

τR 0.00056 s

τH 0.1 s

υ0 178.1 A m−2 V−1

υ1 4758 A m−2 V−1

υ2 3.38 × 104 A m−2 V−1

r1 12.9 V−1

r2 330 V−2

All but C, τH , and τR are as in previous work. These values are kept
constant for our stability analysis and phase diagram simulations in
Section 4
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is the Na+ reversal potential, VK the K+ reversal poten-
tial and gR is the membrane conductance for R, while g(V )

represents the Na+ activation function. The second equa-
tion describes activation of K+ channels, R∞(V ) is the
equilibrium state, and τR is the time constant for relaxation
of R.

As previously discussed (Rinzel 1985), there are sev-
eral approximations inherent in Eqs. (3) and (4). The Na+
activation instantaneously reaches its equilibrium value
g(V ), there is no inactivation of the Na+ channel, and
the time constant τR is independent of V . Finally, the
leakage current has been absorbed into the polynomial
representations of g(V ) and R∞(V ). Furthermore, both
g(V ) and R∞(V ) are approximated as quadratic functions.
These simplifying assumptions are physiologically plausi-
ble, as was previously justified in detail (Wilson 1999b).
In the case of g(V ) a quadratic function adequately cap-
tures the accelerating nonlinearity of voltage-dependent
Na+ channel activation. We use the same constants as
in Wilson (1999b) which were chosen to provide the
best fit of the dV/dt isocline in Rinzel’s (1985) approx-
imation of the Hodgkin–Huxley equations (Hodgkin and
Huxley 1952). R’s quadratic form was initially introduced
by Hindmarsh and Rose (1984) and justified this approxi-
mation in Rose and Hindmarsh (1989).

We seek to augment Eqs. (3)–(7) to obtain a minimal
set of equations, still capable of diverse dynamics, which
are amenable to analysis in network models. Following
Hindmarsh and Rose (1984) we add an adaptation current
H of form Eq. (8). The H current is a slow, outward cur-
rent that hyperpolarizes the neuron on a long timescale τH ,
with

dH

dt
= − 1

τH

[H − gH (V − Vh)]. (8)

Where gH is the conductance and Vh is the reversal
potential. See Table 1 for values.

2.2 Parameters

Typical parameter values in Eqs. (3)–(8) are listed in
Table 1. In our analysis of examples below most of the
model parameters are kept constant at these values, which
are mostly equal to those in Wilson (1999a) because we seek
to retain as much of the original dynamics as possible, with
a nominal example shown in Fig. 1. The exceptions are C

and τH , which are increased by factors of 3 and 2, while τR

is decreased by a factor of 10. This is not surprising as some
parameters need adjustment with the new interactions intro-
duced by our model in the form of Eq. (8). The model is
still capable of reproducing spike forms over a wide range
of parameter regions (see Section 3).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−75

−70

−65

−60

−55

−50

−45

−40

−35

−30

−25

t (s)

m
V
 
m
−
2

Fig. 1 Example firing behavior produced by the model using nominal
parameters from Table 1 with Iext = 0.35 A m−2

3 Model properties and example behaviors

In this section we begin with a brief description of major
firing patterns found in neurons and reproducible by the
model. This is followed by exploring frequently seen
dynamical properties exhibited by our model. We categorize
firing phenomena into three broad classes: spiking, burst-
ing, and chaotic. Further subdivisions are possible (Wilson
1999a; Izhikevich 2007), fast spiking neurons exhibiting
rapid firing rates up to a few hundred hertz, while regu-
lar spiking neurons fire only at a much lower frequency
(for example 10–20 Hz). Furthermore small rounded peaks
of depolarizing afterpotentials were evident in parameter
regions of regular spiking neurons. Bursting was identi-
fied from changes in the interspike intervals; in bursting
neurons at least two distinctly different interspike intervals
could be identified, with one significantly greater than the
other, while this was not evident in regular spiking and fast
spiking neurons. Subthreshold oscillations were identified
based on much lower amplitudes compared to conventional
spikes. Examples of these firing behaviors are shown in
Fig. 2 and we discuss their relevance in normal physiology
in Section 4.

3.1 Examplar neuronal dynamics

We have reproduced twelve spiking patterns drawn from
Izhikevich’s original set of twenty fundamental neu-
ronal behaviors (Izhikevich 2007). We present a selec-
tion of dynamics relevant to biological neurons repro-
duced from our model. Our primary goal is to retain
the essence of as many constants from the parent mod-
els as far as possible, so the repertoire we reproduce
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Fig. 2 Time series of neuronal dynamics are shown in each frame.
On the vertical axis I is in A m−2 and V is in mV. a tonic spik-
ing b phasic spiking c phasic bursting d tonic bursting e mixed mode
f frequency adaptation g subthreshold oscillations h rebound spike i

rebound burst j depolarizing after-potential k spike latency l hyperpo-
larization spiking. The examples are reproduced through changes in
our model parameters as in Table 2. See text for details of individual
frames

does not include the complete set of behaviors that could
be displayed if all parameters were treated as com-
pletely free. Presented here are the firing patterns, with
the typical parameters for each listed in Table 2. The
rest of this subsection refers to Fig. 2 unless otherwise
noted.

(a) Tonic Spiking
The most basic property of any neuron is the capac-

ity to spike. In Fig. 2a we have changed gH showing
that different types of dynamics are possible by only
changing two control parameters. In Fig. 2a the spike
rate is 10 Hz and shows regularly spaced spikes.
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Table 2 Examplar model parameters that yield 12 fundamental neural
spiking patterns as described by Izhikevich (2007)

Dynamics Parameters

gR (A m−2 V−1) gH (A m−2 V−1)

(a) Tonic spiking 260 14

(b) Phasic spiking 260 20

(c) Phasic bursting 260 26

(d) Tonic bursting 260 20

(e) Mixed mode 260 20

(f) Frequency adaptation 260 11

(g) Subthreshold oscillations 260 13.2

(h) Rebound spike 205 15

(i) Rebound burst 205 30

(j) Depolarizing after-potential 260 15

(k) Spike latency 260 13.2

(l) Constitutive spiking 200 10

The parameter columns show the values changed for each dynamical
type. Other parameters are kept constant at the values listed in Table 1

(b) Phasic Spiking
We show phasic spiking Fig. 2b, on which a sin-

gle spike is produced before spiking is terminated.
Note that only gH and Iext are changed from example
(a). Furthermore, the phasic spike exhibits a period of
latency from the onset of Iext to the actual spike.

(c) Phasic Bursting
A variation on the idea of phasic spiking is phasic

bursting, in Fig. 2c we display the onset of a single
burst before returning to quiescence. Phasic bursting
has been experimentally observed in numerous loca-
tions such as nuclei of the hypothalamus and has been
implicated in control of circadian rhythms (Andrew
and Dudek 1984). In Fig. 2c a phasic burst consisting
of six spikes with consecutively decreasing height are
terminated by a depolarizing after-potential.

(d) Tonic Bursting
Tonic bursting exhibits continuous alternation

between bursts of rapid spikes and long intervals
of quiescence (Izhikevich 2007). In Fig. 2d the
spike train begins with a large, transient burst fol-
lowed by an interval of quiescence before follow-
ing a regular pattern of bursts, each containing five
spikes followed by a depolarizing after-potential.
Bursting plays a significant role in many neuronal
networks (Dowling 2001) and our later analysis
shows that tonic bursting manifests itself in a sig-
nificant portion of our parameter space. There we
observe bursting structures that range in complex-
ity as the number of spikes found in each burst
varies.

(e) Mixed Mode
This type of firing involves the simultaneous fir-

ing of a burst and tonic spiking (Izhikevich 2007).
[Note that we follow Izhikevich on using the term
‘mixed-mode’ in a different sense from ‘mixed-mode
oscillations’ (MMOs) where high frequency oscilla-
tions of small amplitude alternate with low frequency
oscillations of large amplitude (Desroches et al. 2012;
Iglesias et al. 2011). These latter MMOs do not appear
to exist in our model]. In Fig. 2e the spike train begins
with a transient burst of four spikes before regular
spiking. In vivo such neurons are recognized as intrin-
sically bursting neurons that generate an initial burst
before switching to a tonic spike train (Dowling 2001).
Such behavior indicates the transition from spiking to
bursting is occurring in time. With small changes in
our parameters, tonic bursting and spiking are realized.

(f) Frequency Adaptation
Decrease of spiking frequency for a given Iext is

termed frequency adaptation (Dowling 2001). It is a
prominent feature of regular spiking cortical neurons
(Connors and Gutnick 1990). Frequency adaptation is
an important phenomena and ubiquitous among many
physiological processes; it has been argued that they
play an essential role in filtering information from
background noise (Benda et al. 2005). In Fig. 2f a rapid
train of spikes is shown to quickly adapt to a con-
stant Iext input. The interspike intervals very rapidly
increase to a constant equilibrium value.

(g) Subthreshold Oscillations
Subthreshold oscillations are fluctuations in the

membrane potential from postsynaptic potentials that
are not strong enough to trigger an action potential.
It has been hypothesized that subthreshold oscilla-
tions, characterized by their low amplitude, may con-
tribute to synchrony (Lampl and Yarom 1997) and tar-
geted communication among neurons (Izhikevich et al.
2003). In our example there is a rapid subthreshold
oscillation. Subthreshold oscillations can arise from
the interplay of the fast and slow current systems or
changes in the stability of a fixed point in a dynamical
system as parameters are varied resulting in Andronov-
Hopf bifurcations (Izhikevich 2007). We analyze the
fixed points of our model in Section 4. At onset in
Fig. 2g there is shown a close-up of subthreshold oscil-
lations produced by a constant Iext input that is just
below firing threshold.

(h) Rebound Spike
Rebound spikes are action potentials that arise when

a negative Iext is applied and when returned to zero,
transient spikes occur. Post-inhibitory rebound spiking
is characteristic of several neuron populations in the
thalamus and is crucial for sustaining central pattern
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generation (Ascoli et al. 2010). In Fig. 2h a brief hyper-
polarizing Iext current is applied and after the end of
the pulse a rebound spike is seen.

(i) Rebound Burst
Rebound bursts are similar to rebound spikes,

except that on cessation of the hyperpolarizing
pulse, a burst is generated instead of single spikes
(Izhikevich et al. 2003). In our model a rebound burst is
induced by a powerful inhibitory input Iext . In Fig. 2i
a rebound burst of three spikes is seen after a hyper-
polarizing pulse of 0.3 s. Rebound bursting has been
seen in thalamic rhythm generation and modulation of
thalamocortical relay cells (Grenier et al. 1998).

(j) Depolarizing After-Potential
Depolarizing afterpotentials occur when a small

rounded ‘hill’ of depolarization follows a spike
(Izhikevich et al. 2003). An example is shown in
Fig. 2j: just before 0.3 s the long burst terminates and
is followed by a small, round depolarizing hill, which
does not reach the full height of a spike and is charac-
terized by a rounded top which is more clearly shown
in the inset.

Depolarizing afterpotentials (DAP) were commonly
observed in both Wilson’s model and the Rose–
Hindmarsh bursting model; the DAPs in our hybrid
model show similar DAPs to both parent models.

(k) Spike Latency
Spike latency occurs when there is a long delay

to initiation of the first spike after turning on Iext

(Izhikevich 2007). This is indicative of a slow depolar-
ization of the cell, hence the delay before the spiking
threshold is reached. Spike latency has already been
displayed in (b). In Fig. 2k we present a latency that is
greatly prolonged to highlight the variability in spike
latencies observed in our model under suitable choice
of parameters. Spike latency is a putative method of
neural coding that increases information conveyed by
neuronal spiking (Chase and Young 2007).

(l) Spiking during Hyperpolarization
Figure 2l presents a neural behavior not identified

in Izhikevich’s original set of basic neuronal proper-
ties Iext (Izhikevich 2007). Initially, the current is set
to Iext = 0 A m−2, despite this the model is capable
of spiking. When a negative Iext = −0.05 A m−2 is
applied, the spiking frequency is dramatically reduced
with concomitant increase of the interspike interval,
but sparse spiking still occurs. When the negative
current is returned to zero, the previously rapid consti-
tutive spiking is restored. If a more negative hyperpo-
larizing current is introduced then complete cessation
of spiking occurs. Biophysically this example corre-
sponds to neurons capable of initiating firing in the
absence of an excitatory input current.

3.2 Type I and II excitability

Hodgkin injected current into various neurons and identi-
fied two major classes of firing (Hodgkin 1948). Class 1
excitability is distinguished by action potentials with firing
frequencies that rise smoothly from zero above a threshold
as shown in Fig. 3a. This allows small continuous changes
in the firing frequency as the input current Iext is slowly
varied. In contrast, Fig. 3b depicts Class 2 excitability, for
which the frequency of spiking jumps discontinuously to a
nonzero frequency at the threshold Iext . In our current work
switching between type I and II excitability is accomplished
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by varying the parameter gH as first shown in (Golomb et al.
2007). The two different classes of firing lead to different
computational properties, for instance Class 1 neurons are
capable of smoothly encoding inputs into output frequency
while Class 2 neurons cannot, due to their different fre-
quency responses to changes in Iext . In Fig. 3 frequency is
calculated by simulating at each current for 10 s and aver-
aging the interspike intervals in the last second. This is then
converted to a frequency value by Tave = 1/f where Tave is
the average interspike interval found by simulation.

3.3 Hysteresis

Hysteresis occurs when there is coexistence of resting and
spiking states for a given set of parameters and the behavior
that occurs depends on the system’s past history. This can
be revealed by increasing Iext past some bifurcation value,
causing a transition from resting to spiking. Iext is returned
to its initial value but the neuron continues spiking. This
implies resting → spiking and spiking → resting transitions
occur at different Iext values (Izhikevich 2007).

We demonstrate the existence of hysteresis in our model
as shown in Fig. 4. Choosing gR = 0, gH = 0 and keep-
ing all other parameters as in Table 1, there is no spiking at
our our initial Iext . With an increase in current, spiking is
initiated and continues when this current is lowered to the
initial value that did not initiate spiking. Ultimately further
lowering Iext returns the system to its initial quiescent state.
The choice of parameters regions is important in exhibiting
this hysteresis. Parameters for which multiple equilibrium

points exist are necessary, but not sufficient (Alligood et al.
1997). This motivates us to analyze the model’s fixed points
and their stability in Section 4.

4 Analysis of the model

To determine the stability of each fixed point we begin by
finding the number of fixed points within the parameter
space we have chosen to explore in our model. The stability
of each fixed point is then determined using linear stability
analyses. Phase diagrams delineating boundaries between
different spiking patterns are shown to correlate with linear
instability of fixed points.

4.1 Number of fixed points

We determine the boundaries between changes in the num-
ber of fixed points for our phase diagram. First we set the
rates of change for our three differential Eqs. (3), (4), and
(8) to zero to obtain the correspondng nullclines, and then,
substituting Eqs. (4) and (8) into Eq. (3), we obtain the
characteristic equation f (V ) = 0, with

f (V ) = (
ν0 + ν1V + ν2V

2)(V − VNa)

+gR

[
0.79 + r1V + r2(V − V3)

2]

(V − VK) + gH (V − Vh) − Iext . (9)

Equation (9) is a cubic polynomial in V with real coeffi-
cients so it always has either one or three real solutions. We

Fig. 4 Hysteresis in our
bursting neuron with
gR = 260 A m−2 V−1 and
gH = 0 A m−2 V−1. Iext has
units of A m−2. All other
parameter values are the same as
in Table 1
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vary gH and gR in our model to find the parameter regions
that yield three solutions for Eq. (9). This is done analyt-
ically by studying the discriminant � of the characteristic
equation (Dickenstein and Emiris 2005), with

� = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2, (10)

a = −(ν2 + r2gR), (11)

b = ν1VNa − ν1 − r1gR + 2r2V3gR, (12)

c = −(ν0 − ν1VNa + 0.79gR + r2V
2
3 gR − r1VKgR

+2r2VKV3gR + gH ), (13)

d = ν0VNa + Iext + 0.79VKgR + r2VKV 2
3 gR + gH Vh,

(14)

where a, b, c, and d are the coefficients of the cubic poly-
nomial f (V ) = 0. If � > 0 there are three distinct real
roots; if � < 0 there exists one real root and two com-
plex conjugate roots with nonzero imaginary parts; if � = 0
there are either 2 equal and 1 distinct real roots or 3 equal
real roots. In Fig. 5a we show the boundaries between areas
of the parameter space containing one or three equilibrium
point solutions for Iext = 1.0 A m−2. In Fig. 5b it is seen
that the number of fixed points does not correlate with spik-
ing behavior; rather the coexistence of multiple fixed points
is a necessary, but not sufficient, condition for hysteresis.
We show below that the stability of fixed points determines
the transition between quiescence and firing.

4.2 Linear stability analysis

We now analyze the stability of each fixed point via its Jaco-
bian matrix. The Jacobian matrix Eq. (15) is represented by
linearization of the nonlinear Eqs. (3), (4), and (8), evaluated
at fixed points V ∗. Standard linear stability theory (Alligood
et al. 1997) allows us to identify the stability at each fixed
point through the Jacobian matrix

⎛

⎜
⎜
⎜⎜
⎜
⎝

F(V ∗) − 1

C

[
gR

{
V ∗ − V2

}] − 1

C
1

tR
[r1 + r2{2V ∗ − 2V ∗3}] − 1

tR
0

gH

tH
0 − 1

tH

⎞

⎟
⎟
⎟⎟
⎟
⎠

,

(15)

with

F(V ∗) = − 1

C

[
ν0 + 2ν1V

∗ + 3ν2V
∗2 + gRR

]
. (16)

At each V ∗ the Jacobian matrix Eq. (15) has eigenvalues
that determine the equilibrium point’s stability (Alligood
et al. 1997). If all eigenvalues at an equilibrium point
have negative real part, V ∗ is stable and attracts nearby
orbits, thus corresponding to the resting state. Otherwise
the fixed point is unstable and leads to oscillations of the
membrane potential V in the form of subthreshold oscil-
lations or firing. However, in regions of Fig. 5b where
three fixed points are found, only one of the fixed points
exists as a stable equilibrium point while the other two are
unstable.

In the study of dynamical systems, if there is a sad-
dle point with emanating separatrixes that divide the phase
plane into two regions, with one containing a stable fixed
point while a limit cycle exists in the other, then hys-
teresis is observed (Hindmarsh and Rose 1984). Further-
more, the fold structure seen in Fig. 5b is indicative
of such a saddle-node bifurcation, this type of bifurca-
tion occurs when two fixed points collide and annihi-
late each other as parameters are varied (Alligood et al.
1997). Here we show the fixed points and their stabili-
ties for Iext = 1.0 A m−2. For other values of Iext the
fold structure remains but becomes more pronounced as
Iext is increased from 0. Note the concordance between
Fig. 5a and b, which are in agreement regarding the
areas corresponding to the existence of one or three fixed
points, despite these frames being computed using different
methods.

4.3 Phase diagrams and transition to chaos

A phase diagram shows regions in parameter space that
exhibit different types of dynamics. The phase diagrams
in Fig. 6 show distinct areas of different neuronal firing.
Dark blue represents quiescence; as the color increases
towards red the dynamics is changing from quiescence →
spiking → bursting → chaos. The color is assigned based
on the number of distinct interspike intervals for each
parameter’s time series, up to a maximum of 20. Here we
have chosen not to distinguish between fast and regular
spiking as we have already shown the model is capable of
diverse spiking phenomena. Instead, to emphasize the tran-
sition to chaos within the chosen parameter space, we have
highlighted the increase in distinct ISI values as the chaotic
region is approached.

When gH is small, the coupling strength of the slow vari-
able is extremely weak, so there is a separation of the fast
variables V and R from H . The model essentially behaves
as a two-dimensional system and displays rapid spiking
behavior with increases in gH , leading to onset of burst-
ing. As Iext increases, the gH threshold necessary for onset
of bursting also increases. However, for high enough gR ,
there is no initial fast spiking behavior preceding bursting,
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Fig. 5 Both plots show a region
of parameter space for gR from
250 to 450 A m−2 V−1 and gH

from 0 to 100 A m−2 V−1 with
Iext = 1.0 A m−2. a Plot
showing the boundary between
areas containing different
number of equilibrium points.
The smaller bounded area
marked with an X contains three
equilibrium points. The larger
area contains parameter space
that has only one equilibrium
point. b Plot showing the
stability of each fixed point
which is marked by its color,
red=unstable blue=stable.
There is a region of the
parameter space that folds back
onto itself and represents the
existence of mutliple fixed
points
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due to the much stronger damping effect of gR . A fur-
ther phenomenon observed in Fig. 6 is the emergence of a
quiescent zone between areas of spiking and sudden onset
of very strong bursting; this is most easily observed for
Iext > 0.8 A m−2 at the upper left quadrant in between the
regions corresponding to two types of spiking behavior.

Chaos is characterized by the presence of at least one
positive Lyapunov exponent (Alligood et al. 1997). The
Lyapunov exponents measure the average exponential rates
of divergence or convergence of nearby orbits in phase
space. To calculate our three Lyapunov exponents λi for i =
1, 2, 3 the evolution of an infinitesimal three-dimensional
sphere of starting conditions is monitored. The small sphere
is centered on the starting point of a trajectory. Changes in
the axes of the sphere describe the stretching and shrink-
ing in each dimension. Computationally, the average growth

rate of each orthogonal axis of the ellipse is then used to
define the corresponding Lyapunov exponent:

λi = lim
t→∞

1

t
ln

(
f′i
)
, (17)

where f ′
i are the three differential equations of our model

for i = V, R, H . We compute the Lyapunov exponents
by following the change in axes of our initial unit sphere
under the action of our differential equations’ Jacobian.
We orthonormalize the basis spanning the ellipsoid using
the Gram-Schmidt process (Alligood et al. 1997) and the
average logarithmic change in each axis over a sufficiently
large number of time-steps is used to estimate the respec-
tive Lyapunov exponents. For full details see Alligood et al.
(1997).
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Fig. 6 Phase diagrams for a
Iext = 0, b Iext = 0.2, c
Iext = 0.4, d Iext = 0.6, e
Iext = 0.8 and f
Iext = 1.0 A m−2 as labeled.
Each phase diagram plots gR

from 250 to 450 A m−2 V−1 vs.
gH from 0 to 100 A m−2 V−1.
At individual points of each
phase diagram a spike train
simulation was run and the
number of distinct interspike
intervals was counted. The
colors denote the number of ISIs
that were counted and increase
from dark blue (resting) to red
(20 distinct ISIs) as represented
by the color bar
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The most important is the maximal Lyapunov exponent
(MLE), which determines the stability of the system for
a given set of parameters. If it is positive then this indi-
cates arbitrarily close starting conditions for the system will
diverge and result in chaotic behaviour as shown in Fig. 7.
Otherwise, if the maximal Lyapunov exponent is negative
then the system is stable and will tend towards periodic
behavior such as a limit cycle or a stable fixed point.

Most of the chaotic regions in Fig. 6 exist as dark brown
points most prominent for Iext = 1 A m−2 in the region
around gR = 350 A m−2 V−1 and gH = 40 A m−2 V−1.
This signifies regions that contain 20 or greater distinct ISI.
This is a strong indication of non-repetitive (e.g. chaotic)
behavior. It is important to stress the color gradient in

Fig. 6 is based on measurement of distinct ISIs observed in
each spike train simulation. To formally test whether these
regions are truly chaotic it is necessary to calculate their
Lyapunov exponents. We thus calculate the Lyapunov expo-
nents for a slice of the phase diagram keeping gR constant
at 262 A m−2 V−1 and varying gH to show the com-
plex changes in stability. In Fig. 8 the maximal Lyapunov
exponent is plotted. The exponent crosses zero for multiple
values of gH and becomes positive in chaotic regions, there
are short intervening windows of negative MLE values rep-
resenting windows of periodic behavior. Importantly, there
are widely varying values of MLE over a narrow region
of the parameter gH in Fig. 8, showing the complex fir-
ing behavior that exists within chaotic regions. This is most
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Fig. 7 Top plot shows one second of a chaotic spike train. Bottom
plot shows corresponding trajectory traced out in the phase space of
variables V, R, and H. Simulation was run for 10 s. Values are as
shown in Table 1 with the exceptions of gR = 255 A m−2 V−1,
gH = 45 A m−2 V−1 and Iext = 0.8 A m−2

clearly shown when comparing with the bifurcation diagram
in Fig. 8 where the chaotic bifurcations of ISIs correspond-
ing to the MLE are lined up. The windows of negative MLE
correspond to islands of periodic behavior which then revert
to chaotic behavior once the MLE returns to positive values.

5 Summary and discussion

We have developed a novel neuronal model capable of
reproducing a range of dynamical behaviors commonly
observed in regular spiking, fast spiking, continuous burst-
ing, and intrinsic bursting cells. It is a hybrid of the
Hindmarsh–Rose (Hindmarsh and Rose 1984) and Wilson’s
neocortical models (Wilson 1999a).

Additionally, we have used cubic equations for describ-
ing spiking dynamics; by keeping nonlinearities to a
third order polynomial the equations remain analytically
tractable and allows ease of implementation in future work
involving neural field theory and mean-field modelling.
Similar reasons motivated us to encapsulate the slow,
negative feedback properties of the model in an abstract
H variable. It would be advantageous for reducing the
model to a neural field theory framework to perform a
fast-slow analysis (Guckenheimer et al. 2005; Best et al.
2005) in which system variables are classified as either
“fast” if they change significantly over the duration of a
single spike or “slow” for variables that change only over
the duration of a burst. Such analysis would allow further
investigation of the topological structure of the model’s
bursting dynamics with the slow parameter H treated as
a bifurcation parameter for the fast subsystem V, R. This
aids understanding of the model’s behavior in a neural field
theory framework (Robinson et al. 2008; Robinson and
Kim 2012) and complements the analysis provided in the
current work. Such fast-slow analysis, where it would be
necessary to separate variables according to the timescale
over which they operate, highlights the importance of our
choice fo the H variable which allows ease of separation
from the fast variables, simpler bifurcation surfaces and
robust implementation in neural field theory.

Our model exploits the interplay between V and R to
initiate and terminate spikes without explicity incorporat-
ing inactivation currents. Such a strategy was also utilized
in formulating Wilson’s four-dimensional model (Wilson
1999a). Nonetheless, the array of possible neuronal dynam-
ics arising from our simpler three-dimensional model is
diverse and encompasses the most fundamental properties
of biological neurons. The H equation serves as a slow mod-
ulatory effect on firing by shifting the spike threshold. This
provides the mechanism for spiking adaptation, bursting,
and sub-threshold oscillations. However, it should be noted
that due to the simplicity of our single slow variable H the
model cannot account for bursting mechanisms that require
two or more slow variables (Rinzel 1986).

Our main results showed the existence of multiple fixed
points within certain parameter regions of Iext and gH . We
demonstrated that hysteresis was possible in these regions.
Our phase diagram simulations also provided independent
verification of changes in stability in fixed points corre-
lated with transitions from resting to firing. Increasing gH

tended to reduce hysteresis effects so that when gH was suf-
ficiently high for a given set of parameter values, hysteresis
was abolished.

Calculation of the Lyapunov exponents for a chosen
chaotic region characterized the complexity of periodic-
to-chaotic trajectory transitions. There were windows of
stability between regions of chaotic behavior. Crucially, the
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Fig. 8 Slice of parameter space
with Iext = 1.0 A m−2,
gR = 262 A m−2 V−1 and gH

from 52 to 57 A m−2 V−1. a
The MLE as it changes through
the parameter space. b Number
of distinct ISIs at each point in
the parameter space
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model is demonstrably capable of a strong suite of firing
modalities. Chaotic behavior has been implicated in numer-
ous neuronal processes such as information processing and
memory (Skarda and Freeman 1987). Its existence in the
model provides additional features that may contribute to
interesting phenomena in neural networks.

We emphasize that the model is not constructed as a com-
plete explanatory mechanism for spiking patterns. Rather to
show its capability to reproduce accurate spiking behavior.
Importantly, our model incorporates biophysical represen-
tations of the fast ion-channels as opposed to phenomeno-
logically reproducing spikes through various artificial resets
such as those used in integrate-and-fire neurons.

In comparing Wilson’s four dimensional model with our
simplified three-dimensional model it has been shown that
the diversity of neural dynamics is reproducible. In contrast,
Rose and Hindmarsh model also offered the tractability of a
three dimensional model, but did not adhere to Ohm’s law,
nor did it explicitly incorporate equilibrium potentials for
their fast variables.

Furthermore, the Rose–Hindmarsh model was formu-
lated in a dimensionless units as they sought the simplest
model capable of bursting primarily to investigate its math-
ematical structure. This resulted in a compact set of three
equations but did not include physical units for any of
their equations, which can lead to difficulties interpreting
the neuronal dynamics. Though the Rose–Hindmarsh model
was capable of bursting its dimensionless units made it dif-
ficult to implement for practitioners as discussed in Wilson
(1999a).

The above results show that even with only three differ-
ential equations following biophysical principles for the fast
variables our model was sufficient for reproducing at least
12 fundamental spiking patterns, type I and II excitabil-
ity, and hysteresis. These patterns encompass a wide array
of possible spiking exhibited by diverse neural populations
found in vivo Connors and Gutnick (1990).

We have used a very simple model that adheres to bio-
physical principles in the two fast variables while the slow
variable is an approximation of slow channel dynamics, thus
allowing the model to be compatible with neural field the-
ory. The chosen parameter space reflects the diversity of
spiking patterns and chaotic behaviors.

The above results show that the model exhibits a diverse
array of neuronal dynamics. It would interesting in future
work to explore whether still further dynamics can be pro-
duced in other parameter regions. An example would be
mixed-mode oscillations different to the type shown in the
current work. They involve high-frequency sub-threshold
oscillations alternating with spiking (Iglesias et al. 2011).
Recent analysis has provided invaluable insight into such
phenomena (Desroches et al. 2012). The dynamical geome-
try underlying them is highly complex and multiple mech-
anisms can be responsible for their generation (Krupa et al.
2008; Rubin and Wechselberger 2008; Harish and Golomb
2010).

We also note that several other three-dimensional mod-
els have been proposed in the wider context of simplified
bursting neurons to model specific cells such as pancre-
atic β-cells (Sherman 1996; Bertram et al. 1995; Coombes
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and Bressloff 2005) and pre-Bötzinger pacemaker neurons
(Butera et al. 1999; Coombes and Bressloff 2005). However,
these models were designed for very specific cell types with
parameters tuned to replicate experimental results in other
systems and there have been no studies to see how much
of the present dynamics they could replicate. In contrast,
our fast variables V and R produce physiologically accurate
spikes for cortical and thalamic neurons (Wilson 1999a),
while our slow variable H has been used to model bursting
dynamics in thalamic neurons (Hindmarsh and Rose 1984).

A single-neuron model that has gained in popularity is
that of Izhikevich (2007). Though the Izhikevich model is
probably the simplest, with only two equations, and is capa-
ble of all firing patterns discussed so far, its main drawback
is the lack of a natural mechanism for resetting spikes;
instead it requires an artificial reset of the voltage back to
equilibrium after a ‘spike’ has occurred. This awkward fea-
ture is avoided by our three-dimensional model. Hence, our
model is advantageous relative to Wilson’s model due to
its reduced dimensions for simulation, while preserving the
physical units that Rose and Hindmarsh did not include as
they were more interested in the mathematical analysis of
a bursting model. Additionally, our model is capable of a
more natural reset of spike voltages than in leaky integrate-
and-fire models. These qualities are important in networks
encompassing the whole brain when computational effi-
ciency is crucial. Furthermore, the simplicity of our H

equation, which slowly modulates the spike threshold, is
amenable to mean-field models (Robinson et al. 2008).

In conclusion, we have analyzed a simple three dimen-
sional model that incorporates biophysical representations
in the fast variables. It is capable of simulating a diverse
array of fundamental neural behaviors and we have analyzed
its dynamics. We argue it is a useful candidate for incorpo-
rating many types of single neuron dynamics in mean-field
modeling.
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