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Abstract In this paper, the modeling of several complex
chemotaxis behaviors of C. elegans is explored, which
include food attraction, toxin avoidance, and locomotion
speed regulation. We first model the chemotaxis behaviors
of food attraction and toxin avoidance separately. Then, an
integrated chemotaxis behavioral model is proposed, which
performs the two chemotaxis behaviors simultaneously. The
novelty and the uniqueness of the proposed chemotaxis
behavioral models are characterized by several attributes.
First, all the chemotaxis behavioral models are on biologi-
cal basis, namely, the proposed chemotaxis behavior models
are constructed by extracting the neural wire diagram from
sensory neurons to motor neurons, where sensory neurons
are specific for chemotaxis behaviors. Second, the chemo-
taxis behavioral models are able to perform turning and
speed regulation. Third, chemotaxis behaviors are charac-
terized by a set of switching logic functions that decide the
orientation and speed. All models are implemented using
dynamic neural networks (DNN) and trained using the real
time recurrent learning (RTRL) algorithm. By incorporat-
ing a speed regulation mechanism, C. elegans can stop
spontaneously when approaching food source or leaving
away from toxin. The testing results and the comparison
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with experiment results verify that the proposed chemotaxis
behavioral models can well mimic the chemotaxis behaviors
of C. elegans in different environments.
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1 Introduction

The nematode C. elegans provides an excellent model for
studying the chemotaxis behavior because its 302 neu-
rons are clearly described and the neuronal connections
are known (White et al. 1986). The nervous system of
C. elegans can be divided into 118 classes: 40 classes of sen-
sory neurons, 48 classes of interneurons and 30 classes of
motor neurons. With these neurons, C. elegans can achieve
at least seven kinds of behaviors: chemotaxis, thermotaxis,
mechanosensation, osmotic avoidance, dauer formation (a
kind of hibernation), male mating, and egg laying. Among
these behaviors, the first four are related to the locomo-
tion behaviors that are widely investigated by four research
groups from scientific aspects.

The first research group constructed an artificial neu-
ral network to replicate the chemotaxis behavior for food
attraction through computer simulation (Ferée and Lockery
1998, 1999; Ferée et al. 1996). Later on, the excitatory,
inhibitory and self-connections were found (Dunn and
Lockery 2004) and different functional classes of neurons
were identified by clustered neural dynamics methods
(Dunn et al. 2006). The second research group explored the
head turning (Suzuki et al. 2004), direction control (Suzuki
et al. 2005a, 2005c) and touch response for forward or back-
ward movement of C. elegans (Suzuki et al. 2005b). The
third research group used the biological experiment results
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to construct an artificial network model to show how a sinu-
soid wave can be propagated through the body (Karbowski
et al. 2008). The fourth research group investigated how
the muscles and neurons of C. elegans generated the sinu-
soid wave and how the wave was propagated from the head
to tail (Boyle and Cohen 2008; Boyle et al. 2008). Finally
they identified that the gaits of crawling and swimming
were the same (Berri et al. 2009).

The present study attempts to extend our preceding work
(Xu and Deng 2010) in five aspects. First, we construct
the chemotaxis behavioral models that are extracted bio-
logically from neural wire diagram instead of artificial net-
works. Three chemotaxis behavioral models are constructed
in this study for food attraction, toxin avoidance, and inte-
grated food attraction and toxin avoidance, respectively.
The wire diagram for each model is represented by
a dynamic neural network (DNN), and each neuron is
described as a non-linear active function. DNN is suitable
for chemotaxis behavioral modeling owing to its dynamical
nature, since its connections can be made analogous to the
nature ones such as synapses.

Second, the behaviors of food attraction and toxin avoid-
ance are explored individually, and then an integrated
chemotaxis behavioral model is exploited to perform the
two behaviors simultaneously. For the chemotaxis behav-
iors, according to Suzuki et al. (2008), the time derivative
of attractant concentration is used for navigation. In our
models, the sensory neuron ASE receives the outside input.
Furthermore, there should be a neuron remembering the
concentration at previous time for calculating the differ-
entiation of concentration. It is known that biologically
the neuron AIY serves as a memory neuron (Ye et al.
2008), which can record the concentration at previous time.
Hence, C. elegans has the ability to calculate the gradient
information so that it can guide itself towards the food or
escape from the toxin. To represent the chemotaxis behav-
iors, a set of nonlinear switching logic functions (SFLs)
are introduced to map the temporal gradient information
of concentration to motor neuron outputs that decide the
navigation. DNN is trained to learn the switching logic func-
tions. After training, DNN can regenerate the chemotaxis
behavioral motions.

Third, based on the standpoint that the speed of C. ele-
gans is not constant (Leung et al. 2008), we incorporate
speed regulation mechanism into these chemotaxis behav-
ioral models, so that the navigation is complete with the
orientation control and speed control. In our work, C. ele-
gans is able to not only approach the food source (avoid the
toxin source), but also reduce its speed when getting close
to the food source (far away from the toxin source).

Fourth, we test our models in different scenarios. In
each scenario, C. elegans successfully approaches the food
source or escapes from the toxin source. It verifies that SFLs

can well capture the chemotaxis behaviors. Furthermore,
once C. elegans is trained to learn the SFLs, it can perform
its corresponding behaviors in different scenarios without
re-training.

Fifth, we quantitatively analyze our results and compare
them with other works. First, we analyze the neuronal con-
nectivities of the resultant wire diagrams by following the
method of Dunn (2006). In this way, we have investigated
the similarity of these wire diagrams and simplified them to
smaller networks. Next, we use quantitative analysis method
to compare the trajectories of the resultant wire diagrams
with the experiment results provided by Pierce-Shimomura
et al. (1999) and Iino and Yoshida (2009). At last, we
add the external noise and internal noise to the resultant
wire diagrams and test their robustness. We also quan-
titatively analyze the trajectories of these wire diagrams
affected by noises and compare them with the experiment
data provided in Pierce-Shimomura et al. (1999), Iino and
Yoshida (2009).

This paper is organized as follows. Section 2 provides
several preliminary results for subsequent sections, includ-
ing the kinematics of locomotion, distribution of food and
toxin concentrations, DNN model, and the training method.
Section 3 illustrates the locomotion behaviors of C. ele-
gans and the way to construct the switching logic functions.
Section 4 investigates the chemotaxis behavioral model
for food attraction. Section 5 investigates the chemotaxis
behavioral model for toxin avoidance. In Section 6, chemo-
taxis behavioral models of food attraction and toxin avoid-
ance are integrated into a single chemotaxis behavioral
model to perform food attraction and toxin avoidance con-
currently. In each section, the corresponding neural wire
diagrams, switching logic functions and testing results are
demonstrated in details. Section 7 explores the similarity
of the resultant wire diagrams and quantitatively analyzes
the trajectories of these wire diagrams with or without being
affected by noises, while Section 8 concludes the paper.

2 Mathematic models and training method

In this section the mathematical kinematic models of C. ele-
gans are provided first. Then we describe the attractant and
repellent concentration distribution. Next, DNN model is
constructed and the training method RTRL is demonstrated.

2.1 Kinematic model

In this work, C. elegans is modeled as a point source in the
x–y plane with velocity v(t) at head, and angle θ(t) mea-
sured from the x-axis at time t, as shown in Fig. 1. The
velocity v(t) in our model is variant because recent work
(Iino and Yoshida 2009; Leung et al. 2008) indicates that the
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Fig. 1 The coordinate of C. elegans in the x–y plane. C. elegans is
modeled as a point source in the x–y plane with velocity v(t). The head
angle θ(t) measured from the x-axis at time t

velocity of C. elegans will change according to the chemical
stimulus. Thus we construct the kinematic model as:

x(t + 1) = x(t) + v(t)T cos θ(t) (1)

y(t + 1) = y(t) + v(t)T sin θ(t) (2)

θ(t) = θ(t − 1) + �θ(t) (3)

v(t) = 1

2
Vmax · [Vleft(t) + Vright(t)] (4)

�θ(t) = γ (Vright(t) − Vleft(t))T , (5)

where x(t) and y(t) are the position values at time t. v(t) is
the velocity of worm, which is the average value of the left
and right output neurons multiplying by the worm’s max-
imum speed Vmax, 0.0022 m/s. θ(t) is determined by the
difference of left and right output neurons multiplying by
one constant γ , which is called turning rate (Ferrée et al.
1996). T is the sampling period.

From the above kinematic model, it can be seen that
the speed v(t) is changing according to the summation
of two outputs: Vleft(t) + Vright(t), and the direction of
the worm θ is determined by the subtraction of two outputs:
Vright(t)−Vleft(t). When Vleft(t) > Vright(t), the worm turns
right, and vice versa. When Vleft(t) = Vright(t), the worm
goes straightly. When Vleft(t) and Vright(t) become small

and approach to 0, the worm slows down to stop. Thus, both
the speed and the direction change concurrently.

2.2 Concentration distribution

The concentration distribution of both food and toxin
is assumed in Gaussian distribution (Ferrée and Lockery
1999):

C(x, y) = Cmaxexp

(
−x2 + y2

S

)
, (6)

where Cmax is the peak value of the attractant or repellent
and S is the variance of the distribution. The unit of the
concentration C is millimolar concentration (mmol/L, shorts
for mM).

One example of concentration distribution is shown
graphically in Fig. 2.

2.3 Dynamic neural network model

Each neuron in this paper is denoted as a dynamic neuron
with self-feedback (Izquierdo and Lockery 2010). The state
of the ith neuron can be represented as the voltage Vi . In this
paper, we adopt a discrete DNN:

Vi(t+1) = αiVi(t)+βi · tanh

⎛
⎝ N∑

j=1,i �=j

wij (Vj (t) − V j )

⎞
⎠

+ bi + δiui(t),

(7)

where the exogenous input ui(t) is the instantaneous chem-
ical concentration sensed by sensory neurons. The constant
V j is the center of the conductance of the jth neuron (Ferrée
and Lockery 1999), which means at this voltage there is no
transmitter released from the jth neuron. wij represents the
strength of synaptic connection from neuron j to i. bi is a

Fig. 2 The potential field of
concentration distributed in a
square area with the range
[−0.2, 0.2] meters, where
Cmax = 2 mM and S = 0.01
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constant bias introduced here to adjust the resting potential
value (Maass 1997). When neuron i is the sensor neuron,
δi = 1, otherwise δi = 0. The parameters to be determined
through training are αi , βi , wij , V i , bi , for i, j = 1, · · · , N .

2.4 Training method

To train the dynamic neural network, there are mainly
two training algorithms, Back-propagation Through Time
(BPTT), and Real-time Recurrent Learning (RTRL)
(Williams and Zipser 1989). The BPTT is a kind of BP algo-
rithm which is suitable for layer-structured neural networks.
However, since the wire diagram of C. elegans is biolog-
ically connected without layers, RTRL is an appropriate
training method for parametric learning.

The RTRL first defines an error function:

E(t) = 1

2

N∑
i=1

e2
i (t), (8)

where ei = di(t) − Vi(t), and di(t) is a desired output.
The updating law is

W(t + 1) = W(t) + �W(t), (9)

�W(t) = −η
∂E(t)

∂W(t)
= η

N∑
i=1

ei(t)
∂Vi(t)

∂W(t)
, (10)

where η is a learning rate, and W(t) denotes one of the
parameters wij , V i , αi , βi , and bi .

All DNN models are trained by RTRL to learn their
specific switching logic functions. Training iteration for
individual models varies from 8,000 to 50,000 epochs. All
neural connection weights are set with initial values ran-
domly between −0.5 and 0.5. Learning rates are set to 0.002
for wij and 0.01 for other parameters. The lower learning
rates ensure the convergence of training. Furthermore, there
are three points should be noted for training.

First, the range of initial weights plays the important
role for convergence. It is mentioned that the initial weights
should not to be too large (Lee et al. 1991; Saseetharran
1996; Wu and Zhang 2002). Large initial weights are in the
extreme regions of the sigmoid functions, hence difficult to
adjust or update. This is because the gradient value of the
sigmoid function is rather low at extreme regions due to the
flatness of the sigmoid function (Lari-Najafi et al. 1989).

Remark 1 We also try the initial weights with the range
[−1, 1] and [−2, 2]. There are no obvious differences com-
paring with the range [−0.5, 0.5]. When the initial range
is between [−5, 5], neuronal active functions of the sig-
moid function type, such as tanh(x) = (ex − e−x)/

(ex + e−x), becomes either +1 or −1 when x is
nearby +5 or −5. In our work, the active function is

tanh
(∑N

j=1,i �=j wij (Vj (t) − V̄j )
)

in Eq. (7). If the range of

weights wij is between [−5, 5], the output of active func-
tion may become either +1 or −1, namely, deeply saturated.
The deep saturation makes the training difficult because the
output of neuron would not vary while the inputs vary.

Second, to avoid the local minimum a randomly restart
mechanism is adopted. As mentioned in Hamm et al. (2002),
random restarts with a local gradient algorithm may be more
effective than a global algorithm at obtaining a low value
of the objective function. During the training, if the sum of
squared error (SSE) is a constant for a long period, or the
SSE is larger than a value, the training procedure will be
restarted by randomly re-initializing the weights. We set that
if the value of SSE is bigger than 0.01 and not changing for
400 epochs, or if the SSE is greater than 4 (except for the
initialization), the training procedure will restart.

Third, the wire diagrams are trained with inputs rang-
ing from 0 to 2. If a wider range of concentration inputs
is given, we can introduce a scaling factor into the sensory
neurons and normalize the inputs within the range [0,2], and
the same test results can be obtained without re-training.

3 Locomotion of C. elegans and switching
logic functions

3.1 Locomotion of C. elegans

Biologically, C. elegans moves as a long series of sinusoidal
movements, called a run, and it is interrupted approxi-
mately twice a minute by sharps turn and reversals (Gray
et al. 2005; Pierce-Shimomura et al. 1999; Stephens et al.
2010). Sharp turn is called Omega turn because it shapes
as the Greek alphabet 
. For 
 turn, C. elegans’ head
curls back, touching or crossing the tail, and it contin-
ues to move forward with a sharp direction changing. For
reversal, C. elegans moves backward for several seconds
and then moves forward again following by a slight turn,

 turn, or going straightly. With these behaviors, C. ele-
gans can navigates itself towards the food source, preferred
temperature areas, or leave far away from the unpleasant
places. These behaviors can be attributed to two strategies:
klinokinesis and klinotaxis (Lockery 2011). For klinoki-
nesis, C. elegans changes it turning frequency according
to the magnitude of outer stimulus, and for klinotaxis,
C. elegans moves forward with identical stimulus from both
left and right sides. Furthermore, C. elegans has two dis-
tinct circuits for locomotion, one for forward and another
for backward (Kawano et al. 2011). The circuit for for-
ward locomotion achieves the dominant role and it results in
the frequency of backward locomotion far less than that of
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forward locomotion. Moreover, the activation of ASH can
active the backward circuit (Piggott et al. 2011) that yields
more reversals or 
 turns. For orientation, the mechanism
called biased random walk achieves the fundamental role
for navigation (Pierce-Shimomura et al. 1999). In large
time-scale, the biased random walk can be considered as the
forward moving accompanied with the turning towards the
preferred direction.

3.2 Switching logic functions

Since C. elegans does not have the sophisticated thinking
ability, the complex chemotaxis behaviors can be modeled
as input-output mapping from external stimuli to corre-
sponding motion, namely, from sensory neural inputs to
motor neural outputs. In this work, we construct a set
of nonlinear functions named SLFs to denote the input-
output mapping.

We solve Vleft(t) and Vright(t) from Eqs. (4) and (5):

Vleft(t) = v(t)

Vmax︸ ︷︷ ︸
speed

− �θ(t)

2γ T︸ ︷︷ ︸
orientation

, (11)

Vright(t) = v(t)

Vmax︸ ︷︷ ︸
speed

+ �θ(t)

2γ T︸ ︷︷ ︸
orientation

. (12)

From Eqs. (11) and (12), both Vleft(t) and Vright(t) are
determined by two components: speed and orientation. The
speed of C. elegans is varying according to the chemi-
cal stimulus C(t). In our model we assume that the worm
chooses right-side turning as its preference. Furthermore,
it is proved that the “turning bias” achieves a critical role
for chemotaxis behaviors of C. elegans biologically, and the
temporal concentration difference �C(t) = C(t)−C(t −1)

is used for navigation (Pierce-Shimomura et al. 2005). For
food attraction, when �C(t) > 0, C. elegans is heading
the correct direction. When �C(t) ≤ 0, C. elegans is head-
ing a wrong direction and it should turn. It is opposite for
toxin avoidance.

As we assume that the right turning is preferred, hence
the left-side motor neuron output is always higher than or
equal to the right motor neuron. SLFs are constructed as:

Vleft(t) = φ(C(t))︸ ︷︷ ︸
speed

, (13)

Vright(t) = φ(C(t))︸ ︷︷ ︸
speed

+ σ(C(t), �C(t))︸ ︷︷ ︸
orientation

, (14)

where φ(C(t)) is a SLF of speed with the concentration
input C(t). σ(C(t), �C(t)) is a SLF of orientation with
the arguments C(t) and temporal concentration difference,

�C(t) = C(t) − C(t − 1). This SLF of orientation only
appears in Eq. (14). For example, for food attraction, if
the direction of C. elegans is correct, �C(t) > 0, so
σ(C(t), �C(t)) = 0, which has no influence on Vright.
When �C(t) ≤ 0, σ(C(t), �C(t)) outputs a negative value
that makes Vleft(t) > Vright(t), so C. elegans turns right. It
is opposite for toxin avoidance.

It should be noted that SLFs are constructed based on
the logic of chemotaxis behaviors. Once the wire diagram is
well trained, it can be put into different environments with-
out re-training and there is no problem for it to perform
similar behaviors. It is worth pointing out that the SLFs
constructed are not unique. Different SLFs can be designed
as long as the logic is correct. SLFs should be designed
with smooth and continuous shape, because it is difficult for
neural networks to approximate non-continuous and sharp
gradient functions.

4 Chemotaxis behavioral model for food attraction

Finding food and avoiding toxin are the fundamental sur-
vival skills of C. elegans. The sensory neurons of C. elegans,
such as ASE and ASH, are symmetrical biologically. How-
ever, the distance between left-side and right-side sensory
neurons are too small, so they work as a single sensory
neuron (Ferrée et al. 1996).

In this section, first the wire diagram for food attraction
is extracted from biological neural connections. Second, the
chemotaxis behavior of food attraction is depicted as a set of
SLFs. Third, the wire diagram is trained to learn these SLFs
and tested in simulated environment.

4.1 Wire diagram

According to anatomy, the biological wire diagram for food
attraction is shown in Fig. 3. This wire diagram is extracted
based on the data provided by Altun and Hall (2006) and
Bhatla (2009). We fix the sensory neuron ASE as input
neuron for food attraction (Bargmann and Horvitz 1991),
two motor neurons DB and VB as the left and right out-
put neurons, respectively. Other interneurons are added by
two rules: (1) with the shortest paths from ASE to DB
or VB (Bhatla 2009); (2) with the strongest synaptic con-
nections from ASE to DB or VB (Altun and Hall 2006).
The chemical synapse from one neuron to another is mod-
eled as a unidirectional connection, and the gap junction
between two neurons is modeled as a bidirectional connec-
tion with two weights. If both synapses and gap junction
exist between two neurons, we still model the wire as a bidi-
rectional connection with two weights. Whether the weights
are positive (active) or negative (inhibitory) is determined
by the training.
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Fig. 3 The wire diagram for food attraction. Neuron ASE is the sen-
sory neuron for food. Neuron AIY functions as the memory neuron
recording the previous food concentration information Cf (t − 1). The
outputs are neurons DB and VB for left and right sides, and the rest
are hidden neurons

As shown in Fig. 3, there are twelve interneurons in our
model. By comparing to other research works (Gray et al.
2005; Suzuki et al. 2004), it is interesting that we share
the same eight interneurons: AIA, AIB, AIY, AIZ, DVA,
AVA, AVB, and PVC. Biologically, these eight interneurons
play the critical role for the locomotion behaviors. Half of
all synaptic outputs from the amphid neurons are directed
to the interneurons AIA, AIB, AIY, and AIZ (Gray et al.
2005). Furthermore, AIY functions as a memory neuron that
records the previous concentration information (Ye et al.
2008). AVD, AVB, AVA, and PVC are four critical com-
mand neurons for movement (Riddle et al. 1997). It should
be noted that the neuron AVD in our work represents both
AVD and AVE. The reason that we combine AVD and AVE
together is because AVE has the same postsynaptic part-
ners as AVD (Leung et al. 2008), and it is in accordance
with the locomotion circuit of C. elegans in (Riddle et al.
1997), which deals with AVD and AVE as one neuron. Four

additional neurons are involved in our model that function
as interneurons: ADF, PVP, RIF, DVA. Biologically, ADF
contributes to a residual chemotactic response after ASE is
killed (Altun and Hall 2006), and DVA is an interneuron that
serves as the stretch sensitive neuron which is significant for
undulatory movement (Karbowski et al. 2008).

The model as shown in Fig. 3 is a simplified biologi-
cal wire diagram with fifteen neurons. Each neuron in this
model possesses an active function (Eq. 7), so the whole
wire diagram is a DNN. DNN has the ability to approximate
arbitrary nonlinear functions. If DNN can map the input-
output relations of the chemotaxis behaviors, then DNN can
perform the chemotaxis behaviors after training.

4.2 Switching logic functions for food attraction

SLFs for food attraction are designed as:

φ(Cf (t)) = Cmax,f − Cf (t), (15)

σ(Cf (t), �Cf (t)) = (Cmax,f − Cf (t))

· (tanh(�Cf (t) + 1) − 1), (16)

where Cf (t) is the concentration input of food, and
�Cf (t) = Cf (t) − Cf (t − 1) is the temporal food con-
centration difference between two time steps at t and t − 1.
Cmax,f is the maximum value of the food concentration. The
final motor neural outputs, Vleft(t) and Vright(t) in Eqs. (13)
and (14) as functions of arguments Cf (t) and �Cf (t), are
shown in Fig. 4.

For the speed regulation mechanism, as it is said in Leung
et al. (2008), C. elegans will slow down its speed when
approaching the food. For our model, we assume that if
C. elegans arrives at the food source, it will slow down its
speed to zero. Otherwise, it maintains a high speed to cruise.

Fig. 4 The SLFs for food attraction. If Cf (t) > Cf (t −1), C. elegans
moves in the correct direction and will move in the same direction.
When Cf (t) ≤ Cf (t − 1) (wrong direction), the output of Vright is
smaller than the Vleft, so C. elegans turns right. When the input Cf (t)

is approaching to Cmax,f = 2 mM, the outputs of both motor neurons
will approach to zero
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In the SLFs for food attraction, Eqs. (13)–(16), if Cf (t)

is small, the outputs of Vleft(t) and Vright(t) are large, and
therefore the speed is high. When Cf (t) becomes larger, the
amplitude of Vleft(t) and Vright(t) decreases, which yields
lower speed. For the orientation control, as shown in Fig. 5,
when �Cf > 0, C. elegans moves towards the correct
direction. In this case, σ(Cf (t), �Cf (t)) = 0 in Eq. (16),
that is Vleft = Vright, and C. elegans goes straightly. When
�Cf ≤ 0, which means C. elegans moves towards the
wrong direction. σ(Cf (t), �Cf (t)) < 0 yields Vleft >

Vright, so C. elegans turns right. As shown in Fig. 4, a large
negative temporal concentration variation yields a large dif-
ference between left and right output neurons, which can
generate the abrupt turn (
 turn), whereas a small negative
temporal concentration variation yields a small difference
between left and right output neurons, which produces the
slight turn.

The choice of SLFs is not limited to Eqs. (15) and (16).
φ(Cf (t)) should be reciprocal to Cf (t) for food attrac-
tion. C. elegans needs to stop when it reaches the food
source, namely, Cf (t) reaches maximum. For the orien-
tation control, σ(Cf (t), �Cf (t)) is reciprocal to Cf (t)

but proportional to �Cf (t). Furthermore, when nearby the
food source, sharp turning of C. elegans is not necessary
even if �Cf (t) is very negative. However, when C. ele-
gans is far from the food source, a large �Cf (t) leads
to a sharp turning.

4.3 Testing results

The wire diagram for food attraction shown in Fig. 3 is
trained to remember the input-output mapping for food
attraction (Fig. 4).

For the training data, the input data include two terms,
Cf (t) and Cf (t − 1), which range from 0 to 2 with interval

Fig. 5 Movement demonstration for food attraction. If Cf (t) >

Cf (t − 1), C. elegans is in the correct direction, so Vleft = Vright and it
goes straightly. When Cf (t) ≤ Cf (t − 1) (wrong direction), the out-
put of Vright is smaller than the output of Vleft, which makes C. elegans
turn right
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Fig. 6 Testing results for food attraction. Food source is located at
the point (0,0) with Gaussian distribution. C. elegans starts at five dif-
ferent locations (−0.11,−0.07), (−0.08,0.08), (0,−0.14), (0.04,0.14),
and (0.12,−0.06) with random initial angle. It moves towards the food
source and finally settles down when it approaches the food after some
right turns

0.1. To train this model, it needs two neurons to receive the
input training data, Cf (t) and Cf (t − 1). ASE functions as
the attractant sensory neuron (Riddle et al. 1997) to receive
the input Cf (t). As claimed by Ye et al. (2008), AIY has
the memory ability. Based on this result, AIY is assigned
by us to serve as the memory neuron to receive the input
Cf (t − 1). However, as shown in Fig. 3, AIA, AIZ, and
AIB share the similar connections and these neurons may
serve as the memory neurons. To the best of our knowledge,
there are not any references to mention their memory ability.
Thus AIA, AIZ, and AIB only function as interneurons in
our models. Target data for the two output neurons, Vleft for
DB and Vright for VB, are calculated according to Eqs. (13),
(14), (15), and (16).

The testing results for food attraction are shown in
Fig. 6. The food source is located at the point (0,0) with
Gaussian distribution. C. elegans starts at five different loca-
tions (−0.11,−0.07), (−0.08,0.08), (0,−0.14), (0.04,0.14),
and (0.12,−0.06) with random initial angle. C. elegans
moves towards the food source and finally stops when
it approaches the food after some right turns. The quan-
titative analysis of the trajectories in the simulation is
discussed in Section 7.2 by comparing with the experi-
ment results of Pierce-Shimomura et al. (1999) and Iino and
Yoshida (2009).

5 Chemotaxis behavioral model for toxin avoidance

In this section, we explore the toxin avoidance behavior.
The toxin avoidance is another kind of chemotaxis behavior
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that C. elegans will turn its direction to avoid the unpleas-
ant chemical stimulus. Following the same procedure in
Section 4, we first extract the wire diagram based on
the biological neural connections. Second, SLFs for toxin
avoidance are constructed. At last, after the wire diagram is
well trained, two different toxin scenarios are carried out to
test the performance of the modeled C. elegans.

5.1 Wire diagram

For toxin avoidance behavior, the input neuron is ASH,
which is responsible for nose touch, hyperosmolarity, and
volatile repellent chemicals. The output neurons are DB
for left-side and VB for right-side. Other interneurons are
extracted following the same way in Section 4.1. The wire
diagram for toxin avoidance is shown in Fig. 7. We obtain
the wire diagram with the same interneurons compared to
that for food attraction as shown in Fig. 3. However, the

Fig. 7 The wire diagram for toxin avoidance. The neuron ASH is the
toxin sensory neuron. The neuron AIY functions as a memory neuron
to record the previous toxin concentration Ctx(t − 1). DB and VB are
the left and right motor neurons. Others are hidden neurons

neuronal connections for food attraction and toxin avoid-
ance wire diagrams are different. For example, ASH for
toxin avoidance has the direct connections to command neu-
rons AVD and AVA, but ASE for food attraction does not.
The neuron AIY functions as a memory neuron to record
the previous toxin concentration Ctx(t − 1). The toxin con-
centration information Ctx(t) is transferred to AIY from
ASH by passing through ADF. Each neuron in this model is
modeled by Eq. (7).

5.2 Switching logic functions for toxin avoidance

The SLFs for toxin avoidance should be opposite to the
SLFs for food attraction. The SLFs for toxin avoidance are
designed as:

φ(Ctx(t)) = Ctx(t), (17)

σ(Ctx(t), �Ctx(t)) = Ctx(t)

· (− tanh(�Ctx(t) + 1) − 1), (18)

where Ctx(t) is the toxin concentration input at time t, and
�Ctx(t) = Ctx(t) − Ctx(t − 1) is the temporal toxin con-
centration difference between two consecutive time steps.
In Eq. (17), φ(Ctx(t)) controls the speed, and in Eq. (18)
σ(Ctx(t), �Ctx(t)) controls the orientation. The plot of the
SLF is shown in Fig. 8.

For the speed regulation mechanism, as it is mentioned
by Culotti and Russell (1978), C. elegans reverses and turns
to change its direction of movement immediately when it
encounters chemical repellents. For our toxin avoidance
behavioral model, we assume that once C. elegans smells
the toxin concentration, the avoidance behavior is activated.
The stronger toxin concentration yields the faster speed

Fig. 8 The SLFs for toxin avoidance. If Ctx(t) < Ctx(t − 1), C. ele-
gans moves in the correct direction and will move towards the same
direction. When Ctx(t) ≥ Ctx(t − 1) (wrong direction), the output
of Vright is smaller than the output of Vleft, so C. elegans turns right.
When the input Ctx(t) is near zero, the outputs of both motor neurons
approach to zero
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and larger turning degree of C. elegans. The avoidance
behavior will last until there is no toxin concentration and
then it reduces its speed to zero. In the SLFs for toxin
avoidance, Eqs. (13), (14), (17), and (18), when the input
Ctx(t) approaches to zero, the outputs Vleft and Vright also
approach to zero, so C. elegans reduces its speed down to
zero. When Ctx(t) is large, Vleft and Vright are also large,
and therefore C. elegans maintains a high speed. For the
orientation control, as shown in Fig. 9, when Ctx(t) ≥
Ctx(t − 1), C. elegans moves towards the wrong direc-
tion. In this case, σ(Ctx(t), �Ctx(t)) < 0, which yields
Vright < Vleft, and C. elegans turns right. When Ctx(t) <

Ctx(t − 1), C. elegans is in the correct direction. In this
case σ(Ctx(t), �Ctx(t)) = 0 yields Vright = Vleft and
C. elegans goes straightly. As shown in Fig. 8, a large
positive temporal concentration variation yields a large dif-
ference between left and right output neurons, which can
generate the abrupt turn (
 turn), whereas a small positive
temporal concentration variation yields a small difference
between left and right output neurons, which produces
the slight turn.

From the Eqs. (15) and (17), we can observe that SLFs of
speed for food attraction and toxin avoidance are in an oppo-
site manner due to the nature of tasks. For food attraction,
the gradient of Eq. (15) is

∂φ(Cf (t))

∂Cf (t)
= −1, (19)

which is negative. For toxin avoidance, the gradient of
(17) is

∂φ(Ctx(t))

∂Ctx(t)
= 1, (20)

which is positive. In such circumstances, when concentra-
tion is higher, C. elegans is going to stop before food or
move quickly from toxin. By comparing with Eqs. (16)

Fig. 9 Movement demonstration for toxin avoidance. If Ctx(t) <

Ctx(t − 1), C. elegans is in the correct direction, so Vleft = Vright and
it goes straightly. If Ctx(t) ≥ Ctx(t − 1) (wrong direction), the output
of Vright is smaller than Vleft, which makes C. elegans turn right

and (18), SLFs of orientation have the opposite logics for
food attraction and for toxin avoidance. When concentration
at time t is higher than that at the previous time t − 1,
C. elegans should go straightly for food attraction, or turn
for toxin avoidance.

5.3 Testing results

The wire diagram of toxin avoidance, as shown in Fig. 7,
is trained to remember the input-output mapping for toxin
avoidance (Fig. 8).

For the training data, the input data include two terms,
Ctx(t) and Ctx(t − 1), which range from 0 to 2 with
interval 0.1. To train this model, ASH functions as the
input neuron to receive the training data Ctx(t), and AIY
is assigned to be the memory neuron to receive the training
data Ctx(t −1). Target data for the two output neurons, Vleft

for DB and Vright for VB, are calculated by Eqs. (13), (14),
(17), and (18).

After being trained by RTRL, C. elegans are tested in two
different scenarios. In the first scenario, as shown in Fig. 10,
four toxin resources are located at (−0.2,0), (−0.1,−0.15),
(0,0.2), and (0.1,−0.1). C. elegans starts at three different
positions (−0.13,−0.11), (0.07,−0.1), (0,0.18) with head
angle randomly generated. C. elegans successfully finds
the zero toxin concentration places after several turns and
finally stops.

In the second scenario, as shown in Fig. 11, twenty-five
toxin sources are distributed as a 5 × 5 grid. In the figure,
each dot indicates a toxin source and each circle line indi-
cates the boundary of its corresponding toxin distribution.
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Fig. 10 Testing results for toxin avoidance. Four toxin resources are
located at (−0.2,0), (−0.1,−0.15), (0,0.2), and (0.1,−0.1). C. ele-
gans starts at three different positions (−0.13,−0.11), (0.07,−0.1),
(0,0.18) with head angle randomly. It successfully finds the zero toxin
concentration places to settle down
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Fig. 11 Testing results for toxin avoidance. Twenty-five toxin
resources are distributed as a 5 × 5 grid. C. elegans starts at four
different positions (0,0), (0.05,0.05), (0.03,−0.02), (−0.04,0.06) with
random initial head angle. It successfully finds the zero toxin con-
centration places to settle down. From the tracks it is obvious that C.
elegans escapes by passing the toxin boundary areas where the toxin
gradient and magnitude are relative low

C. elegans starts at four different positions (−0.04,0.06),
(0,0), (0.03,−0.02), and (0.05,0.05) with random initial
head angle. It escapes the toxin successfully by a series of
turns and finally stops at places without toxin concentra-
tion. From the tracks in Fig. 11, it is obvious that C. elegans
escapes by passing the toxin boundary areas where the toxin
gradient and magnitude are relative low. Interestingly, it
seems that C. elegans has the “intelligence” to guide itself
to follow the optimal route to escape.

6 Integrated chemotaxis behavioral model

In previous sections we explore the chemotaxis behaviors
of food attraction and toxin avoidance separately. However,
in nature C. elegans produces all the chemotaxis behav-
iors with only one wire diagram. Thus, in this section we
combine the wire diagrams for food attraction and toxin
avoidance into an integrated model. SLFs are redesigned
and learned by the integrated chemotaxis behavioral model.
We test C. elegans in three different scenarios and it shows
good performance on finding food and avoiding toxin simul-
taneously with speed regulation.

6.1 Wire diagram

The wire diagram of the integrated chemotaxis behavioral
model, as shown in Fig. 12, is the combination of two wire
diagrams shown in Figs. 3 and 7 respectively. ASE and
ASH are sensory neurons for food and toxin concentration

Fig. 12 The wire diagram for integrated chemotaxis behavioral
model. This wire diagram is the combination of wire diagrams for food
attraction and toxin avoidance. ASE is the sensory neuron for food
and ASH is the sensory neuron for toxin. DB and VB are left-side and
right-side motor neurons, and the rest are hidden neurons. AIY func-
tions as a memory neuron to record the concentration Cf (t − 1) and
Ctx(t − 1)

respectively. DB and VB are left-side and right-side motor
neurons, and the rest are hidden neurons. AIY functions as
the memory neuron to record the concentration Cf (t − 1)

and Ctx(t − 1).
It should be mentioned that all the wire diagrams

obtained are simplified chemotaxis behavioral models. In
other works (Gray et al. 2005; Karbowski et al. 2008) head
swing neurons such as RMD, SMB, SMD, RIA, and RIB are
involved. In this work, we focus on the relationship between
the chemotaxis concentration and the outputs of motor neu-
rons, VB and DB. The locomotion model of C. elegans is
simplified into a point mass. However, in our next work that
focuses on the undulatory movement of C. elegans, the neck
motor neurons RMD, SMB, and SMD are involved in the
neural model.
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6.2 Switching logic function

For the integrated behavior model, we combine the behav-
iors for food attraction and toxin avoidance together and
SLFs are designed as:

Vleft(t) = φ1(Cf (t)) + φ2(Ctx(t))︸ ︷︷ ︸
speed

, (21)

Vright(t) = φ1(Cf (t)) + φ2(Ctx(t))︸ ︷︷ ︸
speed

+ [φ1(Cf (t)) + φ2(Ctx(t))] · σ(�Cf t (t))︸ ︷︷ ︸
orientation

, (22)

where

φ1(Cf (t)) = −0.5Cf (t) + 1, (23)

φ2(Ctx(t)) = 0.5Ctx(t), (24)

σ(�Cf t (t)) = tanh(�Cf t (t) + 1) − 1, (25)

�Cf t (t) = Cf (t) − Cf (t − 1) − Ctx(t) + Ctx(t − 1). (26)

For the speed regulation mechanism, the speed of C. ele-
gans is determined by both food and toxin concentrations.
The effect of the food concentration makes C. elegans stop
only when it arrives at the food source, otherwise it will
cruise continually. It is in accord with the statement of ref-
erence Rankin (2005) that C. elegans spends nearly all of
its time grazing on bacterial lawns, and if there is no bacte-
ria, it moves around the plate to search for food. The effect
of the toxin concentration makes C. elegans continue mov-
ing and changing its direction as long as toxin concentration
is smelled. The SLFs of the speed are shown in Fig. 13(a).
In Eqs. (21) and (22), φ1(Cf (t)) and φ2(Ctx(t)) determine
the speed. When C. elegans approaches the food source,
the high input value of Cf (t) yields a low output value of
φ1(Cf (t)); and when C. elegans is faraway from the toxin,
the low input value of Ctx(t) yields a low output value
of φ2(Ctx(t)). In this case, both the Vright(t) and Vleft(t)

are near zero, and the worm comes to stop. Otherwise,
C. elegans will keep moving.

For the orientation control, based on the assumption that
C. elegans can only turn right or go straightly, it is adequate
to add the term σ(�Cf t (t)) to Vright(t) only. In Fig. 13(b),
�Cf t (t) ≥ 0 means the food concentration is higher than
that at the previous time, or the toxin concentration is lower
than that at the previous time. In this case, for Eq. (25),
σ(�Cf t (t)) is near zero and C. elegans does not turn. If
�Cf t (t) < 0, C. elegans goes wrongly, and σ(�Cf t (t)) <

0, yielding Vleft > Vright. Thus the worm turns right.
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Fig. 13 Plot of switching logic function for the integrated chemotaxis
behavioral model. In (a), Cf (t) and Ctx(t) determine the outputs of
motor neurons for speed regulation. When Cf (t) reaches the highest
value, and Ctx(t) goes down to zero, both the right and left output
neurons are zero, hence the worm stops. Otherwise, C. elegans will
keep moving. In (b), �Cf t (t) controls the orientation. If �Cf t (t) ≥ 0,
the food concentration is bigger than that at the previous time, or the
toxin concentration is smaller than that at the previous time. Thus for
Eq. (25), σ(�Cf t (t)) is near zero and C. elegans does not turn. If
�Cf t (t) < 0, C. elegans goes wrongly, σ(�Cf t (t)) < 0, and Vleft >

Vright. Thus the worm turns right

6.3 Testing results

The integrated chemotaxis behavioral model, as shown in
Fig. 12, is trained to remember the input-output mapping
(Fig. 13). The inputs of training data include Cf (t) for ASE,
Ctx(t) for ASH, and Cf (t − 1) − Ctx(t − 1) for AIY. The
range of input data is from 0 to 2 with interval 0.1. Target
data for the two motor neurons, Vleft for DB and Vright for
VB, are calculated by Eqs. (21) and (22), respectively.

The tests are carried out in three different scenarios. In
the first scenario, as shown in Fig. 14, one food is located
at point (−0.11,0) and one toxin is located at point (0.11,0)
with slightly overlapped concentration. C. elegans starts at
(0.09,0.03) where it is near the toxin without food concen-
tration. It escapes from toxin first, and when C. elegans
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Fig. 14 Testing results for the integrated chemotaxis behavioral
model in the first scenario. One food is located at point (−0.11,0) and
one toxin is located at point (0.11,0) with slightly overlapped con-
centration. C. elegans starts at (0.09,0.03) where it is near the toxin
without food concentration. It escapes toxin firstly, and when C. ele-
gans detects the food concentration it moves towards to the food and
finally stops near it

detects the food concentration it moves towards to the food
and finally stops.

In the second scenario, as shown in Fig. 15, one food
source is located at (−0.03,0) and one toxin source is

Fig. 15 Testing results for the integrated chemotaxis behavioral
model in the second scenario. One food source is located at (−0.03,0)
and one toxin source is located at (0.03,0) with largely overlapped con-
centration. When C. elegans starts from (0.08,0) with initial angle 180◦
(facing the toxin, shown as track A), it avoids the toxin by a series of
right turns and settles down at the place without toxin concentration.
When starting from the point (0.06,−0.02) with initial angle 135◦ (fac-
ing the toxin, shown as track B) where the toxin and food concentration
are overlapping, C. elegans bypasses the toxin source and navigates
itself towards the food source, and finally it settles down around the
point (−0.07,0). When starting from the point (−0.15,−0.05) with ini-
tial angle 180◦ (shown as track C), C. elegans moves towards to the
food and finally settles down around the point (−0.07,0)

located at (0.03,0) with concentrations largely overlapped.
The 2D concentration distribution along x-axis is shown in
Fig. 16(a). Here we assume that the direction of x-axis is
the positive direction. Accordingly, the gradients of food
and toxin concentrations along the positive direction are
shown in Fig.16(b). There are two points where the gra-
dients of food and toxin concentrations are identical: x =
−0.07 and x = 0.07. The direction of C. elegans is deter-
mined by Eq. (26), which can be written as �Cf t (t) =
�Cf (t) − �Ctx(t), where �Cf (t) = Cf (t) − Cf (t − 1)

and �Ctx(t) = Ctx(t)−Ctx(t −1). As shown in Fig. 13(b),
if �Cf t(t) > 0 (�Cf (t) > �Ctx(t)), C. elegans goes
straightly. Otherwise, it will turn. As shown in Fig. 16(b),
along the positive direction, when x < −0.07, i.e., on the
left of the point P, �Cf (t) > �Ctx(t), resulting �Cf t(t) >

0, so C. elegans will move towards the positive direction
until it reaches the point P, namely, the stable equilibrium.
When −0.07 < x < 0.07, i.e., in between the points P and
Q, �Cf (t) < �Ctx(t), resulting �Cf t(t) < 0, so C. ele-
gans will turn its direction and move towards the negative
direction until it arrives at x = −0.07, namely, the stable
equilibrium P. When x > 0.07, i.e., on the right of the point
Q, �Cf (t) > �Ctx(t), resulting �Cf t(t) > 0. C. ele-
gans will move towards the positive direction until the toxin
concentration disappears, namely, away from the unstable
equilibrium Q. In conclusion, the target places of this case
are the point (−0.07,0) and where no toxin concentration
exists on the toxin side.
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Fig. 16 (a) 2D concentration distributions of food and toxin along
x-axis. (b) The gradients of food and toxin concentrations along the
positive direction (direction of x-axis). When x < −0.07, �Cf (t) >

�Ctx(t), so �Cft (t) > 0, and C. elegans will move towards the pos-
itive direction. When −0.07 < x < 0.07, �Cf (t) < �Ctx(t), so
�Cf t (t) < 0, and C. elegans will turn its direction and move towards
the negative direction until it arrives at x = −0.07. When x > 0.07,
�Cf (t) > �Ctx(t), so �Cf t (t) > 0, and C. elegans will move
towards the positive direction. Point P is a stable equilibrium, and point
Q is an unstable equilibrium
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The testing results are shown in Fig. 15. When C. elegans
starts from (0.08,0), i.e., on the right side of the unstable
equilibrium Q, and with initial angle 180◦ (facing the toxin,
shown as track A), where both food and toxin concentra-
tions are present at the same time, the worm avoids the toxin
by a right turn and leaves faraway from the toxin source.
Finally it settles down at the place without toxin concen-
tration. When starting from the point (0.06,−0.02), i.e., in
between points P and Q, and with initial angle 135◦ (fac-
ing the toxin, shown as track B) where both toxin and food
concentrations exist simultaneously, C. elegans bypasses the
toxin source and navigates itself towards the food source,
and finally it settles down around the stable equilibrium P
at (−0.07,0). When starting from the point (−0.15,−0.05),
i.e., on the left side of the stable equilibrium P, and with
initial angle 180◦ (facing against the food, shown as track
C), C. elegans moves towards to the food and finally set-
tles down around the the stable equilibrium P at (−0.07,0).
It can be seen that when food concentration and toxin con-
centration are largely overlapping, the testing results are
consistent with the gradient-based analysis, namely, C. ele-
gans is attracted towards the stable equilibrium, point P, and
repelled from the unstable equilibrium, point Q.

In the last scenario, twenty-five toxin sources are dis-
tributed as a 5 × 5 grid. As shown in Fig. 17, black
dots depict the toxin sources and circle lines are the

Fig. 17 Testing results for the integrated behavioral model in the third
scenario. Twenty-five toxin resources are distributed as a 5 × 5 grid.
One food source is located at (0,0.45). C. elegans starts at three differ-
ent locations, (−0.02,−0.01), (0,0.02), and (0.02,−0.02) respectively,
with random initial angles. C. elegans successfully escapes from the
toxin and settles down at the places where no toxin concentration exists
(see the left and bottom tracks). Furthermore, if C. elegans smells the
food concentration (see the top track), it navigates itself towards the
food source and finally stops. It is obvious that C. elegans escape from
the toxin by passing the boundary areas where the toxin gradient and
magnitude are relatively low

boundaries of toxin concentration. One food source is
located at (0,0.45). C. elegans starts at three different loca-
tions, (−0.02,−0.01), (0,0.02), and (0.02,−0.02) respec-
tively, with random initial angles. All the three starting
points are very near the central toxin source. From the
tracks, it is obvious that C. elegans escapes from the toxin
by passing the boundary areas where the toxin gradient
and magnitude are relatively low. C. elegans successfully
escapes from the toxin and settles down at the places where
no toxin concentration exists (see the left and bottom
tracks). Furthermore, if C. elegans smells the food concen-
tration (see the top track), it navigates itself towards the food
source and finally stops.

From the test results, we can conclude that the inte-
grated chemotaxis behavioral model can well performs the
chemotaxis behaviors on finding food and avoiding toxin
simultaneously with speed regulation. Furthermore, it also
verifies that when SLFs are learned, C. elegans can perform
the chemotaxis behaviors in different environments.

7 Analysis of the resultant wire diagrams

7.1 Wire diagram analysis

In our work, we obtain thirty wire diagrams for each
chemotaxis behavioral model after providing random ini-
tial weights and training. The successful training rates are
about 60 % for both food attraction and for toxin avoid-
ance behavioral models, and about 47 % for the integrated
chemotaxis behavioral model. When the learned behaviors
become more sophisticated, the training would be more dif-
ficult. Furthermore, we also optimized the wire diagrams by
Genetic Algorithm and obtained the same results.

For the network similarity, we first cluster the thirty wire
diagrams in each behavioral model by using k-means algo-
rithm, and then verify the clustering results by Analysis of
Variance (ANOVA). For each kind of behavioral model, we
calculate the summation of absolute weight values of every
wire diagram, denoted as Qi , i = 1, ..., Nm (Nm = 30),
and then apply k-means algorithm to cluster these wire dia-
grams according to the value of Qi . The results are shown
in Fig. 18. As shown in Fig. 18(a), each dot represents its
corresponding wire diagram for food attraction behavioral
model, and the value in x-axis denotes the summation of the
absolute weight values of its corresponding wire diagram.
The asterisks represent the clustering centers. These dots
are clustered into three groups by k-means algorithm. The
inter-group mean squared error (MSE) is 1.60 for Groups
1, 2, and 3. The intra-group MSEs are 0.23 for Group 1,
0.32 for Group 2, and 0.19 for Group 3. The clustering
result is analyzed by ANOVA. By setting the significance
level α = 0.05 in ANOVA analysis, we obtain the observed
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(b)
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Fig. 18 The similarity analysis of the resultant wire diagrams. Every
dot denotes a wire diagram and the value in x-axis denotes the summa-
tion of the absolute weight values of its corresponding wire diagram.
The asterisks represent the clustering centers. (a) Thirty wire diagrams
for the food attraction behavioral model are clustered into three groups

by k-means algorithm. (b) Thirty wire diagrams for the toxin avoid-
ance behavioral model are clustered into three groups by k-means
algorithm. (c) Thirty wire diagrams for the integrated behavioral model
are clustered into the same group

value F = 559.71 and the critical value FCritical = 3.35.
F > FCritical denotes the three groups are significantly dif-
ferent, which means the clustering is effective. As shown
in Fig. 18(b), the dots denote the wire diagrams for toxin
avoidance behavioral model. These dots can be clustered
into three groups and the asterisks represent the clustering
centers. The inter-group MSE is 1.61 for Groups 1, 2, and 3.
The intra-group MSEs are 0.17 for Group 1, 0.16 for Group
2, and 0.10 for Group 3. By setting α = 0.05, we obtain
F = 1450.76 and FCritical = 3.35. F > FCritical denotes
the effectiveness of this clustering. As shown in Fig. 18(c),
the dots denote the wire diagrams for integrated behavioral
model. These dots are difficult to be clustered by k-means
algorithm, so we cluster them to be one group. Within the
group, the intra-group MSE is 0.13. From these results we
can conclude that the solution is not unique for each behav-
ioral model. The wire diagrams in the same group have
small MSE, which are less than 0.32, and the wire diagrams
in different groups have relatively larger MSE, which are
greater than 1.60.

Furthermore, following the method of Dunn (2006), we
first find out the “all-off” neurons that are inactive and the
“all-on” neurons that are saturated active. Next, we remove
these “all-off” neurons from the wire diagrams and move
these “all-on” neurons to their downstream neurons as bias.
In this way, the wire diagrams are simplified and the relevant
networks are obtained. For the food attraction behavioral
model, the “all-off” neurons are PVP, ADF, RIF, and AVD,
because all weights of these neurons are small and near
to zero. The wire diagrams without these neurons can still
perform the behavior for food attraction well. The “all-on”
neurons for the food attraction behavioral model are DVA
and AVB. After we move these neurons to their downstream
neurons, the resultant wire diagram is shown in Fig. 19(a).
As shown in Fig. 19(a), there are six interneurons instead
of twelve interneurons after simplifying. By following the

(a)

(b)

Fig. 19 (a) Resultant wire diagram for food attraction behavioral
model. After the “all-off ” neurons are removed and the “all-on”
neurons are moved to downstream neurons, the simplified network
contains six interneurons instead of twelve. (b) Resultant wire diagram
for toxin avoidance behavioral model. After the “all-off ” neurons are
removed and the “all-on” neurons are moved to downstream neurons,
the simplified network contains seven interneurons instead of thirteen
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same way, the resultant wire diagram for toxin avoidance
behavioral model is shown in Fig. 19(b). The “all-off” neu-
rons are PVP and RIF that are removed from wire diagram.
The “all-on” neurons are DVA, AVD, and AVB. After sim-
plification, we can see that there are seven interneurons
instead of thirteen interneurons. By comparing Fig. 19(a)
and (b), one additional neuron ADF exists in the wire dia-
gram of toxin avoidance behavior model. This is because
there is no direct connection from sensory neuron ASH to
memory neuron AIY biologically, and the function of ADF
here is to transmit the signal from ASH to AIY. For the
integrated behavioral model, the “all-off” neuron is PVP
that can be removed from the wire diagram. However, we
haven’t found any neurons that can serve as the “all-on”
neurons since all neurons are not saturated activated.

By comparing with another similar work (Ferrée and
Lockery 1999) that provides a model for food attraction,
our model contains three more interneurons. This is because
we not only consider the turning mechanism, as Ferrée and
Lockery (1999) did, but also incorporate the speed regula-
tion mechanism. Moreover, the integrated behavioral model
needs eleven interneurons (after PVP is removed). If we
remove one or more interneurons, till now we have not
obtained any satisfactory wire diagrams after training. The
reason that more interneurons are needed in our models
is aroused by the complexity of our learning task: finding
food, avoiding toxin, and regulating speed synchronously.

7.2 Behaviors analysis

In this subsection we provide the quantitative analysis of the
trajectories of our models by comparing with experiment

results. To the best of our knowledge, the references about
the quantitative analysis of the trajectories for toxin avoid-
ance behaviors and integrated behaviors (for both food and
toxin) are limited. Thus in this subsection we only provide
the analysis of the food attraction behavioral model by com-
paring with the experiment results of wild type C. elegans
provided by Pierce-Shimomura et al. (1999) and Iino and
Yoshida (2009).

We analyze the relationships between (1) speed and con-
centration, (2) turning rate and concentration, (3) turning
rate and change of concentration (dC(t)/dt), and (4) prob-
ability of turning and dC(t)/dt by following the methods
in Pierce-Shimomura et al. (1999) and Iino and Yoshida
(2009). The simulation time is 1500 s, and we record the
location, concentration, and direction per second. Hence,
for each relationship analysis, there are 1500 tracking data,
and these data are classified into 15 groups. Every group
contains 100 data and is represented as a dot in Fig. 20.
The values of each dot in x-axis and y-axis are calculated
by taking the average of the 100 data in the same group.
The error bar for each dot indicates the standard deviation
of the data within the same group. The solid lines in each
sub-figure are the best-fitting quadratic functions of their
corresponding dots. The dotted lines represent the experi-
ment results of Pierce-Shimomura et al. (1999) and Iino and
Yoshida (2009).

In this work, Least Square Method is adopted to fit these
dots, as shown in Fig. 20. The quality of fitting is analyzed
by using R2 method (Steel and Torrie 1960). R2 is defined
as R2 = 1 − SSerr/SStot, where SStot = ∑N

i=1 (yi − y)2

and SSerr = ∑N
i=1 (yi − fi)

2. yi (i = 1, . . . , N ) are the
testing results that should be fitted, and each testing result

Fig. 20 Statistical analysis of trajectories for food attraction behav-
ior model. (a) The relationship between speed and concentration. The
speed is inverse proportion to the concentration for our model (solid
line). (b) The relationship between turning rate and concentration.
There is no obvious relationship between the turning rate and the
the food concentration. (c) The relationship between turning rate and
dC(t)/dt . The turning rate is inverse proportion to dC(t)/dt , and

once dC(t)/dt is greater than zero, the turning rate approaches zero.
(d) The relationship between probability of turning and dC(t)/dt . This
relation can be approximated by formula (solid line) y = 0.023/(a +
ebx+d ) + c by following Iino and Yoshida (2009). The dotted line is
the experiment result of Iino and Yoshida (2009). The probability of
turning is higher when dC(t)/dt is more negative
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has an associated experiment result fi (i = 1, . . . , N ). N is
the number of the testing results, and y is the average value
of yi (i = 1, . . . , N ). The value of R2 is equal to or less than
1, which is used to describe how well a regression curve fits
the testing results. An R2 near 1 indicates that the regression
curve fits the testing results well, while the more negative
value of R2 indicates the worse of fitting. In this work, we
analyze (1) the degree of the curves to fit the dots (testing
results), measured by R2

dot, and (2) the degree of the curves
to fit the experiment results, measured by R2

ep.
In Fig. 20(a), the fitted polynomial equation (solid line)

is y = −0.073x2 + 0.0287x + 0.224 (R2
dot = 1.00,

R2
ep = −0.92). We can observe that the speed is inversely

proportional to the concentration. However, our result
is different from the experiment data of Pierce-Shimomura
et al. (1999) (dotted line), which concludes that the speed of
C. elegans is weakly dependent on the food concentration.
The reason for this difference is that in this work we assume
C. elegans will reduce its speed by following the increasing
of food concentration.

Remark 2 It should be pointed out that till now there
are two opposite point of views about the relation-
ship between food concentration and speed of C. ele-
gans. One opinion is that the speed of C. elegans is
constant (Ferrée and Lockery 1999; Iino and Yoshida 2009),
and the other one is that C. elegans will reduce its speed
when encountering the food (Leung et al. 2008). In our pre-
vious work (Xu and Deng 2010), we have investigated the
chemotaxis behavior of C. elegans by assuming its speed
to be a constant and obtained the similar results as Pierce-
Shimomura et al. (1999). To the best of our knowledge, the
actual causation of the speed reducing of C. elegans is still
unknown. Thus in this work we assume its speed is related
to the concentration.

As shown in Fig. 20(b), the fitted polynomial equation
(solid line) is y = −0.5959x + 15.7926 (R2

dot = 0.40,
R2

ep = −25.58). We can observe that the turning rate weakly
depends on the food concentration, and it is similar to the
experiment result of Pierce-Shimomura et al. (1999) (dotted
line). The relationship between turning rate and dC(t)/dt is
shown in Fig. 20(c). The fitted polynomial equation (solid
line) is y = 27291x3 + 1953x2 − 236x + 6 (R2

dot = 1.00,
R2

ep = −2.18). In this figure, the larger negative value of
dC(t)/dt yields the larger magnitude of turning rate, and
once dC(t)/dt is positive, the turning rate reduces to zero.
This result is similar to the experiment data of Iino and
Yoshida (2009) (dotted line). At last, we follow the same
way of Iino and Yoshida (2009) to analyze the relationship
between probability of turning and dC(t)/dt . As shown
in Fig. 20(d), these dots can be approximated by formula
y = 0.023/(a + ebx+d) + c, where y is the probability of

turning, and x is the change of concentration dC(t)/dt , and
a, b, c, d are constants. For our case, the values of these
parameters are a = 0.3448, b = 300, c = 0, and d = −0.8.
The fitted formula is plotted as the solid line in Fig. 20(d),
with R2

dot = 0.99 and R2
ep = 0.67. The experiment data

of Iino and Yoshida (2009) is plotted as the dotted line in
Fig. 20(d). The parameters obtained by Iino and Yoshida
(2009) are a = 0.40, b = 140, c = 0.0033, and d = 0.
From both our result and the experiment result, we can
observe that they share the same shape and the probability
of turning is higher when dC(t)/dt is more negative.

Above all, except for the first relationship (speed and
concentration), other three relationships are in accord with
the experiment results. Furthermore, we can explain the
abrupt turn and continue turn of our models through
Fig. 20(c) and (d). More negative values in dC(t)/dt yield
larger magnitudes of the turning rate and higher probability
of turning, which lead to the abrupt turn. In contrast, small
negative values of dC(t)/dt only yield small magnitudes of
the turning rate and low probability of turning, which lead
to the slight and continual turn. Additionally, if dC(t)/dt is
positive, the turning rate and the probability of turning will
approach zero, which make C. elegans move straightly.

7.3 Performance with noises

This subsection discusses the robustness of the DNN-based
behavioral models in the presence of noises. We test the
performance of our behavioral models by adding the exter-
nal noise and internal noise. For the external noise, we add
the randomly generated noise with the range [0, 0.02] and
[0, 0.2] (1 and 10 % of the largest magnitude of input

Fig. 21 Testing results by adding the external noise. The test is based
on the wire diagram for food attraction. With the external noise, there
are more turns produced and the locomotion is less smooth as the sce-
nario without the external noise. However, the worm can still reach the
final destination correctly
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Fig. 22 Testing results by adding the internal noise. Without the inter-
nal noise C. elegans can guide itself towards the food source. When the
noise is between −0.003 and 0.003, C. elegans can still move towards
the food source. When the noise is between −0.03 and 0.03, C. elegans
circles around the starting place

concentration) to concentration signals. Due to the page lim-
itation, we only present the results for food attraction. The
result is shown in Fig. 21. It can be seen that, with the exter-
nal noise, there are more turns appearing and the tracks are
less smooth than that without the external noise. However,
the worm can still reach the final destination correctly.

Next we add the internal noise to the wire diagram
for food attraction. By following the method in Jim et al.
(1996), we add the synaptic noise (one kind of the inter-
nal noise) to the wire diagram. The testing result is shown
in Fig. 22. The internal noise range is between −0.003
and 0.003 (about 1 % of the average weight value), and

between −0.03 and 0.03 (about 10 % of the average weight
value). As shown in Fig. 22, C. elegans without the inter-
nal noise can guide itself towards the food source. When the
noise range is between −0.003 and 0.003, C. elegans can
still move towards the food source. When the noise range
is between −0.03 and 0.03, C. elegans circles around the
starting place. In comparison, DNN-based models are more
robust for the external noise.

Furthermore, we quantitatively analyze the trajectories
that are affected by the external and internal noises. By
following the methods in Pierce-Shimomura et al. (1999)
and Iino and Yoshida (2009), we analyze the relationship
between (1) turning rate and concentration, and (2) prob-
ability of turning and dC(t)/dt as what we have done in
Section 7.2.

The relationship between turning rate and concentration
are shown in Fig. 23(a). The results with the external noise
(solid line: y = −0.5959x + 15.7926, R2

dot = 0.40, R2
ep =

−25.58) and with the internal noise (dashed line: y =
−0.3657x +1.0066, R2

dot = 0.24, R2
ep = −4278.3) indicate

that the turning rate weakly depends on the concentration,
which are the same as the conclusion of Pierce-Shimomura
et al. (1999). As shown in Fig. 23(a), we can observe that the
fitting result for experimental data with the internal noise
(dashed line, R2

ep = −4278.3) is much worse than that with

the external noise (solid line, R2
ep = −25.58). This poor

fitting is due to the internal noise that greatly affects the
locomotion behaviors of our models.

The relationship between probability of turning and
dC(t)/dt is shown in Fig. 23(b). The result with the exter-
nal noise can be approximated by formula y = 0.023/

(a + ebx+d) + c, where a = 0.3448, b = 200, c = 0, and
d = −0.3, shown as the solid line. R2

dot = 0.99 and
R2

ep = 0.89 for this fitting. However, for the result with the

Fig. 23 Statistical analysis for
food attraction behavior with
noises. (a) The relationship
between turning rate and
concentration with the external
and internal noises. (b) The
relationship between probability
of turning and dC(t)/dt with
the external and internal noises.
From two subfigures, we can
observe that the fitting results
for experimental data with the
internal noise (dashed lines) are
much worse than that with the
external noise (solid lines). The
poor fitting is due to the internal
noise that greatly affects the
locomotion behaviors of
our models
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internal noise (asterisks), the relationship between probabil-
ity of turning and dC(t)/dt is not apparent, and it cannot be
approximated by the formula y = 0.023/(a + ebx+d) + c.
Instead, we approximate these data by y = 0.1149x +
0.0598, but the fitting is poor, since R2

dot = 0.05 and R2
ep =

−782.83. The poor fitting is also due to the internal noise
that greatly affects the locomotion behaviors of our models.
Additionally, it is interesting to note that the result with the
internal noise is similar to the results shown as Fig. 7(E) and
(I) in Iino and Yoshida (2009), which are the experiment
results of C. elegans with neurons ablation.

From the analysis results, the behavior of our model
with the external noise is similar to the behavior of wild-
type C. elegans, whereas the behavior of the model with
the internal noise is similar to the behavior of C. elegans
with neuron ablation.

8 Conclusion

In this paper, the chemotaxis behaviors of C. elegans
for food attraction and toxin avoidance are investigated.
First, three chemotaxis behavioral models are constructed
from chemosensory neurons to motor neurons by extracting
directly from the biological wire diagram. These chemotaxis
behavioral models are approximated by DNN, and each neu-
ron is described as a non-linear active function. Second, we
design the kinematic model to describe C. elegans locomo-
tion behaviors, that is, turning and speed regulation. Third,
a set of switching logic functions are constructed to rep-
resent the chemotaxis behaviors of food attraction, toxin
avoidance, integrated behaviors, as well as speed regula-
tion. All these switching logic functions can be learned by
DNN models with RTRL. The testing results verify that
these chemotaxis behavioral models can well perform the
complex chemotaxis behaviors in different circumstances,
and their behaviors are similar to the real C. elegans by
comparing with the experimental data.
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