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Abstract Hippocampal population codes play an im-
portant role in representation of spatial environment
and spatial navigation. Uncovering the internal repre-
sentation of hippocampal population codes will help
understand neural mechanisms of the hippocampus.
For instance, uncovering the patterns represented by
rat hippocampus (CA1) pyramidal cells during periods
of either navigation or sleep has been an active re-
search topic over the past decades. However, previous
approaches to analyze or decode firing patterns of pop-
ulation neurons all assume the knowledge of the place
fields, which are estimated from training data a priori.
The question still remains unclear how can we extract
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information from population neuronal responses either
without a priori knowledge or in the presence of finite
sampling constraint. Finding the answer to this ques-
tion would leverage our ability to examine the pop-
ulation neuronal codes under different experimental
conditions. Using rat hippocampus as a model system,
we attempt to uncover the hidden “spatial topology”
represented by the hippocampal population codes. We
develop a hidden Markov model (HMM) and a vari-
ational Bayesian (VB) inference algorithm to achieve
this computational goal, and we apply the analysis to
extensive simulation and experimental data. Our em-
pirical results show promising direction for discovering
structural patterns of ensemble spike activity during
periods of active navigation. This study would also pro-
vide useful insights for future exploratory data analysis
of population neuronal codes during periods of sleep.

Keywords Hidden Markov model ·
Expectation-maximization · Variational Bayesian
inference · Place cells · Population codes ·
Spatial topology · Force-based algorithm

1 Introduction

1.1 Motivation

Hippocampal population codes play an important role
in representation of spatial environment and spatial
navigation (O’Keefe and Nadel 1978; Buzsaki 2006).
It is known that the receptive fields of hippocampal
pyramidal cells encode information of the position of
space, hence those cells are referred to as “place cells”
(O’Keefe and Nadel 1978). Using the multielectrode
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technique, spiking activity of ensemble hippocampal
place cells can be simultaneously recorded from ro-
dents, which enable us to examine the internal repre-
sentation of the population codes at different behav-
ioral stages (Wilson and McNaughton 1993, 1994). One
of the goal in exploratory data analysis is to discover
the hidden structures or firing patterns of spiking activ-
ity from simultaneously recorded hippocampal popula-
tion neurons, either during periods of active behavior
(Wilson and McNaughton 1993; Harris et al. 2003;
Foster and Wilson 2006) or during periods of sleep
(Wilson and McNaughton 1994; Louie and Wilson
2001; Lee and Wilson 2002; Ji and Wilson 2007). For
instance, finding rodent hippocampus neuronal “re-
play” (Foster and Wilson 2006; Davidson et al. 2009)
or “preplay” patterns (Dragoi and Tonegawa 2011)
in cell assemblies during either quiet awakefulness or
slow-wake sleep (SWS), as compared to the firing pat-
terns during periods of active navigation, has been an
important research topic in recent years (Skaggs and
McNaughton 1996; Diba and Buzsaki 2007; Karlsson
and Frank 2009). Two types of neuronal codes were
used in previous studies. One is based on temporal
code, which assumes that the individual cells of neu-
ronal assembly fire in a specific order when the an-
imal navigates in the spatial environment (Lee and
Wilson 2002; Ji and Wilson 2007). The other is based
on rate code, which assumes that the spiking activity
of population cells follows a probabilistic rule (Brown
et al. 1998; Zemel et al. 1998; Zhang et al. 1998;
Davidson et al. 2009). However, these approaches have
some drawbacks. First, all previous approaches rely on
the assumption that the receptive fields of population
neurons (i.e., place fields of hippocampal pyramidal
neurons) are known, which are commonly constructed
from empirical training data. This assumption could be
problematic since the receptive fields are plastic, thus
the empirical internal representation of the stimulus
space could change at different stages (e.g., navigation
vs. sleep) or at different learning phases (first day
vs. second day), or when the shape of the stimulus
space changes (Lever et al. 2002; Frank et al. 2004;
Wills et al. 2005). The change in hippocampal place-
cell representation is known as remapping. Second,
if the goal of the analysis is to examine the internal
representation of the population codes, we shall assume
no or little knowledge about the environment (i.e.,
either linear track, or T-maze, or open field). This is
critically important especially when the firing patterns
are examined during SWS or REM sleep periods, or
the animal has been exposed to multiple distinct spa-
tial environments before the experimental recording.
Meanwhile, noticing the fact that knowing the receptive

fields of a real environment is not completely necessary
for the replay or preplay analysis, since the place fields
are only a proxy to examine the relative proximity
of spatial position in the environment. Therefore, one
could imagine the possibility that population neurons
encode an internal representation of the “virtual en-
vironment” which could be an abstract representation
of the real environment. To our best knowledge, very
few study has been done in this area in the litera-
ture, except for the work by Curto and Itskov (2008).
Specifically, with the same motivation (but completely
different methodology) and with no assumption of the
hippocampal place fields, Curto and Itskov showed
that simply knowing which groups of cells fire together
would reveal structure in the stimulus space, which then
enables the brain to construct its own internal rep-
resentations. Put in their words, “a rather unexplored
question is how the output of hippocampal place cells
(without access to corresponding place f ields) might be
used by downstream structures in order to reconstruct
position and the underlying space”. In their method, the
authors made certain assumptions of the place fields
in an open field environment, and identified the cell
groups (a group of place cells that collectively fire
within a two theta-cyle, or 250 ms time window), and
further computed the homology groups and extracted
the topological features of the spatial environment, and
finally constructed an internal representation of the
environment using a graph (that contains a vertex for
every cell group and an edge between neighboring cell
groups) and a distance metric (that contains distances
between any two cell groups).

Motivated by these above-mentioned open ques-
tions, we develop a probabilistic generative model and
a statistical inference approach to solve the above-
mentioned problems. Our approach is different from
the method of Curto and Itskov (2008) in terms of
the assumptions of place fields and the use of math-
ematical tools. Finding the internal representation of
hippocampal population codes is viewed as an unsu-
pervised learning problem. More precisely, we propose
a solution based on a hidden Markov model (HMM)
and an associated efficient Bayesian inference proce-
dure. Our computational goal is to infer or uncover
the spatial topology represented by the hippocampal
population neuronal codes in rodent. It shall be pointed
out that the term “spatial topology” used here has
a narrower meaning than its conventional sense, it is
simply referred to the structure of the stimulus space or
behavior sequences underlying the hippocampal pop-
ulation neuronal codes. As a byproduct of our esti-
mation procedure, we also recover the receptive fields
of hippocampal population neurons with respect to
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the virtual environment, which are referred to as the
“virtual place fields”.

1.2 Overview of methods

Inferring the spatial topology represented by the hip-
pocampal population codes is considered as an inverse
problem with missing data (Dabaghian et al. 2008). To
our best knowledge, very few study has been found in
the literature. In this study, we examine this problem
from a computational perspective. From a statistical
data analysis viewpoint, the observed data are the
spiking activity of hippocampal ensemble place cells,
whereas the missing data are the hidden trajectory
(in the virtual environment) associated with the firing
patterns exhibited by the place cells, as well as the
neuronal tuning curves with respect to the spatial en-
vironment. The unobserved trajectory is treated as a
hidden state, which is assumed to follow a Markovian
structure. For simplicity, we also assume that the num-
ber of hidden states is finite. To model the dynamical
system, HMM is a powerful tool for inferring hidden
variables given partially observed data. In the computa-
tional neuroscience field, to name a few, HMM (Cappé
et al. 2005; Rabiner 1989) has been widely used either
for decoding natural stimuli (Jones et al. 2007), or for
inferring states of population neurons during periods
of SWS (Chen et al. 2009), or for detecting neural-
state transition for motor cortical prostheses (Kemere
et al. 2008), or for sorting neuronal spikes (Herbst et al.
2008), or for spatial-temporal clustering of neural data
(Darmanjian and Principe 2009).

Once the statistical model is determined, two kinds
of inference approaches can be considered: one is
the maximum likelihood approach (Pawitan 2001), the
other is the Bayesian approach (Robert 2001; MacKay
2003; Gelman et al. 2004). Maximum likelihood esti-
mate is asymptotically optimal and invariant, but it is
prone to overfitting in the presence of small sample
size. In contrast, Bayesian inference imposes priors
(e.g., sparsity, invariance) onto the model, and its es-
timate is more meaningful and efficient; in addition,
the uncertainty of the estimate can be represented by
the posterior in place of the point estimate. There
are various Bayesian inference methods available in
the literature (Scott 2002), such as the Markov chain
Monte Carlo (MCMC) (Gilks et al. 1995; Rydén 2008),
Laplace approximation (MacKay 2003), and variational
methods (MacKay 2003; Bishop 2006). Specifically, in
contrast to the MCMC methods, variational Bayesian
(VB) methods are more computationally appealing,
and they have been proposed for learning a number

of statistical models (Beal 2003; Bishop 2006; Katahira
et al. 2010; Chen et al. 2011; Wu et al. 2011).

Spatial topology is typically visualized by graphs.
Force-based algorithms are a class of algorithms for
drawing graphs in a way that the nodes of a graph
are positioned in two dimensional or three dimensional
space so that all the edges are of more or less equal
length and there are as few crossing edges as possible
(Tollis et al. 1999). The force-based algorithms achieve
this by assigning forces amongst the set of edges and
the set of nodes; the most straightforward method is
to assign forces as if the edges were springs (Hooke’s
law) and the nodes were electrically charged particles
(Coulomb’s law). The entire graph is then simulated
in the same fashion as a physical system. The forces
are applied to the nodes, pulling them closer together
or pushing them further apart. This process is repeated
iteratively until the system reaches an equilibrium state
(i.e., their relative positions no longer change or change
very little from one iteration to the next). The physical
interpretation of this equilibrium state is that all the
forces are in mechanical equilibrium.

Our computational approach consists of two steps:
first, infer the unknown parameters of the HMM using
VB inference; second, infer the spatial topology of the
animal behavior within the environment based on the
parameters of the HMM using a force-based algorithm.
The rest of the paper is organized as follows. Section 2
presents the background of the finite-state HMM. Sec-
tion 3 presents the VB inference algorithm for HMM.
Section 4 introduces the force-based algorithm for vi-
sualizing the spatial topology. Section 5 presents results
from a number of computer simulations and experi-
mental data. Interpretations and implications of these
results are discussed in detail. Finally, in Section 6
we present some discussions on important issues and
conclude the paper in Section 7.

2 Finite-state hidden Markov model

Let us consider a discrete-time homogenous Markov
chain. By discrete time, we assume that the time is
evenly discretized into fixed-length intervals, which
have time indices t = 1, . . . , T. The standard HMM is
characterized by three elements: transition probability,
emission probability, and initial state probability.

– The initial probability of state is denoted by a vec-
tor π = {πi}, where πi = Pr(S0 = i) (i = 1, . . . , m).
Without loss of generality, we assume that the
discrete variable St ∈ {1, . . . , m}, and size of the
discrete state is dim{S} = m.
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– The m-by-m transition probability matrix is writ-
ten as

P =

⎛
⎜⎜⎜⎝

P11 P12 . . . P1m

P21 P22 . . . P2m
...

... · · · ...

Pm1 Pm2 . . . Pmm

⎞
⎟⎟⎟⎠ (1)

with Pij corresponding to the transition (condi-
tional) probabilities from state i to state j.

– For c-th cell, the Poisson spike counts yc,t observed
at the t-th time bin follows products of exponenti-
ated Poisson distributions (denoted by Poi)

p(yc,t|St) =
m∏

i=1

p(yc,t|St = i)St,i

=
m∏

i=1

Poi(yc,t|λic, St = i)St,i

=
m∏

i=1

(
exp(−λic)λ

yc,t

ic

yc,t!
)St,i

(2)

where the exponent St,i denotes a Kronecker delta,
i.e., St,i = 1 if and only if St = i. The λic ≥ 0 denotes
the rate parameter for cell c at the i-th hidden state.
Given all c = 1, . . . , C cells, the emission probabil-
ity for the i-state is given by

∏C
c=1 p(yc,t|St = i)St,i .

Let � = {λic} be an m-by-C matrix, and let θ =
(π , P, �) denote all the unknown parameters. Under
the assumption of Poisson distribution for spike counts,
the observations yt at different time indices t are mu-
tually independent, the observed data likelihood is
given by

p(y1:T |S1:T , θ) = Pr(y1:T |S1:T , θ)

=
T∏

t=1

C∏
c=1

m∏
i=1

(
exp(−λic)λ

yc,t

ic

yc,t!
)St,i

. (3)

The hidden variables S1:T are treated as the missing
data, y1:T as the observed (incomplete) data, and their
combination {S1:T , y1:T} as the complete data, we write
the complete data likelihood as

p(S1:T , y1:T |θ) = p(y1:T |S1:T , θ)p(S1:T |θ)

=
T∏

t=1

p(yt|St, θ)p(St|St−1, θ). (4)

And the complete data log-likelihood, denoted as L, is
derived as (by ignoring the constant)

L = log p(S0:T , y1:T |θ)

=
T∑

t=1

C∑
c=1

m∑
i=1

γt(i)
(

yc,t log λic − λic

)

+
m∑

i=1

γ1(i) log πi

+
T∑

t=2

m∑
i=1

m∑
j=1

ξt(i, j) log Pij, (5)

where γt(i) = Pr(St = i) and ξt(i, j) = Pr(St−1 = i,
St = j).

The maximum likelihood (ML) inference procedure
for the standard finite HMM is given by an efficient
estimation procedure known as the EM algorithm
(Dempster et al. 1977; McLachlan and Krishnan 2008),
which is also referred to as the Baum-Welch algo-
rithm (Baum et al. 1970). The EM algorithm iteratively
and monotonically maximizes (or increases) the log-
likelihood function given the incomplete data. In the
E-step, a forward-backward procedure is used to recur-
sively estimate the hidden state posterior probability.
In the M-step, based on the sufficient state statistics
(estimated from the E-step), the re-estimation proce-
dure is used to estimate the unknown parameters θ =
(π , P, �). For self-contained purpose, the details of the
EM algorithm is presented in Appendix A.

In our current application, the hidden state trajec-
tory corresponds to the animal’s directional position
in the track, the number of states m corresponds to
the number of bins used for representing the virtual
environment, and the m-by-C matrix � corresponds to
the place fields of ensemble neurons, with each row
representing one neuronal tuning curve with respect to
the m-dimensional state space.

2.1 Practical estimation issues

The above-described estimation procedure is based on
ML estimation. In practice, the ML estimation might
not be desirable while dealing with large-scale prob-
lems in the presence of small size. For the current
estimation problem, assuming that the spatial environ-
ment is divided into m non-overlapping regions that are
represented by m discrete states. Given the observation
of spike counts from C neurons within T time inter-
vals, the size of unknown parameters is dim(θ) = m2 +
mC + m. In a typical experimental protocol of a spatial
navigation task, we have T � dim(θ). Therefore, for
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an ensemble of C = 20 ∼ 50 cells and a reasonable
size m = 60 ∼ 200, the parameter space is very large
and estimation might be subject to overfitting. On the
other hand, since the EM algorithm only searches for
the locally optimal solution that are prone to the local
optima problem, the initialization of the parameters are
important for obtaining for a good solution.

With these practical concerns in mind, it is impor-
tant to impose certain constraints or priors onto the
HMM. In the probabilistic framework, the ML esti-
mation problem is converted into a maximum a pos-
teriori (MAP) problem; and the likelihood inference
is replaced by the Bayesian inference. The Bayesian
estimate is optimal, especially in the presence of small
sample size in statistical inference (Gelman et al. 2004).
For the HMM, the following three types of Bayesian
inference approaches can be considered, with gradually
increasing model and computational complexity.

– empirical Bayesian: In this approach, strong struc-
tural priors can be imposed onto the HMM,
such as the entropic prior (Brand 1999; Brand and
Ketnaker 2000). In this case, the MAP solution is
straightforward to resolve a modified optimization
problem.

– parametric hierarchical Bayesian: In this approach,
the parameters of the HMM are assigned with hi-
erarchical priors. The inference algorithm can be
based on either MCMC (Scott 2002; Rydén 2008),
or ensemble learning (MacKay 1997), or VB-EM
(Beal 2003; Ji et al. 2006; McGrory and Titterington
2009).

– nonparametric hierarchical Bayesian: In this ap-
proach, the statistical model is treated as a stochas-
tic process with an infinite capacity; a direct exten-
sion of the HMM gives rise to the infinite HMM
(Beal et al. 2002; Beal 2003). Statistical inference is
based on either Gibbs sampling (Teh et al. 2006) or
beam sampling (van Gael et al. 2008).

In the case of space navigation task for rodent, due to
behavior prior or constraint, it is reasonable to impose
a sparsity structure on P, which is either diagonal or
banded diagonal. With this imposed constraint, the size
of unknown variables reduces dramatically, decreasing
from quadratic O(m2) to linear O(m) order.

Another important issue for using the HMM is to
determine m—the size of hidden states. A naive solu-
tion is to empirically choose different values of m, and
then conduct model selection based on certain statis-
tical criteria. However, this solution is not necessarily
effective since the EM algorithm has the local minimum
problem and it is dependent on the initialization of
the parameters. Alternatively, the natural solution is

to learn all unknown parameters θ = {m, π , P, �} from
the observed data. In this paper, for the purpose of
reducing computational complexity and gaining empir-
ical insights in the first-round investigation, we fix the
model size or the number of the hidden states in the
inference procedure. We will revisit the model selection
issue in Section 6.

3 Variational Bayesian inference for hidden
Markov model

In the literature, the VB inference has been used for
HMM in various problem settings (MacKay 1997; Beal
2003; Ji et al. 2006; McGrory and Titterington 2009;
Katahira et al. 2010). The advantage of VB inference
lies in its computational efficiency for Bayesian infer-
ence. To avoid model overfitting in the ML estima-
tion, instead of maximizing the log-likelihood function
log p(y1:T |θ), the objective of VB inference is to maxi-
mize the marginal log-likelihood or its lower bound

log p(y1:T) = log
∫

dπ

∫
dP

∫
d�

∑
S1:T

p(π , P, �)

×p(y1:T , S1:T |π , P, �)

= log
∫

dπ

∫
dP

∫
d�

∑
S1:T

q(π , P, �, S1:T)

× p(π , P, �)p(y1:T , S1:T |π , P, �)

q(π , P, �, S1:T)

≥
∫

dπ

∫
dP

∫
d�

∑
S1:T

q(π , P, �, S1:T)

× log
p(π , P, �)p(y1:T , S1:T |π , P, �)

q(π , P, �, S1:T)

=
〈

log p(y1:T , S1:T , π , P, �)
〉
q

+Hq(π , P, �, S1:T) ≡ F(q) (6)

where q(π , P, �, S1:T) is called the variational poste-
rior distribution that approximates the joint posterior
of the hidden state and parameter p(π , P, �, S1:T |y1:T).
The term Hq of Eq. (6) represents the entropy of the
distribution q, and F is called the free energy (in light
of statistical physics).

By assuming a factorial form of variational posterior
distribution

q(π , P, �, S1:T) = q(π , P, �)q(S1:T)

≈ p(π , P, �, S1:T |y1:T) (7)
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Eq. (6) can be further simplified as

log p(y1:T) ≥ log
∫

dπ

∫
dP

∫
d�

∑
S1:T

q(π , P, �, S1:T)

× log
p(π , P, �)p(y1:T , S1:T |π , P, �)

q(π , P, �, S1:T)

= log
∫

dπ

∫
dP

∫
d�

∑
S1:T

q(π , P, �)

×
[

log
p(π , P, �)

q(π , P, �)
+

∑
S1:T

q(S1:T)

× log
p(y1:T , S1:T |π , P, �)

q(S1:T)

]

≡ F(q(π , P, �), q(S1:T)) (8)

where for notation simplicity we have made the condi-
tional on y1:T in the variational posteriors q(·) implicit.

To maximize the free energy F(q(π , P, �), q(S1:T)),
we optimize alternatingly with respect to its arguments
q(π , P, �) and q(S1:T), which will be done in the VB-M
and VB-E steps, respectively.

3.1 VB-M step

In the VB-M step, taking functional derivatives of F
with respect to q(π , P, �) yields

log q(π , P, �)

∝ log p(π , P, �)
〈
log p(y1:T , S1:T |π , P, �)

〉
q(S1:T )

∝ log p(π) + log p(P) + log p(�)

+ 〈
log p(S1|π)

〉
q(S1)

+ 〈
log p(S2:T |S1, P)

〉
q(S1:T )

+ 〈
log p(y1:T |S1:T , �)

〉
q(S1:T )

(9)

We further impose a factorial form onto the varia-
tional posterior of the parameters

q(π , P, �) = q(π)q(P)q(�) (10)

To derive individual variational posteriors, we assume
appropriate conjugate prior in order to get an analytic
form of the posterior.

For the initial state probability π , we assume a con-
jugate Dirichlet prior (denoted by Dir):

p(π) = Dir
(
{π1, . . . , πm}|u(π)

)

= �(u(π)
0 )∏m

i=1 �(u(π)

i )

m∏
i=1

π
u(π)

i −1
i (11)

where u(π) = [
u(π)

1 , . . . , u(π)
m

]
, u(π)

i ≥ 0, and
u(π)

0 = ∑m
i=1 u(π)

i denotes the strength of the Dirichlet

distribution. From the Bayes rule, it is inferred that the
posterior is also a Dirichlet distribution:

q(π) = Dir
({

π1, . . . , πm
}∣∣{w(π)

1 , . . . , w(π)
m

})
(12)

where w
(π)

i = u(π)

i + qS(S1 = i) = u(π)

i + γ1(i).
Similarly, we can derive the posterior for the transi-

tion probability matrix P as the products of posteriors
of its row vectors

q(P) =
m∏

i=1

q(P i)

=
m∏

i=1

Dir
(
{Pi1, . . . , Pim}|{w(P)

i1 , . . . , w
(P)

im

})
(13)

where w
(P)

ij = u(P)

ij + ∑T
t=2 qS(St−1 = i, St = j) = u(P)

ij +∑T
t=2 ξt(i, j).
Given the Poisson likelihood for the rate parameters

� = {λic}, we assume a conjugate gamma prior (de-
noted by Gam) for each state i (shared by all cell indices
c = 1, . . . , C):

p(λic) = Gam
(
α

(λ)

i , β
(λ)

i

)

= (β
(λ)

i )
α

(λ)
i

�(α
(λ)

i )
λ

α
(λ)
i −1

ic e−β
(λ)
i λic (14)

where α
(λ)

i > 0 and β
(λ)

i > 0 are the shape and inverse
scale parameters, respectively.1 The above gamma dis-
tribution has a mean α

(λ)

i /β
(λ)

i and variance α
(λ)

i

(
β

(λ)

i

)−2.
Correspondingly, the rate parameters follow a gamma
posterior

q(�) =
m∏

i=1

C∏
c=1

q(λic)

=
m∏

i=1

C∏
c=1

Gam

(
Cα

(λ)

i +
T∑

t=1

yc,tγt(i), Cβ
(λ)

i + li

)
(15)

where li = ∑T
t=1 γt(i).

1The Jefferey’s improper prior corresponds to a limiting case
of the gamma distribution, with a shape parameter of 0.5 and
inverse scale parameter of 0.
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3.2 VB-E step

In the VB-E step, the variational joint posterior of the
hidden state is given by

q(S1:T) =
m∏

i=1

π
γ1(i)
i

T∏
t=2

m∏
i=1

m∏
j=1

Pξt(i, j)
ij

×
T∏

t=1

m∏
i=1

C∏
c=1

Poi(yc,t|λic, St = i)γt(i) (16)

Maximizing F precedes by taking a functional deriva-
tive with respect to q(S1:T), which yields

log q(S1:T) = 〈
log p(S1:T , y1:T |π , P, �)

〉
q(π)q(P)q(�)

− log Z (y1:T)

=
m∑

i=1

Ŝ1,i
〈
log πi

〉
q(π)

+
T∑

t=2

m∑
i=1

m∑
j=1

Ŝt−1,i Ŝt−1, j
〈
log Pij

〉
q(P)

+
T∑

t=1

C∑
c=1

m∑
i=1

Ŝt,i
〈 − λic + yc,t log λic

〉
q(�)

− log Z (y1:T) (17)

where Ŝt,i =Eq(S1:T )[St = i]=qS(St = i|y1:T) ≡ γt(i) and
Ŝt−1,i Ŝt, j = Eq(S1:T )[St−1 = i, St = j] = qS(St−1 = i, St =
j|y1:T) ≡ ξt(i, j) will be computed from the forward-
backward algorithm (Appendix A). The last term of
Eq. (17), log Z (y1:T), is a normalization constant that is
independent of the variational posterior. To compute
the first term of Eq. (17), we have

〈
log πi

〉
q(π)

=
∫
Dir(π |u(π)) log πidπ

= ψ
(

u(π)

i

)
− ψ

( m∑
i=1

u(π)

i

)
(18)

where ψ is the diagamma function. To compute the
second term of Eq. (17), we have

〈
log Pij

〉
q(P)

=
∫
Dir(Pij|u(P)

ij ) log PijdP

= ψ
(

u(P)

ij

)
− ψ

( m∑
i=1

u(P)

ij

)
(19)

To compute the third term of Eq. (17), we have
〈 − λic + yc,t log λic

〉
q(�)

=
∫
Gam

(
λic

∣∣∣Cα
(λ)

i +
∑

t

yc,tγt(i), Cβ
(λ)

i + li

)

× (−λic + yc,t log λic)dλic

= −Cα
(λ)

i + ∑
t yc,tγt(i)

Cβ
(λ)

i + li

+ yc,tψ
(

Cα
(λ)

i +
∑

t

yc,tγt(i)
)

− yc,t log(Cβ
(λ)

i + li)
)

(20)

From Eqs. (18) through (20), we update the new
initial state probability as

π̃ = {π̃i}
= exp

〈
log πi

〉
q(π)

= exp

(
ψ(w

(π)

i ) − ψ

(
m∑

i=1

w
(π)

i

))
, (21)

and update the new state transition probability as2

P̃ = {P̃ij}
= exp

〈
log Pij

〉
q(P)

= exp

(
ψ(w

(P)

ij ) − ψ

(
m∑

i=1

w
(P)

ij

))
, (22)

and update the new emission probability as

Pr(yt|{λ̃ic}, St = i) =
C∏

c=1

exp
(〈 − λic + yc,t log λic

〉
q(�)

)

=
C∏

c=1

exp
(

− Cα
(λ)

i + ∑
t yc,tγt(i)

Cβ
(λ)

i + li

)

× exp
(

yc,tψ
(

Cα
(λ)

i +
∑

t

yc,tγt(i)
)

− yc,t log(Cβ
(λ)

i + li)
))

(23)

The VB-E step further proceeds with the standard
forward-backward algorithm using the new parame-
ter θ̃ = (π̃ , P̃, �̃) (computed from Eqs. (31) and (34),
Appendix A).

2Note that the new probabilities are sub-normalized probabilities
(due to using the geometric mean instead of the standard arith-
metic mean), where

∑m
i=1 π̃i ≤ 1 and

∑m
j=1 P̃ij ≤ 1.
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3.3 Computation of the lower bound F

Upon completing every iteration of the VB-E step, we
compute the free energy shown in Eq. (8), which is
rewritten here:

F(q(π , P, �), q(S1:T)) =
∫

q(π) log
p(π)

q(π)
dπ

+
∫

q(P) log
p(P)

q(P)
dP

+
∫

q(�) log
p(�)

q(�)
d�

+ log Z̃ (y1:T)

≤ log Z̃ (y1:T) (24)

where the inequality holds because the non-
negativeness of the Kullback-Leibler (KL) divergence.
Note that the first term

∫
q(π) log p(π)

q(π)
dπ of

Eq. (24) measures the negative KL divergence
between the variational posterior q(π) =
Dir(π1, . . . , πm|u1, . . . , um) and prior Dirichlet
distribution p(π) = Dir(π1, . . . , πm|u′

1, . . . , u′
m) for

vector π (similarly, for each row of the matrix P in the
second term of Eq. (24))

KLDir(q‖p) = log
�(u0)

�(u′
0)

+
m∑

i=1

log
�(u′

i)

�(ui)

+
m∑

i=1

(ui − u′
i)
(
ψ(ui) − ψ(u′

i)
)

(25)

The third term
∫

q(�) log p(�)

q(�)
d� of Eq. (24) measures

the negative KL divergence between two gamma dis-
tributions q = Gam(α1, β1) and p = Gam(α2, β2), which
can be computed analytically

KLGam(q‖p) = log
(

�(α2)β
α1
1

�(α1)β
α2
2

)

+ (α1 − α2)
(
ψ(α1) − log β1

)

+ α1
β2 − β1

β1
(26)

Furthermore, the last term log Z̃ (y1:T) of Eq. (24) is the
new normalization constant that can be estimated from
the forward-backward algorithm (Eq. (35), Appendix
A); it also corresponds to the estimated marginal log-
likelihood of the data (Eq. (36), Appendix A).

3.4 Initialization of priors and hyperparameters

The purpose of conjugate priors is to make the VB in-
ference more tractable. However, the hyperparameters

of these priors are designed by user, depending on the
user’s belief on the data. The priors can be either very
informative or very uninformative. In that sense, the
conjugate prior is still quite general. Obviously, a highly
structured solution will require a very specific prior for
the desirable solution.

In the previous subsection, the hyperparameters are
assumed to be known or set by the user. In our problem,
the hyperparameters are set according to the prior
knowledge as follows.

– We set u(π)
1 = u(π)

2 = · · · = u(π)
m = 1/m, which cor-

responds to a uniform distribution. If the hyper-
parameter is smaller than 1/m, it implies that the
solution favors a specific initial state, rather than a
uniform solution.

– We set
[
u(P)

i1 , u(P)

i2 , . . . , u(P)

im

] = α(P)[1/m, 1/m, . . . ,

1/m], where α(P) denotes the concentration pa-
rameter. Values of the concentration parameter
above 1 prefer variates that are dense, evenly-
distributed distributions (i.e. all probabilities re-
turned are similar to each other). Values of the
concentration parameter below 1 prefer sparse dis-
tributions (i.e., most of the probabilities returned
will be close to 0, and the vast majority of the mass
will be concentrated in a few probabilities). We set
α(P) = 0.3.

– We set α
(λ)

i = β
(λ)

i = 0.0001, and the initial mean of
the λic is set to be the overall mean firing rate of
neuron c, i.e. 1

T

∑T
t=1 yc,t.

Alternatively, the hyperparameters α
(λ)

i and β
(λ)

i can be
optimized iteratively by maximizing the log-likelihood
or marginal log-likelihood (Appendix C). However, no
closed-form solution exists for these hyperparameters.

4 Visualization of spatial topology via force-based
algorithm

Spatial topology is a mathematical abstraction of the
real environment space. Spatial topology reflects the
geometrical structure and spatial relations that are in-
variant or unaffected by the continuous change of shape
or size of figure. For a rodent spatial navigation task in a
two-dimensional space, the spatial topology determines
the animal’s natural behavior. Figure 1 shows a few
example experimental spatial topology commonly used
in navigation tasks. As seen in Fig. 1, the physical
shapes of the experimental tracks (top row) can be
converted into the equivalent spatial topology (bot-
tom row) by considering the directional factor; two
tracks with physically different shapes (e.g., T-maze vs.
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Fig. 1 Examples of experimental space topology explored by
animal (for left to right: linear track, T-maze, Y-maze, H-maze,
cross maze). The arrow indicates the traveling direction. The first
row shows the physical shape of the track, and the second row
shows the corresponding (equivalent) topology by considering

the bidirectional factor. Note that the T-maze and Y-maze have
two bifurcation points (each with 2 possible choices), the H-maze
has four bifurcation points (each with 2 possible choices), and
the cross-maze has two bifurcation points (each with 3 possible
choices)

Y-maze) share the same spatial topology. The bifurca-
tions of the track increases the complexity of the topol-
ogy since it introduces multiple pathways connecting
one point in the track to another. In representing the
space, the spatial environments are often binned and
linearized. Note that the linearization strategy is non-
unique, and there are multiple ways to discretize and
represent the same space.

The inference outcomes of the HMM consist of the
estimated state trajectory, the state transition probabil-
ity matrix, and the tuning curves (place fields) of the
population neurons. Particularly, the estimated state
trajectory and transition probability matrix reveal im-
portant cues about the spatial environment and the
animal behavior in that environment. Since the behav-
ior determines the state transition probability, we will
use the transition probability matrix to infer the spatial
topology of the environment. Specifically, we would
like to draw a graph that consists of multiple nodes
representing the hidden states, the edges between the
graph represents the link between the spatial locations
coded by the hidden states, whereas the strengths of
the edges reflects the values of transition probability
between two states, which not only depends on the
spatial topology but also the animal’s actual behavior.
For instance, for the same spatial topology such as a
linear track, the state transition matrix will be different
between a regular back-and-forth navigation without
turns and a navigation with frequent turns inside the
track. A non-stop navigation between two end points
will induce a shifted diagonal-like structure in the state
transition matrix, whereas frequent stops and turns

inside the track will induce many nonzero off-diagonal
elements in the transition matrix.

A direct way to visualize the spatial topology is to
draw graphs. A graph displays the geometrical rela-
tionship between distinct nodes or different objects via
edges. There are various graph-drawing methods, most
of which rely on certain distance metrics. In general,
a high transition probability implies a short distance
between two nodes in the graph. Meanwhile, for the
aesthetic reason, it is preferred that all the edges are
proportional in length, and there are as few crossing
edges as possible. For instance, the classical or nonclas-
sical multidimensional scaling (MDS) methods (Cox
and Cox 2001; Borg and Groenen 2005), which are
originally used in information visualization for explor-
ing similarities or dissimilarities in data, can be used
here for visualizing the relationship between nodes
based on a selected distance metric. To do that, we
can transform the transition probability matrix into a
symmetric distance (or dissimilarity) matrix. However,
the choice of transformation is rather ad hoc, and from
our practical experiences the visualization of the graph
is less satisfactory and the results are more difficult to
interpret (results not shown).

Another type of popular graph drawing methods
is based on the force-based algorithm (Tollis et al.
1999). Typically, this type of algorithm is motivated
from physics, whereas the nodes are viewed as particles,
and the graph is treated as physical (mechanical or
electrical) system. At the end of the completing the
graph drawing, the total kinetic energy is minimized
and the system reaches an equilibrium state. Some
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publicly available softwares, for instance the Tulip
(http://tulip.labri.fr/) and Gephi© (http://gephi.org),
provide interfaces to draw aesthetically satisfactory
graphs with various levels of user control. The typi-
cal force-based algorithms are generally considered to
have a O(m3) running time, where m is the number of
nodes of the graph. It shall be emphasized out that the
force-based algorithm is based on iterative optimiza-
tion, which also has the poor local minimum problem;
thus the graph drawing outcome also depends on the
initial condition.

In addition to the available public resources, we have
also written our own custom MATLAB© (MathWorks,
Natick, MA) programs to visualize the spatial topology
in either two-dimensional (2D) or three-dimensional
(3D) space. The only input for the program is the es-
timated (with or without thresholding) state transition
matrix and the algorithmic convergence criterion (a
default value is also set). The pseudocode for the force-
based algorithm is given below (Algorithm 1).3

Algorithm 1 Pseudocode for the force-based algorithm
Initialize node velocities to (0, 0), initialize node positions
randomly.
while non-convergence (i.e., total kinetic energy is greater
than desired value) do

Set total kinetic energy to 0. // running sum of total
kinetic energy over all particles
for each node

net-force = (0, 0) // running sum of total force on
this particular node

for each other node
net-force = net-force + Coulomb-repulsion
(this node, other node )

next node
for each spring connected to this node

net-force = net-force + Hooke-attraction
(this node, spring )

next spring
// without damping, it moves forever

this node.velocity = (this node.velocity + timestep
× net-force) × damping
this node.position = this node.position + timestep
× this node.velocity
total kinetic energy = total kinetic energy + this
node.mass × (this node.velocity)2

next node
end while

3Online resource: http://en.wikipedia.org/wiki/Force-based_
algorithms_(graph_drawing)

5 Results

5.1 Computer simulations

We have done a variety of computer simulations to
verify our analysis. The setup of the simulated exper-
iments is listed in Table 1. In all simulations, we assume
that the animal is always in the RUN-mode (i.e., stop
periods are excluded), with a 250 ms temporal bin size
(about two theta-cycle). For the sake of simulation
simplicity, we also assume that the animal runs multiple
laps, the running trajectory at each lap is identical (i.e.,
the overall trajectory is periodic). In addition, the spike
activity of ensemble neurons is drawn from a Poisson
distribution based on the real tuning curves constructed
from experimental tracks.

Due to the presence of local maxima, in each exper-
imental condition we run the VB-EM algorithm mul-
tiple times, each with different random initializations.
We examine and select the results with the free energy
criterion. The solution associated with the higher free
energy is more likely to be a better solution. However,
the free energy criterion alone may not be sufficient,
quantitative assessment of the estimated solutions is
also necessary.

5.1.1 Quantitative assessment

For computer simulations, we propose two quantitative
indices to measure the quality of the estimation re-
sults. The first index measures the quality of estimated
trajectory. It is noted that because of the permutation
ambiguity of the state ID, two correct trajectories may
exhibit different forms after remapping the state ID.
For that reason, we first compute the occupancy time
(OT) of each state and then sort these values denoted
by a vector OT. We then compute the difference be-
tween the two vectors

D1 = ‖OTtrue − OTest‖
T/m

, (27)

where ‖ · ‖ denotes the L1 norm of the vector, and
the denominator T/m denotes the averaged occupancy
time of m states within the total T time bins. The
index D1 is aimed to check the consistency between two
state trajectories: when two trajectories are perfectly
consistent (upon permutation), D1 = 0. In the presence
of the state ID ambiguity, provided that each state has
a different occupancy number, after sorting the OT, the
consistency of two trajectories can be checked without
explicit state remapping.

The second index measures the similarity between
the true and estimated state transition matrices. Again,

http://tulip.labri.fr/
http://gephi.org
http://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing)
http://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing)
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Table 1 Summary of all computer simulations

No. Environment m C T (laps × bin/lap) Remark

1-1 Linear track (bidirectional) 62 21 1,240 (20 × 62) 31 bins per direction, without turns
1-2 Linear track (bidirectional) 62 21 3,720 (20 × 186) With turns in both directions
2-1 T-maze 86 21 5,070 (15 × 338) Two bifurcations
2-2 T-maze 86 35 4,240 (20 × 212) Two bifurcations, with turns
3-1 Linear track A + T-maze 86 21 8,790 A is part of of T, multiple transitions
3-2 Linear track A + linear track B 86 21 1,075 A and B are gated, one transition

due to permutation ambiguity of the state ID, it is
difficult (if not impossible by an exhaustive search) to
compare all possible permutations. To illustrate this
point, let’s consider a simple example shown in Fig. 2.
Suppose that we have two matrices, each of them have
two rows that have more than one (here, say two) domi-
nant nonzero off-diagonal entries. All entries of the ma-
trix are nonnegative, and each row entries sum to 1. As
illustrated in Fig. 2, we denote the row entries as (a1, a2)
and (b 1, b 2) in the first matrix (say, the true matrix),
and denote the row entries as (c1, c2) and (d1, d2) in the
second matrix (say, the estimated matrix), among which
a1, b 1, c1, d1 are the one-column-right-shifted diagonal
elements. Given the permutation ambiguity, there are
two possibilities to compute the matrix row deviation
(MRD): one is MRD1 = |a1 − c1| + |a2 − c2| + |b 1 −
d1| + |b 2 − d2|, the other is MRD2 = |a1 − d1| + |a2 −
d2| + |b 1 − c1| + |b 2 − c2|. Obviously, the one with the
smallest MRD value would be a more desirable solu-
tion; namely, using the row permutation option associ-
ated with the smallest MRD, the estimated matrix will
be more similar to the true matrix (at least for the two
rows under consideration).

The cartoon example in Fig. 2 is only aimed to illus-
trate the situation when considering two matrix rows
that have two dominant nonzero off-diagonal entries.
In a more general setting, when considering to compare
n rows in the m-by-m true matrix (where n ≥ 2 and

a1 a2

b1b2

c1 c2

d1 d2

Fig. 2 Cartoon illustration for comparing two matrix-rows that
have two dominant off-diagonal elements, where a1, b1, c1, d1
are the one-column-right-shifted diagonal elements (i.e., column
index = row index + 1)

n � m) that have two dominant nonzero off-diagonal
entries,4 there will be n! (the factorial of n) permutation
possibilities and we would need to compute a total of
n! MRD values. From which, we define the second
index as

D2(n) = min
k

{MRDk}, k = 1, . . . , n! (28)

For the sake of computational simplicity, we have ig-
nored the comparison among the remaining (m − n)

rows between two matrices. In our case (when only two
dominant nonzero off-diagonal elements in each row
are considered), it can be shown that 0 ≤ D2(n) ≤ n.
In all computer simulations conducted below, we only
consider either n = 2 or n = 3. Since we can only con-
sider a low dimensionality of n, D2 shall be combined
with D1 as an additional criterion to assess the solution.
Alternatively, we can also use the continuity of state
trajectory sequences to compare a large chuck of (more
than 3) rows between two matrices.

5.1.2 Simulated linear track

In the first simulation scenario, the simulated animal’s
behavior follows a non-stop back-and-forth navigation
(i.e., animal moves from one end of the track to the
other end, then returns and the motion repeats). The
animal stops nowhere in the middle track (neither at
the ends of the track) and makes no turn inside the
track. In this case, we would know in advance that the
state transition matrix P would have a shifted-diagonal
structure. In inference, to impose a linear-track topol-
ogy preference, in parameter initialization we first set
P to have a dominant shifted-diagonal structure; we
further add small positive values randomly into the
elements of P (to allow other possible state jumps to
account for animal’s behavior turns inside the track).

4In this paper, we only consider this situation. More generally, if
there are more than two (say l) dominant nonzero off-diagonal
entries, we have to consider not only row permutation but also
column permutation, there will be a total of n! × (l − 1)! permu-
tation possibilities.
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Fig. 3 One illustrated
estimation result from the
linear track (Simulation 1–2):
the true trajectory in one lap
(top) and the corresponding
estimated trajectory (middle).
State 1-31 represents the
left–to–right positions inside
the linear track, and state
32-62 represents right–to–left
positions inside the track. The
color-coded true (bottom left)
and estimated (bottom right)
transition matrices are
qualitatively and
quantitatively similar. Note
that the transition matrix has
a shifted-diagonal structure.
Quantitative indices:
D1 = 0.1333, D2(2) =
0.0407, D2(3) = 0.0479
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Each row of P is normalized such that the sum of the
entries is 1. In practice, we found that this initialization
strategy is very effective and leads to fast algorithmic
convergence and good estimation performance.5

In the second simulation scenario, the animal still
navigates in the same linear track environment, but
the animal’s behavior is different from the first case
in that it now makes a few turns in the middle of
the track. For instance, the state sequence in one
lap to account for the animal’s behavior and mov-
ing direction is [1 : 15, −15 : −1, 1 : 31, −31 : −1, 1 :
25, −25 : −10, 10 : 31, −31 : −1] (where the negative
sign indicates the reverse direction). The simulated
true trajectory in one lap and the decoded trajectory
obtained from VB-HMM are shown in Fig. 2. As com-
parison, two trajectories are very similar, so are the true
and estimated transition matrices (Fig. 3). As expected,
due to behavioral turns at certain state locations (e.g.,
state 15, 25), there are more than one nonzero elements

5Note that this trick attempts to impose a structural prior. In
contrast, a completely random P will cause a slow convergence
and a poor solution.

in a few rows of the transition matrix, indicating the
presence of a shortcut between two non-neighboring
states. Furthermore, when comparing with the true
tuning curves of 21 cells, it is found that the estimated
tuning curves have a faithful resemblance (Fig. 4). It is
also noted that the VB algorithm is capable of decoding
state trajectory accurately despite the fact that many
cells have multiple-peak place fields.

It shall be pointed out that there are many equivalent
solutions (due to the singularity of latent probabilis-
tic model and the ambiguity of state permutation).
In other words, even the decoded state sequence tra-
jectory appears different from the true one, but the
solution is actually consistent with the true one after
remapping state ID (this can be confirmed by visual
inspection or quantitative evaluation). Figure 5 shows
such an example. In Fig. 5, the quantitative metrics
are D1 = 0.2, D2(2) = 0.0292, D2(3) = 0.0363, as com-
pared to D1 = 0.1333, D2(2) = 0.0407, D2(3) = 0.0479
in Fig. 3.

Notes: At this point, it is worth mentioning several
important observations from computer simulations:

– Given a sensible initialization, the VB-HMM algo-
rithm converges very fast, typically within less than
20 iterations. Our algorithm also produces much a
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Fig. 4 The simulated (left)
and estimated (right) tuning
curves of 21 neurons from the
same result shown in Fig. 3
(Simulation 1-2). The full
length of the vertical bar
marks the firing rate scale of
40 Hz
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better solution than the standard EM-HMM algo-
rithm. Without the imposed prior information (as
in the VB), the decoded state trajectory obtained
from the EM algorithm is rarely comparable to the
true trajectory (result not shown). In addition, the
estimated transition matrix from the EM algorithm
lacks the sparsity structure (data not shown). This is
because without the constraints, the solution space

is too large, and the EM algorithm is prone to being
stuck in poor local maxima.

– As illustrated in Figs. 3 and 5, there are non-
unique but equally satisfactory solutions for the
decoded trajectory (because of permutation am-
biguity). Even the decoded trajectory may appear
different from the true trajectory at the first sight,
the solution can be consistent and valid upon state

Fig. 5 In comparison with
the results illustrated in
Fig. 3, another correct
estimation result from the
trajectory in a linear track
(Simulation 1-2). Note that
the the raw (top panel) and
remapped (second panel,
dashed line) state trajectories
will become nearly identical
upon state ID remapping
(using the following ID map:
[1:25]→[38:62],
[26:62]→[1:37]). Also note
that the true (bottom left) and
estimated (bottom right)
transition matrices will
become nearly identical upon
state ID remapping.
Quantitative indices:
D1 = 0.1333, D2(2) =
0.0560, D2(3) = 0.093
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ID remapping. The proposed quantitative mea-
sures D1 and D2 provide a hint about the quality
of the estimation. However, it shall be noted that
the D1 value also depends on the distribution
of the actual state occupancy time. Because of
the data dependency, the comparison of the D1

value only makes sense among the same simulation
experiment.

– Typically, a small D1 value is accompanied by a
small D2 value and a large free energy F . How-
ever, the reverse statement is not always true. In
other words, sometimes a large free energy may be
associated with relatively large D1 and D2 values,
or sometimes even when D2 and the negative free
energy −F is small, the D1 value can be large.
To show that, we have conducted 50 independent
Monte Carlo simulations for Simulation 1-2, and
the statistics of D1, D2 and F are shown in Fig. 6.
Note that these results consist of all solutions with
different degrees of performance (both failures and
successes). In our observations, a “qualitatively
good” solution is often accompanied with lower
values of D1 and D2, in combination of reasonably
high value of free energy; a “qualitative bad” solu-
tion is often accompanied with a low free energy,
a high D2 value. In this specific Monte Carlo ex-
periment, the conservative failure rate estimate is
around 10–14% (5–7 cases).

5.1.3 Simulated T-maze

Linear track is the simplest spatial topology among
all rat navigation tasks. Next, a slightly more complex
spatial topology—T-maze, is considered. In the first
simulation scenario, the animal navigates in a T-maze
(Fig. 7, leftmost panel). In each lap, the animal makes
random exploration to the left or right arms of the
maze. In this case, the animal makes no turn in the
middle of two arms. Based on the same initialization

setup as before, the VB-HMM algorithm is capable of
producing very accurate estimation results. One of the
estimation results from this simulation is illustrated in
Fig. 7. As seen, the estimated state transition proba-
bility matrix is very similar to the true one (D2(2) =
0.015). Note that the transition matrix has two bifur-
cation points at states 20 and 42, and there is also a
break point at state 62. In addition, the estimated state
sequence trajectory is also consistent with the true one
(D1 = 0), and so are the estimated tuning curves (not
shown).

In the second simulation scenario, the animal is as-
sumed to navigate in the same T-maze environment.
However, the animal makes regular turns inside the
two arms of the maze. Using the VB-HMM algorithm,
one of the estimation results from this simulation is
illustrated in Fig. 8. By inspection, the estimated state
transition matrix and state sequence trajectory are
also consistent, achieving excellent quantitative met-
rics: D1 = 0, D2(2) = 0.024, D2(3) = 0.038.

5.1.4 Combined environments

We further examine the scenario with two combined
spatial environments, which is not uncommon in some
rodent navigation protocols. In the first simulation sce-
nario, we consider one linear track A and one T-maze,
where the linear track A is part of the T-maze (i.e.,
one arm of the T-maze). The linear track A is repre-
sented by 62 states, and the T-maze is represented by
86 states. Therefore, the combined environment is also
represented by 86 states. In each lap, the animal first
explores the linear track (state 1–62), and then the an-
imal is exposed to the complete environment (state 1–
86). Although the task is more challenging than the first
two scenarios, the VB-HMM algorithm still performs
quite well. One of the estimated results is illustrated
in the left panel of Fig. 9. By inspection, we see the
estimated state sequence is consistent with the true one,

Fig. 6 Scatter plots of
statistics of D1, D2(2), and
free energy F. Statistics are
obtained from 50
independent Monte Carlo
simulations (Simulation 1-2)
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Fig. 7 Left Illustration of linearization of a simulated T-maze.
Due to the bidirectional factor of the place field, a total of 43 ×
2 = 86 states represents the 43 bins. Linearized bin assignment:
A → B: 1:20, B → C: 21:31, C → B: 32:42, B → A: 43:62, B →
D: 63:74, D → B: 75:86. One illustrated result from the simulated

T-maze (Simulation 2-1): color-coded true (middle) and esti-
mated (right) transition probability matrices, and D2(2) = 0.015.
The comparison of the true and estimated trajectories are not
shown here

this is also confirmed by D1 = 0.783 and the statistics of
the respective sorted state occupancy time (right panel,
Fig. 9). The estimated transition probability matrix has
a relatively similar structure as the one shown in Fig. 7
(data not shown, D2(2) = 0.698).

In the second simulation scenario, we consider the
combination of two linear tracks (A and B) without
overlapping region between each other. Two linear
tracks are represented by 43 states, resulting a total
of 86 states with the bidirectional factor. In the first

Fig. 8 One illustrated
snapshot from the simulated
T-maze (Simulation 2-2). Top
Comparison of the true and
estimated trajectories.
Bottom Comparison of the
true (left) and estimated
transition matrices (right).
Quantitative indices:
D1 = 0, D2(2) =
0.024, D2(3) = 0.038
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Fig. 9 One illustrated snapshot from two combined environ-
ments (Simulation 3-1): the comparison of the snapshots of the
true (left top) and estimated (left bottom) trajectories, with the
transition marked by a dashed line. In this case, two environ-

ments have overlapping regions. From the true and estimated
state trajectories, we can compare the statistics of the state
occupancy time (right) and obtain D1 = 0.783

865 temporal bins, the animal first explores the linear
track A (state 1–62), and then the gate between two
tracks opens and closes behind once the animal moves
to the linear track B (state 63–86) and explores in

the remaining 147 temporal bins. Therefore, there is
only one single transition chaining two environments.
To our little surprise, the VB-HMM algorithm is still
capable of recovering the behavior trajectory. One of

Fig. 10 One illustrated result
from two combined
environments (Simulation
3-2): the comparison of the
snapshots of the true (top left)
and estimated (bottom left)
trajectories. Note that two
environments have no
overlapping region, the
one-time transition between
A and B (31 → 63) is marked
by a dashed line. Linear track
A has state ID 1–31 (forward
direction) and 32–62 (reverse
direction); linear track B has
state ID 63–74 (forward
direction) and 75–86 (reverse
direction). Quantitative
indices: D1 = 3.04, D2(2) =
0.313, D2(3) = 0.445
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Fig. 11 (a) The graph inferred from the estimated transition
matrix from a simulated linear track without behavioral turns
(Simulation 1-1, m = 62). (b)–(d) The graphs inferred from a
simulated linear track with behavioral turns (Simulation 1-2, m =

62): from the true transition matrix (b), the estimated transition
matrix (c) and the estimated transition matrix followed by 0.05
thresholding (d)

the estimated results are illustrated in Fig. 10. As seen,
even with a sample size as small as 1012 bins, our
approach can decode the state trajectory rather reliably
(D1 = 3.04) and produce a reasonably good estimate
of the state transition matrix (D2(2) = 0.313, D2(3) =
0.445).

5.1.5 Interpretation of graphs

The topological graph reveals important information
about the spatial topology of the environment as well
as the animal’s behavior. Take a look at the examples
of the inferred graphs shown in Fig. 11, Fig. 11(a) is
a graph obtained from Simulation 1-1, Fig. 11(b) is
the inferred graph from the true state transition matrix
used in Simulation 1-2, Fig. 11(c) and (d) are the in-
ferred graphs from the estimated state transition matrix
in the same simulation, without and with thresholding,
respectively.

We would like to point out a few important facts in
interpretation of the graphs:

– The end-to-end navigation behavior (i.e., no turns)
in the linear track and T-maze environment will
have simpler graphs (shown in Fig. 1, bottom left
two graphs). This example is perfectly illustrated
in the graph of Fig. 11(a), which is inferred from
Simulation 1-1.

– Whenever there are navigation turns inside the
track, shortcuts will be created in the graph. The
number of locations at which the turns occur de-
termines the number of shortcuts. This can be per-
fectly illustrated in the graph of Fig. 11(b): in addi-
tion to the “8”-figure topology (solid string in dark
color), two shortcuts (weak edges in light color) are
created.

– In the T-maze, since there are bifurcation points
(e.g., states 20 and 42 in Simulation 2-2) as well as

Fig. 12 The graphs inferred
from the true estimation
matrix (left) and the
estimated transition matrix
without thresholding (right)
in a simulated T-maze
(Simulation 2-2, m = 86). The
nodes represent the states,
and the edges represent the
strengths between the nodes.
Notice the similar spatial
topology between these two
graphs

True Estimated
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Fig. 13 The graphs inferred
from the true transition
matrix (left) and the
estimated transition matrix
with 0.01 thresholding (right)
in Simulation 3-2 (m = 86)
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Table 2 Summary of experimental data

Environment Selected m C T Remark

3.1-m linear track 60 ∼ 80 30 1,138 ∼4.7-min run period extracted from 30-min recording
T-maze 70 ∼ 80 39 952 ∼4-min run period extracted from 16-min recording

All data use a 250-ms bin size. The run-only data are obtained with a 0.15 m/s velocity filter

Fig. 14 One illustrated
estimation result from the
experimental linear track
(m = 60): true position
during the run period (top
panel) and the decoded state
sequence (middle panel). The
estimated transition
probability matrix (bottom
left) and the inferred 2D
graph (bottom right) are also
shown. Note that there are
three weak edges or shortcuts
appended to the
well-connected closed-loop

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

P
os

 (
cm

)

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

S
ta

te
 ID

Time x 0.25 (s)

Transition probability matrix

10 20 30 40 50 60

10

20

30

40

50

60
0 10−10 20−20 30−30 40−40

0

5

−5

10

−10

15

−15

20

−20

Optimized 2D topology



J Comput Neurosci (2012) 33:227–255 245

a break point (i.e., discontinuity), the end points of
the inferred graph are not connected (left panel of
Fig. 12). However, there are two shortcuts due to
the existence of behavior turns in the simulation.

– In the combination of two environments (Simula-
tion 3-2), the graph inferred from the true transition
matrix (Fig. 13, left panel) consists of two separate
yet weakly linked loops, each of them has its own
shortcuts. The large loop on the top of the left panel
(Fig. 13) represents the state space 1–62, whereas
the small loop represents the state space 63–86, and
these two loops are linked by a week edge (states
62 and 63).

All of these facts are observed from a “ground truth”
graph inferred from a true state transition matrix. In
statistical inference, the statistical estimation error in
the state transition matrix will inevitably make the
graph interpretation more difficult (e.g, Fig. 13, right

panel). In practice, we found that thresholding small
probabilities before using the force-based algorithm
will improve the graph presentation (e.g., Fig. 11(c)
vs. (d)).

5.2 Experimental data

Given the successful estimation results from the ex-
tensive computer simulations, we further apply our
analysis to two experimental data sets. The statistics of
experimental data are summarized in Table 2.

5.2.1 Linear track

In the first experimental protocol, the rat navigated
in a 3.1-m linear track environment. To exclude the
rat’s pause or stop periods inside the track, we apply
a velocity filter (15 cm/s) to obtain run-only periods
of recording in one session. A total of 30 putative

Fig. 15 One illustrated
estimation result from the
experimental T-maze
(m = 80): true position during
run period (top panel) and
the decoded state sequence
(middle panel). The estimated
transition probability matrix
(bottom left) and the inferred
2D (bottom middle) and 3D
graphs (bottom right) are also
shown. The 3D graph is
simply another perspective to
visualize the topological
graph

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

P
os

 (
cm

)

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

S
ta

te
 ID

Time x 0.25 (s)

Transition probability matrix

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
0 10−10 20−20 30−30

0

10

−10

20

−20

30

−30

Optimized 2D topology

0
20

−20

0
10

−10

20

−20

30

−30

0

10

−10

20

−20

30

−30

Optimized 3D topology



246 J Comput Neurosci (2012) 33:227–255

pyramidal cells were simultaneously recorded from the
rat hippocampal CA1 area based on multiple tectrodes.
Spikes are sorted and binned with a 250-ms window,
and the spike count statistics of the ensemble neurons
are obtained.

We run the VB-HMM algorithm more than 50 times
(each with independent random initialization) and se-
lect the result associated with the highest free energy.
A range of model size of m = 60 ∼ 80 has been tested.
The estimated trajectory, the transition probability
matrix, and the optimized 2D topology from the best
result are illustrated in Fig. 14. The spatial topology
is optimized with the force-based algorithm using the
estimated transition matrix (upon 0.01 thresholding). In
a closer examination of the graph, the basic topology
appears to be a closed-loop circle, reflecting the nature
of the back-and-forth navigation inside the linear track
(Fig. 14, first panel). In addition, there are two or three
weak edges within the closed-loop circle, implying there
are shortcuts between the states. This is also consistent
with the rat’s behavior: the rat make turns at two
specific locations: one is around 70 cm and other two
are around 200 and 250 cm.

5.2.2 T-maze

In the second experimental environment, the rat nav-
igated in a T-maze (as illustrated in the left panel of
Fig. 2). After linearization, the environment is about
200 cm in length. A total of 39 putative pyramidal cells
were simultaneously recorded from the rat hippocam-
pal CA1 area based on multiple tectrodes. Spikes are
sorted and binned with a 250-ms window, and the spike
count statistics of the ensemble neurons are obtained.
Again, a velocity filter is applied to extract about 4-min
run periods from a total of 16-min recording.

Similarly, we run the algorithm more than 50 times
(each with independent random initialization) and se-
lect the best result associated with the highest free
energy. A range of model size of m = 70 ∼ 80 has
been tested. The estimated trajectory, estimated tran-
sition probability matrix, and the optimized 2D and 3D
topologies from the best result are illustrated in Fig. 15.
Specifically, the 3D graph is simply another perspective
to visualize the topological graph (using the same force-
based algorithm). As seen, the spatial topology inferred
from the T-maze is more complex than that obtained
from the linear track, the presence of twisted loop and
weak edges make the inferred graph more difficult to
interpret. This result is not too surprising, since in com-
parison to the simulated T-maze, the animal’s behavior
is more versatile and the real data length is about 4∼5

times shorter; which all make the inference task more
challenging.

6 Discussion

6.1 Model selection and local maximum

For the finite m-state HMM, an important issue in
statistical inference is to choose the model size m.
Various model selection studies have been conducted
in the HMM literature (Scott 2002; Cappé et al. 2005;
Rydén 2008). In this paper, we focus on highlighting the
methodology of VB inference and uncovering the spa-
tial topology. For this reason, we have either selected
the true model size (as in computer simulations) or
empirically selected the model size (as in experimental
data). Detailed comparison of results from using var-
ious model sizes is beyond the scope of current paper.
Despite that, in order to illustrate the important issue of
model selection, we use one example to illustrate how
different model sizes will affect the estimation results.
In the example of Simulation 1-2, the true model size
is 62, we have also conducted inference using either a
smaller (m = 50) or a larger (m = 80) model size. Two
selected results are shown in Fig. 16. As seen, when
the model size is insufficient, mistakes will be found
in the inferred results (Fig. 16, left panels); when the
model size is too large, redundant states are often found
(Fig. 16, right panels).

In the terms of the optimized free energy function,
a larger model size is typically accompanied with a
greater free energy value. However, the local maximum
problem would make direct comparison of different
model sizes nontrivial. To illustrate this point, we run
Monte Carlo experiments using different model sizes
and compare their statistics (Fig. 17). Three important
observations are noteworthy from Fig. 17: (i) When
the right model size is selected, the greater free en-
ergy value is achieved upon convergence; in contrast,
models with either too large or too small size will have
lower free energy values. (ii) Compared to the small
model size (m = 50), the large model size (m = 80)
has a slightly more spread-out free energy distribution,
whereas its best performance is slightly better. (iii) In
the case of using a large model size, there often appear
many redundant states—namely, not all state IDs are
used in trajectory decoding. The actually used states are
referred to the ef fective states. A commonly observed
phenomenon when selecting a large model size is that
most of ‘good’ performance is only obtained when the
effective state size is around 62, but not always vice



J Comput Neurosci (2012) 33:227–255 247

0 50 100 150 200 250
0

20

40

60

80
True trajectory (m=62)

0 50 100 150 200 250
0

20

40

60

80

100
Decoded trajectory (m=50)

0 50 100 150 200 250
0

20

40

60

80

True trajectory (m=62)

0 50 100 150 200 250
0

20

40

60

80

100
Decoded trajectory (m=80)

Fig. 16 Illustration of the estimated trajectory where the model size mismatch (Simulation 1-2). Underestimation (left): m = 50, D1 =
8, D2(2) = 0.087, D2(3) = 0.093. Overestimation (right): m = 80, D1 = 4, D2(2) = 0.017, D2(3) = 0.182

versa (namely, the good performance is not guaranteed
when the effective state size is around 62).

In practice, one can use the free energy or the
Bayesian deviance information criterion (DIC) as a
guiding principle for model selection. Specifically, the
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Fig. 17 Illustration of the distribution statistics of the converged
free energy value based on independent random initializations. In
each setup (from Simulation 1-2), 100 Monte Carlo experiments
are conducted. As expected, when the selected model order
matches the true model size (m = 62), a higher free energy value
is typically achieved

DIC is defined as the sum of the expected deviance
and the model complexity measure pD (McGrory and
Titterington 2009):

DIC = Ep(θ |y)

[
− 2 log p(y|θ)

]
+ pD

≈ −2 log p(y|θ̃) − 2
∫

qθ (θ) log
qθ (θ)

p(θ)
dθ

+ 2 log
qθ (θ̃)

p(θ̃)
(29)

where θ̃ denotes the posterior mean computed with
respect to the variational posterior qθ (θ), and p(y|θ̃)

can be computed from the forward-backward algorithm
(Appendix A).

We can also consider an alternative HMM. The
infinite HMM is a nonparametric Bayesian extension
of the HMM with an infinite number of hidden states
(Beal et al. 2002). The key difference in hierarchical
Bayesian modeling of the infinite HMM from the finite
HMM is to treat the priors in the context of stochastic
process. Recall that the prior used for the state transi-
tion matrix follows a Dirichlet distribution (van Gael
et al. 2008):

P j ∼ Dir(αβ) = �(
∑

i αβi)∏
i �(αβi)

m∏
i=1

(Pij)
αβi−1

β ∼ Dir(γ /m, . . . , γ /m)
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where P j denotes the j-th row of the transition matrix
P, and β are the shared prior parameters. The infinite-
dimensional generalization of the Dirichlet distribu-
tion is a Dirichlet process. As m → ∞, the hierarchi-
cal prior approaches a hierarchical Dirichlet process
(HDP) (Teh et al. 2006). A HDP is a set of Dirichlet
processes (DPs) coupled through a shared random
based measure G0 which is itself drawn from a DP. The
concentration parameter α > 0 governs the variability
of the base measure, with small α implying greater
variability. However, learning an infinite HMM would
require a large amount of data samples, it may not be
very practical in dealing with the experimental data in
our current problem.

In learning latent probabilistic models, it is well
known that the iterative EM and VB-EM algorithms
are subject to the local maximum problem during op-
timization. The value of the local maximum highly
depends on the initial conditions of the parameters
or priors. Therefore, for every experimental data set,
multiple runs of the iterative algorithm is a common
practice. Meanwhile, the local maximum problem can
be alleviated by using the so-called deterministic an-
nealing (DA) procedure (see Appendix B for details).
The key idea of the DA is to optimize a modified free
energy function using an annealing parameter (in the
analogy of the inverse temperature). As the inference
process continues, the temperature is lowered and the
annealing parameter is increased, it is expected (with
higher probability) that the VB-EM algorithm can es-
cape from the local maximum and approach a better so-
lution. As a trade-off, the DA version of the algorithm
is computationally slower and the result is also sensitive
to the choice of the annealing parameter. Our observa-
tion of using DA in our current experiment is that the
DA computation is very slow and it is wiser to spend the
CPU resource in running the standard algorithm a few
more times. Another possible solution is to use MCMC
methods for exact Bayesian inference (in opposition to
approximate Bayesian inference in VB). In this case,
the VB-EM would be replaced by a Monte Carlo EM
algorithm (McLachlan and Krishnan 2008). The infer-
ence principle remains similar: in the E-step, run the
forward-backward algorithm, in the Monte Carlo M-
step, run the Gibbs sampler for estimating the unknown
parameters (using the same conjugate priors). Finally,
the posteriors of the parameters would be represented
by simulated Monte Carlo samples. However, as we
have discussed earlier, the MCMC methods are more
computationally expensive and a large memory space
is required for storing samples for the parameter � of
size m-by-C.

6.2 Extension with a dummy state

Thus far, we have only considered the spiking activ-
ity within the periods of active behavior. In principle,
this can also be extended to periods of sleep or quiet
wakefulness (although the temporal bin size needs to
be adjusted). However, because of the distinct neural
mechanisms of hippocampal circuitry between periods
of behavior and periods of sleep or quiet awakefulness,
it is important to analyze these periods separately. Cur-
rently, we use a velocity criterion to segment the run
and stop periods in behaving animals. The stop epochs
have been excluded in the analysis.

Alternatively, the stop epochs can be treated as an
observed indicator variable and included in the analy-
sis. In this case, we use a dummy or NULL state (with-
out loss of generality, the augmented (m + 1)-st state)
to represent the situation in the presence of either
non-RUN period or missing data (e.g., no recording
is available between two independent episodes or be-
tween the change of experimental conditions). Since
the (m + 1)-st state is not hidden (i.e.„ being observable
via the velocity filter), the inference of the HMM can
be adapted to accommodate this scenario. Basically, the
transition probability Pi,m+1 represents the conditional
probability from state i to STOP, and the transition
probability Pm+1,i represents the conditional probabil-
ity from STOP to state i, where the i-th state repre-
sents the i-th location in the virtual environment. The
inference algorithm still remains similar, except for a
slight modification of the forward-backward algorithm
employed in the VB-E step.

For illustration, we apply the augmented HMM to
the experimental data in the linear track. In the ex-
perimental linear track example, we include all non-
RUN periods into our analysis, which consist of many
RUN→STOP and STOP→RUN transitions. As ex-
pected, the estimated transition probability matrix has
a shifted-diagonal substructure (as before) plus an addi-
tional column that reflects the RUN→STOP behavior
(Fig. 18, left panel) . The non-sparse patterns in the
last column reflects the stop behavior from various
spatial locations. Applying the force-based algorithm
to the shifted-diagonal substructure of the transition
probability matrix (by excluding the last row and the
last column) yields the spatial topology shown in the
right panel of Fig. 18. Note that the loose ends of
the graph are due to systematic stop behavior at the
ends of the track. Therefore, the inferred graph re-
veals not only important cues about the spatial topol-
ogy, but also important information about the animal’s
behavior.
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Fig. 18 Illustration of the estimated transition matrix in the
presence of dummy state (left) and the inferred graph (right).
The results are obtained from the experimental linear track data
(using m = 60). Note that in the left panel, the non-sparse pattern
of the 61st column implies frequent stop behavior from various

spatial locations. Also note that in the right panel, the graph
is drawn excluding the dummy state (i.e., based on the 60 × 60
submatrix of P), which gives rise to a spatial topology without
the closed loop

6.3 About the Markovian assumption

In this paper, we have assumed that the latent state
process, which represents the rat’s position combined
with the directionality, follows a first-order Markovian
process. This assumption is reasonable while using a
relatively large temporal bin size (here, 250 ms). In
reality, this assumption might not be completely valid.
For example, there could be a high-order Markovian
dependence in terms of motion, or there could be a
non-Markovian or semi-Markovian behavior. Never-
theless, modeling these situations would require a large
amount of data for fitting a more complex statistical
model, which is beyond the scope of the current paper.

Also note that, based on the decoded state trajec-
tory, one can estimate the high-order transition proba-
bility. For instance, the second-order transition proba-
bility, represented by a 3D tensor P(2) = {P(2)

ijk } (where∑
j

∑
k P(2)

ijk = 1), reveals information about a 3-bit state
sequence i → j → k. Imaginably, at the bifurcation
point (denoted by state j), we will see two (or more)
dominant values P(2)

ijk and P(2)

ijl (l �= k). These high-order
statistics would be even more important when navigat-
ing in an open field environment.

6.4 Extension to non-Poissonian firing model

In Eq. (2), we have assumed that all neurons follow a
pure Poisson spiking model. However, this assumption

can be extended to other non-Poisson firing models,
such as the Gamma distribution (which will be associ-
ated with a conjugate prior with four hyperparameters).
Also, we may introduce individual neuronal firing his-
tory or ensemble neuronal firing activity as an observed
covariate and characterize the neuronal firing within a
generalized linear model (GLM) framework (Truccolo
et al. 2005), the regression coefficients of the GLM can
be estimated with a VB approach (Chen et al. 2011) in
the VB-M step.

6.5 Identifiability

A model is said to be identifiable if it is theoreti-
cally possible to learn the true value of this model’s
underlying parameter after obtaining an infinite num-
ber of samples from it, which is also equivalent to
saying that different values of the parameter would
generate different probability distributions of the ob-
servable samples. In our statistical model, the un-
known variables θ = (π , P, �) are estimated by op-
timizing the free energy (Eq. (24)) assuming a fac-
torial form of the posterior distribution (Eq. (10)).
Due to non-convexity of the objective function, there
might be many equivalent solutions in the joint space
of (P, �) (permutation). This issue, in combination
with the large dimensionality of θ and small sam-
ple size, makes the task of statistical inference very
challenging.
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6.6 Assessment criterion

In computer simulations, in addition to visual inspec-
tion, we assess the quality of the estimation via two
quantitative metrics: D1 and D2. However, visual in-
spection would become difficult when dealing with
experimental data associated with complex behavior,
or when selecting varying model sizes (since different
m values would induce different state reconstruction
results). Because of the state permutation ambiguity,
it is important to check the consistency between two
solutions.

From an information coding perspective, the HMM
can be viewed as trying to represent or remap a con-
tinuous space S with a finite discrete alphabet A using

a code book: S = f (A). The criterion for the consis-
tency is to assure a one-to-one mapping between S
and A: (i) Any element in S is not simultaneously
represented by Ai and A j (i �= j); (ii) The same Ai

does not represent two or more distinct regions in
S (except for neighboring regions, since two neigh-
boring regions can be combined into one by a merg-
ing operation). In addition, the binning strategy may
be very flexible, Ai and A j can encode two regions
with different amounts of spatial coverage. Although
it is easy to state the consistency principle, a practi-
cal quantitative evaluation of the estimated result is
nontrivial, especially in the absence of ground truth
for the experimental data. This issue requires further
investigation.
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Fig. 19 Illustration of the algorithmic convergence and stability
(Simulation 2-2). At different stages (1st and 3rd iterations, and
final convergence), the free energy (top row), the estimated state

transition matrix (middle row), and the tuning curve of one
neuron (bottom row) are shown
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6.7 Computational issue and computer software

Depending on the data size and the initial condition, the
convergence speed of the VB-HMM algorithm is fast,
typically less than 30 iterations. During the inference
process, we can monitor the learning curves of the free
energy as well as the estimated parameters, see Fig. 19
for a simulation illustration. The algorithm can handle
a large number of neurons with large sample size (in
Simulation 3-1, T = 8,790 corresponds to about 36
minutes with a 250 ms bin size). However, the number
of states could become very large when considering a
hypothetically complex spatial environment, exploiting
the sparse structure of the state-transition matrix would
be important in the presence of small sample size.

All software implementations are done in
MATLAB©. Custom-written codes on the VB-
HMM and the force-based algorithm used in this paper
will be made available upon request.

7 Conclusion

In conclusion, we have used the rat hippocampus as a
model system to uncover the “spatial topology” repre-
sented by the population codes. With the help of graph
illustration, we develop a HMM and a VB inference al-
gorithm to achieve this computational goal. Our empir-
ical results from both extensive computer simulations
and experimental data have shown a promising direc-
tion in uncovering the structural patterns of ensemble
spike activity during the periods of active navigation.
Since the spatial topology graph is just the proxy of the
state-transition matrix, our proposed approach can also
be extended to other model systems with the interest of
characterizing the behavior-related transition probabil-
ity (Jones et al. 2007; Kemere et al. 2008).

Our study provides important insights for future
direction in exploratory data analysis of population
neuronal codes. In addition to further investigation of
some technical issues (e.g., selecting optimal temporal
window and model size, model extension), we are plan-
ning to apply the same methodological analysis to the
other rodent data recorded in more complex spatial
environments (e.g., H-maze and open field), which will
pose more challenges for interpreting the trajectories
and graphs. The same exploratory analysis can also be
applied to spiking data of ensemble neurons recorded
during periods of sleep (Wilson and McNaughton 1994;
Louie and Wilson 2001; Lee and Wilson 2002; Ji and
Wilson 2007) or during “preplay analysis” without
prior exposure of spatial environment (Dragoi and
Tonegawa 2011). Other challenges can also arise due

to the complex dynamics and multiple functional rep-
resentations of the hippocampal place cells, as reported
in the literature (Wood et al. 2000; Jackson and Redish
2007). Incorporating new neurophysiological findings
in space representation within the rat hippocampal cir-
cuitry, such as the spiking activity from head-direction
cells and entorhinal cortical cells (McNaughton et al.
2006), would further enrich the model and pave the
way for a deeper understanding of hippocampal neural
mechanisms.
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Appendix A: EM and Viterbi algorithms

The goal of ML inference is to maximize the log-
likelihood function (Eq. (5)) based on missing data.
In each full iteration, the EM algorithm (Dempster
et al. 1977; McLachlan and Krishnan 2008) iteratively
maximizes the so-called Q-function

Q(θnew|θold) = E

[
log p(Ŝ1:T , y1:T |θ)

∣∣∣θold
]

= E

[ T∑
t=1

C∑
c=1

m∑
i=1

γt(i)
(

yc,t log λ̂ic − λ̂ic

)

+
m∑

i=1

γ1(i) log π̂i

+
T∑

t=2

m∑
i=1

m∑
j=1

ξt(i, j) log P̂ij

∣∣∣∣θold
]
, (30)

and the new θnew is obtained by maximizing the incom-
plete data likelihood conditional on the old parameters
θold; and the iterative optimization procedure continues
until the algorithm ultimately converges to a local max-
imum or a stationary point.

E-step: forward-backward algorithm In the E-step, the
major task of the forward-backward procedure is to
compute the state conditional marginal probabilities:

Pr(St = i|y1:T , θ) = Pr(y1:T , St = i|θ)

Pr(y1:T |θ)

= Pr(y1:T , St = i|θ)
m∑

l=1
Pr(y1:T , St = l|θ)

(31)
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as well as the state conditional joint probabilities:

Pr(St−1 = i, St = j|y1:T , θ)

= Pr(y1:T , St−1 = i, St = j|θ)

Pr(y1:T |θ)

= Pr(y1:T , St−1 = i, St = j|θ)
m∑

l=1

m∑
n=1

Pr(y1:T , St−1 = l, St = n|θ)

. (32)

To make the notation simple, in the derivation below
we will let the conditional θ be implicit in the equation.

To estimate Eqs. (7) and (8), we first factorize the
joint probability as

Pr(y1:T , St = l) = Pr(y1:t, Sk = l) Pr(yt+1:T |y1:t, St = l)

= Pr(y1:t, St = l) Pr(yt+1:T |St = l)

≡ at(l)b t(l) for l = 1, . . . , m (33)

where

a1(l) = πl Pr(y1|S1 = l)

at(l) = Pr(y1:t, St = l) for t = 2, . . . , T

b t(l) = Pr(yt+1:T |St = l) for t = 1, . . . , T − 1

b T(l) = 1

and the forward and backward messages at(l) and b t(l)
can be computed recursively along the time index t
(Rabiner 1989)

at(l) =
∑

i

at−1(i)Pil Pr(yt|St = l)

b t(l) =
∑

i

b t+1(i)Pli Pr(yt+1|St+1 = i),

where Pil denotes the transition probability from state
i to l.

Given {at(·), b t(·)}, the state posterior conditional
joint probability (Eq. (8)) is determined by

Pr(St−1 = i, St = j|y1:T)

∝ at(i)Pij Pr(yt+1|St+1 = j)b t+1( j). (34)

In light of Eq. (9), the observed (incomplete) data
likelihood is computed as

p(y1:T) =
m∑

l=1

Pr(y1:T , St = l)

=
m∑

l=1

at(l)b t(l) =
m∑

l=1

aT(l). (35)

Alternatively, the incomplete data likelihood is
given by

p(y1:T) =
T∏

t=1

p(yt|yt−1)

=
T∏

t=1

ζt(yt) = Z (y1:T) (36)

where ζt(yt) ≡ p(yt|yt−1) is a normalization constant;
Z (y1:T) is also called the marginal likelihood.

From Eqs. (9) and (11), the state posterior condi-
tional marginal probability (Eq. (7)) is determined by
the Bayes’ rule

Pr(St = i|y1:T) = Pr(y1:T , St = i)
p(y1:T)

= at(i)b t(i)∑m
l=1 at(l)b t(l)

∝ at(i)b t(i). (37)

Equations (10) and (13) are the sufficient statistics
computed from the E-step (to be used in the M-step).

In the term of the computational overhead for the
m-state HMM, the above-described forward-backward
procedure requires an order of computational complex-
ity O(m2T) and memory storage O(mT).

M-step: re-estimation In the M-step, we update the
unknown parameters by setting the partial derivatives
of the Q-function to zeros: ∂ Q(θ)

∂θ
= 0, from which we

may derive either closed-form or iterative solutions.
Let ξt(i, j) = Pr(St−1 = i, St = j|y1:T , θ) and γt(i) =

Pr(St = i|y1:T , θ) denote, respectively, the state poste-
rior conditional marginal and joint probabilities (which
are the sufficient statistics for the complete data log-
likelihood). From the E-step, we may obtain

γt(i) = at(i)b t(i)∑m
l=1 at(l)b t(l)

=
∑

j

ξt( j, i) =
∑

j

ξt+1(i, j). (38)

The transition probability estimates are given by the
Baum’s re-estimation procedure

P̂ij =
∑T

t=2 ξt(i, j)∑T
t=2

∑m
j=1 ξt(i, j)

=
∑T

t=2 ξt(i, j)∑T
t=2 γt(i)

. (39)
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And the rate parameter estimates � = {λic} are given
by solving ∂ Q

∂λic
= 0 from Eq. (6)6

λ̂ic =
∑T

t=1 yc,tγt(i)∑T
t=1 γt(i)

(40)

Finally, the convergence of the EM algorithm is
monitored by the incremental changes of the log-
likelihood as well as the parameters. If the quantity
of the absolute change or relative change of the log-
likelihood is smaller than a desirable value, the EM
algorithm is terminated.

Viterbi algorithm Upon estimating parameters θ =
(π , P, �), we can run the Viterbi algorithm (Viterbi
1967) for decoding the most likely state sequences. The
Viterbi algorithm is a dynamical programming method
(Bellman 1957) that uses the “Viterbi path” to discover
the single most likely explanation for the observations.
Specifically, the MAP estimate Ŝt at time t is

ŜMAP
t = arg max

i∈{1,...,m}
γt(i) 1 ≤ t ≤ T. (41)

The computational overhead of the forward Viterbi
algorithm has an overall time complexity O(m2T) and
space complexity O(mT).

Appendix B: Deterministic annealing

For the discrete m-state HMM, there are exponential
numbers (i.e., O(2m)) of local maxima. The local maxi-
mum problem is particularly severe when the transition
matrix P is sparse (many zero elements) or there are
equal state emission probabilities for distinct states.
This phenomenon is known as the “singularity” of the
objective function (Amari et al. 2003; Watanabe 2009),
which is omnipresent in many estimation problems of
probabilistic models and artificial neural network mod-
els. In order to alleviate the local maximum problem,
the so-called deterministic annealing (DA) procedure
was proposed for several latent probabilistic models,
such as the mixture models and HMM (Beal 2003;
Katahira et al. 2008).

6To avoid numerical problem we set λ̂ic = 0 if the denominator is
0 or nearly 0.

The key idea of DA-VB is to modify the original free
energy function (Eq. (6)) by introducing an annealing
parameter ρ:

F(q)=
〈

log p(y1:T , S1:T , π ,P, �)
〉
q
+ 1

ρ
Hq(π ,P, �, S1:T)

=
〈

log p(y1:T , S1:T , π , P, �)
〉
q(θ)q(S1:T )

+ 1
ρ
Hq(S1:T )(S1:T) + 1

ρ
Hq(θ)(θ) (42)

where ρ = 1/T can be viewed as an inverse temper-
ature parameter. The annealing procedure gradually
lowers the temperature (or increases ρ) during the
inference process, hoping to escape from local maxima
and ultimately to reach the global maximum with a
higher probability.

Consequently, the new state posterior probabilities
will be recomputed from the VB-E step:

γ̃t(i) = γt(i)ρ∑m
j=1 γt( j)ρ

(43)

ξ̃t(i, j) = ξt(i, j)ρ∑m
l=1

∑m
n=1 ξt(l, n)ρ

(44)

whereas in the VB-M step, we have the following new
update equations (used for Eqs. (12), (13) and (15)):

w
(π)

i = ρ
(

u(π)

i + γ̃1(i) − 1
)

+ 1 (45)

w
(P)

ij = ρ
(

u(P)

ij +
T∑

t=2

ξ̃t(i, j) − 1
)

+ 1 (46)

q(λic) = Gam

(
Cα

(λ)

i +
T∑

t=1

yc,tγ̃t(i), Cβ
(λ)

i +
T∑

t=1

γ̃t(i)
)

(47)

Note that when the annealing parameter ρ = 1, the
standard VB-EM algorithm (Sections 3.1 and 3.2) is
recovered.

Appendix C: Optimizing hyperparameters

In light of Eq. (23), taking the derivatives of the log-
arithm of Eq. (23) with respect to α

(λ)

i and β
(λ)

i and
setting them to zeros yields

0=
C∑

c=1

−C + ∑
t yc,tγt(i)

Cβ
(λ)

i + li

+Cyc,tψ
′
(

Cα
(λ)

i +
∑

t

yc,tγt(i)
)

(48)

0 =
C∑

c=1

Cα
(λ)

i + ∑
t yc,tγt(i)

(Cβ
(λ)

i + li)2
− yc,t

Cβ
(λ)

i + li

(49)
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There is no closed-form solution to these two equa-
tions. However, solving these two fixed-point equations
using a gradient or Newton-type algorithm within each
VB-M step would increase the marginal log-likelihood
or free energy.
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