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Abstract A tonic-clonic seizure transitions from high
frequency asynchronous activity to low frequency
coherent oscillations, yet the mechanism of transition
remains unknown. We propose a shift in network
synchrony due to changes in cellular response. Here
we use phase-response curves (PRC) from Morris-Lecar
(M-L) model neurons with synaptic depression and
gradually decrease input current to cells within a
network simulation. This method effectively decreases
firing rates resulting in a shift to greater network
synchrony illustrating a possible mechanism of the
transition phenomenon. PRCs are measured from the
M-L conductance based model cell with a range of
input currents within the limit cycle. A large network of
3000 excitatory neurons is simulated with a network
topology generated from second-order statistics which
allows a range of population synchrony. The population
synchrony of the oscillating cells is measured with the
Kuramoto order parameter, which reveals a transition
from tonic to clonic phase exhibited by our model

network. The cellular response shift mechanism for the
tonic-clonic seizure transition reproduces the population
behavior closely when compared to EEG data.
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1 Introduction

1.1 Tonic-clonic seizure

At the onset of seizures, high frequency low amplitude
oscillations are observed in EEG accompanied by tonic
flexion of the axial musculature (Bragin et al. 2010; Fisch
and Olejniczak 2006). This finding has since been
corroborated during the seizure using intracranial EEG
recordings (Schindler et al. 2007b) and MEG (Garcia
Dominguez et al. 2005; Perez Velazquez et al. 2007). The
tonic phase slowly transitions to the clonic phase passing
through an “intermediate vibratory period” of 8 Hz oscil-
lations and ending in regular bursting at 4 Hz (Gastaut and
Broughton 1972). A stimulus that increases synchrony
during a seizure has been shown to truncate the seizure
(Schindler et al. 2007a). It has also been shown that firing
rates of neurons in vivo decrease over the course of the
tonic-clonic seizure (Ward 1961), arguably starting during
the pre-ictal period progressing to the onset of the seizure,
in most cases ending in a form of auto-termination.

In grand-mal seizures there is a tonic phase, where
the patient tenses the muscles accompanied by high
frequency low amplitude neural activity, followed by a
transition to clonic phase, where convulsive contractions
of the muscles are accompanied by low frequency large
amplitude EEG activity (Quian Quiroga et al. 1997).
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Synchrony in epilepsy, as measured by the precise timing
of the synaptic inputs of two cells in close proximity to
each other, decreases during the tonic phase of the seizure
and then increases during the clonic phase (Netoff and
Schiff 2002). It is evident from EEG data that population
amplitude and coherence appears to be greater in the
clonic phase as shown in Fig. 1 (data from (Quian Quiroga
et al. 1997).

At the onset of the seizure the neurons are firing at
very high rates and each cell is receiving large
amounts of input current. As the firing rate slows
down, the network transitions to a synchronous high
amplitude clonic phase of seizure. We hypothesize that
the transition from tonic to clonic phases is caused by
a phase response shift in the neurons due to a decrease
in firing rates within the network, leading to a shift in
synchrony. We demonstrate how the transition occurs
in a network of model neurons and explain the
mechanisms using pulse-coupled oscillator theory.
There are several ways in which network synchrony
may change in vivo, including the reintroduction of
activity from the inhibitory population (provided they
have entered depolarization block at the seizure onset)
Ziburkus et al. 2006, synaptic depression, and vesicle
depletion. In our model, the change in firing rate is
produced by including synaptic depression and a gradu-
ally decreasing input current to the model neurons.

1.2 PRCs

To determine how a network of neurons will synchro-
nize, we need to know the neural network connectivity

and the resetting of the neurons from synaptic input.
Because the dynamics of neurons and synapses are
rather complicated, analyzing a network of model
neurons quickly becomes analytically intractable. An
alternative approach is to reduce the complexity of the
neuron to a simplistic model. One approach is to
model the neuron as a simple input–output function
that adjusts the neuron’s next spike-time given the
phase of synaptic input; this approach is known as a
phase-response curve (PRC) model (Winfree 2001;
Ermentrout and Kopell 1998). PRC theory has been used
to study synchrony in networks of heart cells (Glass and
Mackey 1988), fireflies (Winfree 2001) and neurons
(Kopell and Ermentrout 2002; Hoppensteadt and Izhike-
vich 1997; Izhikevich 2007; Brown et al. 2004). This
analytical approach can be used to understand how
oscillator networks synchronize (Hansel et al. 1995;
Neltner et al. 2000; Ermentrout and Kleinfeld 2001;
Mancilla et al. 2007). Given the caveat that neurons fire
periodically PRC theory can predict whether a network of
neurons can synchronize. The neuron’s measured PRC is
dependent on the ionic channel dynamics of the neuron
and the synaptic stimulus waveform (Ermentrout et al.
2011). As a neuron’s firing rate changes, the resulting
PRC changes. We hypothesize that during a seizure the
firing rate of the neurons change, which changes the rate
of convergence to the synchronous state.

1.3 Connecting PRC with network synchrony

It has been previously shown that synchrony in
networks depends on the firing rate of the neurons
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Fig. 1 Tonic-clonic seizure.
EEG data of a tonic-clonic sei-
zure recorded using a scalp right
central (C4) electrode (linked
earlobe reference). Seizure onset
is marked by increased activity
leading to a tonic phase marked
by incoherent increased firing of
the neuronal population. High
frequency activity continues
throughout the tonic phase until
coherent oscillations are ob-
served, demarcated by the clonic
phase. The seizure terminates
when neuronal activity returns
to initial baseline levels. Data
from Quiroga et al. 1997
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(Lewis and Rinzel 2003). We have found that when the
network firing rate is very high, network synchrony is
less stable compared to when firing rate is slow and the
synchronous network activity becomes stable enough to
allow synchrony. We propose that as the firing rate slows
from synaptic depression and reintroduction of depressed
or inactive inhibitory interneurons, a transition from tonic
to clonic phase occurs. In principle, the slowing of the
neurons could be caused by synaptic depression of the
neurons (Manor and Nadim 2001; Abbott et al. 1997),
neurotransmitter depletion, and/or spike rate adaptation
of the neurons. In this paper, we will model how
synchrony changes with the slowing of the neurons’
firing rates, using synaptic depression and a decrease in
the current applied to the neuron over the duration of the
seizure.

2 Methods

To illustrate the role of firing rate on synchrony, we use
computational simulations of a neuronal network model.
The conductance based model neurons have a phase
resetting (PRC) that is sensitive to synaptic input firing
rate, which essentially equates to the amount of current
input to a given cell in time. Our model incorporates
synaptic depression, which may be a component of the
tonic-clonic transition mechanism. In the section on
Neuronal model we describe how we modify a standard
computational model to have a PRC which is sensitive to
firing rate and is similar to those we measure from real
neurons. In the section Pulse coupled oscillator theory, we
describe how to determine if a reciprocally coupled
two-cell network will synchronize given the PRC of
one neuron, which is then applied to our larger
network of neurons as a prediction of population
synchrony. Finally, networks that synchronize very
quickly are unable show significant changes in syn-
chrony as a function of firing rate. In our simulation
we choose a network topology that is able to
synchronize or desynchronize, depending on the indi-
vidual cellular responses. The specific structure of our
network is selected and explained from recently
published results.

2.1 Neuronal model

We model the neurons using a modified version of the
Morris-Lecar (M-L) model (Izhikevich 2007; Morris and
Lecar 1981). We choose the M-L model because it is a

reduced Hodgkin-Huxley model (Rinzel 1985) with only
two dimensions, so it can be easily analyzed. We find that
the dynamics of the M-L model are easily changed by
selecting individual parameters within the model. The
M-L model has advantages over the Integrate and Fire,
quadratic Integrate and Fire, and Izhikevich models in
that the PRC of the M-L cell can be made to look similar
to PRCs measured from real neurons.

The conductance based M-L model calculates the
change in voltage as a function of the membrane ionic
currents as described by the following equations:

C V
: ¼ Iinput þ Inoise � gL V � ELð Þ � gNam1ðV Þ V � ENað Þ

� gKn V � EKð Þ � D S � Fð Þ V � Esyn

� �
;

n
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� Vmax�Vð Þ2

s2

S
:

¼ � S
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F
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t f

where C is the membrane capacitance, V is the membrane
voltage, Iinput is an input current common to all neurons,
Inoise is a white noise input proportional to the square root
of the time step independent to each neuron, g are the
maximal conductances of each current source, E are the
reversal potentials for each ion, m and n are the ionic gating
variables, where m∞ and n∞ are the steady-state activation
for a given voltage, V1/2m satisfies m1 V1=2

� � ¼ 0:5; Vmax

is the value of V at the maximum value of m, k is the degree
of slope at V1/2, τ is the voltage dependent time constant of
the K+ activation variable, σ determines the sensitivity of
the time constant of V, S represents the slow variable of the
synaptic input shape, with a time constant τs and F is the
fast synaptic time constant. At times of synaptic input, 1 is
added to both the S and F state variables and depression, D,
is defined as Diþ1;j ¼ Di;jd, updated for cell j after a
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synaptic input i as described in (Varela et al. 1997) where
the strength of depression is modified by d, set to 0.7 for
the simulation.

Our model diverges from the original Morris-Lecar
model, which used calcium rather than sodium, but is
essentially the same framework. We have also adjusted the
parameters so that the PRC is similar to a real neuron's
PRC; they are as follows: C ¼ 1:0 mF; gL ¼ 8 nS;EL ¼
�53:24mV; gNa ¼ 18:22 nS;ENa ¼ 60 mV; gK ¼ 4nS;
EK ¼ �95:52mV;V1=2m ¼ �7:37mV; km ¼ 11:97mV;
V1=2n¼�16:35mV; kn¼ 4:21 mV; t ¼ 1 ms; spikeWidth ¼
0:03;Esyn ¼ 0; tf ¼ 0:25 ms; ts ¼ 0:5 ms. We used the
minimum changes necessary to produce the dynamics of
interest in this paper. A description of how the variables were
selected is explained in the results section. Matlab code for
this model is available at http://neuralnetoff.umn.edu/public/
TonicClonic and from Model DB website (http://senselab.
med.yale.edu/modeldb), an online location for storing and
retrieving computational neuroscience models.

2.2 Generating a model PRC

Phase-response curves are directly measured by numer-
ically integrating the model neuron with synaptic inputs
at different phases (we used variable time step
integrator, ode23 from Matlab (Mathworks)). Current
is input into the model oscillator to produce periodic
oscillations at a frequency of about 100 Hz. To
measure a PRC, a synaptic conductance stimulus is
added to the constant current (by setting the state
variables S and F to turn on the synaptic conductance
waveform) and the resulting change in period is recorded.
This is repeated while applying the perturbative stimulus
at different phases. The PRC is computed by comparing
the perturbed period to the relaxed period at each
stimulated point in the phase.

2.3 Pulse coupled oscillator theory

To study how synchrony depends on neuronal firing
rate, we use pulse-coupled oscillator theory. Synchrony
in a pair of coupled neurons can be predicted from the
PRC (Ermentrout and Kopell 1998). If PRCs of two
reciprocally coupled neurons are known then it is possible
to predict whether they will synchronize by summing the
spike-time advance from the synaptic inputs from each
neuron onto the other, as shown in Fig. 2. The spike
difference from one cycle to the next can be predicted as:
Δiþ1 � Δi þ PRC1ðΔiÞ � PRC2ðT � Δi � PRC1ðΔiÞÞ,
where Δi is the difference in the spike-times of the two
neurons on spike i, T is the unperturbed period of two
neurons, and PRC(Δ) determines the change in spike
timing of the neurons given a synaptic input at phase Δ.

We simplify the spike difference map for weak coupling
by dropping the phase advance argument of PRC1 in the
PRC2 to

Δiþ1 � Δi þ PRC1ðΔiÞ � PRC2ðT � ΔiÞ:
If we linearize the above expression about a zero time

lag, we obtain

Δiþ1 ¼ Δi þ PRC1ð0Þ þ ΔiPRC
0
1ð0Þ � PRC2ðTÞ þ ΔiPRC

0
2ðTÞ

where the prime indicates the slope. When at synchrony,
PRC1 (0)=PRC2 (T), so we simplify to

Δiþ1 ¼ Δið1þ PRC
0
1ð0Þ þ PRC

0
2ðTÞÞ:

The multiplier on the right must have an absolute
value less than one for Δ to go to zero. This change
in the spike difference between the two neurons from
one cycle to the next is called the H-function:
HðΔiÞ � Δiþ1 � Δi � PRC1ðΔiÞ� PRC2ðT � ΔiÞ. If the
H-function is zero then the spike-time difference is not
changing, i.e. Δiþ1 ¼ Δi, and the network is at a fixed
point in phase. This result is valid under the weak coupling
assumption and has been used in our analysis. However, the
result under strong coupling has been worked out previously
as well (Dror et al. 1999).

Fig. 2 Illustration of how PRCs can predict changes in spike-time
differences on a subsequent cycle. Top: Two reciprocally coupled
neurons start at spiketime difference Δi. Furthest vertical gray lines
show later time T where neurons would fire again if unperturbed.
When the bottom cell fires, its synaptic input updates the top cell’s
firing time according to the top cell’s PRC making it actually fire at
the penultimate vertical line, and vice-versa for cell 2. These neurons
are synchronizing because the time between the two black lines is less
than the time between the original two spikes. Bottom: Synchroniza-
tion can be predicted analytically with the H-function (indicated with
arrow), calculated by subtracting PRC2 reversed in time from PRC1.
The location of the stable synchronous solution is where the H-
function negatively crosses the horizontal phase axis (roots with
negative local slope). In this case it occurs at zero phase difference
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For networks of two identical cells with phase resetting
constraints at the beginning and end of the phase, one of the
fixed points is always at zero-phase (synchronous solution).
However, whether or not the system will approach
synchrony depends on the stability of the fixed point,
which is determined by the slope of the H-function at that
point. When evaluating the synchronous state, the slope of

the H-function must be �1 < PRC
0
1ð0Þ þ PRC

0
2ðTÞ < 0 for

synchrony to be stable. According to Achuthan and
Canavier, the slope of the H-function is the eigenvalue of
the system and thus the rate of convergence to synchrony is
dependent on that eigenvalue (Achuthan and Canavier
2009). The steeper (i.e. more negative) the slope of H-
function is at zero-phase, the faster the network will
synchronize and the tighter the two cells will stay in
synchrony in the presence of noise. It is appropriate to
extend this theory to a larger network, provided the inputs
of the network to a given cell do not push the H-function
outside of the stability range.

3 Network simulations

Networks of 3000 M-L neurons were directionally
connected with an average of 30 out-going excitatory
synaptic connections each. The neurons were started in
“splay phase” with initial phases evenly distributed around
the limit cycle. Current was applied to all neurons as well
as a small independent white noise input, representing
intrinsic noise and unshared synaptic inputs from other
brain areas. The noise was used to create variability in the
cellular firing rates to produce a non-deterministic system.
The network was modeled as a homogeneous population of
excitatory neurons assuming the inhibitory population has
failed, resulting in runaway excitation. Over the simulation
duration, the nominal current is ramped down to represent
the gradual reintroduction of the inhibitory population until
the action potentials cease.

3.1 Network structure

Networks were generated using a second order network
model framework (Zhao et al. 2011), which allows
additional correlated structure to random networks. The
specific network structure is determined by specifying the
average connectivity (first order statistic) as well as the
prevalence of combinations of pairs of connections (two
edges), called second order motifs. These second order
motifs are reciprocal connections, convergent connections,
divergent connections, and chain connections, as illustrated
in Fig. 3. Using the second order network framework, one
can specify the frequency of these second order motifs
(relative to a model where all connections are generated

independently) and generate large networks containing the
specified proportions of these motifs. For example, the
parameter of 1.4 for the convergent motif means that there
are 1.4 times as many convergent connections in the
generated network compared to a random network. The
prevalence of each motif can drastically change the
synchronizability of the network, which we will discuss
further.

3.2 Measuring synchrony with the Kuramoto order
parameter

Ultimately the tonic-clonic seizure dynamics are a popula-
tion phenomenon. The application of a model neuron into a
network of similar model neurons becomes an important
test to compare our model to recorded neural network data
during a tonic-clonic seizure. To quantify the changing
synchrony in the network, we use the Kuramoto order
parameter defined as follows,

reif ¼ 1

N

XN

j¼1

eiqj

where N is the number of cells in the simulation, θj is the
phase of the jthoscillator, ϕ is the group phase, and r is the
phase coherence of the ensemble of oscillators (Strogatz
2000). Synchrony is determined by the length of the
population vector, r. This vector is calculated by summing
the individual phase vectors of all neurons, which is
normalized to 1 by the total number of cells N. A value of
r=1 represents a full coherent synchrony of the ensemble,
while a value of r=0 represents an ensemble of oscillators
evenly distributed in phase. We compute the Kuramoto
order parameter throughout the simulation to study how the
coherence of the network changes in time.

4 Results

4.1 PRCs measured from Morris-Lecar model

Phase-response curves from Morris-Lecar (M-L) model
neurons are generated using the direct method of applying
synaptic input and measuring the change in firing time, as
shown in Fig. 2. Our goal is to use a model where the shape

Fig. 3 Second order motifs of two and three-cell combinations with
two directional connections. The motifs are reciprocal, convergent,
divergent, and chain motifs. The prevalence of these motifs within a
larger network can be specified when generating the network
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of the PRC changes with firing rate and to tune the model
to generate a PRC similar to those measured from real
neurons (Netoff et al. 2005). Since the PRC changes with
input, it is important to understand how those changes can
predict the synchrony of a network. When measuring PRCs
from the M-L model, we compare them to those measured
in real cells. An example of an experimentally measured
PRC is shown in Fig. 4. Here, the PRC has been measured
with synaptic-like (alpha function) perturbations which are
strong compared to the expected strength of an individual
synaptic input. This is important when considering the
seizure model where many inputs may be arriving at a cell
within a firing cycle, especially in the bursting clonic phase
where large coherent signals are present. To tune the M-L
model accordingly, we used phase plane analysis and
selected parameters that produced a more realistic PRC.

The dynamics of the M-L model can be determined
graphically from the state plane representation, where we
plot the voltage (V) against the activation value (n), as
shown in Fig. 5. The nullclines are plotted, and crossings of
the nullclines are fixedpoints, which may be stable or
unstable. When one unstable fixedpoint exits, the neuron
fires periodically making a closed loop path, known as a
limit cycle, and can be seen as the dotted loop in Fig. 5. If
an input to the neuron perturbs it from the limit cycle, it
will relax back to this periodic path.

The phase response curve determines how a stimulus
phase advances the neuron. This can be seen graphically by
plotting the isochrones in the state space. Isochrones are
lines in state space of the model where all the points

converge to the same phase of the limit cycle (Izhikevich
2007). If the stimulus cuts across dense lines of isochrones,
there will be a large change in phase, while if the stimulus
pushes the neuron along isochrones the phase will not
change. Synaptic inputs generate current and move the V-
isocline up temporarily, which causes the limit cycle to
move and the states of the neurons to cut across the
isochrones. To make the PRCs of the M-L neuron have the
shape similar to PRCs measured from real neurons, we
changed the parameters of the model so that the resulting
isochrones intersected the limit cycle at oblique angles. As
the V-nullcline is moved up and down, the intersection of
the isochrones with the limit cycle changed significantly,
resulting in changes in the shape of the PRC. Animations of
the isochrones as a function of input current can be seen at
http://neuralnetoff.umn.edu/public/TonicClonic.

4.2 PRCs as a function of input current

As the firing rate of a neuron increases, the PRC changes in
shape and amplitude. In the M-L model, the PRC amplitude
decreases as the firing rate increases. This indicates that at
high firing rates a synaptic input would cause less phase
advance than would occur at the same phase at a lower
firing rate, as shown in Fig. 6. At high firing rates the
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Fig. 5 Top: Voltage trace of the modified Morris-Lecar model for one
cycle. Thick line is the model with no input, thin line and dotted line
for synaptic inputs applied at different phases, as indicated by the
conductance below. Bottom Left: Measured PRC. Bottom Right:
Nullclines (thick lines), limit cycle (dotted) and isochrones (thin lines)
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neuron becomes dominated by its own internal dynamics
and is less influenced by external inputs.

4.3 Network synchrony as a function of current as predicted
by H-function

The synchronizability of a reciprocally connected two-cell
network can be predicted from each cell’s PRC by analyzing
the slope of the H-function at the in-phase solution (Neu
1979). Figure 7 shows the H-function and the slope at the
zero-phase for a range of firing rates of the M-L model. The
slope is most negative around the synchronous solution for
lower input currents, indicating that synchrony is more
strongly attracting as long as the slope of the H-function
remains between 0 and −1 (Achuthan and Canavier 2009).
As the current increases, the magnitude of the slope
decreases, thus, the synchrony becomes less attracting. The
slope of the zero-phase solution remains negative, indicating

that network synchrony remains stable, as discussed in Goel
and Ermentrout (Goel and Ermentrout 2002). The H-function
predicts synchrony in a two cell network, therefore we
generated large scale networks to determine if these
predictions are valid when network size is increased.

4.4 Seizure simulation

At the onset of the tonic phase, neurons are firing more
frequently than normal (Ward 1961). If the inhibitory
population is no longer firing, the excitatory population fires
uncontrolled at high rates. As the excitatory neurons fatigue
or synaptically accommodate (or through some other
unknown mechanism), the firing rate decreases and thus
the input to individual cells decreases. To model this
biological process, we begin our simulation at high external
input current and end at a lower external input current.

We simulate a network of M-L neurons directionally
coupled using a second order network topology which has
4 times the number of reciprocal connections, 1.4 times the
number of convergent connections, 1.3 times the number of
divergent connections and 1.2 times the number of chain
connections than would be expected from a randomly
generated network. Over the duration of the simulation, the
current injected into each cell was decreased from I=8 nA,
where the neurons fired at high rates (6 ms period or
interspike interval (ISI)) to I=−3 nA, where they fired less
frequently. Initialized in splay phase, synchrony was
initially low with high current and as the current input
was decreased, the firing rate diminished and the network
synchrony increased, illustrated in Fig. 8. This simulation

0 0.2 0.4 0.6 0.8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Phase

S
pi

ke
 P

ha
se

 A
dv

an
ce

I = −3

I = 8

Fig. 6 Phase-response curves as a function of firing rate. As the
current input to the model is increased from −3 nA to 8 nA, the PRC
amplitude decreases

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.1

−0.05

0

0.05

0.1

H

Phase

−4 −2 0 2 4 6 8
−0.5

−0.4

−0.3

−0.2

−0.1

H
′(0

)

Current

I = −3 

I = 8

Fig. 7 Top: H-function of M-L model for a range of firing rates
modeled as current input. Bottom: Slope of H-function at zero-phase
increases for increasing current

0

20

40

60

F
iri

ng
 D

en
si

ty

0

10

20

P
er

io
d 

(m
s)

0 200 400 600 800 1000
0

0.5

1

S
yn

ch
ro

ny

Time (ms)

Fig. 8 Synchrony in large scale networks. A network simulation of 3000
Morris-Lecar model neurons using second order network topology.
Current applied to neurons starts at 8 nA and decreases to −4 nA over the
duration of the simulation. Top, firing density, the number of neurons
firing in 1ms window.Middle, ISI of average neuron in network. Bottom,
the Kuramoto order parameter measuring network synchrony

J Comput Neurosci (2012) 33:41–51 47



demonstrates how a seizure may transition from an asynchro-
nous tonic phase to a synchronous clonic phase with the
change in current drive to individual cells. Figure 8 shows that
early in the simulated seizure, the neurons are firing at a high
density of asynchronous firing (dense low amplitude values
in top panel) with high frequency (small interspike intervals
in middle panel) and a low degree of synchrony (bottom
panel). As the current input is decreased, the firing rates of
the neurons decrease (increasing the ISI) and the synchro-
nous solution is more strongly attracting, resulting in low
frequency and high amplitude oscillations in the population
density. The synchrony is high until the input current falls
below the firing threshold (into resting stability) of the
neurons and the system stops activity.

To assure that the initial conditions are not responsible
for the asynchrony during the first section of the simulation
(with high current input), we initialize simulations in a
synchronous state. These simulations desynchronize initial-
ly (not shown) with high current input. Thus we conclude
the asynchronous behavior at the beginning of the simula-
tion cannot be solely attributed to the initial conditions. In
longer simulations where the current is ramped more
slowly, the transition to synchrony occurrs more gradually,
indicating the change in synchrony is determined by a
change in the strength of the synchronous state (due to the
current input) and not due to transients.

When including synaptic depression, the high frequency
of neuron firing at the beginning of the seizure depresses
the synaptic input and thus decreases the strength of
subsequent synaptic events. This model also produces the
tonic-clonic transition over a smaller range of input current
at lower values as shown in Fig. 9. The experiment
demonstrates that a combination of synaptic depression
and an increasing negative current (from inhibitory neurons
being released from depolarization block) may be respon-
sible for the shift in synchrony.

4.5 Network topology role in synchrony

Neuronal topology played a critical role in how strongly the
network synchronized. In M-L networks with random
connections or complete connections (all-to-all coupling),
synchrony was strong at all firing rates. We then connected
the neurons in a small-world network (Watts and Strogatz
1998), where a ring of neurons has local connections, some
of which are randomly rewired, as we have used in earlier
papers (Netoff et al. 2004). While the randomly connected
networks synchronize strongly (even with very weak
coupling) the small world networks did not synchronize
well under any coupling strength. Therefore, it was
necessary to create a network which would synchronize
strongly with low input and less strongly with high input.
Specifically, our network must be sensitive to the current to

individual M-L cells, as that is our variable parameter. In
order to have the network simulation produce the tonic-
clonic shift, it was necessary to select a network with a
more biologically realistic topology.

We generated second-order networks (Zhao et al. 2011)
to examine the change in synchrony from high input to low
input. We found that networks in a certain parameter regime
of connectivity changed synchrony as the firing rate of the
constituent neurons changed. Thus, networks of second
order statistics were able to produce the desired sensitivity
of synchrony to input. In Fig. 10 we plot the level of
synchrony in color against the prevalence of chains and
convergent motifs (compared to a random network) of 186
SONETs for neurons. The cells were driven with high
current (left), low current (middle), and current ramped
from high to low, plotted as the difference in synchrony
extrema. Using these results we were able to choose a
specific network to conduct our simulation of the tonic-
clonic transition. The network topology used in Fig. 8 was
chosen with second-order motif construction. The specific
network topology (we refer to as 4432) was also very close
to the statistics of experimentally measured multi-cell
motifs in rat cortex from Song et al. (Song et al. 2005).
We believe this network is an example of a realistic
network topology where the transition from tonic-clonic
caused by change in synchrony can occur as firing rate of
the neurons changes.

5 Discussion

During tonic-clonic seizures, network synchrony changes,
evidenced from EEG data. We hypothesize that this change
in synchrony is caused by changes in the neuronal firing
rate. Using computational models, we demonstrate using
PRC analysis that the attraction of synchrony in a two-cell
network changes with firing rate of the neurons. The
analysis revealed that the synchronous network solution
was not as stable at high current (high firing rates)
compared to low current, suggesting that the tonic phase
was the result of a high current input system and the more
synchronous clonic phase was the result of a low current
input system. Using network simulations with decreasing
input current to the neurons and/or synaptic depression, we
were able to simulate the change in network synchrony and
qualitatively reproduce the tonic-clonic shift.

To reproduce the tonic to clonic transition in a model, it
was necessary to use cells whose sensitivity to synaptic
inputs were dependent on the firing rate of the neurons and
a network topology that allowed for synchrony, but was not
so strongly connected that synchrony was inevitable under
all coupling strengths. Therefore we tuned our neuronal
model to produce realistic looking PRCs across a range of
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input currents to achieve the first requirement. Previous
studies have shown that network topology can have a major
effect on the synchronizability of a PRC network (Smeal et
al. 2010). To fulfill our second necessary condition of a
range of synchrony and biological relevance, we used a
specific second-order network topology (SONET) which
was able to synchronize at low input current and

desynchronize at high input current. The choice of topology
4432 was motivated by an inquiry into the synchroniz-
ability of 186 SONETs for different currents and the
similarity of the 4432 network to experimentally measured
cortical brain tissue.

The network simulations were run with a simple conduc-
tance based model neuron, the Morris-Lecar model. By
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adjusting the model parameters, we were able to create a PRC
with moderate phase advance throughout the entire phase and
a larger peak. The M-L model generated PRCs that were
similar to those we havemeasured from real neurons and these
PRC shapes were dependent on the external current. In the
M-L model, as the firing rate decreased, the amplitude of the
PRC increased but the shape generally did not change. Thus,
the PRC amplitude effectively changed the functional
coupling between the cells.

It is known from coupled oscillator theory that there is a
critical coupling strength necessary to synchronize neurons in
the presence of noise (Strogatz 2000; Kuramoto 1984). Our
networks of neurons coupled with all-to-all or random
topology synchronized under both fast and slow firing rates,
indicating the effective coupling in both conditions was
greater than the critical coupling strength for synchrony.
Changing topology of the network can affect the critical
coupling strength required for the network to synchronize
(Zhao et al. 2011). We chose a second-order network
topology such that the functional coupling for the neurons
at the highest firing rate was below the critical coupling and
above the critical coupling at the lower firing rate. This
selection of topology allowed for the network to transition
from asynchrony to synchrony as neurons changed firing
rate.

Previous studies have examined the dependence of
synchrony on firing rate (Mancilla et al. 2007; Tiesinga
and Sejnowski 2004; Buia and Tiesinga 2006; Fink et al.
2011). Changes in firing rate have been used to explain the
emergence and disappearance of gamma oscillations in
coupled networks (Mancilla et al. 2007). Fink et al. have
shown that synchrony is affected more by firing rate in
networks of Type II PRC models than Type I models with
small-world network topology (Fink et al. 2011). While our
modeling did not result in extreme change from Type I to
Type II (ours were only Type I), our results are in
concordance with their findings.

6 Conclusion

Network simulations using Morris-Lecar models coupled
with a second order network topology increased synchrony
as the firing rates of the neurons decreased. This model
illustrates a possible mechanism by which grand-mal
seizures may transition from the tonic to clonic phase.
The network simulations were modeled using a homoge-
neous population of excitatory cells under the hypothesis
that the seizure was initiated by the failure of the inhibitory
population, allowing runaway excitation. The firing rates of
the neurons were changed by adjusting the applied current
and also including synaptic depression to isolate a single
factor, the average network firing rate, illustrating how

synchrony can change with the phase response of the
individual neurons. Realistically, the change in firing rate is
determined by several factors including the firing rate of the
pre-synaptic neurons. The post-synaptic neurons may slow
their firing rate as they adapt to strong synaptic drive and
these synapses may depress under high firing rate (Abbott
et al. 1997). The combination of the two may result in a
decrease of the firing rate of the neurons over the course of
the seizure inducing a bifurcation in population synchrony.
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