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Abstract We discuss methods for optimally inferring
the synaptic inputs to an electrotonically compact neu-
ron, given intracellular voltage-clamp or current-clamp
recordings from the postsynaptic cell. These methods
are based on sequential Monte Carlo techniques (“par-
ticle filtering”). We demonstrate, on model data, that
these methods can recover the time course of excitatory
and inhibitory synaptic inputs accurately on a single
trial. Depending on the observation noise level, no av-
eraging over multiple trials may be required. However,
excitatory inputs are consistently inferred more accu-
rately than inhibitory inputs at physiological resting
potentials, due to the stronger driving force associated
with excitatory conductances. Once these synaptic in-
put time courses are recovered, it becomes possible
to fit (via tractable convex optimization techniques)
models describing the relationship between the sen-
sory stimulus and the observed synaptic input. We de-
velop both parametric and nonparametric expectation–
maximization (EM) algorithms that consist of alter-
nating iterations between these synaptic recovery and
model estimation steps. We employ a fast, robust con-
vex optimization-based method to effectively initialize
the filter; these fast methods may be of independent
interest. The proposed methods could be applied to
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1 Introduction

The technique of in vivo intracellular recording holds
the potential to shed a great deal of light on the bio-
physics of neural computation, and in particular on
the dynamic balance between excitation and inhibi-
tion underlying sensory information processing (Borg-
Graham et al. 1996; Peña and Konishi 2000; Anderson
et al. 2000; Wehr and Zador 2003; Priebe and Ferster
2005; Murphy and Rieke 2006; Wang et al. 2007; Xie
et al. 2007; Cafaro and Rieke 2010).

However, extracting the time course of excitatory
and inhibitory input conductances given a single ob-
served voltage trace remains a difficult problem, due
in large part to the fact that the problem is underde-
termined: we would like to extract two variables (the
excitatory and inhibitory conductances) at each time
step given a single voltage observation per time step
(Huys et al. 2006). Most previous work investigating
the balance of excitation and inhibition during intact
sensory processing has relied on averaging many trials’
worth of voltage data. For example, Pospischil et al.
(2007) fit average conductance quantities given a long
observed voltage trace, while a number of other papers
(e.g., Borg-Graham et al. 1996; Wehr and Zador 2003;
Priebe and Ferster 2005; Murphy and Rieke 2006) rely
on voltage-clamping the cell at a number of different
holding potentials and then averaging over a few trials
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in order to infer the average timecourse of synaptic
inputs given a single repeated stimulus. Two important
exceptions are Wang et al. (2007), where the excitatory
retinogeniculate input conductances are large and dis-
tinct enough to be inferred via direct thresholding tech-
niques, and Cafaro and Rieke (2010), where the stimu-
lus changed slowly enough that an alternating voltage-
clamp and current sub-sampling strategy allowed for
effectively simultaneous measurements of excitatory
and inhibitory conductances.

However, it would clearly be desirable to develop
methods to infer the input synaptic conductances on
a trial-by-trial basis in the presence of rapidly-varying
stimuli, without having to hold the cell at a variety
of voltage-clamp potentials (or alternatively injecting a
variety of offset currents in the current-clamp setting).
Such a technique would allow us to study the variability
of synaptic inputs on a fine time scale, without aver-
aging this variability away, and would require fewer
experimental trials; this is highly desirable, given the
difficulty of intracellular experiments in intact prepa-
rations. Finally, these single-trial methods would open
up the possibility of more detailed investigations of the
spatiotemporal or spectrotemporal “receptive fields” of
the excitatory and inhibitory input (Wang et al. 2007).

In this paper we develop methods based on a se-
quential Monte Carlo (“particle filtering”) approach
(Pitt and Shephard 1999; Doucet et al. 2001) for infer-
ring the synaptic inputs to an electrotonically compact
neuron, given intracellular voltage-clamp or current-
clamp recordings from the postsynaptic cell. These
methods do not require averaging over many voltage
traces in cases of sufficiently high SNR, are not lim-
ited to large, easily-distinguishable synaptic currents,
and provide errorbars that explicitly acknowledge the
uncertainty inherent in our estimates of these under-
determined quantities. Finally, these methods, which
are based on well-defined probabilistic models of the
synaptic input and voltage observation process, allow us
to automatically infer and adapt to the noisiness of the
voltage observations and the time-varying, stimulus-
dependent presynaptic input rate. This well-defined
stochastic model allows us to make direct connections
with neural encoding models of generalized linear type
(Pillow et al. 2005; Paninski et al. 2007), and could
therefore lead to a more quantitative understanding of
biophysical information processing.

2 Methods

In this section we describe our stochastic synaptic input
model explicitly, review the necessary particle filtering

methods, and derive an expectation–maximization
(EM) algorithm for estimating the model parameters,
along with a nonparametric version of the algorithm.
Finally, we discuss an alternative optimization-based
method for estimating the synaptic time courses.

2.1 The stochastic synaptic input model

For our model, we imagine that we are observing
a membrane which is receiving synaptic input. As-
sume for now that the membrane has been made pas-
sive (Ohmic) by pharmacological methods—i.e., we
will neglect the influence of active (voltage-sensitive)
channels—though this assumption may potentially be
relaxed (Huys et al. 2006; Huys and Paninski 2009).
One reasonable model is

V(t + dt) = V(t) + dt
[
gl(Vl − V(t)) + gI(t)(VI − V(t))

+ gE(t)(VE − V(t))
] + εt (1)

gI(t + dt) = gI(t) − dt
gI(t)
τI

+ NI(t) (2)

gE(t + dt) = gE(t) − dt
gE(t)
τE

+ NE(t), (3)

where NI(t) and NE(t) denote the instantaneous in-
hibitory and excitatory inputs to the membrane at time
t, respectively (Koch 1999; Huys et al. 2006), and εt

is white Gaussian noise of mean zero and variance
σ 2

v . (For notational simplicity, we have suppressed the
membrane capacitance as a free constant in Eq. (1) and
throughout the remainder of the paper.) The timestep
dt is a simulation timestep, which is under the control of
the data analyst, and may in general be distinct from the
sampling interval of the voltage recording. We assume
that the time constants τI and τE and reversal potentials
Vl, VI and VE are known a priori, for simplicity (again,
these assumptions may be relaxed (Huys et al. 2006)).
Finally, note that we have assumed that the recordings
here are in current-clamp mode (i.e., the voltage is
not held to any fixed potential). We will discuss the
important voltage-clamp scenario in Section 2.3 below.

To perform optimal filtering in this case—i.e., to re-
cover the time-courses of the excitatory and inhibitory
conductances given the observed voltages—we need to
specify a probability model for the synaptic inputs NI(t)
and NE(t). The Poisson process is frequently used as
a model for presynaptic inputs (Richardson and Ger-
stner 2005). However, there may be many excitatory
and inhibitory inputs to the membrane, with synaptic
depression and facilitation thereore, NI(t) and NE(t)
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may not be well-represented in terms of a fixed discrete
distribution on the integers, such as the Poisson. We
have investigated two models that are more flexible.
The first assumes that the inputs are drawn from an
exponential distribution,

p[NI(t)] ∝ exp(NI(t)λ−1
I )

and

p[NE(t)] ∝ exp(NE(t)λ−1
E );

here λE (λI) denotes the mean of the excitatory (resp.
inhibitory) input at time t. Thus, to be clear, from
Eqs. (2) and (3) we see that at each time step, the
excitatory and inhibitory conductances are increased
by independent random values which are exponentially
distributed with mean λE and λI , respectively.

The second model assumes that the inputs are drawn
from a truncated Gaussian distribution,

p[NI(t)] ∝ exp
(

− (NI(t) − λI)
2

2σ 2
I

)
1[NI(t) > 0]

and

p[NE(t)] ∝ exp
(

− (NE(t) − λE)2

2σ 2
E

)
1[NE(t) > 0].

Here σE and σI denotes the spread of the excitatory
and inhibitory inputs at time t around the peak λE and
λI respectively. The indicator function 1[·] is one when
the argument is true, and zero otherwise. The trunca-
tion at zero is due to the fact that conductances are
nonnegative quantities. Also, note that the first model
may be considered a special case of the second, in
the limit that the curvature parameter (the “precision”
σ−2) approaches zero. As we will discuss further below,
the filtering methods discussed here are relatively in-
sensitive to the detailed shape of the input distributions;
see also (Huys et al. 2006; Huys and Paninski 2009).

It is clear from Eqs. (1)–(3) that the dynamical vari-
ables

(
V(t), gE(t), gI(t)

)
evolve together in a Markov-

ian fashion. For convenience, we will abbreviate this
Markovian vector as qt, i.e., qt = (

V(t), gE(t), gI(t)
)
.

Now we need to specify how the observed data are
related to qt. In the case that we are making direct
intracellular recordings of the voltage by patch-clamp
techniques, the observation noise is typically small,
and the sampling frequency can be made high enough
that we may assume the voltage is observed with very

small noise at each time step t. However, it is fre-
quently easier or more advantageous to use indirect
voltage observation techniques (e.g., optical recordings
via voltage-sensitve dye or second-harmonic generation
(Dombeck et al. 2004; Nuriya et al. 2006; Araya et al.
2006)). In these cases, the noise is typically larger and
the sampling frequency may be lower, particularly in
the case of multiplexed observations at many different
spatial locations. Thus we must model the observed
voltage Vobs

t as a noise-corrupted version of the true
underlying voltage Vt. It will be convenient (though
not necessary) to assume that the observation noise is
Gaussian:

Vobs
t ∼ N (Vt, σ

2
o ), (4)

where the mean is given by the true value of the voltage
and the standard deviation, σo, is known.

2.2 Inferring synaptic input via particle filtering

Given the assumptions described above, the observed
voltage data Vobs(t) may be regarded as a sequence of
observations from a hidden Markov process, p(Vobs

t |qt)

(Rabiner 1989). Standard methods now enable us to
infer the conditional distributions, p(qt|{Vobs}), of the
voltage, V(t), and the conductances, gE(t), gI(t), given
the observed data. In particular, this filtering problem
can be solved via the technique of “particle filtering”
(Pitt and Shephard 1999; Doucet et al. 2001; Brockwell
et al. 2004; Kelly and Lee 2004; Godsill et al. 2004; Huys
and Paninski 2009; Ergun et al. 2007; Vogelstein et al.
2009), which is a Monte Carlo technique for recursively
evaluating the “forward probabilities”

p(qt|Vobs
0:t ) = p(qt|{Vobs

s }s≤t).

Using Bayes’ rule these probabilities can be written in
a recursive manner:

p(qt|Vobs
0:t )

=
∫

p(qt−dt, qt|Vobs
0:t )dqt−dt

∝
∫

p(Vobs
t |qt)p(qt−dt|Vobs

0:t−dt)p(qt|qt−dt)dqt−dt. (5)

Here the transition density p(qt|qt−dt) is provided by
Eqs. (1)–(3), and the observation density p(Vobs

t |qt) by
Eq. (4).

In most cases (including the synaptic model of inter-
est here), one cannot compute these integrals analyti-
cally. Various numerical schemes have been proposed
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to compute these integrals approximately. The method
introduced by Pitt and Shephard (1999) is most suitable
for our model; specifically, we implemented what this
paper refers to as the “perfectly adapted auxiliary par-
ticle filter” (APF), which turns out to be surprisingly
easy to compute in this case. The idea is to represent
the forward probabilities p(qt|Vobs

0:t ) as a collection of
unweighted samples (“particles”) {qi

t}, i.e.,

p(qt|Vobs
0:t ) ≈ 1

N

N∑

i=1

δ(qt − qi
t);

here N denotes the number of particles, and qi
t de-

notes the position of the i-th particle. At each time
step, the positions of the particles in the {V, gE, gI}
space are updated in such a way as to approximately
implement the integral in Eq. (5). In particular, if we
intepret the first equality in Eq. (5) as a marginalization
of the conditional joint density p(qt−dt, qt|Vobs

0:t ) over
the variable qt−dt, then it is clear that all we need
to do is to sample from p(qt−dt, qt|Vobs

0:t ) (under the
constraint that the other marginal, p(qt−dt|Vobs

0:t−dt), is
held fixed at the previously-computed approximation,
1
N

∑N
i=1 δ(qt−dt − qi

t−dt)), and then retain only the sam-
pled qt variables. The perfectly adapted APF accom-
plishes this by first sampling from p(qt−dt|Vobs

t ) and
then from p(qt|qt−dt, Vobs

t ). The algorithm simply alter-
nates between these two steps:

1. Given the collection of particles {qi
t−dt}1≤i≤N at time

t − dt, draw N auxiliary samples {r j
t−dt}1≤ j≤N from

p(qt−dt|Vobs
t ) ∝ 1

N

N∑

i=1

∫
p(qt|qi

t−dt)p(Vobs
t |qt)dqt.

2. For 1 ≤ i ≤ N, draw the i-th new particle loca-
tion from the conditional density p(qt|Vobs

t , qt−dt =
ri

t−dt).

The resulting set of particles provide an unbiased ap-
proximation of the forward probability at the t-th time
step, p(qt|Vobs

0:t ); then we can simply recurse forward
until t = T, where T denotes the end of the experiment.

This APF implementation of the particle filter idea
has several advantages in this context. First, since we
want our algorithm to be robust to outliers and model
misspecifications, it is important to sample the “cor-
rect” part of the state space, i.e., regions of the state
space where the forward probability is non-negligible.
In order to do that, it is beneficial to take the lat-
est observation Vobs

t into consideration when propos-
ing a new location for the particles at time step t.

Second, while in general it may be difficult to sam-
ple from the necessary distributions p(qt−dt|Vobs

t ) and
p(qt|Vobs

t , qt−dt), the necessary distributions turn out
to be highly tractable in the context of this synaptic
model, as we show now. Letting gt denote the vector
of excitatory and inhibitory conductances at time t (i.e.,
gt = (gI(t), gE(t)), we have for the first APF step that

∫
p(qt|qt−dt)p(Vobs

t |qt)dqt

=
∫

p(Vt, gt|Vt−dt, gt−dt)p(Vobs
t |Vt)dVtdgt

=
∫

dVt p(Vt|gt−dt, Vt−dt)p(Vobs
t |Vt)

∫
dgt p(gt|gt−dt)

=
∫

dVt p(Vt|gt−dt, Vt−dt)p(Vobs
t |Vt)

=
∫

dVtφ(Vt; E[Vt|gt−dt, Vt−dt], σ 2
v )φ(Vobs

t ; Vt, σ
2
o )

=φ(Vobs
t ; E[Vt|gt−dt, Vt−dt], σ 2

v + σ 2
o ), (6)

where φ(x; μ, σ 2) denotes the normal density with
mean μ and variance σ 2 as a function of x, and
E[Vt|gt−dt, Vt−dt] is given by taking the expectation of
Eq. (1):

E[Vt|gt−dt, Vt−dt] = Vt−dt + dt[gl(Vl − Vt−dt)

+ gI(t − dt)(VI − Vt−dt)

+ gE(t − dt)(VE − Vt−dt)].

Thus we find that the computation of the distribution
in the first step of the APF is quite straightforward.
Similarly, in the second step,

p(qt|qt−dt, Vobs
t )

∝ p(qt|qt−dt)p(Vobs
t |qt)

= p(gt|gt−dt)p(Vt|gt−dt, Vt−dt)p(Vobs
t |Vt)

= p[gI(t)|gI(t − dt)]p[gE(t)|gE(t − dt)]
× p(Vt|gt−dt, Vt−dt)p(Vobs

t |Vt). (7)

The key result here is that gI(t), gE(t), and Vt are
conditionally independent given the past state qt and
the observation Vobs

t ; in addition, the conditional distri-
butions of gI(t) and gE(t) are simply equal to their prior
distributions, and are therefore easy to sample from. To
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sample from the conditional distribution of Vt, we just
write

p(Vt|gt−dt, Vt−dt, Vobs
t )

∝ p(Vt|gt−dt, Vt−dt)p(Vobs
t |Vt)

= φ(Vt; E[Vt|gt−dt, Vt−dt], σ 2
v )φ(Vobs

t ; Vt, σ
2
o )

∝ φ
(
Vt;

(
E[Vt|gt−dt, Vt−dt]/σ 2

v + Vobs
t /σ 2

o

)
W, W

)
,

(8)

where we have used the standard formula for the
product of two Gaussian functions and abbreviated
the conditional variance as W = (1/σ 2

v + 1/σ 2
o )−1. Thus

the second step of the APF here proceeds simply by
drawing independent samples from p[gI(t)|gI(t − dt)],
p[gE(t)|gE(t − dt)], and the above Gaussian conditional
density for Vt. The resulting algorithm is fast and ro-
bust, and does not require any importance sampling,
which is a basic (but unfortunately not very robust)
step in more basic implementations of the particle filter
(Doucet et al. 2001).

2.2.1 Backwards recursion

The APF method described above efficiently com-
putes the collection of forward probabilities p(qt|Vobs

0:t )

for all desired values of time t. However, what we
are interested in is the fully-conditioned probabilities,
p(qt|Vobs

0:T ); i.e., we want to know the distribution of qt,
given all past and future observations Vobs

0:T , not only
past observations up to the current time, Vobs

0:t ). To
compute this fully-conditioned distribution, we apply a
standard “backwards” recursion:

p(qt, qt+dt|Vobs
0:T )

= p(qt+dt|Vobs
0:T )

p(qt+dt|qt)p(qt, Vobs
0:t )

∫
p(qt+dt|qt)p(qt, Vobs

0:t )dqt
.

We represent the marginal p(qt|Vobs
0:T ) as

p(qt|Vobs
0:T ) =

N∑

j=1

u( j)
t δ(qt − q( j)

t ),

where the particle locations q( j)
t are inherited from the

forward step, but the particle weights u( j)
t are no longer

simply equal to 1/N, but instead have been redefined
to incorporate the future observations, Vobs

t+dt:T . We ini-
tialize

u(i)
T = 1/N,

and recurse backwards using the standard particle ap-
proximation to the pairwise probabilities

p(qt, qt+dt|Vobs
0:T ) =

N∑

i=1

N∑

j=1

δ(qt+dt − q( j)
t+dt)u

( j)
t+dt

× p(q( j)
t+dt|q(i)

t )(1/N)δ(qt − q(i)
t )

∑N
l=1 p(q( j)

t+dt|q(l)
t )(1/N)

, (9)

where p(q( j)
t+dt|q(i)

t ) is again obtained from Eq. (7). Mar-
ginalizing over qt+dt and canceling the 1/N factors, we
obtain the formula for the updated backwards weight

u(i)
t =

N∑

j=1

u( j)
t+dt

p(q( j)
t+dt|q(i)

t )
∑N

l=1 p(q( j)
t+dt|q(l)

t )
.

It is worth noting that this backwards recursion re-
quires only the transition densities p(q( j)

t+dt|q(l)
t ). The

proposal density p(qt|Vobs
t , qt−dt) and observation den-

sity p(Vobs
t |qt) are only used in the forward recursion,

and are no longer directly needed in the backwards
step. In practice we found that the backwards sweep
usually had just a small effect.

2.2.2 Gaussian particle f ilter implementation:
Rao–Blackwellization

One of the limiting factors of particle filters is the
dimension of the state space (Bickel et al. 2008). The
larger the dimension of the state space, the more par-
ticles are needed in order to achieve equal quality
of representation of the underlying density. Thus it is
typically beneficial to reduce the state dimensionality if
possible. In particular, if some components of the pos-
terior density of the state can be computed analytically,
then it is a good idea to represent these components
exactly, instead of approximating them via Monte Carlo
methods. This basic idea can be stated more precisely as
the Rao–Blackwell theorem from the theory of statisti-
cal inference (Casella and Berger 2001), and therefore
applications of this idea are often referred to as “Rao–
Blackwellized” methods (Doucet et al. 2000).

In our case, Eq. (1) shows that the voltage {Vt}
is a linear Gaussian function given the synaptic con-
ductances {gt}. In addition we have assumed that the
observations are linear and Gaussian given Vt. Thus,
given the conductances {gt}, our model may be viewed
as a Kalman filter; i.e., the voltage variables {Vt} may



6 J Comput Neurosci (2012) 33:1–19

be integrated out analytically, reducing the effective
state dimension from three to two. The basic idea is
that we represent the forward probabilities as a sum of
Gaussian functions now, instead of the sum of particles
that we used before:

p(qt|Vobs
0:t ) ≈ 1

N

N∑

i=1

δ(gt − gi
t)φ(Vt; μi

t, Wi
t),

for suitably chosen means μi
t and variances Wi

t see, e.g.,
Kotecha and Djuric (2003) for further discussion of this
Gaussian particle representation.

Now to derive recursive updates for the conductance
locations {gi

t}, means {μi
t}, and variances {Wi

t}, we sim-
ply repeat our derivation of the APF as before, now
integrating out the voltages Vt. The first step is to write
down the conditional distribution over the indices i:

p
(
i|Vobs

t

) ∝ p
(
Vobs

t |i)

=
∫ ∫

p
(
Vobs

t |Vt
)

p(Vt|i)dVt−dtdVt

=
∫ ∫

p
(
Vobs

t |Vt
)

p(Vt−dt|i)

× p
(
Vt|Vt−dt, gi

t−dt

)
dVt−dtdVt

=
∫

dVt p
(
Vobs

t |Vt
) ∫

dVt−dt p(Vt−dt|i)

× p
(
Vt|Vt−dt, gi

t−dt

)

=
∫

dVtφ
(
Vobs

t ; Vt, σ
2
o

)

×
∫

dVt−dtφ
(
Vt−dt; μi

t−dt, Wi
t−dt

)

×φ
(
Vt; E[Vt|gi

t−dt, Vt−dt], σ 2
v

)

=
∫

dVtφ
(
Vobs

t ; Vt, σ
2
o

)

×
∫

dVt−dtφ
(
Vt−dt; μi

t−dt, Wi
t−dt

)

×φ
(
Vt; aiVt−dt + bi, σ

2
v

)

=
∫

dVtφ
(
Vobs

t ; Vt, σ
2
o

)

×φ
(
Vt; aiμ

i
t−dt + bi, a2

i Wi
t−dt + σ 2

v

)

= φ
(
Vobs

t ; aiμ
i
t−dt + bi, a2

i Wi
t−dt + σ 2

v + σ 2
o

)
,

(10)

where we have used the fact that, given gi
t−dt, Vt is

a linear-Gaussian function of Vt−dt, with linear coef-
ficients ai = 1 − dt(gl + gi

I + gi
E) and bi = dt(glVl +

gi
I VI + gi

EVE). Once we have computed these condi-
tional probabilites p(i|Vobs

t ), we draw N auxiliary index
samples r j

t−dt from this distribution, as before, to com-
plete the first step of the Rao–Blackwellized APF.

Similarly, in the second step we marginalize out the
voltages in p(qt|i, Vobs

t ), to sample the new conductance
locations {gi

t}, and update the means {μi
t} and variances

{Wi
t}. We have

p
(
qt|i, Vobs

t

) ∝
∫

p(Vt−dt|i)p
(
Vt|Vt−dt, gi

t−dt

)

× p
(
gt|gi

t−dt

)
p

(
Vobs

t |Vt
)

dVt−dt

= p
(
gt|gi

t−dt

)
p

(
Vobs

t |Vt
)

×
∫

p(Vt−dt|i)p
(
Vt|Vt−dt, gi

t−dt

)
dVt−dt

= p
(
gt|gi

t−dt

)
φ

(
Vobs

t ; Vt, σ
2
o

)

×φ
(
Vt; aiμ

i
t−dt + bi, a2

i Wi
t−dt + σ 2

v

)

∝ p
(
gt|gi

t−dt

)
φ

(
Vt; μi

t, Wi
t

)
, (11)

where

(
Wi

t

)−1 = (
a2

i Wi
t−dt + σ 2

v

)−1 + 1/σ 2
o (12)

and

μi
t = Wi

t

[(
aiμ

i
t−dt + bi

) (
a2

i Wi
t−dt + σ 2

v

)−1 + Vobs
t /σ 2

o

]
.

(13)

Thus we see that the step of sampling from the conduc-
tance has not changed—as before, we simply sample in-
dependently from p[gI(t)|gI(t − dt)] and p[gE(t)|gE(t −
dt)]—and instead of sampling from the voltage Vt we
simply update the means and variance μi

t and Wi
t .

Thus, finally, we have arrived at an algorithm which
is robust, effective, simple to implement, and fairly fast,
and may be summarized as follows.
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1. Begin at time t − dt with N
particles gi

t−dt with corresponding
voltage means μi

t−dt and variances,
Wi

t−dt.

2. Evaluate the index probabilities
p(i|Vobs

t ) using Eq. (10).

3. Sample N auxiliary indices r j
t−dt

from a discrete distribution
proportional to the index
probabilities p(i|Vobs

t ).

4. Propagate the N conductance
locations gi

t−dt forward by sampling
from gi

t ∼ p(gt|gi
t−dt) for 1 ≤ i ≤ N.

5. Calculate the new means and
variance μi

t and Wi
t via Eqs. (12)

and (13).

6. Move to the next time step.

(To implement step 3 we used standard stratified
sampling methods to minimize the variance of these
samples; see, e.g., Douc et al. 2005 for a full de-
scription.) Note that once the forward probabilities
have been computed via this algorithm, it is straight-
forward to adapt the backwards sweep described in
the last section, and finally to compute the inferred
posterior means E(qt|Vobs

0:T ) and variances Var(qt|Vobs
0:T )

of the state variables. Code implementing this algo-
rithm is available at http://www.stat.columbia.edu/∼
liam/research/code/synapse.zip

2.3 Particle filtering for voltage-clamp data

Above we have discussed the problem of inferring
synaptic input given voltage traces observed in current-
clamp mode. It is straightforward to modify these meth-
ods to analyze current traces observed in voltage-clamp
mode. One standard model of the observed current in
this case is

It+dt = It + dt
(

− It

τi
+ gl(Vl − Vt) + gI(t)(VI − Vt)

+ gE(t)(VE − Vt)

)
+ ηt, (14)

where Vt is the holding potential at time t,1 gI(t) and
gE(t) evolve according to the usual Eqs. (2) and (3),
ηt is Gaussian noise, and τi is a current filtering time
constant.2 This model is mathematically equivalent to
the current-clamp model discussed above if we replace
V with I and gl with 1/τi, and therefore, the particle
filtering methods we have developed above apply with-
out modification to the voltage clamp model as well.
See Fig. 4 for an example of the particle filter applied
to simulated voltage-clamp data.

2.4 Estimating the model parameters
via expectation–maximization (EM)

The expectation–maximization (EM) algorithm is a
standard method for optimizing the parameters of mod-
els involving unobserved data (Dempster et al. 1977),
such as our conductances gE(t) and gI(t), here. This
algorithm is guaranteed to increase the likelihood of
the model fits on each iteration, and therefore will find
a local optimum of the likelihood.3

It is fairly straightforward to develop an EM algo-
rithm to infer the parameters of our model. In fact, it is
worth generalizing the model here, in order to include
the effects of any observed stimuli or other covari-
ates on the synaptic input rates. (Subsequently, in Sec-
tion 2.4.1, we will discuss a nonparametric model which
allows us to estimate arbitrary time-varying input rates
λI and λE directly, in cases where no stimulus input
information is available.) Let Xt denote the vector of
all such covariates observed at time t. Several tractable
models are of generalized linear form (McCullagh and
Nelder 1989). Recall that

NE(t) = gE(t) − aEgE(t − dt)

1We assume Vt is constant, or at least changes slowly enough that
we may ignore capacitative effects, though these may potentially
be included in the model as well.
2This time constant τi will typically be quite small. Math-
ematically speaking, it prevents any discontinuous jumps in
the observed current, while physically, it may represent the
lumped dynamics of the electrode and any non-space-clamped
(electrotonically-distant) segments of the neuron.
3In the case of Monte Carlo methods for computing the expec-
tations needed in the EM algorithm, as in the particle filter em-
ployed here, the likelihood is no longer guaranteed to increase,
due to random Monte Carlo error. However, given a sufficient
number of samples (particles), the algorithm will still converge
properly to a steady state, where the parameters “wobble” ran-
domly around the location of the local likelihood maximum.

http://www.stat.columbia.edu/~liam/research/code/synapse.zip
http://www.stat.columbia.edu/~liam/research/code/synapse.zip
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and

NI(t) = gI(t) − aI gI(t − dt)

denote the excitatory and inhibitory synaptic input
at time t. Now, generalizing our previous exponential
model (which does not include any stimulus depen-
dence), we may model NI(t) as exponentially distrib-
uted with a mean that depends on Xt,

NI(t) ∼ exp[ f (Xt
�kI)],

for some decreasing function f (·), (i.e., the larger
Xt

�kI is, the larger NI(t) will be, on average, since
E(NI(t)|Xt) = f (Xt

�kI)
−1), and similarly for NE. The

vectors �kE and �kI here can be interpreted as “receptive
fields” for the excitatory and inhibitory inputs, by anal-
ogy with receptive-field-type generalized linear models
for spiking statistics (Simoncelli et al. 2004; Paninski
et al. 2007). Similarly, we may generalize the truncated
Gaussian model in a straightforward manner:

p[NI(t)] ∝ exp

(

− (NI(t) − Xt
�kI)

2

2σ 2
I

)

1[NI(t) > 0].

This is known as a “truncated regression” model in
the statistics and econometrics literature (Olsen 1978;
Orme and Ruud 2002).

To derive EM algorithms for these models, we need
to write down the expected log-likelihood (Dempster
et al. 1977)

Ep({NI(t),NE(t)}|θ̂ i−1,Vobs
0:T )

(
log p({NI(t), NE(t), Vt}|θ)

)

(15)

and then maximize this function with respect to the
model parameters θ = (�kI, �kE, σ ). Here θ̂ i−1 is the es-
timate of the model parameters θ obtained in the pre-
vious EM iteration.

We begin with the case of exponentially-distributed
inputs, NI(t) and NE(t). From our generalized linear
model, we have

log p(NI(t)|X) = log f (Xt
�kI) − NI(t) f (Xt

�kI)

and similarly for NE(t). Thus, together with the
Gaussian evolution noise model (Eq. (1)) we have

log p({NI(t), NE(t), Vt}|θ)

=
∑

t

log p(NI(t)) +
∑

t

log p(NE(t))

+
∑

log p(Vt|gE(t), gI(t), Vt−dt, σ
2)

=
∑

t

(
log f (Xt

�kI) − NI(t) f (Xt
�kI)

)

+
∑

t

(
log f (Xt

�kE) − NE(t) f (Xt
�kE)

)

− 1
2

∑

t

(
log σ 2dt + 1

σ 2dt

× (Vt − E[Vt|gt−dt, Vt−dt])2
)

+ const., (16)

where the constant term does not depend on θ , and the
nonnegativity constraints NI(t), NE(t) ≥ 0 are implicit.
Now, interchanging the order of the expectation in
Eq. (15) with the sums above, we see that the M-step
reduces to three separate optimizations:

�knew
I = arg max

�kI

∑

t

(
log f (Xt

�kI) − E(NI(t)|θ̂ (i−1), Vobs
0:T )

× f (Xt
�kI)

)

�knew
E = arg max

�kE

∑

t

(
log f (Xt

�kE) − E(NE(t)|θ̂ (i−1), Vobs
0:T )

× f (Xt
�kE)

)

σ̂ 2 new = arg max
σ 2

−1
2

∑

t

Ep(gI(t),gE(t)|θ i−1,Vobs
0:T )

(
log σ 2dt + 1

σ 2dt
(V(t + dt) − Vt

− dt[gl(Vl − Vt) + gI(t)(VI − Vt)

+ gE(t)(VE − Vt)])2
)

= 1
dt(T/dt)

∑

t

Ep(gE(t),gI(t)|θ̂ (i−1),Vobs
0:T )

(
V(t + dt) − Vt − dt[gl(Vl − Vt)

+ gI(t)(VI − Vt) + gE(t)(VE − Vt)]
)2

.
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Each of these optimization problems may be solved
independently. The third may be solved analytically
once we have computed the sufficient statistics E(gE(t)
|θ i−1, Vobs

0:T ), E(gI(t)|θ i−1, Vobs
0:T ), E(gE(t)2|θ i−1, Vobs

0:T ),
E(gI(t)2|θ i−1, Vobs

0:T ), E(gE(t)gI(t)|θ i−1, Vobs
0:T ). Each of

these may be estimated from the output of the particle
filter. For example, we may estimate

E(gE(t)|θ i−1, Vobs
0:T ) ≈

∑

j

u( j)(t)g( j)
E (t),

E(gE(t)gI(t)|θ i−1, Vobs
0:T ) ≈

∑

j

u( j)(t)g( j)
E (t)g( j)

I (t),

and so on. Thus, the E-step consists of 1) a single
forward-backward run of the particle filter-smoother to
estimate the conditional mean and second moment of
the synaptic input at each time t, given the full observed
data Vobs

0:T , and the current parameter settings θ i−1, and
2) a subsequent computation of the sufficient statistics
via the sample average formulas above.4

Further, note that E(gE(t)|θ i−1, Vobs
0:T ) and E(NE(t)

|θ i−1, Vobs
0:T ) are linearly related: we obtain gE(t)

by convolving NE(t) with an exponential of time
constant τE (from Eq. (2)). By the linearity of
expectation, we may similarly obtain E(gE(t)|θ i−1,

Vobs
0:T ) via a linear convolution of E(NE(t)|θ i−1, Vobs

0:T ).
Thus, if we have obtained the sufficient statistics for the
third problem, we also have the sufficient statistics for
the first two problems, namely E(NE(t)|θ i−1, Vobs

0:T ) and
E(NI(t)|θ i−1, Vobs

0:T ).
While the third optimization above is analytically

tractable, the first two typically are not (except in a
special case discussed below). We must therefore per-
form these optimizations numerically. It is clear, since
NI(t) ≥ 0, that the M-step for �kI reduces to a concave
optimization problem in �kI whenever f (·) is a convex
function, and log f (·) is concave (and similarly for �kE);

4In the case of noisy or incomplete observations of the
voltage V(t), we need to compute three additional sufficient
statistics, E(V(t)|θ i−1, Vobs

0:T ), E(V(t)2|θ i−1, Vobs
0:T ), and

E(Vt−dtV(t)|θ i−1, Vobs
0:T ). These may be similarly estimated

from the output of the particle filter, specifically Eq. (9). Finally,
as noted in Huys et al. (2006) and Huys and Paninski (2009),
it is possible to estimate the additional model parameters,
(gl, Vl, VE, VI), via straightforward quadratic programming
methods, once the sufficient statistics are in hand. However, if gI
and gE have free offset terms it is not possible to uniquely specify
the leak parameters, (gl, Vl), unless observations are made at a
wide range of voltages. If only a single voltage is observed, then
there are more free parameters than data points and the model
is not uniquely identifiable.

thus no non-global local optima exist. (For example,
we may take f (·) = exp(·).) Furthermore, it is quite
straightforward to calculate the gradient and Hessian
(second-derivative matrix) of these objective functions,
and therefore, optimization via Newton–Raphson or
conjugate gradient ascent methods (Press et al. 1992)
is quite tractable.

In the simple case of no stimulus dependence terms
in the model, it is worth noting that we may update the
mean input parameters λI and λE analytically:

λ̂new
E = 1

T

∑

t

E(NE(t)|Vobs
0:T , θ̂ (i−1))

= 1
T

∑

t

E
[

gE(t + dt) − aEgE(t)

∣
∣∣
∣ Vobs

0:T , θ̂ (i−1)

]
,

with the analogous update for λI . As usual in the EM
algorithm, the M step is simply a weighted version of
the usual maximum likelihood estimator (MLE) for
the exponential family model (the MLE for the mean
parameter of an exponential distribution is the sample
mean).

The case of truncated Gaussian inputs, NI(t) and
NE(t), follows nearly identically. We begin, as before,
by writing down the joint loglikelihood:

log p({NI(t), NE(t), Vt}|θ)

=
∑

t

log p(NI(t)) +
∑

t

log p(NE(t))

+
∑

log p(Vt|gE(t), gI(t), Vt−dt, σ
2)

= −
∑

t

[
(NI(t) − Xt

�kI)
2

2σ 2
I

+ log
∫ ∞

0
exp

(

− (z − Xt
�kI)

2

2σ 2
I

)

dz

]

−
∑

t

[
(NE(t) − Xt

�kE)2

2σ 2
E

+ log
∫ ∞

0
exp

(

− (z − Xt
�kE)2

2σ 2
E

)

dz

]

− 1
2

∑

t

(
log σ 2dt + 1

σ 2dt

× (Vt − E[Vt|gt−dt, Vt−dt])2
)

+ const.

We find that the E step is unchanged (except for the
fact that we use a truncated Gaussian instead of an
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exponential for the transition density in the forward-
backward particle filter-smoother recursion). The up-
date for the observation noise parameter σ is also un-
changed, since the observation log-density is the same
in the exponential or truncated Gaussian case. The
only real difference is in the updates for the “receptive
field” vectors, �kE and �kI , and for the input variability
parameters, σE and σI . Once again, it turns out that
we may define these updates in terms of two indepen-
dent concave optimization problems, (one optimization
for (�kI, σI), and a separate optimization for (�kE, σE)),
though a slight reparameterization is required (Olsen
1978; Orme and Ruud 2002). We need to solve an
optimization of the form

(�knew
I , σ new

I

)
= arg max

�kI ,σI

∑

t

−E
p
(

NI(t)|θ̂ (i−1),Vobs
0:T

)

×
[

(NI(t) − Xt
�kI)

2

2σ 2
I

+ log
∫ ∞

0
exp

(

− (z−Xt
�kI)

2

2σ 2
I

)

dz

]

.

We may rewrite the truncated Gaussian model as an ex-
ponential family in canonical form (Casella and Berger
2001):

log p[NI |λI, σI]

= − (NI − λI)
2

2σ 2
I

− log
∫ ∞

0
exp

(
− (z − λ2

I

2σ 2
I

)
dz, NI > 0

= − N2
I

2σ 2
I

+ NIλI

σ 2
I

− λ2
I

2σ 2
I

− log
∫ ∞

0
exp

(
− (z − λ2

I

2σ 2
I

)
dz, NI > 0

= ρ1 N2
I + ρ2 NI + G[ρ1, ρ2], NI > 0

where we have reparametrized

ρ1 = − 1
2σI

and

ρ2 = λI

σI
.

The log-cumulant function G[ρ1, ρ2] encapsulates all
terms which do not depend on NI . Now the key
fact we need from the theory of exponential families
(Casella and Berger 2001) is that the log-likelihood
log p[NI |λI, σI] is concave as a function of the canon-
ical parameters (ρ1, ρ2). In addition, the gradient and
Hessian of the log-likelihood with respect to (ρ1, ρ2)

may be computed using simple moment formulas. Since
ρ2 is a linear function of �kI if we define λI = Xt

�kI , and
sums of concave functions are concave, this implies that
our optimization problem (�kI, σI) may be recast as a
concave optimization over a convex set, and again no
non-global local maxima exist. (See e.g., Olsen 1978;
Orme and Ruud 2002 for alternate proofs of this fact.)
The optimization for (�kE, σE), of course, may be han-
dled similarly.

2.4.1 A nonparametric M-step

How do we proceed in the important case that we
have no prior information about the time course of
the mean excitatory and inhibitory inputs λI(t) and
λE(t)? If we are willing to make a mild assumption
about the smoothness of λI(t) and λE(t) as a function
of t, then it turns out to be fairly straightforward to
apply the EM approach, as follows. The standard trick
is to slightly reinterpret Xt, the vector of “covariates”:
choose X as a matrix where each column is a tempo-
rally localized basis function. Now, as before, we can
use the model E[Nt] = f (Xtθ); here θ is a vector of
basis coefficients, and by choosing different values of
this parameter vector we can flexibly model a variety of
input time-courses. For example, we chose X to consist
of spline basis functions here, though any other smooth
bump functions with compact support, and for which
the linear equation Xθ = 1 can be solved, would be ap-
propriate. The width of the basis function should be of
a similar scale as the expected fluctuations in the mean
presynaptic input: overly narrow basis functions might
lead to over-fitting, while including too few basis func-
tions will lead to oversmoothing. Since the matrix XT X
is banded, optimizing the objective function in the M-
step requires just O(d) time, where d is the number
of basis functions (Green and Silverman 1994; Paninski
et al. 2010). As before, we can now start the E-step with
a flat prior, μ = f (Xtθ

0), where Xtθ
0 is chosen to be a

constant as a function of time t, then use the particle
filter to obtain the estimate E[{NI(t), NE(t)}|θ̂0, Vobs

0:T ],
then update the model parameters θ using the M-step
discussed above, and iterate. (It is also possible to
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include regularizing penalties in the M-step (Green and
Silverman 1994; Paninski et al. 2010), but we have not
found this to be necessary in our experiments to date.)
See Figs. 6–8 for some illustrations of this idea.

2.5 Fast initialization via a constrained-optimization
filter

The particle filtering methods discussed above are
fairly computationally efficient, in the sense that the
required computation time scales linearly with T, the
number of time points over which we want to infer the
presynaptic conductances gE(t) and gI(t). Nonetheless,
it is still useful to employ a fast initialization scheme, to
minimize the number of EM iterations required to ob-
tain reasonable parameter estimates. A related strategy
was recently discussed in Vogelstein et al. (2010): the
idea to use a fast optimization-based filter to initialize
the more flexible but relatively computationally expen-
sive particle filter estimation method. We can employ a
similar approach here.

In Huys et al. (2006) we pointed out that in the case
of complete (i.e., noiseless and non-intermittent) volt-
age observations, computing the maximum a posteriori
(MAP) estimate

arg max
{NI(t),NE(t)}

p
({NI(t), NE(t)}|Vobs

0:T
)

corresponds to the solution of a concave quadratic
program, since gI(t) and gE(t) are linear functions of
NI(t) and NE(t) (for example, gI(t) is given by the
convolution gI(t) = NI(t) ∗ exp(−t/τI)). Therefore, in
the case of exponential inputs NE(t) and NI(t), the
objective function may be written as

log p({NI(t), NE(t)}|Vobs
0:T )

= log p(Vobs
0:T |{NI(t), NE(t)})

+ log p({NI(t), NE(t)}) + const.

= log p(Vobs
0:T |{NI(t), NE(t)}) +

T∑

t=1

(−λE NE(t))

+
T∑

t=1

(−λI NI(t)) + const., NE(t), NI(t) ≥ 0,

with

log p(Vobs
0:T |{NI(t), NE(t)})

= − 1
2σ 2dt

T∑

t=2

[
Vt −

(
Vt−dt + dt

(
gl(Vl − Vt)

+ gI(t)(VI − Vt) + gE(t)(VE − Vt)
))]2

+ const.,

a quadratic function of {NE(t), NI(t)}. A similar result is
obtained in the case of truncated Gaussian inputs NE(t)
and NI(t).

We can solve this constrained MAP problem very
efficiently using methods reviewed in Paninski et al.
(2010). The key insight is that an interior-point op-
timization approach (Boyd and Vandenberghe 2004)
here has the property that each Newton step requires
just O(T) time (instead of the O(T3) time that a typical
matrix solve requires), due to the block-tridiagonal
nature of the Hessian (second-derivative) matrix in this
problem. See Paninski et al. (2010) for full details.
The resulting solution again scales linearly with T, but
is faster than the particle filter method (by a factor
proportional to the number of particles N). If gE(t)
and gI(t) are sampled at 1 KHz, for example, then this
optimization-based filtering can be performed in real
time on a standard laptop (i.e., processing one second
of gE(t) and gI(t) requires just one second of computa-
tion). Thus, we can use this procedure to quickly obtain
an effective initialization (see Fig. 5 (below)).

This optimization approach may be extended
to the case of noisy or incomplete voltage ob-
servations. The basic idea is to optimize over
p

({V(t), NI(t), NE(t)}|Vobs
0:T

)
, i.e., we will now optimize

over the unobserved voltage path V as well, instead of
just over (NE, NI), as before. This joint log-posterior
remains quadratic in (V, NI, NE) if the observations
correspond to voltage Vt corrupted by Gaussian noise,
but the log-posterior will not be jointly concave in
general. Instead, this function is separately concave:
concave in V with (NE, NI) held fixed, and concave in
(NE, NI) with V held fixed. Thus, a natural approach
is to alternate between these two optimizations until
convergence. The optimization over the conductances
(NE, NI) with the voltage V held fixed has been dealt
with above. The optimization over V with (NE, NI)

fixed may be solved by a single run of an uncon-
strained forward-backward Kalman filter-smoother, as
discussed in Ahmadian et al. (2011). In addition, this
alternating solution can itself be effectively initialized
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with the solution to a closely-related concave problem:
if we replace the true conductance-based likelihood
term with the “current-based” approximation

log p(Vobs
0:T |{NI(t), NE(t)})

= − 1
2σ 2dt

T∑

t=2

[
Vt −

(
Vt−dt + dt

(
gl(Vl − Vt)

+ gI(t)(VI − V̄) + gE(t)(VE − V̄)
)
)]2

+ const.,

where V̄ represents an “average” baseline voltage. (We
could use V̄ = Vl, for example, or set V̄ to be the mean
observed voltage Y). Then the resulting optimization
is quadratic and jointly concave in (V, NI, NE), and
can be solved in O(T) time via a straightforward adap-
tation of the interior-point method discussed above
to appropriately constrain NI, NE, gI , and gE to be
nonnegative. We find empirically that the solution to
the full alternating problem is quite similar to this fast
concave initialization. See Ahmadian et al. (2011) for
full details.

One natural question: why not always use the faster
method? As we will see in Section 3 below, despite the
enhanced speed of the optimization-based approach,
the particle filter method does have several advantages
in terms of accuracy and flexibility. As emphasized
above, the particle filter is designed to compute the
desired conditional expectations, E(NE(t)|Vobs

0:T ) and
E(NI(t)|Vobs

0:T ), directly. The MAP solution can in some
cases, (particularly in the setting of low current noise
σ ), closely approximate this conditional expectation,
as discussed in Paninski (2006a), Badel et al. (2005),
Koyama and Paninski (2010), Paninski et al. (2010),
and Cocco et al. (2009). But in high-noise settings,
the conditional expectation and MAP solutions may
diverge significantly (see Paninski 2006b; Badel et al.
2005 for further discussion in a related integrate-and-
fire model). For example, if the noise is large enough,
then the log p({NI(t), NE(t)}) term can dominate the
loglikelihood term log p(Vobs

0:T |{NI(t), NE(t)}); since the
log p({NI(t), NE(t)}) term encourages the values of
NI(t) and NE(t) to be small, this can lead to an overly
sparse solution for the inferred conductances, partic-
ularly for the inhibitory conductances, due to their
weaker driving force (and correspondingly weaker log-
likelihood term) at the rest potential (see Section 3 be-
low for further discussion of this phenomenon). Just as
importantly, the particle filter allows us to compute er-
rorbars around our estimate E(NE(t)|Vobs

0:T ), by comput-
ing Var(NE(t)|Vobs

0:T ). But the quadratic programming
method provides no such confidence intervals around
the MAP solution (since the posterior is often highly

non-Gaussian, due to the nonnegativity constraints on
(NE(t), NI(t))). The particle filter methodology is also
more flexible than the optimization approach, since
the former does not rely on the concavity of the
log-posterior p

({NI(t), NE(t)}|Vobs
0:T

)
. As discussed in

Huys and Paninski (2009), this makes the incorporation
of non-Gaussian observations and nonlinear dynamics
fairly straightforward.

3 Results

In this section, we discuss a few illustrative applica-
tions of the methods described above. Figures 1 and 2
show simple example of the particle filter applied to
simulated current-clamp data, with effectively noiseless
and fairly noisy voltage observation data, respectively.
To generate the observed voltage data Vt (top panel),
we simulated Eqs. (1)–(3) forward for the one second
shown here. For this simulation (and the following
examples) we used the model

E(NE(t)) = exp(kExE(t))

E(NI(t)) = exp(kI xI(t)),

where xE(t) and xI(t) were known, sinusoidally-
modulated (5 Hz) input signals (xI(t) was slightly de-
layed relative to xE(t), to model a burst of inhibition fol-
lowing the excitatory inputs), and the weights kE and kI

are assumed known. Similar results were observed with
the truncated-Gaussian input model (data not shown).
Of course, we assume that gE(t), gI(t), NE(t), and NI(t)
are not observed.

Applying the particle filter to this model leads to
accurate recovery of the synaptic time courses gE(t)
and gI(t). It is worth noting that the precision of our
estimate for gE(t) is more accurate than that of gI(t).
This is because the driving force for excitation is larger
than for inhibition at this voltage. Thus changing gE(t)
slightly will have a large effect on what the observed
voltage should have been, whereas changing gI(t) will
have a smaller effect, and therefore, our estimate for
gI(t) is less constrained by the observed data. (See Huys
et al. (2006) for additional discussion of these effects.)

Figure 3 compares the behavior of the particle filter
when we misspecify the mean of the synaptic inputs,
λE/I . In the left column, the mean synaptic inputs are
assumed to be one fifth the true values, and in the
right column, they are five times larger than the actual
values. Since our particle filter ‘adjusts’ the weights of
the particles at t − dt when the observation at time step
t occurs, it is able to combine the prior and the observed
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Fig. 1 Estimating synaptic inputs given a single voltage trace.
Top: true voltage in black, observed voltage data in blue, and
estimated voltage in red. Since the observation noise is small they
lay on top of each other. Second and third from top: true (black)
and inferred (red) excitatory and inhibitory conductances gE(t)
and gI(t), with one standard deviation. In this case, a burst of
excitatory input was quickly followed by a burst of inhibition.
Bottom two panels: true (black) and inferred (red) excitatory
and inhibitory inputs NE(t) and NI(t). (Errorbars on estimated
NE(t) and NI(t) are omitted for visibility.) In this simulation
the time course of the mean inputs λE(t) and λI(t) are assumed

known, but the precise timing of NE(t) and NI(t) (which are both
modeled as exponential random variables given λE(t) and λI(t)
in this and the following figures) is inferred via the particle filter
technique. 100 particles were used here, with data observed and
Eqs. (1)–(3) simulated with the same timestep dt = 2 ms; synaptic
time constants τE = 3 ms, τI = 10 ms; synaptic reversal potentials
VE = 10 mV and VI = −75 mV; membrane time constant 1/gl =
12.5 ms, and leak potential Vl = −60 mV. The same parameters
were used in all of the following figures unless otherwise noted.
The results did not depend strongly on the parameters (data not
shown)

data properly, and effectively distributes particles in the
“correct” part of the (gE(t), gI(t)) space. This, in turn,
leads to far more accurate inference of the true input
time courses, gE(t) and gI(t).

In Fig. 4 we apply the particle filter to a voltage-
clamp experiment, as described in Section 2.3. We ex-
amined the behavior of the filter under two different
holding potentials (−60 and −10 mV). For ease of

Fig. 2 Estimating synaptic
inputs given a voltage trace
observed under noise.
Conventions are as in Fig. 1,
except in top panel: blue dots
indicate observed noisy
voltage data, while black trace
indicates true (unobserved)
voltage. The true voltage
(black) was corrupted with
white noise with zero mean
and 0.44 mV standard
deviation. The estimates are
seen to be fairly robust to
noise in the observations
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Fig. 3 Comparing the robustness of the model under model
misspecification. We repeated the experiment described in Fig. 1,
except the particle filter was run assuming the mean synaptic
inputs, λI(t) and λE(t), were five times as small as they in fact
were in the left column and five times as large in the right column.

Conventions in each column are as in Fig. 1. The misspecified
expected synaptic inputs are in green. Note the particle filter
effectively incorporates both the data (voltage observations) and
the model prior and finds the optimal conductances and inputs
according to the assumed noise parameters in the model
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Fig. 4 Estimating synaptic inputs given a noisy current trace
under voltage-clamp. Two different experiments (at different
holding potentials) are shown in the left and right columns.
Top: true current in black, observed current data in blue, and
estimated current in red. Second and third panels: true (black)
and inferred (red) excitatory and inhibitory conductances gE(t)
and gI(t); in this case, a burst of excitatory input was quickly
followed by a burst of inhibition. Bottom two panels: true (black)
and inferred (red) excitatory and inhibitory inputs NE(t) and

NI(t). As in Fig. 1, the time course of the mean inputs λI(t) and
λE(t) are assumed known, but the precise timing of NE(t) and
NI(t) (which are both modeled as exponential random variables
given λI(t) and λE(t)) is inferred via the particle filter technique
(100 particles used here). Note that, as in Fig. 1, the inference of
the excitatory input is more accurate than that of the inhibitory
input in the left panels (and vice versa in the right panels), due
to the larger driving force of the excitatory conductances at the
−60 mV holding potential
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Fig. 5 Using a fast optimization-based method to estimate con-
ductances. A voltage-clamp experiment was simulated here. Top:
observed current I(t); holding potential −60 mV. Lower panels:
true (black) and estimated (red) conductances gE(t) and gI(t).
Presynaptic inputs NI(t) and NE(t) were generated via an inho-
mogeneous Poisson process whose rate varied sinusoidally at 2
Hz; the phase of the inhibitory sine wave was displaced by 20
ms relative to the excitatory sine carrier. This information was
not made available to the filter; i.e., a constant input rate was
assumed when inferring these inputs from the observed I(t). Note
that, as above, the excitatory inputs are estimated well, while the
estimates of the inhibitory inputs are less accurate, due to the
larger driving force of the excitatory conductances

comparison, we used the same conductance traces gE(t)
and gI(t) in each experiment, generating two different
observed current traces I(t) via Eq. (14) for the two
holding potentials. The true weights kE and kI are
again assumed known. As expected given the results
in Fig. 1, the particle filter recovers the true synaptic
time courses gE(t) and gI(t) fairly accurately, with the
accuracy for gI improving for the more depolarized
holding potential, when the inhibitory driving force is
larger. Similar effects are visible in Fig. 5, which illus-
trates an application of the optimization-based methods
discussed in Section 2.5 to voltage-clamp data.

Finally, Figs. 6 and 7 address cases where we have
no prior knowledge about the presynaptic stimulus
timecourse. The voltage Vt (top panel) was generated
using Eqs. (1)–(3) forward for the 1 second shown here.
However, for this simulation we used the model

E(NE(t)) = exp(λE(t))

E(NI(t)) = exp(λI(t)),

where λE(t) and λI(t) were the absolute value of two
unobserved Ornstein-Uhlenbeck processes (these were

Fig. 6 Estimating synaptic
inputs for an arbitrary
unknown mean presynaptic
input, via a nonparametric
EM approach. Conventions
are as in Fig. 1, with the
exception of the bottom two
panels, which show the true
(black) and estimated (red)
mean presynaptic inputs
λE(t) and λI(t); these were
generated as the absolute
value of random realizations
of Ornstein–Uhlenbeck
processes and were not
known by the algorithm.
NE(t) and NI(t) are both
modeled as exponential
random variables given λE(t)
and λI(t). We start the
estimation with a flat prior;
the covariate matrix X was
composed of 50 spline basis
functions (an example basis
function is shown in blue) and
iterate the nonparametric EM
algorithm (Section 2.4.1) until
it converges (less then 10
iterations here)
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Fig. 7 Estimating synaptic
inputs for an arbitrary
unknown mean presynaptic
input given a noisy voltage
trace. Conventions are as in
Fig. 6. The two bottom most
panels are the true (black)
presynaptic stimulus and its
estimation. The data is
generated in the same
manner as in Fig. 6 but the
true voltage trace is
corrupted with white noise of
zero mean and 0.44 mV
standard deviation
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chosen simply to generate continuous random paths
λt; the results did not depend strongly on this choice).
To infer the synaptic timecourses here, we applied the
nonparametric EM method described in Section 2.4.1,

so that the estimated parameter θ̂ corresponds to the
vector of weights associated with the spline basis func-
tions that comprise the covariate matrix X. For both
the parametric and nonparametric versions of the EM
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Fig. 8 Estimating the excitatory conductance of an electric fish
granule cell. The top panel is the recorded voltage (blue) and the
estimated voltage (red) (they largely coincide since we assume
low observation noise here); the 2nd panel is the estimated

excitatory conductance gE(t); and the 3rd panel is the estimated
synaptic input NE(t) to the cell. While comparisons to ground
truth are not yet possible in this case, the inferred gE(t) and NE(t)
seem entirely consistent with the observed voltage data



J Comput Neurosci (2012) 33:1–19 17

−61

−60

−59

−58

−57

V
 (

m
V

)

0

2

4

6

8

10

g
e

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
2
4
6
8

10
12
14

g
i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

phase shift

M
S

E

MSE ge

MSE g i

A B

Fig. 9 Effects of phase-locking on estimation accuracy. (a) Esti-
mating the conductances underlying a sinusoidal observed volt-
age trace. Top: observed voltage. Middle and bottom: true and
inferred excitatory and inhibitory conductances. Conventions as
in Fig. 1. (b) In the right column is the normalized mean squared
error of the estimation (blue excitatory, green inhibitory) as a
function of the phase shift: zero (and one) phase shift corresponds

to perfect phase locking, and a phase shift of 0.5 corresponds to
perfectly out-of-phase signals. The phase shift in panel (a) was
0.33. As expected, the error is largest when the conductances are
in phase; in this case, the inferred inhibitory conductances shrink
towards zero, and the inferred excitatory conductances are also
reduced in magnitude

algorithm, we observed that on the order of 10 iter-
ations was sufficient for convergence; for all of the
examples illustrated in this paper, on the order of a
second of observed data was sufficient for accurate es-
timates. Figure 6 illustrates an application to a voltage
trace with small observation noise, while the voltage
observations in Fig. 7 are much noisier; in both cases,
the method does a fairly good job inferring the synaptic
time courses, although as before the inference is more
accurate in the low-noise setting.5

Encouraged by these simulated examples, we ap-
plied our technique to a real data set provided gener-
ously by Prof. N. Sawtell. Fig. 8 (top) shows a voltage
trace obtained during an in vivo whole-cell recording
from a granule cell in an electric fish (Sawtell 2010).
In these recordings, phasic inhibitory conductances
are likely small (personal communication, N. Sawtell;

5It is important to make a note about the errorbars computed
here. These are estimates of the posterior standard deviation
Var(gt|Vobs

0:T , θ̂ )1/2, where we have conditioned on our estimate
of the parameter θ . Clearly, this will be an underestimate of
our true posterior uncertainty, which should also incorporate our
uncertainty about θ̂ . It is possible to employ Markov chain Monte
Carlo methods to incorporate this additional uncertainty about θ̂

(Gelman et al. 2003), but we have not yet pursued this direction.

though tonic inhibition is harder to rule out, this can
be absorbed into the leak conductance term), facilitat-
ing the evaluation of the algorithm’s performance. We
applied our nonparametric algorithm with parameters
chosen as follows: VE = 0 mV, Vl = −76 mV, 1/gl =
6 ms, and τE = 5 ms; the inference seemed relatively
insensitive to the details of these parameters. As in the
simulated examples, we initialize the algorithm with a
flat mean excitatory input (using 76 spline functions in
this case) and let the EM algorithm converge (about
10 iterations were again sufficient). Figure 8 shows the
end result of the estimation procedure; while ground
truth presynaptic recordings are not yet available in this
preparation, the results of the analysis seem qualita-
tively reasonable. We hope to pursue further applica-
tions to real data in the future.

We close by noting that the methods presented here
will certainly fail in some cases. For example, if both
gE(t) and gI(t) are constant, then the voltage will also
be constant; in this case, we can infer the relative mag-
nitudes of gE and gI , but without further information
it is not possible to infer their absolute magnitudes.
Similar precautions apply if gE(t) and gI(t) are perfectly
phase-locked. To illustrate this issue, in Fig. 9 we plot
the performance of the algorithm in inferring sinusoidal
conductance signals gE(t) and gI(t), as a function of
the relative phase of the excitation and inhibition. The
algorithm performs well when there is some phase
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separation between the signals (as we have seen in the
previous figures). However, at zero phase shift, while
the relative magnitudes of gE(t) and gI(t) are estimated
well, the estimated absolute magnitudes are shrunk (in
accordance with the model’s prior distribution): the
estimated inhibitory conductance is close to zero, and
the excitatory conductance is underestimated, in order
to compensate for the missing inhibition.

4 Conclusion

We have introduced an robust and computation-
ally efficient method for inferring excitatory and
inhibitory synaptic inputs given a single observed
noisy voltage trace. As in Vogelstein et al. (2010),
we have found that a fast, robust optimization-
based filter provided a good initialization for a more
computationally-intensive, expectation–maximization-
based particle filter method. As expected, the infer-
ence achieved by these methods was not perfect. In
particular, it is consistently more difficult to recover
the details of inhibitory presynaptic input at physiolog-
ical resting potentials, due to the larger driving force
associated with excitatory conductances. In addition,
any method will have difficulty estimating perfectly
phase-locked excitatory and inhibitory inputs without
additional prior information to constrain the absolute
magnitudes of the inputs. Nonetheless, we believe that
the systems and computational neuroscience commu-
nity will find these methods a useful complement to
the methods already available, which require exper-
imenters to hold the neuron at a variety of holding
potentials and often complicate the simultaneous analy-
sis of correlated excitatory and inhibitory input into
neurons.

Several possible extensions of these methods are
readily apparent. First, as discussed in Huys et al.
(2006), Huys and Paninski (2009), and Paninski et al.
(2010), it is conceptually straightforward to handle
multi-compartmental neural models, or to incorpo-
rate temporally-colored noise sources. These exten-
sions may be especially useful in the context of poorly
space-clamped recordings (i.e., voltage-clamp record-
ings in electrotonically non-compact cells). Further pos-
sible extensions include the incorporation of active
membrane conductances and NMDA-gated (voltage-
sensitive) synaptic channels (Huys et al. 2006; Huys and
Paninski 2009), although each of these extensions may
come at a significant cost in computational expense and
in the amount of data required to obtain accurate esti-
mates of the model parameters. We could also poten-

tially use a model in which the presynaptic inputs NI(t)
and NE(t) are correlated, extending the expectation–
maximization method to infer the correlation parame-
ters. Finally, it may be necessary to incorporate a more
accurate model of the filtering effects of the electrode
when analyzing voltage data recorded via patch clamp
or sharp electrode (Brette et al. 2007). We plan to
explore the importance of these issues for the analysis
of real data in future work.
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