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Abstract Recurrent networks are ubiquitous in the brain,
where they enable a diverse set of transformations during
perception, cognition, emotion, and action. It has been
known since the 1970’s how, in rate-based recurrent on-
center off-surround networks, the choice of feedback signal
function can control the transformation of input patterns
into activity patterns that are stored in short term memory.
A sigmoid signal function may, in particular, control a
quenching threshold below which inputs are suppressed as
noise and above which they may be contrast enhanced
before the resulting activity pattern is stored. The threshold
and slope of the sigmoid signal function determine the
degree of noise suppression and of contrast enhancement.
This article analyses how sigmoid signal functions and their
shape may be determined in biophysically realistic spiking
neurons. Combinations of fast, medium, and slow after-
hyperpolarization (AHP) currents, and their modulation by
acetylcholine (ACh), can control sigmoid signal threshold
and slope. Instead of a simple gain in excitability that was
previously attributed to ACh, cholinergic modulation may
cause translation of the sigmoid threshold. This property
clarifies how activation of ACh by basal forebrain circuits,
notably the nucleus basalis of Meynert, may alter the
vigilance of category learning circuits, and thus their
sensitivity to predictive mismatches, thereby controlling

whether learned categories code concrete or abstract
information, as predicted by Adaptive Resonance Theory.
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1 Introduction

1.1 Pattern transformation and short-term memory storage
by recurrent competitive networks

Networks of neurons can perform complex nonlinear
transformations of activity patterns. Rate-based recurrent
neural networks enable a diverse set of nonlinear trans-
formations useful for cognitive functions, including short-
term memory storage (Grossberg 1973), syntactic structure
in linguistic processing (Elman 1991), motor coordination
and execution (Bullock et al. 1998; Bullock and Grossberg
1988), and incremental learning of recognition categories
(Carpenter and Grossberg 1987, 1991). Anatomical studies
have confirmed that recurrence is a prevalent feature in
brain systems (e.g., Bosking et al. 1997; Chisum et al.
2003; Levitt et al. 1994; Morishima and Kawaguchi 2006;
Schmidt et al. 1997; Song et al. 2005).

Within recurrent networks, the form of signaling at the
cellular scale has a major impact on network transforma-
tions of input patterns. Beginning in Grossberg (1973),
theorems proved about rate-based neural models have
provided insights into how the choice of the feedback
signal functions in recurrent networks can alter how input
patterns are transformed (e.g., Ellias and Grossberg 1975;
Grossberg and Levine 1975; Wersing et al. 2001). Early
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theorems (e.g., Grossberg 1973) analyzed how signal
functions in recurrent on-center off-surround networks
whose cells obey membrane, or shunting, equations (see
Fig. 1(a) and Eqs. (11–14)) transform input patterns before
they are stored in short term memory as sustained patterns
of neural activity as the network settles to equilibrium. In
these simplest networks, the on-center of self-excitatory
feedback is narrow, and the off-surround of lateral inhibi-
tion reaches all other cells.

As shown in Fig. 1(b), if the signal function is linear (e.g.,
f (x) = Ax), then the relative activities of the initial input
pattern are preserved. If the signal function is slower-than-

linear (e.g., f (x) = Ax(B–x)–1), then all differences in the input
are uniformized. In both of these cases, noise is amplified. If a
signal function is faster-than-linear (e.g., f (x) = Ax2), then
noise is suppressed. In fact, noise is suppressed so vigorously,
than only the cell (population) with the largest input survives
the competition, and its activity is stored in short term
memory. This is thus a winner-take-all (WTA) network.

In order to enable cells with activities less than the
maximum to be stored in short term memory, a sigmoid, or
S-shaped, signal function suffices, because it is a hybrid of
the other signal functions. Any signal function needs to be
faster-than-linear at low activity levels in order to suppress

(a)

(b)

(c)

Fig. 1 Dynamics of signal func-
tions in a recurrent architecture.
(a) Recurrent architecture with
self-excitation and lateral inhi-
bition in a classical neural net-
work. (b) How the choice of
four different nonlinear signal
function determines network
storage behavior including
whether noise is amplified or
suppressed (Grossberg 1973).
The sigmoidal case is notewor-
thy, because it features a
quenching threshold. (c)
Threshold translation and slope
change of a sigmoid signal
function can alter how the signal
function transforms initial input
patterns before they are stored in
short-term memory
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noise. And any biologically plausible signal function needs
to be bounded at high activity values. A sigmoid signal
function is the simplest one that combines both constraints.
At high activity values, it is slower-than-linear. Because it is
faster-than-linear at low activities, it is approximately linear
at intermediate activities, by continuity. Thus, a sigmoid
signal function can begin to contrast-enhance an input
pattern as the shunting on-center off-surround network
interactions begin to normalize cell activities and drive them
into the approximately linear range, where they can be stored
as a partially contrast-enhanced pattern; namely, an activity
pattern in which a subset of the most active cells are contrast-
enhanced and stored in short-term memory, while activities
of less active cells are completely suppressed.

The net effect on network dynamics is to define a
quenching threshold, or initial activity level below which
activities are treated like noise and suppressed, and above
which they are contrast-enhanced and stored in short term
memory. The quenching threshold can be tuned, thus leading
to a tunable filter: In the limit of a high quenching threshold,
it can perform like a WTA network. If in response to an
unexpected event the quenching threshold goes down, then
the network can store a distributed pattern of input features,
until hypothesis testing can select the features that can better
predict future outcomes. See Section 4.2.

What processes control the shape of sigmoid signal
functions within biophysically detailed models of spiking
neurons? In networks of spiking neurons, transfer func-
tions, defined as the relationship between input and output
spiking rates, are postulated to act analogously to the signal
functions that are used in rate-based models. Physiological
observations confirm that neurons often exhibit a sigmoidal
relationship between input and output (Fellous et al. 2003;
Freeman 1979). For a sigmoidal curve, apart from rescaling
by boosting excitability, there are two elementary degrees of
freedom: threshold translation and slope change (Fig. 1(c)).
Translation of the sigmoidal threshold occurs when the region
of highest sensitivity for the function shifts along the input
domain, and mathematically equates to movement of its point
of inflection. Slope varies when the curve either steepens or
becomes more gradual, and mathematically relates to the
magnitude of the derivative around the point of inflection.
Because biological cell activation is limited to a restricted
operational domain, threshold translation and slope alterations
could manipulate the effective curvature of the signaling
function. What factors adaptively shape the two sigmoidal
degrees of freedom during development or even regulate them
dynamically to modulate behavior in real time?

1.2 After-hyperpolarization currents alter sigmoid signals

After-hyperpolarization (AHP) currents, defined as hyper-
polarizing currents that occur following action potentials,

present prime candidates for adaptive control of cell transfer
functions, because of their dependence on recent activity and
their susceptibility to external modulation. These AHP
currents are predominantly carried by calcium-dependent
potassium channels (Hotson and Prince 1980; Lancaster and
Adams 1986), but also partly by calcium-independent
potassium currents (Lorenzon and Foehring 1992). Calcium
(Ca2+) dependence implies spike dependence, because calcium
concentrations fluctuate via voltage-dependent channels that
open as a result of depolarizations during action potentials. In
vitro studies of these currents in large layer 5 Betz cells of cat
sensorimotor cortex (Schwindt et al. 1988b) have identified
three distinct AHP currents: a fast, medium, and slow current.
Henceforth, we refer to these currents as fAHP, mAHP and
sAHP, respectively. A study of pyramidal cells in layers 3–6 of
human neocortex (Lorenzon and Foehring 1992) revealed
three currents with similar temporal profiles and pharmaco-
logical properties to the earlier study, and recent reports
confirm similar mAHP and sAHP currents in a variety of rat
tissue preparations (Lee et al. 2005; Storm 1987). In certain
recordings, the sAHP appears to further divide into an early
and late sAHP (Schwindt et al. 1988b), although this result is
not consistent across studies. The difference in the time
course of these AHP currents has not been completely
explained, but recent evidence suggests that proximity to
calcium channels may be the dominant factor rather than,
for example, the time constant of calcium binding to the
channels themselves (Lima and Marrion 2007).

This paper demonstrates how the collective state of the
three AHP conductances can control the shape of sigmoidal
transfer functions by independently translating its threshold
and changing its slope. The analysis reveals simple rules
that govern conductance changes in the three AHP currents
as they combine to generate desired changes in signaling. In
so doing, we identify conservation laws for maintaining the
asymptote of the transfer function, or upper bound on
neuronal firing. We establish that the sigmoid threshold
shifts lower when sAHP and mAHP decrease while fAHP
increases, at the appropriate ratios. We demonstrate that the
slope becomes steeper when sAHP and fAHP decrease
while mAHP increases, at the appropriate ratios.

1.3 Acetylcholine alters after-hyperpolarization current

Numerous studies have shown that AHP currents are
modulated by the level of acetylcholine (ACh) and other
neurotransmitters (McCormick andWilliamson 1989; Vogalis
et al. 2003 for review). ACh is believed to increase gain on
sensory input in cortical cells both by reducing AHP currents
as well as strengthening sodium currents to boost cell
excitability (Giocomo and Hasselmo 2007; Sarter et al.
2005). This description and associated computational models
portray ACh as a promoter of sensory processing by decrease
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in a single AHP current either by lumping distinct AHP
currents together or neglecting two of the three currents.

How does ACh biophysically coordinate the control of
AHP currents at all three different timescales? The current
model proposes that ACh modulates the three AHP
currents, and thus sigmoid signal shape, by shifting the
threshold in the manner described in Fig. 1(c). Changes in
the AHP currents can cause a steepening in the sigmoid
slope or cause a shift in the sigmoid threshold.

Previous neural models have addressed the effect of ACh
on AHP currents (Barkai and Hasselmo 1994; Cox et al.
1997; Grossberg and Versace 2008; Soto et al. 2006; Wang
et al. 2003). However, they have not accounted for the full
breadth of timescales on which AHP currents have been
observed. For example, a model of pyramidal cells from
piriform cortex treated ACh modulation as a decrease in a
slow AHP current and a voltage-dependent potassium
current, called m-current, because of its sensitivity to the
ACh agonist, muscarine, a contributor to the mAHP current
(Barkai and Hasselmo 1994).

In Adaptive Resonance Theory, or ART, augmented cortical
excitability due to predictive mismatch may cause reset of
currently active cognitive recognition codes, or categories,
even in cases where top-down feedback may earlier have
partially matched bottom-up input. This increase of excitabil-
ity is mediated by the gain, called vigilance, of the process
whereby bottom-up input patterns are matched against
learned top-down expectations (Carpenter and Grossberg
1987, 1991). Grossberg and Versace (2008) proposed that the
release of ACh might increase vigilance and thereby promote
search for and learning of more specific, or concrete,
recognition categories in response to mismatch-inducing
environmental feedback. In particular, Grossberg and Versace
(2008) proposed that mismatch-mediated activation of the
nucleus basalis of Meynert results in release of ACh, which
causes a reduction of an AHP current in layer 5 pyramidal
cells and thus an increase of cell excitability. In a similar
manner, vigilance might increase in response to a release of
ACh in response to stress factors such as shock (Zhang et al.
2004), even when bottom-up and top-down signals have a
good match based on similarity alone.

Other models have considered alternative effects of ACh
modulation. For example, the model of primary auditory
cortex by Soto et al. (2006) includes only a single AHP
current, but also considers the effect on sodium currents
(Cantrell and Catterall 2001) and ACh synaptic modulation
which effectively changes network connectivity (Hsieh et
al. 2000). Finally, Wang et al. (2003) have included a Na+-
dependent K+ current and a Ca2+-dependent K+ current into
their model of cells in primary visual cortex to explain
adaptation on two different timescales.

These AHP currents differ both in degree of modulation
and the underlying mechanism of modulation. There still

remains no consensus on what is the composite of channels
supporting each of these currents, and there remain
discrepancies in the observed effects of pharmacological
agents, as well as variations in both channel and current
naming schemes (Lima and Marrion 2007; Sah 1996;
Villalobos et al. 2004; Wei et al. 2005). Nonetheless, results
show that application of acetylcholine and muscarinic
agonists reduces or abolishes the sAHP in a variety of
tissue types and species (Klink and Alonso 1997; Lorenzon
and Foehring 1992; McCormick and Williamson 1989;
Muller et al. 1992; Pedarzani and Storm 1996; Schwindt et
al. 1988b). Findings for the cholinergic modulation of the
mAHP current are mixed, but generally show a reduction in
mAHP conductance to about 70% by applying muscarinic
agonists (Lorenzon and Foehring 1992; Power and Sah
2008; Shapiro et al. 2000; Storm 1989). Experiments on the
cholinergic modulation of the fAHP current have produced
more conflicting results. Cholinergic agonists either cause
fAHP increase (Bordey et al. 2000; Kong et al. 2005), no
change in fAHP (Lorenzon and Foehring 1992; Storm
1987), or affect fAHP depending on the membrane
potential, but probably causes increase under normal
conditions (Akins et al. 1990; Cox et al. 1997; Hicks and
Marrion 1998; Kong et al. 2007; Nakajima et al. 1986;
Schreiber and Salkoff 1997). These physiological findings
are described in further detail and compared with model
parameters in the Section 2.

The current article builds upon these previous analyses
and findings to demonstrates how the collective state of the
three AHP conductances can control the shape of a
sigmoidal transfer function by independently translating
its threshold and changing its slope. The analysis reveals
simple rules that govern how parametric space of cell
membrane conductances can be mapped onto the opera-
tional space of cell signaling, as described by threshold, slope
and asymptote of the transfer function to generate desired
changes in signaling. By including a combination of three
AHP currents, each uniquely modulated by ACh, we examine
specific effects that are alternative to a simple gain in cell
excitability, namely that ACh may predominantly cause a
translation of the threshold of the sigmoidal transfer function.

Section 2 describes the differential equations for the
compartmental spiking neuron model, the physiological
basis of the simulation parameters, the AHP modeling with
spike-dependence and with calcium dynamics, synaptic
modeling, the relation between parametric and operational
spaces, estimation of cholinergic behavioral intensities, and
general analysis techniques. Section 3 describes simulation
results, and provides a comparison between the basal
sigmoidal transfer functions for different synaptic models,
the conservation laws of the function’s asymptote, para-
metric operations for threshold translation and slope change
with an assessment of the linearity of these operations, and
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finally an evaluation of the effect of acetylcholine on cell
behavior. Section 4 discusses the significance of the work
within the context of learning and behavior.

2 Experimental procedures

2.1 Compartmental spiking model

Simulated neurons are composed of three cylindrical compart-
ments: somatic, proximal dendritic and distal dendritic.
Compartment membrane equations are governed by
Hodgkin-Huxley or conductance-based dynamics (Hodgkin
and Huxley 1952). The somatic membrane potential, VS,
fluctuates via spike-generating sodium and potassium cur-
rents, leak current, dendritic inter-compartmental current, and
three AHP currents, with the respective terms in Eq. (1):

CM
dVs

dt
¼ INa þ IK þ IL þ ICa þ IfAHP þ ImAHP

þ IsAHP þ dsga
4l2s

ðVp � VsÞ ð1Þ

where the first three currents use the Hodgkin-Huxley form
(Hodgkin and Huxley 1952):

INa ¼ gNamNa
3hNaðENa � V Þ; ð2Þ

IK ¼ gKnK
4ðEK � V Þ; ð3Þ

and

IL ¼ gLðEL � V Þ; ð4Þ
with “shunting” terms (E–V ) in each current. Table 1 lists the
complete names, units, and values for the parameters and the
previous studies on which they are based. The somatic sodium
and potassium equilibrium potentials and the axial conduc-
tance are similar to parameters for layer 5 cells from Grossberg
and Versace (2008), but are adjusted such that the cells do not
fire at rest, yet are still responsive to stimulation. The dynamics
of AHP currents are a function of generated spike history, HS,
and individual rise and fall times, tr and t f, and are described
further in Section 2.3. Activation and inactivation functions,
including mNa, hNa and nK in (2) and (3), follow the
conventional form of forward and backward rates, α and β,

Table 1 Basic model parameters

Compartment Parameter Name Variable Value(s) Reference

Somatic Membrane capacitance CM 1 μF/cm² (Hodgkin and Huxley 1952)

Sodium conductance gNa 45 mS/cm2 Adjusted to be stable at rest

Sodium equilibrium potential ENa 50 mV (Grossberg and Versace 2008)

Potassium conductance gK 16 mS/cm2 Adjusted to be stable at rest

Potassium equilibrium potential EK −100 mV (Lee et al. 2005)

Leak conductance gL,s 0.1 mS/cm2 (Traub et al. 1991)

Leak equilibrium potential EL −65 mV (Storm 1987)

Diameter ds 0.1 mm (Grossberg and Versace 2008)

Length ls 0.15 mm

Axial conductance gA 0.28 pS Adjusted to be stable at rest

AHP Parameters See Tables 1, 2 and 3

Proximal Dendrite Leak conductance gL,p 0.03 mS/cm2 (Grossberg and Versace 2008)

Leak equilibrium potential EL −65 mV (Storm 1987)

Diameter dP 0.06 mm (Grossberg and Versace 2008)

Length Lp 0.4 mm

Axial conductance gA 0.28 pS Adjusted to be stable at rest

Distal Dendrite Leak conductance gL,d 0.03 mS/cm2 (Grossberg and Versace 2008)

Leak equilibrium potential EL −65 mV (Storm 1987)

Diameter dd 0.06 mm (Grossberg and Versace 2008)

Length ld 0.5 mm

Axial conductance gA 0.28 pS Adjusted to be stable at rest

AMPA peak conductance gAMPA 2.5 or 0.1 pS Scaled for stimulation rate

AMPA equilibrium potential EAMPA 0 mV (Destexhe et al. 1994a)

AMPA rise time tr,AMPA 0.76 ms (Povysheva et al. 2006)

AMPA fall time tf,AMPA 6.5 ms
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for voltage-dependent conductances commonly used for
spiking models (Grossberg and Versace 2008; Hodgkin and
Huxley 1952; Traub et al. 1991) and each change as x in the
equation:

dx

dt
¼ axð1� xÞ � bx; ð5Þ

or, alternatively, in the equivalent equation:

dx

dt
¼ txðxEq � xÞ: ð6Þ

where specific expressions for α, β, t and xEq are listed in
Table 2.

Dendritic compartments are passive with leak currents, and
are divided into proximal and distal compartments. Inputs are
received via an alpha-amino-3-hydroxy-5-methyl-4-isoxazo-
lepropionic acid (AMPA) synaptic current into the distal
dendrite and described further in Section 2.6. This dendritic
structure allows for dendritic integration of excitatory
synaptic input. Proximal and distal dendritic membrane
potentials, Vp and Vd, follow Eqs. (7) and (8), respectively:

CM
dVp

dt
¼ IL þ dpga

4l2p
ðVs � VpÞ þ dpga

4l2p
ðVd � VpÞ ð7Þ

and

CM
dVd

dt
¼ IL þ ddga

4l2d
ðVp � VdÞ þ IAMPA ð8Þ

with the parameters defined in Table 1.

2.2 Modeling spike-dependent signals

An individual excitatory postsynaptic potential (EPSP) occurs
as a time-varying conductance wave after each arriving
presynaptic (or input) spike, while an after-hyperpolarization
(AHP) current results from a time-varying conductance wave
after each postsynaptic (or output) spike. Given a single spike
occurring at time ts, a double exponential function for a
conductance gE describes both its onset and decay:

gEðt; tr; t f ; tsÞ ¼ cðe�ðt�tsÞ=t f � e�ðt�tsÞ=trÞ; ð9Þ
where Cr and Cf are rise and fall time constants respectively
(Destexhe et al. 1994a). For a single spike, the conductance
peaks at time tpeak,

tpeak ¼ trt f
t f � t f

ln
tr
t f

� �
; ð10Þ

with an amplitude of 1, ensured by the normalizing constant c,

c ¼ 1

tr
t f

� �tr=ðt f �trÞ � tr
t f

� �t f =ðt f �trÞ : ð11Þ

A spike train, whether input or output signals, defines a
history, or list, H, of spike times:

HðtÞ ¼ ft1; :::tNg: ð12Þ
Output spikes, Hs, are determined by when the somatic

potential, Vs, crosses a detection threshold, Vth=10 mV,

Table 2 Activation and inactivation equations

Current Variable, x Forward Rate, αx Backwards Rate, βx Reference

Na mNa
0:32ð13�V Þ
e0:25ð13�VÞ�1

�0:28ð40�V Þ
e�0:2ð40�V Þ�1 (Hodgkin and Huxley 1952)

hNa 0:128e
ð17�V Þ

18 4
e0:2ð40�V Þþ1

K nK 0:032ð15�V Þ
e0:2ð15�VÞ�1

0:5e
ð10�V Þ

40

A mA 0:125
eð�28�V Þ=22:5þ1

0:0625
eð52:8þV Þ=19:7þe�ð82:7þV Þ=38:7

(Traub et al. 2003; Barkai and

Hasselmo 1994)
hA

0:125
eð85þV Þ=16þ1 1.2

M mM
0:002

e0:2ð�25�V Þþ1
0.001e(–45–V)/6

SK, SK2 pSK, pSK2 c1 ↔ c2 200 [Ca] 0.08 (Solinas et al. 2007;

Hirschberg et al. 1998)
c2 ↔ c3 160 [Ca] 0.08

c3 ↔ c4 80 [Ca] 0.2

c3 ↔ o1 0.16 1

c4 ↔ o2 1.2 0.1

Current Variable Steady State, xEq Time, C Reference

CaL, CaN mLCa, mNCa
1

ð1þeð�20�V Þ=5Þ 1:25 sec hð�0:031ðV þ 37:1ÞÞ (Brown et al. 1993)
hLCa, hNCa 420

CaP mPCa
1

ð1þeð�18�V Þ=5:5Þ 1:25 sec hð�0:031ðV þ 37:1ÞÞ
hPCa 420

BK pBK
1

1þ1806 1þ½Ca�=18:06
1þ½Ca�=2:16

� �4

e�12:65V

5 (Cox et al. 1997)
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with a negative derivative (a positive derivative produces
similar results). A spike history poses the problem of
conductance saturation during temporal summation. We
consider three spike-dependent models, which exhibit
different behavior during temporal summation:.

Total conductance could be unbounded, accumulating at
the same rate regardless of how many spikes occur over an
interval. This approach is equivalent to summing up
independent double exponentials for each spike represented
by Eq. (9). A discrete algorithm that leverages z-transform
mathematics can efficiently compute the sum of these
double exponential waveforms (Köhn and Wörgötter 1998).
The algorithm solves the computation with a discrete form
of the signal by converting time t into n discrete steps of
duration T (we use 0.02 ms):

gIE ðt; tr; t f ;HÞ ¼ gIE ðnT ;HÞ ¼ gIE ðnÞ; ð13Þ

such that the total conductance can be computed in a
recursive fashion,

gIE ðnÞ ¼ ðar � af ÞHðn� 1Þ þ ðar þ af ÞgIE ðn� 1Þ
� ar af gIE ðn� 2Þ; ð14Þ

where ar ¼ e�T=tr and af ¼ e�T=t f and H(n-1) denotes
whether there was a spike at the last time step. We refer to this
as the independent exponentials (IE) spike-dependent signal.

Alternatively, a total conductance could be strictly
bounded no matter how many spikes occur over an interval.
This limited capacity may be approximated adding the
conductances computed from the previous two spike times,
t1 and t2, and subtracting their product:

gNE ðt; t f ; t f ;HÞ ¼ gE ðt; t1Þ þ gE ðt; t2Þ
� gE ðt; t1ÞgE ðt; t2Þ: ð15Þ

We refer to this as the normalized exponentials (NE) spike-
dependent signal, introduced by KInNeSS, the KDE
Integrated NeuroSimulation Software environment (Versace
et al. 2008).

A more realistic approximation uses a mass action law,
similar to other kinetic models (Destexhe et al. 1994a,
1994b), to introduce an intermediate variable. This is
expressed by two differential equations:

dR

dt
¼ ð1� RÞI � R

tr
; ð16Þ

and

dgSD

dt
¼ t f þ tr

t f

� �
2

tr
ð1� gSDÞR� gSD

t f

� �
: ð17Þ

For a synaptic signal, this new variable R most closely
portrays the concentration of transmitter in the cleft, while
the conductance gSD represents postsynaptic receptor
activation. The function I denotes the input signal, a set
of square waves from the spike train, H, which equals 1/Cr,
if the time since the last spike arrival, t – tn, is less than tr ms,
and equals 0 otherwise. The passive decay rate parameters,
1/Cr and 1/Cf, can be thought of as the diffusion rate of the
neurotransmitter and as the average dissociation rate of the
neurotransmitter from the receptors, respectively. The net
conductance change following a single presynaptic spike
resembles the double exponential wave in Eq. (9) (as noted
in Fig. 2(a)). This formalism implies that the conductance
does not saturate after a single spike, but does approach a
saturation level given a prolonged high firing rate or a rapid
burst of spikes. For this reason, it is the preferred form for
both strong driving synapses and for AHP currents. We refer
to it as the saturating differentials (SD) spike-dependent
signal.

2.3 Modeling spike-based after-hyperpolarization currents

Since fluctuations in somatic calcium concentrations
strongly match the timing of action potentials, and
after-hyperpolarization (AHP) currents are predominantly
carried by calcium-dependent potassium channels (Abel
et al. 2004; Lancaster and Adams 1986; Lee et al. 2005;
Prakriya et al. 1996), these currents are spike-dependent.
For the spike-based AHP cell model, individual AHP
currents are modeled by a wave of increased conductance
following each spike, as in Eq. (9), and follow the
equations:

IfAHP ¼ gfAHPgSDðt; tr;fAHP ; t f ;fAHP ;HsÞðEfAHP � VS Þ; ð18Þ

ImAHP ¼ gmAHPgSDðt; tr;mAHP; t f ;mAHP;HsÞðEmAHP � VSÞ; ð19Þ

and

IsAHP ¼ gsAHPgSDðt; tr;sAHP; t f ;sAHP;HsÞðEsAHP � VSÞ: ð20Þ

Since each AHP current within an individual cell has a
bounded conductance based, say, on channel density, then
during summation across the spiking history, this bound
must be enforced. Therefore, the spike-dependent signals
in Eqs. (18–20), take the saturating differentials form of
Eqs. (16) and (17) for their time course.

The parameters for the model match measurements
observed in mammalian neocortex by Lee et al. (2005)
and Storm (Storm 1987), and were selected because of the
experimental specificity provided by their studies (Table 3).
Figure 3(a) depicts the magnitude of the three AHP
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conductances over 1,000 ms following a spike on linear and
logarithmic scales and currents. Figure 3(b) depicts the
three AHP currents induced by a single spike with a
voltage clamp holding at −60 mV. These basal levels were
determined by measuring the amplitude difference in somatic
potential, Vs, between simulation of individual spikes with
and without each AHP current, as shown in Fig. 3(c–e), and
then changing conductances using a method of guess-and-
check until amplitudes approximately matched measure-
ments from physiological studies (Table 3).

2.4 Modeling after-hyperpolarization currents with calcium
dynamics

Another cell model is also considered, in which AHP
currents are controlled partly by calcium dynamics. Instead
of the spike-dependent AHPs, described by (18)–(20), the
specific physiological channels are introduced. Here,
calcium channels cause local calcium influx during spikes
that mediates the calcium-dependent portion of AHP
currents. Figure 3(e) depicts all the components of this
calcium-based AHP cell model.

Calcium currents Somatic calcium current is composed of
three calcium currents types, L-type, N-type and P-type,

which occur roughly in equal proportion in cortical cells
(Lorenzon and Foehring 1995):

ICa ¼ ILCa þ IPCa þ INCa: ð21Þ
The underlying channel structures have since been identi-

fied and labeled CaV1.3, CaV2.2, and CaV2.1, respectively.
T-type calcium currents are excluded from the model,
because they are observed in bursting, not regular, firing
neurons. Q-type and R-type are excluded, because informa-
tion about these currents in cortex is scarce and they appear
not to contribute significantly to Ca2+ current in neocortical
cells. All three currents follow the same form:

ILCa ¼ gLCamLCahLCagGHK ðVs; ½CaL �Þ; ð22Þ

INCa ¼ gNCamNCahNCagGHK ðVs; ½CaN �Þ; ð23Þ
and

IPCa ¼ gPCamPCahPCagGHK ðVs; ½CaP �Þ: ð24Þ

The GHK (Goldman-Hodgkin-Katz) current equation
(Goldman 1943; Hodgkin and Katz 1949) is employed,
rather than the previous Hodgkin & Huxley form, to
capture that these currents are sensitive to internal calcium,

(a)

(c) (d) (e)

(b)Fig. 2 Spike-dependent signals.
(a) Individual conductance
waves as a percentage of first
peak conductance where
Cr=1 ms and Cf=10 ms,
compared for the three spike-
dependent models (saturating
differentials, normalized expo-
nentials, and independent
exponentials). (b) Conductance
waves as in (a) with a stimula-
tion rate of 100 spikes/sec.
Synaptic models are distin-
guished by temporal summation
starting with the 2nd spike. (c,d)
Maximal conductance over
2000 ms as a percentage of the
first peak conductance with
spike trains up to (c) 100 spikes/
sec and (d) 1000 spikes/sec (e)
Maximal conductance as a
percentage of the first peak
conductance with slower time
constants Cr=10 ms and
Cf=100 ms
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notably such that calcium current decreases with increased
internal calcium:

gGHKðVs; ½Ca�Þ ¼ �0:213Vs
½Ca� � ½Cao�e�0:0325V

1� e�0:0325V
; ð25Þ

where the internal calcium concentration, [Cao], is set to
5 mM as per Lorenzon and Foehring (1995). The L-type,
N-type and P-type currents differ in the voltage threshold
of activation and in their inactivating properties. Activa-
tion and inactivation equations, shown in Table 2, are
derived from measurements of pyramidal cells in senso-
rimotor neocortex (Brown et al. 1993), and correspond to
other studies on calcium currents (Anwar et al. 2010;
Delcour et al. 1993; King and Meriney 2005; Lorenzon
and Foehring 1995; Luvisetto et al. 2004; Wilson et al.
2004).

Calcium dynamics Each AHP current exhibits a different
dependence on these calcium sources. This calcium-
dependent specificity of AHP currents was noted for mAHP
and sAHP by Pineda et al. (1998) and for fAHP by Sun et
al. (2003) and Loane et al. (2007). To capture this
specificity, the model includes local somatic calcium
concentrations near sources and a cytosolic calcium
concentration. The model of calcium dynamics is based
on previous models (Anwar et al. 2010; Barkai and
Hasselmo 1994; Canavier et al. 2007; Wang et al. 2003;
Wilson et al. 2004). The cytosolic calcium, [CaC] in mM,

follows the equation:

d½CaC�
dt

¼ bcð½CaR� � ½CaC�Þ þ dcð½CaL� � ½CaC�Þ

þdcð½CaN � � ½CaC�Þ þ dcð½CaP� � ½CaC�Þ

þ dSð½CaS � � ½CaC�Þ;

ð26Þ

which tends toward a resting calcium concentration, [CaR]=
10−6 mM=1 nM (Abel et al. 2004; Anwar et al. 2010;
Lorenzon and Foehring 1995), at a rate, bc=1/(80 ms). The
diffusion rate, δC=1/(800 ms), defines the exchange rate
between the other calcium concentration pools. Local
calcium concentrations, also in mM, are coupled to specific
calcium channel (L-, N-, P-type):

d½CaL�
dt

¼ fILCa � aL½CaL� þ dCð½CaC� � ½CaL�Þ; ð27Þ

d½CaN �
dt

¼ fINCa � aN ½CaN � þ dCð½CaC � � ½CaN �Þ

þ dSð½CaS � � ½CaN �Þ; ð28Þ
and

d½CaP�
dt

¼ fIPCa � aP½CaP� þ dCð½CaC� � ½CaP�Þ

þ dSð½CaS � � ½CaP�Þ ð29Þ

Table 3 Comparison of physiological AHP data with basal model parameters

Current Model or tissue, species Conductc

gAHP (pS)
Equilb EAHP

(mV)
Amplitude
(mV)

Rise Cr
(ms)

Fall Cf
(ms)

TTPa

(ms)
References

fAHP Spike-based 0.8 −65 6.7 0.1 2.0 0.6 n/a

Ca-based BK 0.9 −65 3.2 n/a n/a 0.8 n/a
A 0.98 −80

Rat Hippocampus n/a −65 7 n/a 2–5 0.9 (Storm 1987)

Human Neocortex n/a −65 n/a n/a n/a n/a (Lorenzon and Foehring 1992)

Cat Sensorimotor n/a −71 10 n/a n/a n/a (Schwindt et al. 1988a)

mAHP Spike-based 0.04 −97 2.7 18 164 50 n/a

Ca-based SK 0.032 −97 1.3 n/a n/a 60 n/a
M 0.036 −97

Rat Neocortex n/a −97 5.3 18 164 60 (Lee et al. 2005)

Human Neocortex n/a −93 1.6 n/a 38–60 n/a (Lorenzon and Foehring 1992)

Cat Sensorimotor n/a −100 n/a n/a n/a 112 (Schwindt et al. 1988a)

sAHP Spike-based Cell 0.02 −100 1.9d 225 2200 514 n/a

Ca-based Cell SK2 0.0156 −100 2.4d n/a n/a 502 n/a
SL 0.0172 −100

Rat Neocortex n/a −100 7.5d 225 3691 926 (Lee et al. 2005)

Cat Sensorimotor n/a −99 2.5d n/a n/a 774 (Schwindt et al. 1988a,b)

Human Neocortex n/a −87 1.8d n/a 687–999 n/a (Lorenzon and Foehring 1992)

a TTP = Time to peak; b Equil = Equilbrium; c Conduct = Conductance, d After 10 spikes
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where f=0.002 M/(pA*ms) scales influx from channels (Wang
et al. 2003), and the rates αL=1/(120 ms), αN=1/(360 ms), αP=
1/(160 ms) describe the speed of calcium removal by membrane
pumps. Cytosolic calcium diffuses gradually into a slow calcium
concentration pool, posited to be near sAHP channels:

d½CaS �
dt ¼ dSð½CaC� � ½CaS �Þ þ dSð½CaN � � ½CaS �Þ

þ dSð½CaP� � ½CaS �Þ
ð30Þ

with a slower diffusion rate δS=1/(3600 ms).

AHP currents AHP currents are predominantly calcium-
dependent potassium currents (Hotson and Prince 1980;
Lancaster and Adams 1986), but also partly calcium-
independent voltage potassium currents (Lorenzon and
Foehring 1992). Thus, each AHP current consists of a Ca-
dependent and Ca-independent term.

(a) (e)

(b)

(c) (d)

(f)

Fig. 3 Modeling of AHP physiology. (a) AHP conductances and (b)
current under voltage clamp at −60 mV from the spike-based AHP cell
model displayed on a linear scale and on a logarithmic scale. (c)
Current following a single spike for fAHP and mAHP currents, and
following 10 spikes for sAHP current. Results shown for spike-based
(solid line) and calcium-based (dashed line) AHP models. (d) Effect

on membrane voltage following a spike (difference between with and
without the AHP current) for fAHP and mAHP, and following 10
spikes for sAHP. (e) Diagram of the calcium-based AHP cell model,
dotted lines indicate calcium dependence of AHP channels. (f) Small
conductance potassium (SK) channel sequential transition where
numbers express transition rates in ms
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Fast AHP The calcium-dependent portion of the fAHP is
called the BK current (for Big conductance potassium
current):

IfAHP ¼ IBK þ IA; ð31Þ
and depends on influx from L-type and N-type channels
(Sun et al. 2003; Loane et al. 2007):

IBK ¼ gBK pBK ð½CaL� þ ½CaN �;VsÞðEBK � VsÞ: ð32Þ
Equations for its calcium-dependence are detailed by

Cox et al. (1997) based on analysis of physiological
recordings and used by Anwar et al. (2010). We also
employ their equations (see Table 2). The transient current,
called the “A” current, is believed to constitute the calcium-
independent portion of the fAHP current. The equation for
the A current follows other models (Barkai and Hasselmo
1994; Rhodes and Gray 1994; Traub et al. 2005; 2003):

IA ¼ gAmA
4hAðEA � VsÞ: ð33Þ

Medium AHP The calcium-dependent portion of the mAHP
is called the SK current (for Small conductance potassium
current):

ImAHP ¼ ISK þ IM : ð34Þ
We use a state-based gating scheme derived from cloned

rat SK channels (Hirschberg et al. 1998), but modified to be
based on the specific P-type calcium pool, [CaP] (Pineda et
al. 1998):

ISK ¼ gSK pSK ð½CaP�;VsÞðESK � VsÞ: ð35Þ
The gating pSK is the percentage of channels in the open

state, O1+O2, based on the sequential transition scheme,
depicted in Fig. 3(f). The channel population is originally
set to the lowest closed state (C1=1, other states=0). This
channel scheme has also been used in other models (Anwar
et al. 2010; Traub et al. 2005; 2003).

A potassium current, called the “M” current (for
Muscarinic), is thought to constitute the calcium-independent
portion of the mAHP. The equation for this current is based on
other models (Barkai and Hasselmo 1994; Rhodes and Gray
1994; Traub et al. 2005; 2003):

IM ¼ gMmM ðEM � VsÞ: ð36Þ

Slow AHP The calcium-dependent portion of the sAHP
might also be carried by SK, though this has been debated
(Abel et al. 2004). We use the same SK equations as for the
mAHP, except that it is dependent on the slow calcium
pool, [CaS], rather than [Cap] (Pineda et al. 1998):

IsAHP ¼ ISK2 þ ISL; ð37Þ

and

ISK2 ¼ gSK2pSK2ð½CaS �;VsÞðESK2 � VsÞ: ð38Þ

An unknown current constitutes the calcium independent
component of sAHP, so it is treated as spike-dependent:

ISL ¼ gSLgSDðt; tr;SL ; t f ;SL ;HsÞðESL � VsÞ; ð39Þ

where tr,SL=225 ms and t f,SL=2400 ms. The conductances
of each AHP channel, and the calcium pump and diffusion
rates in this calcium-based cell model were adjusted until
the time course and magnitude of each AHP roughly
matched those for the spike-based cell model. Figure 3(c,d)
compare the three AHPs of the two models with their
voltage and current traces.

2.5 Modeling acetylcholine modulation

We estimate the different intensities of cholinergic modula-
tion that correspond to behavioral or attentional states by
examining an array of experiments. These studies, dis-
played in Table 5, estimate the concentrations and relative
magnitudes of ACh release for different states. The majority
of the studies used a microdialysis technique to measure the
concentration of neurotransmitter, a technique known to
salvage only between 5 and 20% of the original concentra-
tion. When recovery percentages are reported, we adjusted
these estimates to compensate for this limitation by
dividing the reported concentration by the recovery
percentage to estimate the original concentration.

The novel technique of using choline-sensitive micro-
electrodes has produced data with high temporal resolu-
tion showing rapid increases in ACh during a presented
cue (Parikh et al. 2007). To convert these results from
transients above the mean into percentage changes for
comparison with other studies, we assumed (1) that basal
ACh concentrations in Parikh et al. (2007) are close to
measurements in Parikh and Sarter (2006) with the same rat
species, methodology, and lab; and (2) that the ratio of actual
ACh concentration to measured extracellular choline concen-
tration is about 0.083 (340 μM/4110 μM) based on a related
study (Köppen et al. 1996). This calculation parallels that
made for microdialysis with recovery percentages. For both
experimental techniques, we do not expect measurements to
be precise. Nor dowe note any significant conformity between
the two. Rather, we are concerned with relative fluctuations.

We also estimate the impact of increasing the cholinergic
intensity on the AHP currents by examining an array of
physiological studies. The physiology has shown that these
AHP currents differ both in degree of modulation and the
underlying mechanism of modulation.
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Slow AHP data Results for the sAHP modulation show that
application of acetylcholine and muscarinic agonists
reduces or entirely abolishes sAHP (Table 4). The mecha-
nism of cholinergic modulation of sAHP occurs indirectly
via muscarinic receptors mediated either partly by Ca2+/
calmodulin-dependent protein kinase II (Muller et al. 1992;
Pedarzani and Storm 1996) or by a guanine nucleotide
binding protein (or G protein) engaging with an unknown
phosphatase (Krause and Pedarzani 2000).

Medium AHP data Findings for the cholinergic modulation
of the mAHP current are mixed. Schwindt and colleagues
(Schwindt et al. 1988b) observed no effect on mAHP with
an application of 5 μM of muscarine to cat cortical cells.
However, later experiments showed a partial reduction of
mAHP conductance to about 70% of its basal value by
applying either 10 μM muscarine in human neocortex
(Lorenzon and Foehring 1992) or 40 μM carbachol in rat
hippocampus (Storm 1989). The mAHP current is consid-
ered to be carried mainly by SK calcium-dependent
potassium channels, which are generally distinguished by
their sensitivity to blockade by apamin. Recent findings
showed that focal application might enhance the mAHP
conductance in rat amygdala by boosting intracellular
calcium, while bath application causes a diminishing of
the current (Power and Sah 2008). However, this result uses
a novel approach to measure the current under cholinergic
stimulation and should be confirmed in other tissue samples
by other labs.

Fast AHP data Experiments on the cholinergic modulation
of the fAHP current have produced more conflicting results.
Early physiological studies reported no change in fAHP
conductance with the application of 50 μM of the
muscarinic agonist carbachol, but also fail to provide a
figure as evidence for this result (Lorenzon and Foehring
1992; Storm 1987). A variety of later work, albeit mainly
non-cortical or non-pyramidal, supports the hypothesis that
ACh stimulation causes an increase in fAHP conductance.
Stimulation with ACh elevates fAHP current via muscarinic
receptors in cancerous astrocytes of human neocortex
(Bordey et al. 2000) and amplifies fAHP currents via
nicotinic receptors in vestibular hair cells of pigs (Kong et
al. 2005). Similarly, in rat sympathetic neurons, BK
channels activate with calcium influx as a result of ACh
receptor activation (Prakriya et al. 1996; Prakriya and
Lingle 1999). Detailed physiology of BK calcium-
dependent potassium channels, the main carriers of the
fAHP, has helped to explain the effect. Activation of BK
channels depends jointly on the membrane voltage and two
binding sites for calcium, one of which is also sensitive to
cadmium (Schreiber and Salkoff 1997). Cholinergic stim-
ulation is, thus, presumed to release calcium from internal

stores to effectively promote BK channel activation and
increased fAHP conductance by causing a depolarizing
shift in the voltage-based activation curve. Additionally, BK
channels exhibit inactivation, which likewise is jointly
voltage- and calcium-dependent, and is believed to be
caused by blocking of the channel pore on the intracellular
side (Hicks and Marrion 1998), probably by movement of
its transmembrane β subunit (Wallner et al. 1999).

A detailed kinetic model, matched with physiological
results, has advanced a precise explanation of how
increased calcium causes a depolarizing shift in both the
activation and inactivation functions (Cox et al. 1997). This
implies that cholinergic stimulation raises fAHP conduc-
tance in a hyperpolarized membrane, and lowers fAHP
conductance in a depolarized membrane. Indeed, this effect
has been observed with a 10 μM application of muscarine
in rat neostriatum (Akins et al. 1990). The opposite effect
has been observed with a 0.1 μM application of acetylcho-
line in rat hippocampus (Nakajima et al. 1986). Nonethe-
less, at hyperpolarized membrane voltage near rest,
approximately −70 mV, it appears that both studies show
an increase in fAHP from the modulatory signal. In the
vestibular hair cells of the guinea pig, ACh-induced BK
currents exhibit a reversal potential of around −65 mV
(Kong et al. 2005; 2007). The studies from Kong and
colleagues are of particular interest, because they show
graded changes in BK current with rising levels of ACh.
Taken together, these findings support the hypothesis that
ACh increases fAHP in neocortical pyramidal under normal
conditions. The changes in magnitude for each AHP current
following application of acetylcholine or cholinergic ago-
nists are summarized quantitatively in Table 4.

Model AHP hypotheses Our model assumes ACh-induced
AHP changes and ACh intensities that generally concur
with this experimental data, shown in Tables 4 and 5,
respectively. By combining these estimates, we arrive at
five intensities of ACh modulation, labeled “Low”, “Bas-
al”, “Moderate”, “High” and “Very High”, with
corresponding states of different AHP conductances,
depicted in Table 6. Simulations were performed at these
five intensities.

2.6 Spiking stimulation and synaptic models

For stimulation, an input spike train is used to replicate in
vivo signaling. In particular, EPSPs recorded in single cells
exhibit a long tailed distribution of peak amplitudes and
show increased reliability of synaptic transmission with
increasing amplitude (Markram et al. 1997; Song et al.
2005). In other words, the excitatory synaptic inputs to a
single cell consist of several strong driving synapses
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amongst a sea of weak synapses. Because of this diversity
of synaptic strength, we evaluate the strong connection case
as homosynaptic stimulation, in which a spike train arrives
at a single synapse. In this homosynaptic case, the
connection strength is strong, the input frequency range is
low (~100 spikes/sec), and the synaptic model should
ideally account for limited postsynaptic receptors and
neurotransmitter saturation:

IAMPA ¼ gAMPAgSDðt; tr;AMPA ; t f ;AMPA ;HI ÞðEAMPA � VdÞ; ð40Þ

where gAMPA=2.5pS and gSD is the saturating differentials
waveform.

In contrast, we evaluate the weak connection case as
heterosynaptic stimulation, in which a spike train converges
on the cell across numerous independent synapses. In this
heterosynaptic case, the connection strengths are weak, the

input frequency range is high (~1000 spikes/sec), and the
synaptic model treats EPSPs independently; i.e., without a
saturation restriction:

IAMPA ¼ gAMPAgIE ðt; tr;AMPA ; t f ;AMPA ;HI ÞðEAMPA � VdÞ; ð41Þ

where gAMPA=0.1pS and gIE is the independent exponentials
waveform. This approach relies on the assumption that
spikes from non-driving inputs arrive at most individual
synapses at a low enough rate (e.g., less than 80 spikes/s)
and hence saturation complexities are negligible. Indeed,
average firing rate in cortex varies by cell type, region, and
layer, but excitatory cells normally stay within a low firing
range. For example, pyramidal neuronal firing in cortical
area V4 in rhesus macaque varies between about 4 Hz and
16 Hz depending, on whether preferred Gabor stimuli
entered the cell receptive field (Mitchell et al. 2007). We

Table 5 Behavioral correspondence to cholinergic intensities

Intensity Behavioral Event ACh Concentration Recovery
(Dialysis)

Species Tissue References

% Basal Estimate (nM)

Low n/a 50% 250 n/a Model n/a

SW Sleep 44% {150} n/a Cat Frontal Cortex (Marrosu et al. 1995)

SW Sleep 44% 0.72 {0.16} 22% Rat Thalamus (Williams et al. 1994)

Light phase 70% 33.5 n/a Rat Hippocampus (Crouzier et al. 2006)

Basal n/a 100% 500 n/a Model n/a

None 100% 400f, 4850e n/a Rat Frontoparietal (Parikh and Sarter 2006)

None 100% 400f, 4850e, f n/a Rat PFC (Parikh et al. 2007)

None 100% 3.6 {0.29} >8%

None 100% 340, 4110e 17% Rat Hippocampus (Köppen et al. 1996)

Wake Quiet 100% {344} n/a Cat Frontal Cortex (Marrosu et al. 1995)

None 100% 56 {8.4} 15% Rat Frontoparietal (Arnold et al. 2002)

Wake 100% 1.64 {0.36} 22% Rat Thalamus (Williams et al. 1994)

Dark phase 100% 47.8 n/a Rat Hippocampus (Crouzier et al. 2006)

Moderate n/a 150% 750 n/a Model n/a

Task 137% 550f, 6650e,f n/a Rat PFC (Parikh et al. 2007)

Task 190% 6.8 {0.55} >8%

Cue-evoked Misses 150% 600f, 7250e,f n/a

Listening to Bird Songs 122% {420} n/a Cat Frontal Cortex (Marrosu et al. 1995)

Fixed Interval 9 s 140% 78.4 {11.7} 15% Rat Frontoparietal (Arnold et al. 2002)

High n/a 200% 1000 n/a Model n/a

Cue-evoked Detections 182% 730, 8850e,f Rat PFC (Parikh et al. 2007)

Sustained Attention 220% 123 {18.5} 15% Rat Frontoparietal (Arnold et al. 2002)

Very High n/a 300% 1500 n/a Model n/a

{}Indicate raw micro dialysis values before correction with recovery percentage
eMeasurements of choline concentration which imply ACh concentration
f Speculated values based on 2 assumptions: (1) that basal ACh concentrations in (Parikh et al. 2007) are close to those from (Parikh and Sarter
2006) with the same rat species, methodology, and lab, and (2) that the ratio of actual ACh concentration to measured choline concentration is
0.083 (340 μM/4110 μM) based on (Köppen et al. 1996). See methods for details
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employ both cases to evaluate the impact of different forms
of input signaling.

With all synaptic models, the rise and fall rates of EPSPs
remain identical and their parameters are derived from
recordings of currents from pyramidal cells of rat prefrontal
cortex layer 2/3 (Povysheva et al. 2006). The parameters for
the AMPA current are EAMPA=0 mV, and time constants
tr,AMPA=0.76 ms and t f,AMPA=6.5 ms, which fall in a range
similar to other cortical experimental data; e.g., tr,AMPA=
0.9 ms and tf,AMPA=3.1 ms for current through AMPA
receptors in neocortical layer 4 pyramidal and interneuron
cells of the rat visual cortex (Watt et al. 2000) and tr,AMPA=
0.3 ms, tf,AMPA=2.2 ms for layer 1 neurons in rat visual
cortex (Hestrin and Armstrong 1996). We analyze both the
heterosynaptic and homosynaptic cases to evaluate whether
the results hold for both a signal input source (a single
presynaptic cell) and multiple convergent sources (multiple
presynaptic cells).

2.7 Mapping between parametric and operational space

A major target of this study is to examine the relation that is
mediated by the signal function between the parametric
space of a cell’s biophysical properties and the operational
space of its transformational properties. Because we are
concerned with evaluated the AHP currents, we distill the
parametric space into the strength of these currents. The
parametric space is then a non-negative vector space,
denoted G, that consists of three-dimensional vectors of
the AHP peak conductances:

*g ¼
g1
g2
g3

2
4

3
5 ¼

gfAHP

gmAHP

gsAHP

2
4

3
5: ð42Þ

For example, with this notation, the basal level of AHP
conductances can be denoted as:

*g
0
¼

0:80 pS
0:04 pS
0:02 pS

2
4

3
5: ð43Þ

The operational space is also treated as a non-
negative vector space, denoted Z, of three-dimensional

vectors whose entries characterize sigmoid signal shape;
namely:

*z ¼
z1
z2
z3

2
4

3
5 ¼

t
s
yM

2
4

3
5; ð44Þ

t, s, and yM denote the sigmoid threshold, slope and upper
asymptote, respectively. For each vector of parameters,
we ran simulations for 2000 simulated milliseconds in
duration, each stimulated by a regular spike train at a
specific input rate, and observed the average output spike
rate. Each input and output firing rate pair from each
simulation provided a data point in the transfer function.
The cell’s transfer function was then fit by minimizing the
root mean square error to the four-parameter function:

Qð yÞ ¼ y0 þ ðyM � y0Þ
1þ e�4sðy�tÞ=ðyM�y0Þ ; ð45Þ

where y0, yM, t, and s corresponds to lower asymptote, upper
asymptote, threshold, and slope, respectively. The lower
asymptote is excluded from operational space, because lower
asymptote was not significantly affected by changes in AHP
conductances. Nonetheless, it is necessary to include it in
Eq. (45) in order to obtain good fits of the sigmoid functions.

Having established both a parametric space of a cell’s
biophysical properties and an operational space of its
signaling, we can define for this cell model a mapping f
between the parametric space G and the operational space Z:

f : G ! Z: ð46Þ

The mapping f determines how changes in membrane
conductances map to the cell’s signaling. As an example, if
we apply the mapping f to the vector of basal levels of AHP
conductances, g0, from Eq. (43), this yields the main
features of our transfer function in the vector z0:

f ð*g
0
Þ ¼ *z

0
: ð47Þ

This definition provides a formalism to define the
properties of this mapping f, such as whether the conduc-
tance parameters control the transfer function shape in a
linear way.

ACh AHP Conductances (% of Basal)

Intensity % of Basal Conc (μM) gfAHP gmAHP gsAHP

Low 50 0.25 75 110 135

Basal 100 0.50 100 100 100

Moderate 150 0.75 125 90 65

High 200 1.00 150 80 30

Very High 250 1.25 175 70 0g

Table 6 Model AHP
conductances for cholinergic
intensities

gWe assume that AHPs do not
invert into ADPs
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All simulations were performed in MATLAB Simulink
with a 0.02 ms maximum variable step size using
Dormand-Prince integration on dual Intel Xeon quad-core
processors (8 CPUs) in a Windows XP x64 environment.

3 Results

3.1 Spike-dependent signals

An individual excitatory postsynaptic potential (EPSP)
occurs as a time-varying conductance wave after each
arriving presynaptic (or input) spike, while an after-
hyperpolarization (AHP) current results from a time-
varying conductance wave after each postsynaptic (or
output) spike. Because both the input signal and the AHP
currents are crucial aspects of the cell transfer function and
can be considered spike-dependent signals, we begin with
an analysis of three forms of these signals, as described in
Section 2.2. The three forms of spike-dependent signals
(independent exponentials, normalized exponentials, and
saturating differentials) were first compared in isolation by
evaluating Eqs. (14), (15), and (17), respectively, with tr=
1 ms and tf=10 ms. For all the models, a single spike
generates nearly identical waveforms (Fig. 2(a,b)). The
saturating differentials form has a slightly slower rise time,
while the independent exponentials form has a slightly
faster fall time. Given that the signals are driven by a spike
train with an interspike interval of 10 ms (i.e., a regular
stimulation rate of 100 spikes/sec), the second spike causes
a distinguishably different waveform for each spike-
dependent model (t=20–30 ms in Fig. 2(b)). With the
normalized exponentials model, the conductance peaks at
the same amplitude as it did during the first peak, while
with the other two models, the second peak exceeds the
first as a result of temporal summation.

Evaluation over 2,000 ms quantifies the effect further.
Here, the maximal conductance as a proportion of the peak
conductance following a single spike again distinguishes
the models. While conductance remains static for the
normalized exponentials model, the maximal conductance
increases with the input rate, especially beyond 50 spikes/
sec, for both the independent exponentials and the
saturating differentials models (Fig. 2(b,c)). In a low 0–
100 spikes/s range, these two models increase similarly
(Fig. 2(c)). In the high 0–1000 spikes/s range, conductance
for the independent exponentials model increases approx-
imately linearly with rate, whereas for the saturating
differentials model, the maximal conductance saturates
(Fig. 2(d)). If the signal is slowed by an order of magnitude
by setting tr=10 ms and tf=100 ms, temporal summation
begins at lower frequencies (Fig. 2(e)). The temporal
summation causes the independent exponentials form to

exhibit a greater slope in maximal conductance. The
maximal conductance for the normalized exponentials form
declines at high spike rates. Because Eq. (15) only accounts
for the last two spikes, new spikes terminate the rise in
conductance from previous spikes. The saturating differ-
entials form asymptotes to the same conductance as with
the faster time constants.

The results of the analysis of spike-dependent signals
was used to select which of the three forms to use for both
input signals and AHP currents in the subsequent cell
simulations. Since the saturating differentials form
approaches a saturation level given a prolonged high firing
rate, yet does not decline at very high firing rates as the
normalized exponentials form does, we selected the
saturating differentials form for the spike-modulated AHP
currents to portray the saturation of a limited channel
resource. These equations are detailed in Sections 2.3.

For synaptic input, the saturation of channel capacity
depends on whether the input arrives at an individual
synapse—that is, homosynaptically—or at multiple inde-
pendent synapses—that is, heterosynaptically. The saturat-
ing differentials form was chosen for the homosynaptic
case, since we expect synaptic saturation. The normalized
exponentials form was chosen for the heterosynaptic case,
since we do not expect synaptic saturation if spikes arrive
from independent non-bursting source cells. This is further
detailed with equations in Sections 2.6.

3.2 Spike-based vs calcium-based AHP

For both the spike-based and calcium-based AHP cell
models, conductances and other parameters for each AHP
current were adjusted until peak amplitudes (mV), rise time,
and fall time constants were comparable to physiological
measurements (see Section 2.4 and Table 3). The calcium-
based model depicted in Fig. 3(e) was also tuned to have
similar temporal profiles to the spike-based model for all
three AHP currents (Fig. 3(c,d)). Notably, the mAHP and
sAHP current in the calcium-based model use the same SK
channel activation and inactivation, and their time courses are
distinguished by the calcium source on which they depend.

We compared the calcium accumulation and the conse-
quent rise in sAHP conductance for the calcium-based cell
model with data from pyramidal layer 2/3 cells of rat
neocortex (Abel et al. 2004). Accumulation of somatic
calcium, evaluated as the sum of [CaC] and [CaS] in the
calcium-based cell model, over the course of 50 stimulation
spikes at either 20 spikes/sec and 50 spikes/sec had a
escalating profile that is comparable with neocortical data,
albeit with a slighter faster decay (Fig. 4(a,b)). Since sAHP
is dependent on this calcium accumulation, we expect to
observe a consequent rise in sAHP amplitude. The sAHP
amplitude (measured as voltage in mV for a cell with sAHP
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subtracted from a cell without sAHP) does rise depending
on the number of induced spikes at 50 spikes/sec for both
the spike-based and calcium-based cell model (Fig. 4(c)).
Both models exhibit a higher sAHP amplitude compared
with measurements from neocortical data (Abel et al.
2004). Nonetheless, the profiles are qualitatively similar.
After normalization, the curvature for the calcium-based
cell model is closer to the data than that for the spike-
based model.

3.3 Sigmoid transfer function and stimulation comparison

To test the responsiveness of the cell models, we
stimulated both with an current injected into the distal
dendrite (Fig. 5(a)), and evaluated the transfer function of
the cell with basal physiological levels of fAHP, mAHP
and sAHP currents. Simulations led to transfer functions
of an asymmetric sigmoidal form. The spiking models
were stimulated homosynaptically, that is with saturating
differentials synapses and with strong (2.5 pS) peak
AMPA conductance over a low input range (0–100
spikes/s). This stimulation protocol generates a sigmoidal
transfer function with as input threshold of 32 spikes/s and
output asymptote of 80 spikes/s (see Fig. 5(b)). The

spiking models were also stimulated heterosynaptically,
that is with independent exponentials synapses and with
weak (0.1 pS) peak AMPA conductance over a high input
range (0–1000 spikes/s). This generates sigmoidal transfer
functions with an input threshold of 220 spikes/s and an
output asymptote of 75 spikes/s (Fig. 5(c)). Excitability
across these conditions is similar for the spike-based AHP
model (solid line) and for the calcium-based AHP model
(dashed line).

3.4 Individual AHP effects and asymptote conservation

All AHP currents tested affect the asymptote, or
maximum value, of the sigmoid signal function. Reduc-
tion of the fAHP current raises the asymptote, thereby
also causing an increased slope (Fig. 6(a)). Reduction of
the mAHP current reduces the region near the point of
inflection or threshold more than the other two currents,
but does so while simultaneously increasing the slope and
asymptote (Fig. 6(b)). Finally, reduction of the sAHP
current affects mainly the lower range of the transfer
function where the output firing rate is low, decreasing
threshold and slope (Fig. 6(c)). To quantify the changes in
the asymptote, we evaluate the variable yM in Eq. (27),
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Neocortical DataFig. 4 Calcium accumulation
and rise in sAHP. (a,b) Accu-
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calcium-based cell model
(leftside) compared with pyra-
midal layer 2/3 cells from rat
neocortex (rightside; Abel et al.
2004) during 50 spikes at (a) 20
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which is the asymptote resulting from a regression fit of
the transfer functions in Fig. 6(a–c). We observe how this

value changes, ΔyM, with respect to changes in the
conductances of the fAHP current, ΔgfAHP, the mAHP

(a) (b) (c)

Fig. 5 Sigmoid transfer function and stimulation comparison. (a)
Output firing rate as a function of the current injection into the distal
dendrite. (b) Transfer functions of both spiking models with basal
physiological levels of fAHP, mAHP and sAHP currents. Stimulated in
the low range (0–100 spikes/s) with strong (2.5 pS) AMPA

conductance and saturating differentials synapses (homosynaptically),
and (c) in the high range (0–1000 spikes/s) with weak (0.1 pS) AMPA
conductance and independent exponentials synapses (heterosynapti-
cally). (a–c) Solid line denotes the spike-based AHP model and
dashed line denote the calcium-based AHP model

(a)

(b)

(c)

(d)

Fig. 6 Contribution of individual
AHP currents to transfer function.
Spiking model stimulated homo-
synaptically (left two columns)
and heterosynaptically (right two
columns), as Fig. 5(b) and c
respectively with (a) diminishing
fAHP currents, (b) diminishing
mAHP currents and (c) dimin-
ishing sAHP currents. Inlaid
plots show the change in asymp-
tote of transfer function, mea-
sured by sigmoidal curve fits, as
a function of conductance change
for each AHP current. Solid line
denotes the spike-based AHP
model and dashed line denote the
calcium-based AHP model. (d)
Conservation of output asymp-
tote with changes to AHP cur-
rents limited to two different
pairs, fAHP and mAHP. This
example uses the calcium-based
model
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current,ΔgmAHP and the sAHP current, ΔgsAHP. The values
of yM as a function of gfAHP, while gmAHP and gsAHP remain
constant, can be fit with a linear regression:

yM ¼ Af gfAHP þ Bf : ð48Þ

Likewise, we can fit yM as a function of gmAHP and gsAHP:

yM ¼ AmgmAHP þ Bm ð49Þ
and

yM ¼ AsgsAHP þ Bs : ð50Þ
With the simulations depicted in Fig. 6, we compute that

Af=−11, Am=−51, As=−28 for the spike-based AHP model
and Af=−7.7, Am=−41, As=−43 for the calcium-based
AHP model. The derivatives of Eqs. (48–50) produce
estimates of how changes in AHP conductances will effect
the asymptote:

$yM ¼ Af $gfAHP ; ð51Þ

$yM ¼ Am $gmAHP ; ð52Þ
and

$yM ¼ As$gsAHP : ð53Þ

Since we expect these changes to act roughly independently
within a close range around the basal state, Eqs. (51–53) can
then be combined into a generalized form:

$yM ¼ Af $gfAHP þ Am$gmAHP þ As$gsAHP : ð54Þ

AHP conversation law The intrinsic properties of the cell
are known to change in a homeostatic way to maintain the
output firing range (Turrigiano et al. 1994), and some data
suggest that AHP currents might play a role in this
homeostasis of output rate (Karmarkar and Buonomano
2006; Santini et al. 2008). Therefore, we ask whether the
output asymptote could be conserved as the three AHP
currents change collectively. With the relation expressed by
Eq. (54), we can immediately conjecture what parametric
manipulations of the conductances will conserve the
asymptote of the output firing rate. By setting Δ yM=0,
this yields a conservation law for this property; namely:

Af $gfAHP þ Am$gmAHP þ As$gsAHP ¼ 0 ð55Þ

implies that the asymptote does not change. If this equation
holds for small changes in AHP, then it represents a local
linearity (and a local homomorphism) between parametric
changes and the operational space of constant ym. Since, all
the coefficients, evaluated numerically, have the same sign,

this establishes a balancing act. For example, when one
AHP conductances rises, another one must decrease if the
output asymptote of the cell is to be the same firing rate.
Formally, we can break Eq. (55) into sub-equations by
considering the conductances in pairs, and setting ΔgfAHP,
ΔgmAHP, or ΔgsAHP each to zero:

$gfAHP ¼ ðAm=Af Þ$gmAHP ; ð56Þ

$gfAHP ¼ ðAs=Af Þ$gsAHP ; ð57Þ
and

$gsAHP ¼ ðAm=AsÞ$gmAHP : ð58Þ

Equations (52–54) can then be used individually or in
combination to maintain the asymptote. For instance, if the
mAHP conductance increased, then the sAHP conductance
could decrease in ratio governed by Eq. (58), while the
fAHP conductance remained the same. Figure 6(d) con-
firms this analysis by showing that changes in pairs
governed by Eqs. (56–58) maintain the asymptote in the
three plots, respectively.

3.5 Threshold and slope transformations

Next, we assess the capability of AHP currents to control
transfer functions. The analysis is done independently from
Acetylcholine or other neuromodulatory signals, but is
partly meant to illustrate the potential of such modulatory
signals. To do this, we search for parametric transforma-
tions on the three AHP conductances which affect a single
dimension in the operational space, either the threshold or
slope of the transfer function of the basal cell. “In other
words, we describe changes in AHP magnitudes that
primarily shift the threshold of the transfer function without
significantly altering the slope or the asymptote, or that
primarily change the slope without significantly shifting the
threshold. Unlike with the asymptote of the output, we are
not concerned with conservation or homeostasis, but rather
with the ability of the AHP currents to control the other two
main degrees of freedom of transfer function shape
independently. As previously discussed, we expect these
two degrees of freedom to be pivotal in determining the
quenching threshold and thus the amount of contrast
enhancement when spiking cells with these sigmoid signal
shapes interact in a network, based on the foundational
theorems and simulations Grossberg and colleagues (e.g.,
Grossberg 1973, 1980; Grossberg and Levine 1975).

These two primary operations for the sigmoid shape,
which shift the threshold and alter slope, we will abstractly
call T and S, respectively. Formally, we seek to demonstrate,
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at least within a local range, that there exists a corresponding
parametric transformation Tg that consistently maps (via our
functional mapping f from Eq. (46)) to a threshold shift Tz
and determine whether the transformation across the
mapping scales linearly by scaling factor A:

f � ATg ¼ ATz � f ; ð59Þ

where � denotes the function composition, that is the
application of one function to the results of another, ðh � f Þ�
ð*gÞ ¼ hðf ð*gÞÞ for all *g in G. Conceptually, the mapping f
captures how changes in membrane conductances (or
parametric space G) map to cell signaling (operational
space Z). Applying the mapping f to a vector of AHP
conductances, g, from Eq. (42), this yields the main
features of our transfer function in the vector z:

f ð*gÞ ¼ *z: ð60Þ

Tz in operational space is expressed as:

Tz :
*z ! *z 0 such that

z 0
1

z 0
2

z 0
3

2
664

3
775 ¼

z1

z2

z3

2
664

3
775þ

T$z

0

0

2
664

3
775: ð61Þ

Similarly, we seek to demonstrate, again within a local
range, that there exists a parametric transformation Sg that
consistently maps (via the function mapping f ) to a slope
change Sz by a scaling factor B:

f � BSg ¼ BSz � f ; ð62Þ
where Sz in operational space is expressed:

Sz :
*z ! *z 0 such that

z 0
1

z 0
2

z 0
3

2
664

3
775 ¼

z1

z2

z3

2
664

3
775þ

0

S$z

0

2
664

3
775: ð63Þ

In so doing, we assume that purely translational affine
transformations, fairly basic operations, will act as suffi-
cient parametric transformations to roughly satisfy (60)–
(63), and denote them:

Tg :
*g ! *g0 such that

g 0
1

g 0
2

g 0
3

2
664

3
775 ¼

g1

g2

g3

2
664

3
775þ

Tg1

Tg2

Tg3

2
664

3
775; ð64Þ

and

Sg :
*g ! *g0 such that

g 0
1

g 0
2

g 0
3

2
664

3
775 ¼

g1

g2

g3

2
664

3
775þ

Sg1

Sg2

Sg3

2
664

3
775: ð65Þ

We find an operation Tg for a rightward shift in the
threshold of the transfer function for the spike-based AHP
model to be (Fig. 7(a)):

Tg1

Tg2

Tg3

2
664

3
775 ¼

�0:360pS

0:0020pS

0:0003pS

2
664

3
775: ð66Þ

Applying this operation two times (A=2 for Eq. (59),
such that fAHP, mAHP and sAHP were 10%, 110% and
103% of basal conductance respectively), the sigmoid
threshold shifts to 114% of basal level (slope to 81%,
asymptote to 99%). For an increase in the slope of the
transfer function for the spike-based AHP model, we find
an operation Sg to be (Fig. 7(b)):

Sg1

Sg2

Sg3

2
664

3
775 ¼

0:004pS

�0:008pS

0:008pS

2
664

3
775: ð67Þ

Applying this operation two times (B=2 for Eq. (62),
such that fAHP, mAHP and sAHP were 101%, 60% and
180% of basal conductance respectively), the sigmoid slope
steepens to 127% of basal level (threshold to 85.9%,
asymptote to 101%).

Ideally, the two operations T and S would act as
operators that exhibit three properties: linearity, indepen-
dence and orthogonality. Linearity implies that the effect of
the operations scale such that:

f � Tg ¼ Tz � f ! f � ATg ¼ ATz � f ð68Þ
and

f � Sg ¼ Sz � f ! f � BSg ¼ BSz � f : ð69Þ

Testing integer values of A and B (i.e. repetition of
operators) produces an upward curvature in threshold and
slope, (central inlaid plots in Fig. 7(a,b)), indicating that the
operators do not scale linearly.

3.6 Cholinergic modulation

We also evaluate the impact of cholinergic modulation on
the cell’s transfer function. Varying levels in Acetylcholine
cause changes in the AHP currents, which in turn affect the
transfer functions. Simulations were performed at five
intensities, “Low”, “Basal”, “Moderate”, “High” and “Very
High”, (shown in Table 6), which correspond to relative
behavioral ACh concentrations (detailed in Table 5). In-
creased ACh causes a leftward threshold shift under both
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synaptic stimulation approaches (81%, 66%, and 58% of
basal threshold for “Moderate”, “High”, and “Very High”
ACh, respectively, with the spike-based AHP model, and
79%, 64%, and 55% with the calcium-based AHP model).
There was also a change in slope, which depending on the
synaptic stimulation (227% for spike-based, 252% for
calcium-based models under “Very High” ACh) and an
increase in the asymptote of the transfer function (147% for
spike-based, 164% for calcium-based models under “Very
High” ACh). The reverse effect of increased threshold
occurs with “Low” ACh intensity (125%, 41%, 70% of
basal threshold, slope, and asymptote, respectively, for the
spike-based AHP cell). Figure 8 depicts the full results for
ACh intensities.

We note that, because all three AHP conductances
change in the same direction for cholinergic modulation
as for the abstracted threshold translation operator Tg, both
manipulations produce a similar shift. However, since the
relative proportions differ, the effect of ACh modulation is
not purely threshold translation.

4 Discussion

4.1 AHP effects on sigmoid signalling

The work presented here incorporates a broad set of
observed AHP currents of differing timescales to demon-
strate how the collective state of the AHP conductances can
control the shape of sigmoidal signal functions by translat-
ing its threshold and changing its slope independently and
orthogonally. The specific conditions for a leftward thresh-
old shift were established to occur when the sAHP and
mAHP currents decrease, while fAHP current increases, at
the appropriate ratios. Likewise, we determine the con-
ditions, under which the slope of the transfer function
becomes steeper, to be when the sAHP and fAHP currents
decrease, while mAHP current increases, at the appropriate
ratios. The analysis defines threshold and slope manipu-
lations as operations, which occur in the parametric space
of cell membrane conductances, and can be mapped onto
the operational space of cell signaling, described by

(a)

(b)

(c)

(d)

Fig. 7 Threshold and Slope
Change. Transfer function of
the spiked-based AHP cell (a)
under variation in threshold
translation and (b) under varia-
tion in slope, shown for homo-
synaptic stimulation (left middle
column) and heterosynaptic
stimulation (right middle col-
umn). Inlaid plots depict the
threshold/slope as measured by
fit as a function of the paramet-
ric operation magnitude (A or B
from Eqs. (59) and (62)). The
right column quantifies how
pure the operations are in their
respective dimensions with
black corresponding to homosy-
naptic stimulation and grey
corresponding to heterosynaptic
stimulation. (c,d) The same as
(a,b) instead with the spiked-
based AHP cell
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threshold, slope and asymptote. Applying these operations
in combination in the parametric space, we observe the
effect after the mapping into the operational space to
behave roughly orthogonally within a range around basal
conditions.

The computational model presented herein further
quantifies the effects on cholinergic modulation on the
shape of the transfer function. Simulation of cholinergic
modulation over the full array of physiologically observed
AHP currents predominantly cause a translation of the
threshold in cell sigmoidal transfer function alongside an
asymptote and slope change rather than just a gain in cell
excitability. This provides additional detail beyond the
traditional description, which lumps distinct AHP currents
together, shown in other models to cause an increased gain
on sensory input (Giocomo and Hasselmo 2007; Sarter et
al. 2005). The aforementioned model of pyramidal cells
from piriform cortex (Barkai and Hasselmo 1994), for
example, represents ACh modulation as a decrease in a
single AHP current and an m-current. Similarly, a model of
cells in primary visual cortex by Wang and colleagues does
include both a Na+-dependent K+ current and a Ca2+-
dependent K+ current to explain adaptation on two different

timescales (Wang et al. 2003). In summary though, these
models do not account for the full set of observed AHP
currents, nor do they quantify the relative changes in
threshold, slope and asymptote of signaling under different
cholinergic stimulation intensities.

The results show how parametric space of cell membrane
conductances can be mapped onto the operational space of
cell signaling, as described by threshold, slope and asymptote
of the transfer function. Understanding how membrane
properties affect the dynamics of individual cells is a chief
concern for both neural modelers and neurophysiologists.
Several studies have tackled the problem of describing how
biophysical cell parameters determine functional behaviors of
spiking neuron models. For instance, Prinz et al. (2003)
characterized steady state behavior of compartment models as
either silent, tonically active, bursting, or non-periodic when
cell membrane conductances were varied over 68 permuta-
tions. In this and related work on exploring the parametric
space of spiking neurons (Taylor et al. 2006; Van Geit et al.
2007; Weaver and Wearne 2008), model neurons were
stimulated with injection currents or holding voltages to
emulate physiological techniques like electrode stimulation
and voltage clamp. However, this approach often fails to

Fig. 8 Impact of cholinergic
intensity on AHP and cell
transfer function. As ACh
increases over 5 intensities
(“Low”, “Basal”, “Moderate”,
“High” “Very High”), AHP
conductances (left column) vary
in proportion, and transfer func-
tion shifts leftward for both
homosynaptic stimulation (left
middle column) and heterosy-
naptic stimulation (right middle
column). These effects are
quantified in operational space
(right column) with black and
gray corresponding to homosy-
naptic and heterosynaptic
stimulation respectively
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accurately portray the character of inputs that a cell may
receive in vivo, and it obscures potential signaling mecha-
nisms by warping temporal integration and by damping
oscillatory, rebound, and reverberant behaviors. We build
upon these ground breaking analyses by considering more
realistic synaptic models.

4.2 Vigilance control, hypothesis testing, and learned
generalization

It is crucial to understand not only which internal cell dynamics
determine the transfer function, but also how these dynamics
may be regulated by the larger system. This is noted especially
in memory systems, such as those described by Adaptive
Resonance Theory, or ART (Bullier et al. 1988; Carpenter and
Grossberg 1987, 1991; Engel et al. 2001; Fries et al. 2001;
Gao and Suga 1998; Grossberg 1980, 1999, 2003; Krupa et
al. 1999; Pollen 1999; Sillito et al. 1994; Usrey 2002).
Findings about the behavioral and pharmacological dynamics
of ACh (Descarries and Umbriaco 1995; Hsieh et al. 2000)
and its neuromodulatory effect on AHP currents (Giocomo
and Hasselmo 2007; McCormick and Williamson 1989;
Vogalis et al. 2003) provide evidence for how modulatory
signals could control cortical transfer functions for mode
shifts in cortical network dynamics. Indeed, the major cortical
effect of cholinergic innervations is considered to be the
reduction of after-hyperpolarization (AHP) currents, which
results in the increase of cell excitability (Saar et al. 2001). In
an ART system, augmented cortical excitability due to
predictive mismatch may cause reset of currently active
cognitive recognition codes, or categories, even in cases where
top-down feedbackmay earlier have partially matched bottom-
up input. As noted in Section 1.3, this increase of excitability
is mediated by the gain, called vigilance, of the process
whereby bottom-up input patterns are matched against
learned top-down expectations.

Grossberg and Versace (2008) proposed that the release of
ACh might increase vigilance and thereby promote search for
finer recognition categories in response to mismatch-inducing
environmental feedback. In a similar manner, vigilance might
increase in response to a release of ACh in response to stress
factors such as shock (Zhang et al. 2004), even when bottom-
up and top-down signals have a good match based on
similarity alone. Anatomical studies in monkeys, cats and rats
have established that the nonspecific thalamus (in particular,
the midline and central lateral thalamic nuclei), whose
activation is sensitive to the degree of mismatch between
cortical expectations and sensory stimuli (Kraus et al. 1994),
projects to the cholinergic nucleus basalis of Meynert (van
Der Werf et al. 2002), one of the main sources of cholinergic
innervations of the cerebral cortex. The terminals of
cholinergic pathways, as revealed by choline acetyltransferase
immunostaining, exhibit a low synaptic incidence of about

14% in cortex (Descarries and Umbriaco 1995; Mechawar et
al. 2002; Umbriaco et al. 1994). These terminals flood the
extracellular space with ACh diffusely and provide a global
signal to widely distributed cells.

Our analysis treats AHP changes as operations on cellular
signal transformation to better characterize the resulting cell
behavior and the impact of increased/decreased ACh on
network dynamics and learning. The results are in agreement
with other simulations and theoretical work suggesting that
AChmay act as a vigilance signal. In ART systems, bottom-up
processing is modulated by top-down learned expectations
that embody predictions or hypotheses that focus attention on
expected bottom-up stimuli. If the top-down expectation is a
close enough match to the bottom-up input pattern, the
network locks into a resonant state through a positive
feedback loop that dynamically links, or binds, the attended
features with their category via top-down attentional signals.
Within this resonant state, the network undergoes a refine-
ment of the expected categorical representation with the
current features during the learning episode. This match-
based learning process is the foundation of the stability of
learned cognitive codes in an ART model. Match-based
learning allows memories to change only when the input
from the external world is close enough to internal expect-
ations, or when something completely new occurs. In this
way, top-down attention carries out a form of “biased
competition” (Desimone 1998) that helps the selection of
critical features to be learned, and stabilizes synaptic plasticity
to prevent catastrophic forgetting.

A vigilance signal, by controlling the matching criterion in
target neural networks, can regulate how coarse (general) or
fine (concrete) learned categories will become to reflect
changing environmental statistics. Vigilance can change due
to internal factors, such as fatigue, or external factors, such as
surprise or punishment. A baseline vigilance determines how
large of a mismatch is initially tolerated before cortical
representations are reset and new representation are instated.
When a predictive error causes a mismatch to occur, the
vigilance level is increased just enough to drive a memory
search, or hypothesis testing, for a new recognition code. This
process is called match tracking (Carpenter and Grossberg
1987). Match tracking realizes a kind of minimax learning
rule; namely, it enables a learning system to minimize
predictive error while maximizing generalization. Choosing
a low baseline vigilance leads to the learning of general
categories and thus a minimum use of memory resources.

4.3 Sustained vs transient vigilance control and ACh

Vigilance operates over multiple timescales, from the rapid
transients during pattern matching processes to the contex-
tual or task-based setting of baseline vigilance levels.
Recently developed techniques in the measurement of
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ACh confirm that concentration transients can occur rapidly
at the timescale of a behavioral episode (Parikh et al. 2007;
Sarter et al. 2009). Meanwhile, at slower timescales, ACh
levels are known to oscillate with circadian rhythms
(Crouzier et al. 2006; Marrosu et al. 1995; Williams et al.
1994), increase with caffeine administration through its
action as an adenosine receptor antagonist (Carter et al.
1995; Kurokawa et al. 1996), and vary in a task-dependent
manner that correlates with attentional demands as con-
firmed by microdialysis (Arnold et al. 2002; Marrosu et al.
1995) and newer techniques (Parikh et al. 2007).

The largest fluctuations in vigilance may be expected
during tasks which require rapid learning of novel
information in an ART system. Indeed, activity of the
nucleus basalis of Meynert facilitates plasticity of cortical
maps both in primary auditory cortex (Kilgard and
Merzenich 1998) and in motor cortex (Ramanathan et al.
2009). Specifically, as a result of match tracking, we expect
the highest levels of vigilance, and consequently ACh, for
incorporating novel exemplars into memory during mis-
match processing, and lower levels of ACh for refining of
category representations during match episodes. This
depiction elucidates recent studies of the effects of
scopolamine on human memory formation which suggest
that high levels of ACh promote rapid encoding, whereas
low levels of ACh support consolidation (Rasch et al.
2006). Similar studies with scopolamine make the claim
that lowering ACh improves consolidation by preventing
possible interference with conflicting information (Winters
et al. 2007).

4.4 ACh modulation of learned category generality

ART further suggests that baseline vigilance signaling sets
the criterion for expectation mismatch and novelty detec-
tion. This baseline vigilance level indirectly determines
pattern or category specificity. Namely, with low baseline
vigilance, an ART system tends to form more general, or
abstract, categories over the feature space, while with high
baseline vigilance, the system forms more specific, or
concrete, categories. Correspondingly, object discrimination
studies in rats show that the cholinergic blocker scoplamine
reduces the novelty discrimination ratio (Ballaz 2009). ART
further suggests behavioral experiments that can distinguish
this learning specificity. For example, general category
representations may lead to failure to discriminate when a
task involves pattern interference; that is, featural overlap
across categories. Lesions in rats of the nucleus basalis of
Meynert have shown little impact on learning rate, except
when there is a high degree of interference between the
categories to be learned; that is, when categories share the
same features in a certain dimension (Botly and De Rosa
2007, 2009). Similarly, studies in humans show that

scopolamine, by blocking ACh, diminishes learning of
overlapping word pairs more than non-overlapping pairs
(Atri et al. 2004). Essentially, a lower vigilance causes the
system to permit a pattern match with a stimulus of
overlapping features, whereas a high vigilance might enable
detection of mismatch for the same stimulus. Associative
learning studies in rats with combinations of light and tone
have shown that the concentration of released ACh increases
more during negative patterning discrimination, in which an
individual stimulus (A, e.g. light) signals reward and a
compound stimulus (AB, e.g. light + tone) signals no reward,
than during elemental discrimination, in which one stimulus
(A, e.g. light) signals reward and another stimulus (B, e.g.
tone) signals no reward (Hata et al. 2007).

How does the cholinergic system manage to regulate
learned interference through its diffuse influence over the
thalamocortical hierarchy? Our model suggests that this
may occur in part via the modulation of the transfer
function threshold that, in turn, controls the degree of
competition in a target neural population, as demonstrated
in rate-based models (Grossberg and Levine 1975). One
possible mechanism is the regulation of oscillatory behavior
between cortical layers as suggested by Grossberg and
Versace (2008). The resultant asynchrony between neurons
promotes pattern differentiation, as observed in the primary
auditory cortex of the rat (Pandya et al. 2005). Further, this
cholinergic modulation may additionally control learning
by inducing persistent effects on AHP currents. In
concordance with this, attention-demanding learning tasks,
in which ACh is expected to play a role, cause long-term
changes in both fAHP conductance and sAHP conductance
(Matthews et al. 2009; Saar and Barkai 2003).

Architecturally, the cholinergic system operates within a
cortical hierarchy, which supports the type of top-down
attentional dynamics that are clarified by ART. For instance,
activation of cholinergic receptors in prefrontal cortex
indirectly increases ACh release in posterior parietal cortex,
though the reverse relationship does not occur (Nelson et al.
2005). Further, studies of auditory cortex on mice in vitro
have demonstrated a synaptic bias in cholinergic modula-
tion, which via muscarinic activation suppresses intra-
cortical synaptic communication, while exerting less
suppression of thalamocortical sensory signals (Hsieh et
al. 2000). A model of primary auditory cortex by Soto and
colleagues explores several possible network effects of
cholinergic modulation such as widening or narrowing of
excitatory and inhibitory connectivity (Soto et al. 2006).

Finally, the model presented here can be extended to
treat cases in which changes in AHP occur independently
from ACh modulation. Recent evidence shows that long-
term effects on AHP currents, which emerge during rule
learning tasks, often continue to manifest themselves after
the cholinergic stimulation has subsided (Saar et al. 2001).
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For example, fear conditioning increases sAHP currents,
but does not alter the magnitude of fAHP currents in the
prefrontal cortex of rats, leading to a habituation of both
output intensity and behavior (Santini et al. 2008). Recent
evidence has shown that stimulation with a mixture of
different neurotransmitters often produce the additive
combination of each individual modulatory effect (Satake
et al. 2008). Our model provides a foundation upon which
such extensions may be considered.
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