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Abstract Spike-wave discharges are a distinctive fea-
ture of epileptic seizures. So far, they have not been
reported in spatially extended neural field models. We
study a space-independent version of the Amari neural
field model with two competing inhibitory populations.
We show that this competition leads to robust spike-
wave dynamics if the inhibitory populations operate
on different time-scales. The spike-wave oscillations
present a fold/homoclinic type bursting. From this re-
sult we predict parameters of the extended Amari sys-
tem where spike-wave oscillations produce a spatially
homogeneous pattern. We propose this mechanism as
a prototype of macroscopic epileptic spike-wave dis-
charges. To our knowledge this is the first example
of robust spike-wave patterns in a spatially extended
neural field model.
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1 Introduction

Spike-wave discharges (SWD) are a striking nonlinear
phenomenon in electroencephalogram (EEG) which
occur frequently in epileptic disorders, especially in
children, and are not well-understood in terms of its
spatio-temporal features (for a review see Blumenfeld
2005). SWD are known to be electrographical corre-
lates of generalised epileptic seizures, specifically ab-
sence seizures (Sadleir et al. 2006) but also other types
like myoclonic seizures (Asconapé and Penry 1984),
seizures of the Lennox-Gastaut type (see e.g. Aicardi
1988), the clonic part of primary generalised tonic
clonic seizures, and are also seen during the secondary
generalisation of complex partial seizures (for EEG
features see e.g. Stern and Engel 2005). Independent
of the seizure type, SWD are viewed as a fundamen-
tal pathological behavior of hypersynchronised neural
populations at the macroscopic level (McCormick and
Contreras 2001) which present a classic example of self-
organised nonlinear dynamics (da Silva et al. 2003).

Traditionally SWD were considered to be peri-
odic homogeneous oscillations on a macroscopic spa-
tial scale. Previous mathematical modelling approaches
therefore focussed exclusively on space independent
systems, using a small number of variables and ne-
glecting the spatial characteristics. For the case of ab-
sence seizures, Suffczynski et al. proposed a mesoscale
model which incorporated a mechanism of bistability
(Suffczynski et al. 2004). Robinson et al. proposed a
differently motivated thalamocortical model with ex-
plicit time delays to produce SWD (Robinson et al.
2002; Breakspear et al. 2006). More recently Marten
et al. (2009a, b) incorporated two separate inhibitory
mechanisms in a modified version of this model and
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reported the generation of spike-wave and polyspike-
wave oscillations due to the different time scales of
GABAA and GABAB inhibition. This was based on
a previous detailed neuronal model (Destexhe 1998;
Destexhe and Sejnowski 2001) which included in-
hibitory GABAA and GABAB receptor mediated
firing operating on two different inhibitory time scales.
The authors of Wendling et al. (2002) also assumed
two inhibitory populations operating at different time
scales to account for the transition to epileptic spiking,
but not SWD, in a mesoscopic model of temporal lobe
epilepsy.

However, mounting evidence suggests that there are
important spatial components in the so-called gener-
alised seizures with SWD. This has in particular led
to a discussion about the potentially focal onset of
allegedly primary generalised seizures with rapid sec-
ondary generalisation (Holmes et al. 2004; Holmes
2008). Evidence for this hypothesis comes from the
electrophysiological observation of focal cortical onset
of SWD in a genetic rat model of absence seizures
(Meeren et al. 2002; van Luijtelaar and Sitnikova
2006). A combination of EEG with fMRI studies led
Blumenfeld to propose specifically heterogeneous
thalamocortical networks involved in SWD genera-
tion (Blumenfeld 2005). The author proposed that an
improved understanding of the heterogeneous brain
regions involved might lead to a more effective treat-
ment of spike-wave seizures. In humans electrographic
studies (Rodin and Ancheta 1987), time series analysis
(Amor et al. 2005), EEG and MEG source localisation
(Westmijse et al. 2009) and combined EEG/fMRI imag-
ing studies (Moeller et al. 2008; Bai et al. 2010) have
revealed distinct spatial features of SWD presumably
arising from local cortical (or indeed thalamocortical)
networks, specifically including frontal and parietal
areas.

In this letter, we simplify the classical Amari neural
field model (Amari 1977) to a low dimensional ODE
and show that an extension of this ODE (similar to
the one used in Wendling et al. 2002) can generate
spike-wave discharges. This is achieved with a mech-
anism of deterministic bursting, defined as the repet-
itive alternation between fast spiking and a quiescent
phase (the “wave”) (Izhikhevich 2000). If this bursting
ODE is then converted back to a neural field equation
with three neural populations, spatially homogeneous
spike wave solutions are found for the first time in
such equations. Note that the clinical use of the term
“spike” refers to a specific EEG morphology (i.e. a
macroscopic phenomenon), not to the action potential
in single neurons. We propose our model as a prototype
for robust macroscopic SWD.

2 ODE model

We start with an oscillatory model with two variables
based on the spatially extended neural field model
proposed in Amari (1977). The oscillator is constructed
in analogy with the Wilson–Cowan (WC) oscillator in
Borisyuk and Kirillov (1992). It is a two variable system
consisting of one excitatory and one inhibitory variable
and is capable of a (dynamic) instability to generate
periodic oscillations (see below). Following Wendling
et al. (2002), we expand this model by a second in-
hibitory variable (or population in the context of neural
mass modelling) and assume it to operate at a time scale
that is slower than that of the original inhibitory popu-
lation. The resulting three variable ODE is given by:

Ė(t) = h1 − E + w1 f [E] − w2 f [I1] − w3 f [I2]
İ1(t) = (h2 − I1 + w4 f [E]) /τ1

İ2(t) = (h3 − I2 + w5 f [E]) /τ2 (1)

Where w1...5 are connectivity parameters, τ 1,2 are time
scale parameters and h1...3 are analogous to the addi-
tive constants used in the original Amari model. The
piecewise linear (PWL) function ( f ) is f = 0 if v ≤ −l;
f = (v + l)/2l if −l < v < l; and f = 1 if v ≥ l, where
l > 0 determines the steepness of the transition and v =
E, I1 or I2. This replaces the Heaviside step function
in the original Amari model and has been used by
other authors since Kilpatrick and Bressloff (2010). In
addition, it was shown that the Heaviside function does
not permit spike-wave-solution in a mean-field model
of SWD (Rodrigues et al. 2006). Qualitatively similar
results as the ones presented here can, in addition,
also be obtained with a smooth sigmoid function as
used by other authors (Jansen and Rit 1995, and see
Eq. (3) below). Incidentally, SWD dynamics can also
be found in the Wilson–Cowan oscillator (Wilson and
Cowan 1972) extended by a slow inhibitory variable
and also the Jansen and Rit model extended by a pair
of variables representing a slow inhibitory population
(Goodfellow et al. 2011).

3 Results

Figure 1(a) shows a bifurcation diagram of the fast
two variable subsystem (E, I1) in Eq. (1) with w3 = 0,
scanning parameter h1. Limit cycle oscillations around
an unstable focus are found as the only attracting solu-
tion in the displayed region as long as h1 < −0.05. As
h1 is increased the limit cycle disappears at h1 ≈ 0.1
in a homoclinic bifurcation (labelled Crit. 1) caused
by its collision with the stable manifold of the saddle
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Fig. 1 (a) Bifurcation diagram of the fast subsystem E, I1 in
Eq. (1) with w3 = 0. Crit. 1 and Crit. 2 refer to bifurcation points.
The vertical dotted lines indicate the parameter values for which
the corresponding phase space diagrams are plotted in panels
(b)–(d). (b)–(d) Phase space representation of the vector fields
at distinct points of the bifurcation diagram in (a). (b) h1 = −0.1;
(c) h1 = 0.05; and (d) h1 = 0.15. Continuous lines are nullclines.
Filled (open) circles denote stable (unstable) fixed points. Bold
black line is the stable limit cycle. The stable fixed point is a node.
The unstable fixed points are a focus and saddle, respectively.
A complete table of parameters for all figures is provided as
supporting online material

(compare Fig. 1(c) and (d)). Beyond the homoclinic
bifurcation the only attractor is a stable node (see
Fig. 1(d)). If, starting from values where only the sta-
ble node exists, parameter h1 is decreased, the critical
situation labelled Crit. 2 is reached where the node dis-
appears in a collision with the saddle (a fold bifurcation,
compare Fig. 1(c) and (b)).

The bistable region (−0.05 < h1 < 0.1) fulfils the
criteria to generate bursting of type “fold/homoclinic”
as classified in Izhikhevich (2000). Thus, this type of
bursting (sometimes also referred to as “type 1” or
“square wave” bursting) can now be generated by
including the slow third variable to this two variable
system. When the third variable is included (w3 > 0),
the full model can display an autonomous transition
from the fast oscillatory state to the non-oscillatory
state and back again which apparently shifts parame-
ter h1 periodically between the monostable oscillatory
region (h1 < −0.05) and the monostable steady state

region (h1 > 0.1). With proper adjustment of the slow
time scale of the third variable the resulting dynamics
displays only one spike while in the oscillatory re-
gion, resulting in globally stable spike-wave discharges.
Figure 2(a) shows a bifurcation diagram of a scan in the
(h1, h2, h3) parameter space, where solutions with SWD
are displayed. The SWD region is found over a wide
range of parameter sets and is thus a robust behaviour
of Eq. (1). In the coloured version of the figure (online
only) it can be seen that in addition to single-spike
wave dynamics, there is also a region of multiple-spike-
wave discharges (two and three spikes, respectively).
This refers to the occurrence of multiple fast oscillatory
spikes between pseudo-steady state waves. In clinical
neurology, this is commonly referred to as polyspike-
wave discharges (pSWD).

A bifurcation structure that is qualitatively similar
to the one displayed in Fig. 2(a) (i.e. including SWD
and pSWD) is also found for other values of the time
scale parameters, connectivity parameters, and the pa-
rameters of the function f . In addition, it is found that
due to the symmetry of the PWL function f , a second
pair of fixed points equivalent to the saddle and node
in Fig. 1(c) and (d) is found for more negative values
of h2 (roughly between −3.5 and −4) which allows for
a second region of SWD similar to the one displayed
in Fig. 2(a). Importantly, we find that the region of
single spike-wave discharges is wide in the h1 direc-

(b)(a)

(c) (d)

Fig. 2 (a) Scan of h1, h2, h3 parameter space. SWD regions
are indicated by black dots. In the colour version (online only)
cyan dots indicate 2-spike-wave, red spots indicate 3-spike-wave.
(b) Bifurcation diagram scanning h1 where h2 = −1 and h3 = −2.
(c) Time series showing SWD in the mean of all populations
using h1 = 2 (dashed line in (b), other parameters as in (b)).
(d) Projection of spike-wave trajectory in (c) onto the E/I1 state
space
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tion as displayed in Fig. 2(b). Figure 2(b) also shows
that the SWD region is bracketed by small amplitude
oscillations for smaller h1 and simple large amplitude
oscillations and fixed point dynamics for larger h1. The
transition from large ampitude oscillations at h1 ≈ 2.7
is due to a false bifurcation (i.e. a smooth deformation
of the limit cycle as studied by Rodrigues et al. (2010)).

The model presented thus far is a spatially homo-
geneous ODE version of the original Amari model
with the addition of a second inhibitory population
operating at a different time scale and with the use of
a PWL function.

If we now include a spatial extension in the form
of “Mexican hat” connectivity as in the original Amari
model we can reconstruct a modified version of the
Amari equation which includes the second inhibitory
population:

˙E(i) = h1 − E(i) +
∑

j=1...n

w1(i − j) f [E( j)]

−
∑

j=1...n

w2(i − j) f [I1( j)]

−
∑

j=1...n

w3(i − j) f ([I2( j)]

˙I1(i) = (h2 − I1(i) + w4 f [E(i)]) /τ1

˙I2(i) = (h3 − I2(i) + w5 f [E(i)]) /τ2 (2)

The Mexican hat connectivity functions (w1...5) are
identical to those used by Amari, n is the number
of spatial locations. The connectivities of the slow
inhibitory population are implemented in analogy to
those of the fast inhibitory population. Simulations of
Eq. (2) were performed with periodic boundary condi-
tions for one and two spatial dimensions.

SWD was found to be present for many different
combinations of connectivity values. This is shown in
the bifurcation diagram Fig. 3(a) scanning h1 in the
case of one spatial dimension. For large values of h1

a fixed point can be observed, upon decreasing h1 to
the range 3 < h1 < 6.75 stable spike-wave oscillations
occur which are synchronised across the whole field
(labelled “S-W”). Decreasing h1 further results in the
break up of the synchronisation before the appearance
of a two-spike wave solution reminiscent of the pSWD
found in Eq. (1) (labelled in cyan in Fig. 2(a)). This is
denoted as “2S-W”. Decreasing h1 further, results in
desynchronised and synchronised oscillations, respec-
tively, before the appearance of another fixed point
with low values of the mean. Figure 3(a) was produced
using the PWL function and is thus comparable to
Fig. 2(b). Figure 3(b) (top and middle) is an exemplary

(a)

(b)

Fig. 3 (a) Bifurcation diagram showing extrema of the mean
of all locations in the spatially extended 1D model (2) using
the PWL function. Scanning h1 yields a region of synchronised
SWD (between 3 and 6.75) and 2-SWD (between 0.3 and 2.8).
(b) Upper panel (in colour online): time series of synchronised
SWD output of the excitatory population in Eq. (2) for h1 = 5 in
one spatial dimension with sigmoid transfer function (3). Middle:
time series of the mean of all populations in all locations. Same
simulation as the upper panel. Lower: 4 s of an EEG recording of
a patient with absence epilepsy taken from electrode C3

time series of the one dimensional system using a sig-
moid (Eq. (3)) rather than the PWL function.

f
(
E, I1,2

) = 1

1 + ς−E,I1,2
(3)

The figures show the highly synchronised activity
of the spatially extended system. The time series are
nearly identical for both PWL and sigmoid version,
confirming the robustness of this solution. The only
difference is that the former “square” shape of the wave
gives way to a more rounded wave component. Further
to this, the mean of all populations in all locations
shows the distinctive spike wave profile observed in the
one location study. This mean waveform is highly remi-
niscent of the waveform in the clinically recorded EEG,
an example of which is shown in Fig. 3(b) (bottom). In
Fig. 3(a), the SWD solution immediately borders the
fixed point solution for large values of h1. We thus have
a situation comparable to the one used in Breakspear
et al. (2006) and Marten et al. (2009a) to describe
transitions to absence seizure in a space-independent
model. In addition, we also found a transition from fast
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low-amplitude oscillations to SWD for some values of
h2 which is relevant as some authors consider cortical
background to be noisy fast oscillations (e.g. Jansen and
Rit 1995 and Wendling et al. 2002). Qualitatively sim-
ilar results of robust SWD and pSWD with the above
mentioned transitions were found in simulations of the
model with two spatial dimensions (results not shown).
All reported results were found to be stable in the
presence of added independent noise in all locations.
Thus, our model (3) allows to explain the transition
to SWD in the same manner as previous approaches,
except that we now have an explicit representation of
cortical locations.

4 Discussion

Perhaps the most striking property of typical absence
seizure EEG recordings is the high degree of spatio-
temporal synchronisation of the spike and wave dy-
namics. This, along with its characteristic waveform,
suggests the possibility of an underlying low dimen-
sional dynamic mechanism being the cause despite
the high dimensional complexity of resting state back-
ground EEG. To generate SWD we have used a
mechanism based on two inhibitory timescales similar
to what was introduced in previous modelling stud-
ies (Destexhe 1998; Marten et al. 2009a, b; Wendling
et al. 2002). The time courses of various inhibitory
synaptic processes in the neocortex have been shown
to be highly variable and span more than one order
of magnitude (Thomson and Deuchars 1997; Otis and
De Koninck 1993). However, the origin of the slow
timescale resulting from GABAB receptor activation
has recently been challenged (Bazhenov et al. 2008). It
is therefore possible that the slow process might also
be attributed to non-synaptic mechanisms which our
phenomenological model can also account for.

An indispensable requirement for a prototypic
model of spike wave is that its dynamics is robust and
can be found over a wide range of parameter space
because absence seizures tend to occur frequently
throughout the day, i.e. under varying environmental
conditions. This is found to be the case both in our low-
dimensional prototype (Eq. (1)) and in the extended
Amari model (2) in one and two spatial dimensions.

Given that spike wave oscillations are generally
thought to arise from both corticocortical and thalam-
ocortical interactions rather than cortical interactions
alone, a future study should now include thalamo-
cortical interactions to relate more closely to electro-
physiological knowledge (McCormick and Contreras
2001). This can be done starting from the three variable

model (2). The model (2) uses the widely used classical
Amari model as a basis and can now be extended
further to account for observed heterogeneities and
fragmentation of absence SWD or the more irregular
generalised SWD of myoclonic seizures or the Lennox–
Gastaut syndrome (Sadleir et al. 2006). Heterogene-
ity in the sense of patchy long range connections can
be modelled more realistically by using connectivity
estimates from diffusion weighted magnetic resonance
imaging (DW-MRI) of neocortical tissue (Hagmann
et al. 2007). This will then lead to a possible mecha-
nistic explanation of recent observations like localised
microseizures in normal and epileptic neocortical tissue
(Stead et al. 2010) and to predictions of the spatio-
temporal responses to local electric stimuli in humans
(David et al. 2010).

To summarise, we have demonstrated epileptic
spike-wave discharges in an extended version of
Amari’s neural field model. A slow inhibitory popula-
tion robustly generates SWD via a bursting mechanism
in a region of bistability of a fast oscillatory subsystem.
This is found both in a space independent ODE and
also in the spatially extended case. This has not been
reported thus far in spatially extended neural field
models at the macroscopic scale. Our model therefore
serves as a prototypic equation for future modelling of
clinical epileptic dynamics in time and space.
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