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Abstract Nonlinear biophysical properties of individ-
ual neurons are known to play a major role in the
nervous system, especially those active at subthresh-
old membrane potentials that integrate synaptic inputs
during action potential initiation. Previous electrophys-
iological studies have made use of a piecewise linear
characterization of voltage clamped neurons, which
consists of a sequence of linear admittances computed
at different voltage levels. In this paper, a fundamen-
tally new theory is developed in two stages. First, an-
alytical equations are derived for a multi-sinusoidal
voltage clamp of a Hodgkin–Huxley type model to
reveal the quadratic response at the ionic channel level.
Second, the resulting behavior is generalized to a novel
Hermitian neural operator, which uses an algebraic
formulation capturing the entire quadratic behavior of
a voltage clamped neuron. In addition, this operator
can also be used for a nonlinear identification analysis
directly applicable to experimental measurements. In
this case, a Hermitian matrix of interactions is built with
paired frequency probing measurements performed at
specific harmonic and interactive output frequencies.
More importantly, eigenanalysis of the neural operator
provides a concise signature of the voltage dependent
conductances determined by their particular distribu-
tion on the dendritic and somatic membrane regions of
neurons. Finally, the theory is concretely illustrated by
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an analysis of an experimentally measured vestibular
neuron, providing a remarkably compact description
of the quadratic responses involved in the nonlinear
processing underlying the control of eye position during
head rotation, namely the neural integrator.
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1 Introduction

In an innovative paper, FitzHugh (1983) derived ana-
lytically the nonlinear response to a single sinusoidal
stimulation for the voltage clamped (Hodgkin and
Huxley 1952) model. He showed that the steady-state
current response to a single sinusoidal frequency f
has harmonic components f, 2 f, 3 f, . . . This analysis
provided a quantitative interpretation of the harmonic
components in voltage clamped squid axons (Moore
et al. 1980).

However, the single sinusoidal stimulation is gener-
ally insufficient to characterize the nonlinear behavior
in neurons. In particular, it is unable to predict the
quadratic response to a double sinusoidal stimulation
of frequencies f1, f2 since additional intermodulation
products f1 + f2 and | f1 − f2| occur in the measured
membrane current. In this paper, a quadratic approxi-
mation of the neuronal response to a double sinusoidal
stimulation is derived analytically and extended to a
multi-sinusoidal stimulation.

This approach leads to the development of a
Quadratic Sinusoidal Analysis, referred to as QSA,
relying on matrix calculus and eigendecomposition to
provide a characterization of the nonlinear behavior
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from neuronal responses to a multi-sinusoidal stim-
ulation in the steady state. This method explores in
depth the behavior of individual neurons, which are
fundamentally nonlinear and cannot be described by
linear theory alone.

Previously, nonlinear systems analysis has been ex-
tensively applied to neural systems using extracellular
spike train measurements, however in this area rela-
tively little has been done with intracellular membrane
potential measurements. In this paper QSA is applied
to voltage clamp experiments by using nonoverlapping
frequencies, providing a new piecewise quadratic analy-
sis that not only incorporates linear analysis (Fishman
et al. 1977; Murphey et al. 1995; Mauro et al. 1970)
but adds second order nonlinearity. Fundamentally,
the context of this paper deals with single neuronal
membrane biophysics and not with a general nonlinear
system identification approach on spike discharge rates
in neural networks. The purpose of this paper is to
quantitatively measure single neuron nonlinear volt-
age dependent conductance properties up to thresh-
old membrane potentials that are under voltage clamp
control.

The development of the patch clamp and imaging
techniques have clearly shown that subthreshold volt-
age dependent channels throughout the dendritic tree
dynamically control the firing properties of neurons.
Two of the most important conductances for the control
of the frequency of action potential activity are the per-
sistent sodium and hyperpolarized activated ion chan-
nels. Previously, a multi-sinusoidal and dynamic clamp
study showed that the subthreshold gNaP channels
of one type of prepositus hypoglossi neurons (PHN)
directly controlled the firing rate (Idoux et al. 2008).
This was done by injecting virtual gNaP channels with
a dynamic clamp and restoring the firing pattern of the
PHN neurons whose gNaP channels had been pharma-
cologically blocked. The virtual gNaP conductance had
been previously determined from subthreshold mea-
surements on these neurons. Neuronal models derived
from these experiments have also been extended to
include action potential channels and thus simulate
both the subthrehold behavior and spike trains (Idoux
et al. 2006). Although QSA specifically avoids neurons
firing action potentials, it does characterize them during
the critical integrating states that lead to action po-
tentials, which consequently allows an analysis of how
neurons process synaptic inputs in order to finally reach
threshold.

Thus, the nonlinear experimental and theoretical
studies presented here provide a new quantitative volt-
age clamp analysis of intact neurons, even when a
space clamp is not possible. Furthermore, this is an

important contribution to the more general nonlinear
systems analysis using Volterra techniques that have
usually been applied to action potential data, generally
measured as point processes versus time. Although
current clamp subthreshold membrane potentials could
be used, the voltage clamp is used here because it is the
most effective way to rigorously control the membrane
potential and acquire data for quantitative analysis.

2 Theory

2.1 Double sinusoidal voltage clamp

The proposed model implements a minimal soma with
only one kinetic equation in order to simplify the calcu-
lations while preserving their physiological significance.
The parameters were selected to be consistent with
experimental data published in Idoux et al. (2008).

CV ′ = I − IL − IK − INa (1)

n′ = αn (1 − n) − βnn (2)

Here IL = gL (V − VL), IK = gKn (V − Vk) and
INa = gNam∞ (1 − n) (V − VNa) represent the leakage,
K+ and Na+ ionic currents respectively. V is the
imposed membrane potential, I the measured
current, n the gating variable for K+ and m∞ the
gating variable for Na+ at equilibrium (m′ = 0).
The other values are constant parameters : the
membrane capacitance C = 20.5 pF; the maximal
conductances gL = 1.37 nS, gK = 1.18 nS and
gNa = 0.64 nS; the reversal potentials VL = −53 mV,
VK = −87 mV and VNa = 77 mV for leakage, K+
and Na+ respectively. The functions αn and βn

depend on the variable V and their mathematical
expressions are fully described in Murphey et al.
(1995) for vm = −35 mV, sm = 0.056 mV−1,
vn = −39 mV, sn = 0.09 mV−1 and tn = 0.1 s when
defining αn = e2sn(V−vn)/ (2tn), βn = e−2sn(V−vn)/ (2tn)
and m∞ = 1/

(
1 + e−4sm(V−vm)

)
.

Fitzhugh imposes a single sinusoidal command
for the membrane potential V (t) = V0 + V1 cos (ω1t)
where V0 is the DC constant, V1 is the amplitude and
ω1 is the angular frequency. This can be extended to a
double sinusoidal command

V (t) = V0 + V1 cos (ω1t + φ1) + V2 cos (ω2t + φ2) (3)

where V1, V2 are the amplitudes, ω1, ω2 are the an-
gular frequencies and φ1, φ2 the phases. The phase
difference |φ2 − φ1| is especially important to ensure
that the two sine waves are uncorrelated. Also it
is necessary to have ω1 and ω2 distinct to avoid
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degenerate cases. The notations can be simplified
by putting c1 = cos (ω1t + φ1), c2 = cos (ω2t + φ2), s1 =
sin (ω1t + φ1) and s2 = sin (ω2t + φ2).

The goal is to determine an analytical expression for
the current I. In this paper, the solutions are limited to
a quadratic approximation, which is the minimal degree
of nonlinearity. Indeed, although neuronal responses
generally show higher degrees of nonlinearity, they can
be ignored if the stimulation amplitude is sufficiently
small.

The gating variable n can be approximated by a
quadratic polynomial near the steady state n0 with
respect to the input fluctuations amplitudes, V1 and V2:

n � n0 + V1n1 + V2n2 + V2
1 n11 + V2

2 n22 + V1V2n12 (4)

where n1, n2, n11, n22, and n12 are unknown functions
of time. Similarly, αn and βn can be approximated by
quadratic polynomials with respect to V1 and V2 after a
quadratic Taylor decomposition:

αn � αn (V0) + α′
n (V0) (V1c1 + V2c2)

+ α′′
n (V0)

2
(V1c1 + V2c2)

2

βn � βn (V0) + β ′
n (V0) (V1c1 + V2c2)

+ β ′′
n (V0)

2
(V1c1 + V2c2)

2

The approximated expressions of n, αn and βn are
polynomials in variables V1 and V2, which can be sub-
stituted into Eq. (2). Then, by identification with the
zero polynomial, the system reduces to a set of five
linear differential equations as well as the common
steady-state expression n0 = α0

α0+β0
:

n′
1 + λn1 + Ac1 = 0

n′
2 + λn2 + Ac2 = 0

n′
11 + λn11 + B1c2

1 + C1c1s1 = 0

n′
22 + λn22 + B2c2

2 + C2c2s2 = 0

n′
12 + λn12 + D12c1c2 + E1c2s1 + E2c1s2 = 0

where λ = αn (V0) + βn (V0) is constant, A is constant,
and B1 (ω1), B2 (ω2), C1 (ω1), C2 (ω2), D12 (ω1, ω2),
E1 (ω1) and E2 (ω2) are rational functions. The
details of these cumbersome expressions are not
important, except for their frequency content. From
trigonometric calculus, c1, c2, c2

1, c2
2 contain frequencies

ω1, ω2, 2ω1, 2ω2, respectively, and c1c2, c2s1, c1s2

contain |ω1 ± ω2|. The five differential equations
being linear, their stationary solutions must preserve
the frequencies, namely the functions n1, n2, n11,
n22, n12 are associated with the frequencies ω1,

ω2, 2ω1, 2ω2, |ω1 ± ω2|, respectively. This remark
is the fundamental principle of the QSA method,
namely these are the response frequencies that
characterize the nonlinear behavior. These differential
equations were solved by MATHEMATICA 7
(Wolfram Research, Champaign, IL, USA) after
transformation into algebraic equations by the Laplace
transform. The transient terms like e−t(αn(V0)+βn(V0))

were ignored to retain only stationary solutions.
The current I can also be approximated by a

quadratic polynomial near the steady state I0 with re-
spect to the input amplitudes V1 and V2:

I � I0 + V1 I1 + V2 I2 + V2
1 I11 + V2

2 I22 + V1V2 I12 (5)

The expressions of I1, I2, I11, I22 and I12 are directly
determined by polynomial identification from Eq. (1)
after substitution of n by its quadratic polynomial ap-
proximation (Eq. (4)). Similarly, I1, I2, I11, I22 and I12

are associated with the frequencies ω1, ω2, 2ω1, 2ω2 and
|ω1 ± ω2|, respectively.

2.2 Multi-sinusoidal voltage clamp

For a single sinusoidal voltage clamp, the frequency
space is described by one variable ω1. For a double sinu-
soidal voltage clamp, the frequency space is described
by two variables ω1 and ω2. If each variable describes
N frequencies, then 1

2 N (N + 1) pairs of frequencies
are required to probe the quadratic neuronal response.
For instance, N = 10 would require 55 experiments for
only one voltage level and stimulus amplitude. This
would be experimentally not reasonable since an exces-
sively long recording duration for a whole cell voltage
clamped neuron would be required.

A solution consists of computing the quadratic re-
sponse for all pairs in parallel instead of sequentially.
For this, the double sinusoidal command can be ex-
tended to a multi-sinusoidal command as follows

V (t) = V0 +
N∑

i=1

Vi cos (ωit + φi) (6)

The quadratic polynomials in the two variables of Eqs.
(4) and (5) have to be extended to quadratic polyno-
mials in several variables. The current response is then
approximated by

I � I0 +
N∑

i=1

Vi Ii +
N∑

i=1

V2
i Iii +

N∑

i=1

N∑

j=i+1

ViV jIij (7)

The coefficients Ii, Iii, Iij are determined by polynomial
identification as in the previous section. In particular,
it can be shown that for all Vi = 0 except Vk �= 0 and
Vl �= 0 (k �= l) the multi-sinusoidal current of Eq. (7)
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coincides with the double sinusoidal current of Eq. (5).
In practice however, the analytical expression of Eq. (7)
is more simply constructed by looping the double sinu-
soidal voltage clamp over all the frequency pairs {i, j}.
A result of this algorithm is illustrated (Fig. 1(a)) for
the frequency set {0.2, 0.8, 2, 3.4, 5.8, 10.4, 13.4, 17.8}
(in Hertz) with sinusoidal amplitudes equal to 0.5 mV
and randomized phases. The voltage command has a
mean of V0 = −43 mV and standard deviation 0.99 mV.
The quadratic terms of I (t) are required to accurately
describe the neuronal response, which clearly cannot be
done by the usual linear analysis.

2.3 Linear and quadratic behavior

The multi-sinusoidal voltage clamp formulas (6) and (7)
can be rewritten in matrix form in order to simplify
the calculations, and further to analyse experiments.
It is well known from Fourier analysis that complex
exponentials are optimal to represent stationary sig-
nals. More precisely, for an experiment of duration T
(in seconds), the elementary wave functions ek (t) =
ei2πkt/T are able to reconstruct V (t) and I (t) by lin-
ear superposition. The stimulation frequencies being
integer multiples of 2π/T, they can be denoted by
ωi = 2πni/T where i is an index describing the set � =
{−N, . . . , −1, +1, . . . , +N}. Also, by convention n−i =
−ni. The multi-sinusoidal voltage command can be di-
rectly written as a superposition of elementary waves
through the common trigonometric formula cos (θ) =
1
2

(
eiθ + e−iθ

)

v = V − V0 =
∑

k∈�

vkenk (8)

where vk = 1
2 Vkeiφk for k > 0 and v−k = vk (bar is com-

plex conjugate). In fact, this expression represents the
multi-sinusoidal voltage command as a vector v with
components vk in the basis of elementary waves enk .

The linear part of the current response

i1 =
N∑

i=1

Vi Ii

involves stimulation frequencies only and thus can be
written as a linear superposition of the elementary
waves with complex coefficients Lk acting on the input
like an admittance

i1 =
∑

k∈�

Lkvkenk (9)

By contrast, the quadratic part of the current
response

i2 =
N∑

i=1

V2
i Iii +

N∑

i=1

N∑

j=i+1

ViV jIij

involves frequencies 2ωi and
∣
∣ωi ± ω j

∣
∣. Therefore, prod-

ucts eni enj are produced such that the quadratic re-
sponse can be written as a quadratic mixing of the
elementary waves

i2 =
∑

i∈�

∑

j∈�

Bi, jviv jeni enj (10)

In order to ignore constant DC in the pure quadratic
response, the coefficients Bi,−i must be set to zero.
Moreover, since the current response has no imaginary
part, the coefficients must satisfy Bi, j = B−i,− j. Also,
note the symmetry Bi, j = B j,i.

Remarkably, the row flipped matrix Qi, j = B−i, j is
Hermitian (Lang 2002):

Qi, j
T = Q j,i

= B− j,i by definition of Q

= B j,−i by symmetry Bm,n = B−m,−n

= B−i, j by symmetry Bm,n = Bn,m

= Qi, j

This is very convenient because Hermitian matrices
have many important properties. In particular, their
eigenvectors can be used to decompose the quadratic
current response as a sum of squares weighted by real
eigenvalues playing the role of amplitudes. The general
skeleton of Qi, j is as follows
⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

0 . . . BN,−1 BN,1 . . . BN,N

... . . . . . . . . . . . .
...

B1,−N . . . 0 B1,1 . . . B1,N

B−1,−N . . . B−1,−1 0 . . . B−1,N

... . . . . . . . . . . . .
...

B−N,−N . . . B−N,−1 B−N,1 . . . 0

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

This matrix is the essential tool of the method and
is called the QSA Matrix. In fact, it is especially ap-
propriate for computations with the Fourier transform,
as explained in the following section on experimental
measurements.

This matrix allows the reconstruction of the current
response through simple algebraic manipulations. In-
deed, if the clock matrix is defined by Ut = diag

(
enk (t)

)
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then the voltage command vector as well as the linear
and quadratic transformations, L and Q can be made
explicitly dependent on time, namely vt = Utv and Lt =
LUt and Qt = U∗

t QUt (the upper ∗ denotes the con-
jugate transpose). This allows a reconstruction of the
current response in the time domain by considering L
as linear and Q as a Hermitian form

I (t) − I0 � Lvt + vt
∗ Qvt (11)

or equivalently

I (t) − I0 � Ltv + v∗Qtv (12)

It is interesting to note the duality of these two formu-
lations, analogous to the Schrödinger/Heisenberg pic-
tures in quantum mechanics. Indeed, either the vector
is time-dependent and operators are time-independent,
or the converse. Moreover, although B and Q encode
the same information, they have different interpreta-
tions. In particular, B is similar to a bilinear Volterra
kernel that could be generalized to higher orders such

as
∑

Bi, j,kviv jvkeni enj enk . By contrast, Q is a self-adjoint
linear operator similar to an observable acting on an
input state. The quadratic behavior is obtained a poste-
riori through vt

∗ Qvt = 〈vt|Qvt〉 = 〈Q〉vt
, that is similar

to an expectation value in quantum mechanics. How-
ever, there is no obvious generalization of Q to higher
orders, which means that B and Q are two different
representations of the quadratic neuronal behavior.

The QSA matrix being Hermitian, it can be diago-
nalized through Q = P∗ DP where P is a unitary matrix
satisfying P∗ = P−1. In this expression, each column
in P∗ contains the coordinates of an eigenvector ex-
pressed in the basis of elementary waves. Also, D =
diag (di) is the diagonal matrix containing the eigenval-
ues. The quadratic part can then be rewritten as

i2 (t) = vt
∗Qvt = wt

∗ Dwt (13)

where wt = Pvt. The transformation matrix P being
unitary, it preserves the signal energy of the stimulation
vector, namely ‖wt‖2 = ‖vt‖2. On the other hand, the
diagonal matrix D plays the role of a quadratic filter,

Fig. 1 Nonlinear analysis of
the model. (a) Superposition
of the original normal current
response (in blue), the linear
analysis (in green) and the
quadratic analysis (in red).
The red curve is almost
perfectly superimposed to the
blue curve. Clearly, the
quadratic analysis is required
to accurately describe the
neuronal response. (b)
Magnitude of the QSA
matrix. Each cell represents a
coefficient at the
corresponding row and
column of the matrix, coded
by colors. (c) Eigenvalues
sorted by decreasing
magnitude. There are two
dominant eigenvalues
suggesting that the quadratic
neuronal function can be
considered as a sum of two
squares as a first
approximation. For these
plots, the frequency
components were computed
with the MATLAB command
FFT divided by the number
of points
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such that in the above change of basis, the quadratic
part of the response is reduced to a sum of squares

i2 (t) = vt
∗ Qvt =

∑

i∈�

di |wt|2i (14)

This reduction has a special meaning when only a few
eigenvalues are dominant. In this case, the neuronal
function can be approximated by ignoring the small
eigenvalues, providing a more compact description.
However, the total contribution of all the eigenvalues
is equal to zero because

∑
di = Tr (D) = Tr (Q) = 0.

The QSA matrix and the eigenvalues of the model are
illustrated (Fig. 1(b) and (c)), showing two dominant
eigenvalues. The computations were made with MAT-
LAB (The MathWorks, Natick, MA, USA).

2.4 Nonoverlapping measurements

In practice, experimental measurements are subject to
difficulties due to frequency overlapping. More pre-
cisely, it is possible that ni + n j = nk + nl for distinct
pairs of frequencies

{
ni, n j

}
and {nk, nl}. In this case, the

terms Bi, jviv jeni enj and Bk,lvkvlenk enl share the same
output component eni+nj = enk+nl . This means that the
measurement of such a shared component is unable
to separate the coefficients Bi, j and Bk,l. This prob-
lem is quite general and sometimes encountered when
measuring Volterra kernels in nonlinear signal theory.
Harmonic probing has been developed as a practi-
cal measurement technique to determine the kernels
in the frequency domain (Boyd et al. 1983). For in-
stance, when a multi-sinusoidal voltage command is
imposed with incommensurable frequencies ω1, . . . , ωN

then every coefficient of the corresponding second or-
der Volterra kernel G2

(
ωi, ω j

)
can be deduced from

the output measured at ωi + ω j. In this paper, harmonic
probing was adapted to determine the coefficients of
the QSA matrix without frequency overlapping. In par-
ticular, a flexible algorithm was developed to generate
sets of nonoverlapping frequencies appropriate for the
voltage clamp conditions (controlled duration and fre-
quency range).

Then, for a set of nonoverlapping frequencies, Eq.
(10) can be solved in which Bi, j are the unknown
coefficients.

Bi, j = γi, j
Î
(
ni + n j

)

viv j

where Î
(
ni + n j

)
coincides with the Fourier component

of I (t) at the frequency ωi = 2π
(
ni + n j

)
/T. The term

γi, j = 1
2 + 1

2δi, j is a coefficient of symmetry such that

γi,i = 1 and γi, j = 1
2 for i �= j, which implies Bi,i = Î(2ni)

v2
i

and Bi, j = B j,i = 1
2

Î(ni+n j)
viv j

respectively.

3 Results

3.1 Prepositus hypoglossi neurons

The neurons of the prepositus hypoglossi nucleus
(PHN) in the brainstem integrate head velocity signals
to control eye position in order to stabilize an image
at the center of the visual field during head rotation.
This operation is called neural integration (Aksay et al.
2007) due to an analogy with integration in mathe-
matical calculus. Individual neurons of the PHN show
nonlinear properties that are likely to play an important
role in the neural integrator. In particular, there are
many studies suggesting that these nonlinear properties
are essential for the network behavior of the neural
integrator (Koulakov et al. 2002; Goldman et al. 2003).
In addition, nonlinear behavior has been observed in
neurons involved in eye movement, as described by
Idoux et al. (2006).

In this section, the QSA analysis is applied to ex-
perimental measurements of PHN neurons in order
to understand the fundamental subthreshold nonlin-
ear behavior determining spike trains during neural
integration. In particular, this paper is focused on the
nonlinearities that exist primarily at the intracellular
membrane potential levels up to the action potential
threshold.

Previous studies have been done to characterize neu-
rons by piecewise linear analysis, especially in Fish-
man et al. (1977), Murphey et al. (1995) and Idoux
et al. (2008) where the neuronal response have been
modelled by a series of linear admittances at different
voltage clamp levels and amplitudes. However, as ex-
plained above, it is critical to also consider nonlinear
behavior during normal PHN physiological activity.
This has been done by generalizing the linear admit-
tance to a quadratic function, which can be computed
by interpolation of the QSA matrix. In this way, a fun-
damentally new piecewise quadratic analysis describing
the complete second order and linear behavior of PHN
neurons is done. Without such a quadratic description,
the linear identification can be dramatically insufficient
compared to an accurate quadratic identification as
shown in Fig. 2(a) for experimental data of a PHN
neuron. Thus, quadratic analysis is required to correctly
characterize the responses of PHN neurons, typically
observed during synaptic activity.
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Fig. 2 Analysis of the
experimental data of a
prepositus hypoglossal
neuron. (a) Experimental
current response I (t) to a
stimulation V (t) with
nonoverlapping frequencies
centered at
−55.26 ± 2.85 mV. The
quadratic analysis (in red) is
dramatically more accurate
than the linear analysis (in
green) to describe the
experimental response (in
blue). Indeed, the red curve is
almost superimposed on the
blue curve. (b and c)
Magnitude of the QSA
matrix computed at −60 mV
and at −55 mV. Clearly, the
coefficients (color coded) are
increased at the depolarized
level. (d and e) Magnitude of
the interpolated QSA matrix
at −60 mV and −55 mV. The
peaks of the frequency
interactions are
approximately in the same
location after depolarization,
moreover additional peaks
appear at high frequencies.
For these plots, the frequency
components were computed
with the MATLAB command
FFT divided by the number
of points. The interpolations
were performed by the
MATLAB command
GRIDDATA (linear
method). The current was
measured in nA and the
voltage in mV

The voltage clamp data of PHN neurons were pro-
vided by Professor Daniel Eugène (personal communi-
cation) and analyzed using nonoverlapping frequencies
{0.2, 0.8, 2, 3.4, 5.8, 10.4, 13.4, 17.8} (in Hertz) at two
voltage levels −60 mV and −55 mV. A rectangle low-
pass filter was applied a posteriori to remove noise
greater than 36 Hz. The highest stimulation frequency
is 17.8 Hz which implies that the highest frequency
of the quadratic response is 2 ∗ 17.8 = 35.6 Hz, hence
the cutoff at 36 Hz is valid for a quadratic analysis.
Figure 2(a) shows the current responses in the time
domain. Clearly, the quadratic response is more accu-
rate than the linear one. The residual error is due to
experimental noise or higher order frequency conta-
mination, which is inevitable in any experiment. Each

data sequence is an average of four recordings or more
using the experimental protocol as described in Idoux
et al. (2008). The quadratic analysis was adequate in all
experiments, except when the stimulation amplitude is
either too large evoking higher order frequency conta-
mination or too small to overcome synaptic or intrinsic
channel fluctuations.

One of the most important conditions to ensure the
quality of a nonlinear voltage clamp experiment is the
time invariance, which means that the same voltage
input must always generate the same current output.
Therefore, it is necessary to compute the correlation
between all the recordings in order to ensure that they
are reasonably time invariant. The quadratic response
i2 (t) (defined previously) can be extracted from the full
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response I (t) by Fourier analysis for each of the M
recordings (in this experiment M = 4). This provides
M signals r1 = i2,1 (t) , . . . , rM = i2,M (t). In fact, each
i2,m is the quadratic part of the m-th recording. The
pairwise correlations are then encoded into the matrix
of pairwise products

〈
ri, r j

〉 = ∫
ri (t) r j (t) dt

⎛

⎜
⎜⎜
⎜
⎜⎜
⎝

〈r1, r1〉 〈r1, r2〉 . . . 〈r1, rM〉
〈r2, r1〉 〈r2, r2〉 . . . 〈r2, rM〉

... . . . . . .
...

〈rM, r1〉 〈rM, r2〉 . . . 〈rM, rM〉

⎞

⎟
⎟⎟
⎟
⎟⎟
⎠

The symmetry of the matrix reduces the number of
computations. From this, the time invariance correla-
tion coefficient, ticc, can be defined as the coefficient of
variation of the elements of this matrix, that is ticc =
σ/μ where σ and μ are the mean and the standard
deviation of the elements of this matrix. When all dot
products are identical the ticc is zero, otherwise it in-
creases depending on the lack of correlation. Although
empirical, the ticc has proved to be particularly efficient
to make automatic data extraction from large pools of
experiments. In particular, the criterion ticc < 1 was

used for the analyzed experiments. For the two experi-
ments (Figs. 2 and 3), the ticc is 0.5989 at −60 mV and
0.1087 at −55 mV.

Figures 2(b) and (c) compare the magnitudes of
the QSA matrices. In general, the magnitudes tend to
globally increase at depolarized levels, as illustrated
here when comparing −60 to −55 mV. Figures 2(d) and
(e) compare the magnitudes of the interpolated QSA
matrices. The interpolations were performed by the
MATLAB command GRIDDATA (linear method) in
order to represent the responses in 3D color plots over
a continuous range of frequencies. The approach allows
a coarse approximation of the response including over-
lapping frequencies. This can be further improved by
combining additional QSA matrices constructed from
other nonoverlapping measurements. As can be ob-
served, the peaks of the frequency interactions are ap-
proximately in the same location after depolarization.
Moreover, new peaks appear at high frequencies.

Figure 3 compares the linear and quadratic analyses
for a voltage clamped neuron at two membrane poten-
tials. The upper plot shows the linear impedance, which
dramatically decreases for a 5 mV change of poten-
tial. The middle plot of Fig. 3 shows eigenvalues that

Fig. 3 Linear and nonlinear
analysis at two membrane
potentials. At the top, the
impedance computed from
usual linear analysis. At the
middle, the eigenvalues of
each QSA matrix. At the
bottom, the R summation of
each QSA matrix. For these
plots, the frequency
components were computed
with the MATLAB command
FFT divided by the number
of points. The current was
measured in nA and the
voltage in mV
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increase with depolarization and furthermore, the in-
teresting result that there is mainly one dominant eigen-
value, especially at −55 mV. This means that a single
large square di |wt|2i plays a major role in the descrip-
tion of the neuronal function. However, at different
membrane potentials or with other types of neurons
there may be two or more significant eigenvalues. It
would appear that the distribution of eigenvalues pro-
vides an indication of the complexity of the information
processing used by neurons. An important observation
is that the eigenvalues increase at the depolarized levels
consistent with the increased QSA matrix amplitudes.

The bottom plot of Fig. 3 shows a summation by
columns of the QSA matrix

R ( j) =
∑

i∈�

∣
∣Qi, j

∣
∣

Hence, each value R ( j) represents the quadratic inter-
actions involving each stimulation frequency ω j. The
advantage of this summation is that a Bode-like plot
can be made, which is easier to read than a square
matrix. Again, the magnitude is larger at the depolar-
ized level, which is consistent with and confirms the
eigenvalue analysis. This plot shows that each stim-
ulation frequency can significantly contribute to the
nonlinear response. Clearly, R ( j) has been enhanced
during the voltage clamped depolarization at the higher
frequencies as shown in Fig. 3. Thus, the nonlinear
behavior becomes more important near the spiking
threshold and is quantitatively determined by the QSA
analysis.

3.2 Functional interpretation as a nonlinear–linear
processing unit

The quadratic neuronal response given by Eq. (10)
is encoded in the matrix B. The current i2(t) is then
computed as a quadratic form, and thus B is actually
the matrix of an associated bilinear form b . This means
that b maps pairs of vectors to complex numbers and
b is linear in each argument. Let E be the vector space

of input vectors, which is spanned by the elementary
waves enk defined in Section 2.3. With this notation, the
bilinear map is b : E × E → C.

The tensor product is said to be universal (Lang
2002) amongst all bilinear maps because it turns bilin-
ear maps of E × E into linear maps of E ⊗ E. Thus, the
tensor product E ⊗ E is a linear space with a particular
bilinear map ⊗ : E × E → E ⊗ E such that for any bi-
linear map β : E × E → C, there exists a unique linear
map  : E ⊗ E → C, making the diagram commutative
in Fig. 4(a).

Then, the neuronal bilinear response b can be de-
composed as b(x, y) = L2(x ⊗ y), where L2 is linear
due to the universal property of the tensor prod-
uct. L2 is completely determined on the basis vectors
by L2(eni ⊗ enj) = b(eni , enj) = Bi, j. This leads to the
definition of a quadratic nonlinearity N(vt) = vt ⊗ vt

such that the quadratic neuronal response becomes a
linear filter on second order frequencies

i2(t) = L2 N(vt) (15)

This interpretation is illustrated on Fig. 4(b), and is
comparable to the sandwich model (Victor and Shapley
1980) without the linear prefilter. It can be useful to
point out that the tensor product is independent of
frequency overlaps. Thus, this interpretation is also ap-
propriate for the analytical model (7), which considers
symbolic second order frequency combinations. In ad-
dition, the universal property of the tensor product can
be generalized to multilinear maps, which means that
the interpretation above is also generalizable to higher
order systems. This suggests that although QSA and
kernel methods (Victor and Shapley 1980) use different
mathematical frameworks, the concepts are essentially
the same, namely the polynomial modeling of nonlinear
systems.

3.3 Functional interpretation of eigenvalues

As suggested by Eq. (14), the real eigenvalues of the
matrix Q can be interpreted as the amplitudes of a

Fig. 4 Functional interpretation as a nonlinear–linear processing
unit. (a) The commutative diagram of the tensor product, which
turns bilinear maps into linear maps. (b) The voltage clamp

quadratic response computed for PHN neurons. The neuronal
operator is decomposed as a quadratic nonlinearity followed by
a linear filter applied to second order frequency interactions
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quadratic filter. This is due to the Hermitian property of
Q, which should be seen as a Hermitian operator rather
than a bilinear kernel. Clearly, Q is a complicated linear
transformation because it has only cross terms. How-
ever, after a change of basis via eigendecomposition, it
becomes a simple filter encoded in the diagonal matrix
D (Eq. (13)).

Let Ei be an elementary matrix having 0 everywhere
except at the intersection of the i-th row and i-th col-
umn on the diagonal where it is 1. Then D can be
expanded as

D =
∑

i∈�

di Ei

The quadratic neuronal response can be rewritten as

i2(t) =
∑

i∈�

diw∗
t Eiwt

This suggests the introduction of a quadratic non-
linearity

Ni(wt) = w∗
t Eiwt

Therefore, the quadratic neuronal response can be in-
terpreted as a parallel combination of nonlinear–linear
processing units

i2(t) =
∑

i∈�

di Ni(wt) (16)

This interpretation is illustrated by Fig. 5, and is
comparable to the sandwich model (Victor and Shapley
1980). In the case of one dominant eigenvalue, the dia-
gram is reduced to a single nonlinear–linear processing
unit.

3.4 Functional interpretation of traceless constraint

However, as explained in a prior section, the trace of
the matrix Q is zero in order to avoid DC terms in the

Fig. 5 Functional interpretation of eigenvalues. The voltage
clamp quadratic response computed for PHN neurons. The
neuronal operator is decomposed as a parallel combination of
nonlinear–linear processing units, one for each eigenvalue

quadratic response. This implies a slightly different in-
terpretation of the eigenvalues. The trace of the matrix
D is also zero, thus the 2N eigenvalues di are subject to
a constraint

d−N + · · · + d−1 + d1 + · · · + dN = 0

which implies that 2N − 1 eigenvalues are free and 1
eigenvalue is bound, such as

dN = −(d−N + · · · + d−1 + d1 + · · · + dN−1)

The eigenvalue dN is chosen as an example, without loss
of generality.

The goal is to reformulate the matrix D as a linear
combination of 2N − 1 instead of 2N matrices, in order
to take into account the traceless constraint. Traceless
matrices of dimension 2N × 2N over complex num-
bers, like Q, are elements of the so called special lin-
ear algebra sl(2N, C), which is actually a Lie algebra
(Erdmann 2007). As a special case, traceless diagonal
matrices, like D, are elements of the so called Cartan
subalgebra h, which is an abelian Lie subalgebra of
sl(2N, C).

Let Fi = Ei − Ei+1 be a set of 2N − 1 matrices for
i ∈ � − {N}. Then, the set of matrices Fi forms a basis
of h (Erdmann 2007). Thus, the matrix D can be refor-
mulated as a linear combination of 2N − 1 matrices

D =
∑

k∈�−{N}
δk Fk

It can be checked that for k ∈ � − {N}

δk =
k∑

i=−N,i �=0

di

Hence

i2(t) = w∗
t Dwt =

∑

k∈�−{N}
w∗

t δk Fkwt

=
∑

k∈�−{N}
δk

(
w∗

t Ekwt − w∗
t Ek+1wt

)

i2(t) =
∑

k∈�−{N}
δk (Nk (wt) − Nk+1 (wt))

This formula provides an alternative interpretation
(Fig. 6) of the quadratic neuronal behavior as a sum of
2N − 1 differential units Nk − Nk+1, which has the ad-
vantage of taking into account the traceless constraint.
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Fig. 6 Functional interpretation of traceless constraint. The volt-
age clamp quadratic response computed for PHN neurons. The
neuronal operator is decomposed as a parallel combination of
differential units taking into account the traceless constraint

This approach is especially appropriate in absence of
dominant eigenvalues.

4 Discussion

Membrane biophysics In this paper, the quadratic si-
nusoidal analysis, namely QSA, has been developed
to probe the quadratic structure of voltage clamped
neuronal responses, and to experimentally demonstrate
that such a structure fundamentally exists in PHN neu-
rons. This new result definitely confirms the necessity
to extend the previous development of piecewise lin-
ear analysis to quantitatively investigate the nonlinear
properties of neurons and their dendrites (Idoux et al.
2008). The piecewise approach consists of using small
signals at different steady state membrane potentials
and then computing an admittance linear operator in
each case, as described in Fishman et al. (1977) and
Murphey et al. (1995). With QSA, it is now possible
to compute a linear + quadratic neural operator, pro-
viding a nonlinear analysis for a range of membrane
potentials appropriate for synaptic integration.

The QSA has been introduced at the biophysical
level of ionic channels by using a simplified Hodgkin–
Huxley model (Hodgkin and Huxley 1952). The differ-
ential equations were solved under MATHEMAT-
ICA 7, significantly improving the work pioneered by
FitzHugh (1983) by extending it to multi-sinusoidal
stimulations. The result is a quadratic polynomial ex-
plicitly showing the quadratic interactions that other-
wise are not directly apparent in the HH type model.
The method is a perturbative analysis similar to that
commonly used in theoretical physics where analytical
solutions to a complicated nonlinear problem are ap-
proximated by a power series. In particular, the formal
approach developed in this paper could be useful to im-
prove parameter estimation of HH models to quadratic

precision, where linearized neuronal models could be
replaced by quadratic neuronal models. Furthermore,
unlike spike train centric methods, the intracellular
membrane potential measurements allow one to es-
tablish relationships between model parameters and
measured neuron responses.

The multi-sinusoidal voltage clamp response has
been reformulated with linear and bilinear algebra by
projecting signals in a basis of elementary waves. This
led to the definition of a Hermitian matrix, which
further expands the current response into two parts
characterized by linear and Hermitian forms. In this
way, the neuronal response is expressed in an alge-
braic framework (Eqs. (11) and (12)), which suggests
a possible connection with self-adjoint operator theory
(Blackadar 2009) through the Hermitian matrix. More-
over, the compactness and efficiency of matrix calculus
used in this paper suggests new approaches to represent
neurons by algebraic operators in order to address the
problem of large scale neural network simulations.

Nonlinear methods As explained before, there are
two mathematical representations for the quadratic re-
sponse function, corresponding to Bi, j and Qi, j respec-
tively. The QSA emphasizes on the Hermitian matrix
representations Qi, j because it is much more efficient
when dealing with complex coefficients. However, the
matrix Bi, j is similar to a second order Volterra kernel,
which is a classical tool in computational neuroscience
(see Schetzen (2006) for basic theory and Westwick and
Kearney (2003) for more physiological applications).
Most of previous studies have considered spiking neu-
rons from a phenomenological point of view. For exam-
ple, Poggio and Torre (1977) derive analytical expres-
sions for the instantaneous firing rate using a Volterra
representation. In particular, these authors consider
a multi-sinusoidal input in order to obtain frequency
kernels that have been determined by a harmonic input
method (Bedrosian and Rice 1972; Victor 1977).

Alternatively, the Wiener theory has been frequently
used in computational neuroscience. It consists of prob-
ing a nonlinear system with a Gaussian white noise
stimulus and computing Wiener kernels. The result-
ing Wiener series is an orthogonalized Volterra se-
ries with uncorrelated kernel outputs. It can be shown
(Schetzen 2006) that Wiener kernels can be estimated
independently by cross-correlation techniques. This ap-
proach was pioneered by Marmarelis and Naka in reti-
nal neurons, who provided a quantitative description
of the nonlinear function for the catfish retinal neu-
ron chains (Marmarelis and Naka 1973). A practical
estimation in the frequency domain was provided by
French (1976) improving the speed of computation by
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replacing cross correlations with complex multiplica-
tions. Unfortunately, Wiener theory has at least three
major sources of inaccuracies in practice, as pointed out
by Korenberg et al. (1988): (1) ideal Gaussian white
noise is not realistic because of the intrinsic noise fre-
quency response of stimulation devices; (2) the infinite
time average cross-correlation must be approximated
by a finite time average due to the limited duration of
experiments; and (3) the Wiener G-functionals are not
perfectly orthogonal over a finite data record.

Major progress in nonlinear analysis was made by
approximating white noise approach using sums of si-
nusoids (Victor 1977, 1979; Victor and Shapley 1980).
This approach has the great advantage of using deter-
ministic inputs, which is fundamentally different from
white noise analysis. Thus, multiple sets of inputs and
time averaging are used to estimate nonlinearities. As
explained in Victor and Shapley (1980), this approach
is designed for extracting information from a system
in order to develop models of its higher order nonlin-
ear behavior. Similarly, the experimental QSA method
makes uses of a noiseless deterministic sum of sinusoids
to provide a complete quadratic algebraic characteriza-
tion for a particular set of frequencies.

Clearly, the mathematical foundations of QSA have
their roots in functional analysis where signals are
decomposed in vector spaces and transformations are
represented by linear, bilinear or Hermitian operators.
The Fourier basis is extremely efficient with both an-
alytical models and experimental data. The discussion
above has shown that QSA can also be connected to
Volterra theory and compared to other methods such
as Wiener theory. This paper has demonstrated the
novel result that PHN neurons can be characterized
by QSA theory, namely that synaptic response of a
few mV are fundamentally quadratic. This suggests that
neuronal responses are well suited to functional analy-
sis and vector spaces. A modern introduction to many
of underlying concepts can be found in Mallat (2008).
Moreover, multilinear algebra with matrix calculus has
previously been used in neuroscience studies, such as
Ahrens et al. (2008).

Interacting frequencies Some techniques have been
proposed earlier to generate second order nonoverlap-
ping frequencies, such as with relatively prime integers
(Boyd et al. 1983) or particular algorithms (Victor and
Shapley 1980). Interestingly in the latter paper, the
problem of higher order frequency overlaps is treated
by using multi sinusoidal stimulations with different
relative phases. In this way, it is possible to separate
the contributions of different input frequencies to a
shared output frequency. The voltage clamp experi-

ments described in this paper impose constraints on
the waveform of the command input in order to satisfy
biological criteria (piecewise level, random nonverlap-
ping frequency set, amplitude like synaptic inputs) or to
optimize Fourier computations (duration and sampling
time as decimal numbers without roundoff). Moreover,
identical time-invariant deterministic responses were
averaged to obtain a reliable and accurate second or-
der description. In particular, an important aspect of
these measurements is the use of a fixed deterministic
stimulus with phases selected to minimize the dynamic
range, which can be averaged in real time to reduce
spontaneous synaptic noise. For this purpose, a solver
was implemented in MATLAB to satisfy all constraints
for generating suitable waveforms with nonoverlapping
frequencies. In addition, the algorithm was directly
embedded in a whole cell clamp acquisition program
making it directly available during an experiment.

There also exists a fundamental arithmetic
characterization of frequency processing. Let � =
{n1, · · · , np} ⊂ N − {0} be a set of input frequencies
simplified to integer numbers and 〈�〉 the corres-
ponding frequency group as a subgroup of Z. The fre-
quency group encodes the set of all output frequencies
like those measured in the neuronal response, including
harmonic and intermodulation products of any order.
The group � = Z

p is called the formal frequency
group and its elements are formal frequencies. It
encodes the symbolic frequency combinations like
those computed in the analytical models (Section 2.1 or
2.2). For example, a tuple (1, −1, 0 · · · 0) represents a
symbolic frequency n1 − n2. Then it is natural to define
the surjective evaluation homomorphism μ : � → 〈�〉
such that

μ(λ1, · · · , λ2) = λ1n1 + · · · + λpnp

The key point is that frequency overlaps are due to the
noninjectivity of μ. More precisely, frequency overlaps
can be defined as equivalence classes [λ] of the quo-
tient group �/ ker μ. Then the isomorphism �/ ker μ �
〈�〉 implies a one-to-one relationship between overlaps
and measured output frequencies. Therefore, each fre-
quency overlap is determined by a linear diophantine
equation (Manin 2005)

[λ]m∈<�> = {(
λ1, · · · , λp

) ∈ � : λ1n1 + · · · + λpnp = m
}

This approach suggests that the usual polynomial ap-
proximations may be refined by considering that a
neuron in fact does arithmetics with frequencies. Thus,
the frequency arithmetic of a neuron, rather than
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truncating the order of nonlinearity, could be explored
as a fundamental neuronal algorithm.

5 Conclusion

In conclusion, QSA is a novel computational method
to characterize the nonlinear responses of individual
neurons. This paper demonstrates that voltage clamped
PHN neurons involved in the neural integrator can be
adequately described by a linear + quadratic operator,
with no need for higher orders for physiological synap-
tic inputs. The eigendecomposition allows an intrinsic
description of the neuron’s quadratic function as a
sum of squares. Remarkably, very few eigenvalues can
be sufficient to describe the experimentally measured
PHN neurons, leading to a very compact description of
the neural unit. Furthermore, the complexity inherent
in the nonlinear neuronal behavior as illustrated by
the analytical expressions derived in this paper, has
been explored through Hermitian matrix calculus. This
model provides an algebraic neural operator for the
entire voltage clamped PHN neuron with its particular
ion conductance channel distributions throughout its
dendritic structure.
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