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Abstract The lack of a deeper understanding of how
olfactory sensory neurons (OSNs) encode odors has
hindered the progress in understanding the olfactory
signal processing in higher brain centers. Here we em-
ploy methods of system identification to investigate the
encoding of time-varying odor stimuli and their rep-
resentation for further processing in the spike domain
by Drosophila OSNs. In order to apply system iden-
tification techniques, we built a novel low-turbulence
odor delivery system that allowed us to deliver air-
borne stimuli in a precise and reproducible fashion.
The system provides a 1% tolerance in stimulus re-
producibility and an exact control of odor concentra-
tion and concentration gradient on a millisecond time
scale. Using this novel setup, we recorded and ana-
lyzed the in-vivo response of OSNs to a wide range
of time-varying odor waveforms. We report for the
first time that across trials the response of OR59b
OSNs is very precise and reproducible. Further, we
empirically show that the response of an OSN de-
pends not only on the concentration, but also on
the rate of change of the odor concentration. More-
over, we demonstrate that a two-dimensional (2D)
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Encoding Manifold in a concentration-concentration
gradient space provides a quantitative description
of the neuron’s response. We then use the white
noise system identification methodology to construct
one-dimensional (1D) and two-dimensional (2D)
Linear-Nonlinear-Poisson (LNP) cascade models of the
sensory neuron for a fixed mean odor concentration
and fixed contrast. We show that in terms of predicting
the intensity rate of the spike train, the 2D LNP model
performs on par with the 1D LNP model, with a root
mean-square error (RMSE) increase of about 5 to 10%.
Surprisingly, we find that for a fixed contrast of the
white noise odor waveforms, the nonlinear block of
each of the two models changes with the mean input
concentration. The shape of the nonlinearities of both
the 1D and the 2D LNP model appears to be, for a
fixed mean of the odor waveform, independent of the
stimulus contrast. This suggests that white noise system
identification of Or59b OSNs only depends on the first
moment of the odor concentration. Finally, by compar-
ing the 2D Encoding Manifold and the 2D LNP model,
we demonstrate that the OSN identification results
depend on the particular type of the employed test odor
waveforms. This suggests an adaptive neural encoding
model for Or59b OSNs that changes its nonlinearity in
response to the odor concentration waveforms.
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BARS Bayesian Adaptive Regression Splines
DPG Dipropylene glycol
I/O Input/output
LNP Linear-nonlinear-Poisson
MID Maximally informative dimensions
OSN Olfactory sensory neuron
PID Photoionization detector
PSTH Peristimulus time histogram
RCO Reverse correlation
RMSE Root-mean-square error
STA Spike-triggered average
STC Spike-triggered covariance

1 Introduction

A functional characterization of an unknown system
typically begins by making observations about the re-
sponse of that system to input signals. The knowledge
obtained from such observations can then be used to
derive a quantitative model of the system in a process
called system identification (Wu et al. 2006; Marmarelis
2004). More precisely, the goal of system identification
is to use a given input/output data to derive a function
that maps an arbitrary system input into an appropriate
output.

In neurobiology, system identification has been ap-
plied to a variety of systems, ranging from the ion
channels of the giant squid axon to the visual pattern
recognition circuits in the Macaque monkey (Hodgkin
and Huxley 1952; Rust et al. 2006). Depending on the
level of abstraction, the identified neural models vary
from detailed mechanistic models (Lindemann 2001;
Rospars et al. 2003; Dougherty et al. 2005; Reidl et al.
2006; Gu et al. 2009; Kaissling 2009; Halnes et al. 2009)
to purely phenomenological models (Marmarelis and
Naka 1972; Marmarelis 2004; Pillow and Simoncelli
2006).

System identification techniques usually follow three
steps. First, a mathematical model of a given sys-
tem is hypothesized. This model can be either generic
(Marmarelis 2004) or restricted to a certain architecture
(Rust et al. 2006). Second, parameters of the hypothet-
ical model are estimated using the input/output data
of the system. Typically, the parameter estimation is
posed as an optimization problem in which a certain
measure of performance is either minimized or maxi-
mized. Examples of performance measures include the
mean-square error, the likelihood function, and the
mutual information. Finally, in a cross-validation step,
the performance of the proposed model is evaluated
using previously unseen data.

The estimation and cross-validation steps of the sys-
tem identification call for a careful design of input stim-
uli as well as their precise control and measurement.
This has been possible in many sensory systems, in-
cluding vision and audition, where system identification
of a variety of neural circuits has been carried out
under the assumption that they are in a steady state
(Marmarelis and Naka 1972; Hunter and Korenberg
1986; Steveninck and Bialek 1988; Brenner et al. 2000;
Slee et al. 2005). In olfaction, however, little progress
has been made primarily because of the difficulties
associated with the control, measurement and repro-
ducible delivery of odor stimuli.

In this paper, we employ a novel odor delivery and
measurement system to record the extracellular activity
of individual Drosophila OSNs in response to airborne
odor stimuli. We use system identification techniques
to investigate the nature of the encoding and spike-
domain representation of odorants by OSNs. It is our
firm belief that the lack of such fundamental research
has hindered the progress in understanding the olfac-
tory signal processing in higher brain centers. To our
best knowledge, this study represents the first attempt
to apply system identification methodology to in-vivo
OSN recordings in Drosophila Melanogaster.

The rest of the paper is organized as follows. In
Section 2 we describe our experimental methods, in-
cluding the odor delivery system. In Section 3 we
present our initial recordings and an empirical I/O
modeling of OSNs. In Section 4 we discuss the sys-
tem identification of OSNs using white noise input
stimuli. There we describe and compare the 1D and
2D Linear-Nonlinear-Poisson models of Drosophila
OSNs. Finally, the paper concludes with a discussion in
Section 5.

2 Experimental methods

2.1 Odor delivery system

We built a novel low-turbulence odor delivery system
that allowed us to deliver airborne odorants in a pre-
cise and reproducible fashion. The system provides an
exact control of odor concentration and concentration
gradient on a millisecond time scale.

2.1.1 System design

The block diagram of our odor delivery system is
shown in Fig. 1. Compressed medical air is first hu-
midified using distilled water and then split into two
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Fig. 1 The experimental setup. (a) The block diagram of the
odor delivery system. (b) Top: the fly head and antennae as seen
under the microscope; bottom: two electrodes are placed into two

distinct sensilla for simultaneous in-vivo extracellular recordings.
(c) The tolerance of the stimulus reproducibility is 1%. (d) The
setup allows to deliver a variety of odor concentration waveforms

airstreams: one for an odor line and another for an
air line. The airstream in the air line passes through
a flow regulator, a flow meter and enters a laminar
mixer (laminarity of the flow was evaluated indirectly
through odor concentration measurements, data not
shown). Similarly, the airstream in the odor line passes
through a flow regulator and a flow meter. However,
before entering the laminar mixer, the airstream in
the odor line is redirected to a three-way solenoid
valve. Depending on the setting of the valve, the odor
airstream goes either directly to the laminar mixer or
passes through one of the odor vials connected to the
valve. If going through one of the vials, the airstream
picks up odor molecules in a given vial and enters the
laminar mixer, where it is combined with the airstream
from the air line. The combined air/odor-stream is then
delivered to the antennae of a fruit fly through a glass
tube. Directly opposite the glass tube, a photoioniza-

tion detector (PID) takes in the air surrounding the fly
antennae and measures the odorant concentration. The
PID intake rate is 1 L/min and the combined air/odor-
stream is delivered at a rate of 700–800 mL/min.

A computer is used to control the flow regulators in
both the air line and the odor line as well as the opening
and closing of the 3-way solenoid valve. Measurements
of the flow in both lines were used in a feedback
mechanism to adjust the flow regulator values. Further,
the output of both flow meters and that of the PID
was recorded and analyzed offline to obtain the odor
concentration. Because the sensitivity of the PID drops
gradually in time, an additional odorant (Ethyl Acetate
or Hexane) is delivered periodically at a predetermined
concentration to recompute the transfer function of the
device. This transfer function is used to convert the
voltage output of the PID (Volts, [V]) into the odorant
concentration (parts per million, [ppm]).
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2.1.2 System performance

Using a photoionization detector, we were able to mea-
sure the concentration of the delivered odorant in real
time and check the reproducibility of the setup. We
found that odor waveforms reaching the antennae of
fruit flies can be reproduced to within a tolerance of
1% (Fig. 1(c)). The system also allowed us to deliver a
variety of time-varying odor concentration waveforms,
some of which are shown in Fig. 1(d).

2.2 Stimulus design

2.2.1 Odorant preparation

Odorants used in this study were obtained from Sigma-
Aldrich in liquid form at high purity. A half an hour
before the experiment, an odorant was poured into a
30 mL glass vial, diluted with dipropylene glycol (DPG)
and sealed with a rubber stopper and a plastic screw-on
cap. Miscibility of all odors with DPG was thoroughly
checked before the experiments.

2.2.2 White noise odor stimuli

White noise odor stimuli were produced by modulating
the flow rate in both the air line and the odor line
(Fig. 1(a)) around fixed-mean flow rates. Both rates
were modulated by sending a sequence of independent
identically distributed control values to the correspond-
ing flow regulator. Each control value was picked from
a Gaussian distribution and updated every millisecond.
Such a frequent update guaranteed that control actions
were taken within the minimal response time of the
flow regulators. While airflow-dependent, the minimal
response time of each flow regulator was below 10 ms.

Using the above protocol, we generated pseudo-
white Gaussian noise odor waveforms that exhibit
a nearly flat power spectral density of up to 30 Hz
(see Figs. S1–S3 in the Supplemental material). Such
waveforms are sufficiently white to perform system
identification since the bandwidth of insect olfactory
systems typically does not exceed 25 Hz: 20 Hz in
the American cockroach, 20 Hz in three moth species
and 2 Hz in the American lobster (Lemon and Getz
1997; Bau et al. 2002; Gomez et al. 1999). In our own
studies (data not shown) we estimated the bandwidth
of Drosophila OSNs to be roughly 25 Hz.

One example of a Gaussian noise odor waveform
(sample path) is the red trace shown in Fig. 4(a). Note
the time scale of the odor waveform. The noise se-

quence is 8 s long and is applied 1 s after the odor onset
so as to let the neuron reach its steady-state response.
The total duration of the waveform is 9 s.

2.2.3 Triangle odor waveforms

Triangle odor waveforms were produced by fixing the
flow in the air line and first slowly increasing and then
slowly decreasing in a controlled fashion the flow in the
odor line (Fig. 1(a)). We designed a set of nine triangle
waveforms so that in combination with different ligand
dilutions we could explore a large range of odor con-
centration and concentration gradient (rate of change)
values. An example of such a set of odor waveforms is
shown in Fig. 3(a).

Note the timescale of the odor waveforms in
Fig. 3(a). Each triangle waveform was designed to be
roughly 2 s long to allow enough time for the transient
response of the neuron, while also limiting the effect of
adaptation.

2.3 Drosophila stocks

Drosophila stocks were maintained at a room tempera-
ture on a 12-h light/12-h dark schedule and kept in stan-
dard plastic vials containing a cornmeal-agar medium.
All of the experiments were performed on female wild-
type (Canton-S) flies three-to-five days post-eclosion.

2.4 Electrophysiology

Electrophysiological methods in this study are similar
to those previously described in Clyne et al. (1997).

2.4.1 Fly preparation

A female fly was prepared for in-vivo recordings a half
an hour prior to each experiment. The fly was taken
out of the vial and placed into a plastic micropipette tip
with the head of the fly facing the narrow end of the
tip. The tip was cut just a few millimeters behind the
fly body and a small amount of industrial plasticine was
placed to prevent the fly from escaping. Another cut
was made 1 mm before the anterior side of the head.
Forceps were used to gently push the fly in order to ful-
ly expose the antennae and only partially the eyes at the
front end of the micropipette tip. Special care was taken
so as not to damage the animal. Next, the micropipette
tip with the fly was placed on a glass slide with a stack
of glass coverslips glued to it. The tip was attached to
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the slide using industrial plasticine with the antennae
of the fly laying flat on the coverslip stack. The slide
was then placed onto a microscope (Eclipse E600FN,
Nikon) that was mounted on a vibration isolation table
(63–500 Series, Technical Manufacturing). Finally,
a glass electrode attached to a micro-manipulator
(MX10R, Siskiyou) was used to rotate one of the an-
tennae into a desired position and to immobilize it.

2.4.2 Neural recordings

Three tungsten electrodes were electrolytically sharp-
ened using a 5% dilution of potassium hydroxide and
mounted on separate motorized micro-manipulators
(MP-285, Sutter Instrument). The electrodes were con-
nected to a preamplifier (MultiClamp 700B, Axon
Instruments/Molecular Devices) and their output was
band-pass filtered with cutoff frequencies flow = 30 Hz
and fhigh = 2 kHz. The output of the amplifier was fed
to a data acquisition system (Digidata 1322A, Axon
Instruments/ Molecular Devices) and then to a com-
puter so that the activity of neurons could be monitored
in real time using the pClamp software (Axon Instru-
ments/Molecular Devices). The amplifier output was
also stored for further analysis offline.

The tip of one of the electrodes was inserted into the
compound eye of the fly and used for signal ground.
The other two electrodes were used to simultaneously
record the extracellular activity of neurons from two
different sensilla. The tip of each recording electrode
was inserted at the base of a sensillum in order to
make contact with the conducting sensillum lymph.
The spontaneous activity of the neurons was checked
against that reported in de Bruyne et al. (2001) to
ensure that the neurons were not damaged. If a neuron
was observed to suddenly increase its spiking activ-
ity in the absence of odorants, it was presumed to
be damaged and recordings from that neuron were
discontinued.

All recordings in this study were taken from Or59b
olfactory sensory neurons that are located in the ab2
large basiconic sensilla. Action potentials were sorted
and analyzed using custom software in MATLAB.

3 Initial recordings and empirical modeling

We recorded the neural activity of ab2A neurons ex-
pressing the Or59b receptor in response to a variety
of time-varying odor concentration waveforms. These
particular neurons were chosen because they respond
to acetone, an odor that is well ionized and conse-
quently easily detected by the PID.

3.1 OSN response to a staircase waveform

One of the time-varying waveforms used in our study
was the staircase waveform, shown in Fig. 2(a). In this
waveform the odor concentration is incremented in
steps of roughly 40 ppm until the maximum concen-
tration of 110 ppm is reached. Then the concentration
is decreased in the same step-like fashion, with each
step being 2 s long. In Fig. 2(b) we plot the spike raster
of the neuron’s response, while in Fig. 2(c) we show
the corresponding PSTH. Note that the concentration
of the delivered odor waveforms in the repeated ex-
periments is not identical. To highlight this departure
from similar experiments in other sensory systems (e.g.,
vision and audition), where the delivery of identical
stimuli is straightforward, we use a different color to
mark each trial in Fig. 2(b).

For greater clarity, the same raster plot is also shown
in black and white in Fig. S5(B) of the Supplemental
material.

Note that whenever there is a sudden positive in-
crement in the concentration, the instantaneous firing
rate of the neuron increases dramatically. For example,
when the odor concentration is increased by 40 ppm at
time t = 10 s, the spike rate of the neuron jumps from
40 Hz to 70 Hz. At the same time, whenever there is a
negative change in the concentration, the instantaneous
firing rate of the neuron goes down. For example, this
can be clearly seen at time t = 14 s when the concentra-
tion falls by roughly 40 ppm and the spike rate of the
neuron drops from about 55 Hz to 35 Hz.

We also note that the firing rate of the neuron
depends on the mean of the odor concentration wave-
form. This can be clearly seen after the transient re-
sponse of the neuron dies away. For example, for time
t ∈ [9 s, 10 s] the odor concentration is constant and is
equal to roughly 40 ppm. Then the concentration is
increased and eventually reaches a constant concen-
tration of 80 ppm for time t ∈ [11 s, 12 s]. At the same
time, the firing rate of the neuron goes up from 40 Hz
to 50 Hz.

Concluding, in response to acetone, the Or59b OSNs
detect and encode both the mean and the temporal
changes of the odor concentration.

3.2 OSN responses to triangle odor waveforms

To get a better understanding of how the odor con-
centration and temporal changes in the odor concen-
tration affect the OSN response, we designed a set
of nine triangle odor waveforms shown in Fig. 3(a).
In combination with different ligand dilutions, this set
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Fig. 2 The OSN response to the staircase waveform. (a) The
staircase acetone odor waveform is plotted against time. The
dashed vertical lines (red) indicate the times at which the odor
concentration is either increased or decreased in a step-like
fashion. The length of each step is 2 s. (b) The raster of the OSN
response to 10 consecutive presentations of the staircase odor
waveform. A different color is used for each trial # to highlight

that in repeated trials the delivered odor waveforms differ from
each other by up to 1%. (c) The PSTH of the OSN response
to the staircase waveform was computed using a 100 ms bin
size with a 25 ms sampling interval. Red horizontal lines denote
the OSN response to the odor concentration and black arrows
point out the neural response to the rate of change of the odor
concentration. (d)–(f) A one-second-long window from (a)–(c)

of waveforms allowed us to explore a large range of
odor concentration and concentration gradient (rate
of change) values. Thus we could parametrize the re-
sponse of the neuron in terms of the odor concentration
and its rate of change and obtain a quantitative descrip-
tion of their combined effects.

In Fig. 3(b) we demonstrate the OSN response to
three different triangle waveforms in Fig. 3(a). We use
the same color code to show the PSTH of the neural
response to triangles #1 (red), #5 (green), and #9 (blue).
The PSTH was computed with a 100 ms bin size and
a 25 ms sampling interval. Note that the three PSTHs
are very distinct and depend on the temporal properties
of the waveforms. In all cases however, the response
clearly varies with the odorant concentration. More-
over, as already expected, the neural response also
depends on the rate of change of the odor concen-
tration. The highest and lowest maximal spike rates
are generated in response to triangles #1 and #9, re-

spectively. This reflects their higher and lower onset
gradients, when compared to the triangle waveform #5.

3.3 The 2D Encoding Manifold

In Fig. 3(c) we plot the triangle odor waveforms in the
concentration-concentration gradient plane for mul-
tiple odorant dilutions. Note that the concentration
values vary from 0 ppm to 250 ppm while the concentra-
tion gradient values vary from roughly −1500 ppm/s to
+2250 ppm/s. We use the same colors as in Fig. 3(a) and
(b) to highlight the resulting trajectories of the triangle
waveforms #1, #5, and #9. We note that at time t = 8.5 s
the concentration of the three waveforms in Fig. 3(a)
is u = 0 and the rate of the concentration change is
u̇ = 0. This corresponds to the point (0, 0) in Fig. 3(c).
With time, the odor concentration increases in Fig. 3(a)
up to a peak of roughly 210 ppm. In Fig. 3(c) this
corresponds to the movement along the highlighted
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Fig. 3 The triangle odor waveforms and the 2D Encoding Man-
ifold. (a) Nine triangle acetone odor waveforms for a single
odorant dilution are plotted against time. (b) The PSTH of the
Or59b OSN response to triangle waveforms #1 (red), #5 (green)
and #9 (blue) was computed using a 100 ms bin size and a 25 ms
sampling interval. (c) The trajectories of triangle waveforms
for all dilutions are plotted in the concentration-concentration
gradient (rate of change) plane. The trajectories of triangles #1,
#5 and #9 are shown using the same colors as in (a), (b). (d) The
neural response to all triangle waveforms is plotted as a function

of the concentration and its rate of change. The trajectories of
the response to triangles #1, #5, and #9 are shown using the same
colors as in (a)–(c). (e) The 2D Encoding Manifold is generated
by applying a 2D ridge estimator to the data in (d). (f) The
contour plot of the manifold in (e). (g) Cross-validation: the 2D
Encoding Manifold is used to read out the OSN response to two
novel triangle odor waveforms. (h), (i) The read-out response
(color) is plotted against time and compared with the PSTH
(black) of the OSN response

trajectories in the counter-clockwise direction through
the right half-plane (positive gradient). Further
counter-clockwise movement through the left-half
plane (negative gradient) corresponds to the falling
side of the triangle odor waveforms in Fig. 3(a). At
time t = 11 s the concentration of the three waveforms
is again u = 0 in Fig. 3(a) and the rate of the
concentration change is again u̇ = 0. This corresponds
to all trajectories coming back to the point (0, 0) in
Fig. 3(c).

Next, we parametrize the OSN response to triangle
waveforms at all dilutions using the odor concentration
and its rate of change. At each time step, the PSTH of
the neural response ([Hz]) is associated with the cor-

responding values of the odor concentration ([ppm])
and its rate of change ([ppm/s]). We thus obtain a
three-dimensional description of the input/output data
(Fig. 3(d)). In Fig. 3(e) we show the surface produced
by applying a 2D ridge estimator (see Sec. 2.3 of the
Supplemental material) to the data in Fig. 3(d). And
in Fig. 3(f) we show the contour plot of the same
surface. We call this surface the 2D Encoding Manifold
since it provides a quantitative description of the odor
encoding performed by an OSN.

Examining Fig. 3(e) and (f), we note that the 2D
Encoding Manifold is highly nonlinear and that the
Or59b OSN clearly encodes the information about both
the odor concentration and its rate of change. The
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neuron responds very strongly to even the smallest pos-
itive values of the gradient and encodes only positive
concentration gradients at low odor concentrations.
At high concentrations the OSN mostly encodes the
odor concentration.

To demonstrate that the above manifold quantita-
tively captures the encoding properties of an OSN, we
use cross-validation. We calculate the values of the
odor concentration and its rate of change for two novel
triangle waveforms. At every time step, we use these
values to read out the value of the neural response from
the manifold. This process is visualized in Fig. 3(g). The
response to the novel triangles ‘A’ (magenta) and ‘B’
(orange) corresponds to two different trajectories on
the 2D Encoding Manifold (black). We plot the read-
out response values as a function of time in Fig. 3(h)
and (i). Note that the predicted response (color) in both
figures closely follows the PSTH (black) of the neuron.

Thus, at the very least for this class of triangle odor
waveforms, the OSNs encode information about the
odor concentration and its rate of change. This is re-
markable as it demonstrates a sophisticated processing
and representation of olfactory information at the very
first layer of the olfactory system.

4 Identification of OSNs using white noise stimuli

In contrast to the empirical modeling presented above,
a principled system identification approach provides a
clear set of guidelines for combining the input/output
data with other knowledge about the system to estimate
a function that maps the input space into the output
space of the system. In order to obtain an estimate
of this function, it is necessary to choose a computa-
tional model that can provide a good description of the
system.

Quantitative neurophysiological studies have pro-
duced several classes of computational models describ-
ing the functional relationship between sensory inputs
and neural responses. The model classes differ in their
assumptions about the properties of a neuron or a
neural circuit and impose constraints on the choice of
the optimal mapping function (Wu et al. 2006).

4.1 Overview of the LNP cascade model

One class of computational models that became
popular in sensory neurophysiology is the Linear-
Nonlinear-Poisson class of models. Originally proposed
by Wiener (1958), this class has been successfully used
to model numerous neural circuits in vision, audition

and vestibular systems (Marmarelis and Naka 1972;
Victor and Shapley 1980; Aertsen and Johannesma
1981; Hunter and Korenberg 1986).

In its simplest form, the LNP model consists of (i)
a static linear block, or a filter, that performs linear
processing on an input stimulus and describes how the
input stimulus is converted into the intracellular volt-
age; (ii) a static nonlinear block that maps the output
of the filter to a spike intensity rate, taking into account
such nonlinearities as rectification and saturation; and
(iii) a Poisson block that generates a train of spikes as
an inhomogeneous Poisson process.

Even though the LNP cascade model is a phenom-
enological model and does not take into account many
biophysical details (such as the spike generation), it
often provides a compact and reasonably accurate de-
scription of average neural responses (e.g., the PSTH)
in many early sensory areas (Pillow 2007).

Formally, the static linear block of the LNP model
consists of a set of n fixed linear filters {hi}n

i=1 that
are fully described by their kernels hi(t), t ∈ �, i =
1, . . . , n. Let u(t), t ∈ �, be a stimulus at the input to
a system. Then the input to the linear block of the
LNP model is a zero-mean stimulus (u − ū)(t), t ∈
�, ū = limT→∞ 1

T

∫ T
0 u(s)ds. At any time t, the output

of the linear block is an n-dimensional vector v =
[v1(t), . . . , vn(t)], where

vi(t) = (
hi ∗ (u − ū)

)
(t) =

∫

�
hi(s)

[
u(t − s) − ū

]
ds,

and ∗ denotes the convolution.
The output v = [v1(t), . . . , vn(t)] of the linear block

feeds into an n-dimensional nonlinearity to produce
the random intensity rate λ(t), t ∈ �, of a conditional
(doubly stochastic) Poisson process:

λ(t) = f (v) = f
(
v1(t), . . . , vn(t)

)
,

where f : �n → � models the nonlinear block.
If there is only one filter in the linear block of the

LNP model, then the nonlinear block is 1-dimensional
and the model is called the 1D LNP model. Similarly,
if the linear block consists of two filters, then the
model is called the 2D LNP model. Typically, only
the 1D and 2D LNP models are used to describe the
response of a neural circuit since the amount of data
required to estimate the parameters of higher-order
models scales exponentially with the order of the model
(Victor 2005).

4.2 Estimation of the LNP model parameters

The system identification problem is effectively a re-
gression problem: given a limited input/output data
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of the system, identify a function that maps an ar-
bitrary input to an appropriate output. To solve this
regression problem, many different parameter estima-
tion methods with different constraints and optimal-
ity criteria have been developed. For the linear block
we will only discuss the reverse correlation (RCO),
spike-triggered average (STA), maximally informative
dimensions (MID) and the spike-triggered covariance
(STC) methods. For the nonlinear block, ridge and
polynomial regression methods are employed.

4.2.1 Estimation of the 1D linear block

The reverse correlation method for the estimation of
the 1D linear block is based on a result of Bussgang
(1952) and was first employed by Hunter and Koren-
berg (1986). In this method, the impulse response of
the linear filter hRCO is obtained using the reverse cor-
relation (RCO) between the zero-mean stimulus u(t) −
ū, t ∈ �, and the estimate λ̂ of the random intensity rate
λ of the spike train:

hRCO(t) =
∫

�
(u(s) − ū)λ̂(s − t)ds. (1)

Typically, the PSTH of the neural response is used as
the estimate λ̂ with

λ̂[a,b ] = 1
b − a

1
K

K∑

j=1

N j
[a,b ], (2)

where N j
[a,b ] is the spike count on the time interval

[a, b ] for the j th presentation of the stimulus.
An alternative method to estimate the linear block

of the 1D LNP model is called the spike-triggered
average. As the name suggests, the STA filter hSTA =
hSTA(t), t ∈ �, is computed by averaging fixed-length
segments of the mean-zero input stimulus directly pre-
ceding every spike in the spike train:

hSTA(t) = lim
m→∞

1
m

m∑

k=1

u(tk − t) − ū, (3)

where t ∈ [0, S], S is the length of the impulse response
of the filter, and (tk), k = 1, . . . , m, represents the se-
quence of spike times. When applying the STA method,
white Gaussian noise is typically used at the input.

Yet another method to estimate the linear block,
called maximally informative dimensions, was de-
scribed in Sharpee et al. (2004) and Paninski (2003).
The MID method estimates the linear kernel by max-
imizing a measure between the prior and the spike-
triggered distribution of the filter output. This method
does not impose any conditions on the distribution
of an input stimulus; non-Gaussian and non-white

inputs can be used. Typically, the linear filter hMID =
hMID(t), t ∈ �, is estimated by maximizing the Kullback–
Leibler divergence, i.e.,

hMID(t) = arg max
h

D, (4)

where D is a distance measure between the probability
distribution of the filter output v(t) = (h ∗ (u − ū))(t)
and the probability distribution of the filter output
v(t) conditioned on the time of a spike (Pillow and
Simoncelli 2006).

4.2.2 Estimation of the 2D linear block

The MID method can be extended to maximize
the Kullback–Leibler divergence with respect to two
different directions and thus estimate kernels h1 and h2

of the 2D LNP model (Sharpee et al. 2004).
Alternatively, the two filters of the 2D LNP cascade

model can be estimated from the information provided
by the spike-triggered covariance matrix (Steveninck
and Bialek 1988; Brenner et al. 2000; Slee et al. 2005;
Fairhall et al. 2006; Schwartz et al. 2006; Geffen et al.
2009). In this approach, the prior stimulus and the
spike-triggered stimulus are compared by evaluating
their covariances. The two covariance matrices are
defined as follows:

CP(t, s) = E[u(τ −t)u(τ −s)] − E[u(τ −t)]E[u(τ −s)]
CSTC(t, s) = E[u(τ −t)u(τ −s)|τ = tk] −

−E[u(τ −t)|τ = tk]E[u(τ −s)|τ = tk],
where E[ · ] represents the mathematical expectation
and tk is an arbitrary spike time.

In practice, the input signal is discretely sampled, and
thus both CSTC and CP are finite-dimensional matrices.
The kernels h1(t) and h2(t) of the two linear filters
of the 2D LNP cascade model are the eigenvectors
corresponding to the two most significant eigenvalues
of the matrix

C = CSTC − CP, (5)

where C can be analyzed using eigenvalue decompo-
sition (Steveninck and Bialek 1988). The magnitude
of the eigenvalues represents the change in variance
from the prior stimulus distribution to the STA output
distribution along the corresponding eigenvectors.

4.2.3 Estimation of the nonlinearity

For both the 1D and the 2D LNP model, the nonlinear
block is estimated by simply matching the output of the
linear block v = [v1(t), . . . , vn(t)], n = 1 or n = 2, to the
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estimate λ̂ of the random intensity rate λ. Typically, this
is done by minimizing the residual

M[a,b ] = N[a,b ] −
∫ b

a
λ(s)ds = N[a,b ] −

∫ b

a
f (v(s))ds,

(6)

where N[a,b ] = 1
K

∑K
j=1 N j

[a,b ] is the spike count esti-
mate on the time interval [a, b ] obtained from K trials
and the residual M[a,b ] is attributed to the (white) noise
in the neural response. Ridge and polynomial regres-
sion methods are used for obtaining an estimate of f
in Eq. (6) (see Section 2.2 in the Supplemental material
for details).

4.3 LNP Models of the Or59b OSNs

Here we employ LNP cascade models to identify the
Or59b OSN in response to white noise waveforms
with fixed mean and variance values. Both frozen and
white noise experiments are carried out to estimate a
1D linear kernel and the corresponding nonlinearity
block. A 2D LNP cascade model is also estimated from
the same set of data. The estimated systems are cross-
validated using an independent white noise sample path
with the same statistical parameters as the training (or
test) waveforms.

4.3.1 OSN response to frozen noise odor waveforms

In order to estimate parameters of any phenomenolog-
ical neuron model, precise measurements of the input
stimulus and the output spike train must be available to
an observer. In olfaction, this has not been possible un-
til now primarily because of the difficulties associated
with the reproducible delivery and accurate measure-
ment of the odorant concentration. We note that the
experimental reproducibility is absolutely essential if
one wishes to use the PSTH and/or Bayesian Adaptive
Regression Splines (BARS) to estimate the instanta-
neous firing rate λ(t), t ∈ �, of a neuron in response to
a given odor waveform (Kass et al. 2003, 2005).

In Fig. 4 we demonstrate that our experimental setup
allows us to take precise measurements of both the
input and the output. A reproducible delivery of a
frozen noise odor waveform results in a precise and
structured response of the OSN. Figure 4(a) shows the
time course of 60 repeated frozen noise acetone odor
waveforms that were delivered to the antennae of a
fly. All waveforms were generated using the same con-
trol sequence and are practically identical. Figure 4(d)
shows a 1 s window from Fig. 4(a) and demonstrates the

high degree of reproducibility of odor waveforms in all
60 repeated trials.

In Fig. 4(b) we plot the raster of the Or59b OSN
response to 60 waveforms shown in Fig. 4(a). Every
row in the plot corresponds to a single trial and each
vertical line segment denotes an action potential. We
use a different color for each trial to highlight that the
delivered odor waveforms in repeated trials differ from
each other by up to 1%.

We note that such a precise and reproducible odor
delivery system allows one to observe the remarkable
spiking precision of the OSN. For instance, the start
and the end of the neural response in Fig. 4(b) are
clearly correlated with the onset and the offset of the
odor concentration waveform. Furthermore, the clear
vertical gaps in the raster are correlated with the noisy
fluctuations of the odor concentration. This data sug-
gests that the response of an OSN is precise and highly
reproducible. To our knowledge, this has not been
observed before primarily because of the difficulties
associated with the odor delivery and measurement.

Finally, in Fig. 4(c) we show the instantaneous firing
rate of the neuron. First, we plot the instantaneous
firing rate using a PSTH (blue) with a bin size of
20 ms and a sampling interval of 1 ms (hence the “20/1”
notation). Second, we apply BARS (red) to a PSTH
with non-overlapping 10 ms bins (hence the “10/10” no-
tation). This allows us to obtain an additional estimate
of the instantaneous firing rate.

4.3.2 The 1D LNP model of the Or59b OSN

Figure 5(a) depicts the LNP cascade model of an Or59b
OSN in response to acetone waveforms. The model
consists of a linear filter (L Block) followed by a static
nonlinear block (N Block). A zero-mean input u(t) − ū
is provided at the input to the model and the intensity
rate λ(t) of the spike train is read out at the output.

The linear block in Fig. 5(a) was estimated using all
three of the aforementioned techniques: RCO, STA
and MID. All three filter shapes are akin to each
other except that the MID filter exhibits a sharper
peak as well as noisy fluctuations. The nonlinearity in
Fig. 5(a) was computed using the first order polynomial
fit (green dotted line) as well as a ridge estimator (red
line) discussed in Sec. 2.2 of the Supplemental material.

The estimated 1D LNP cascade model is cross-
validated by measuring the prediction error for an
arbitrary white noise input sample path drawn from
the Gaussian distribution with mean μ = 66 ppm and
variance σ 2 = 252. The prediction error is scored by
computing the RMSE values between the measured
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(c) (f)

(e)(b)

(a) (d)

Fig. 4 The OSN response to the acetone frozen noise odor
waveform. (a) 60 consecutive presentations of the frozen noise
odor waveform. Note the remarkable reproducibility in odor
delivery. (b) The corresponding raster of the OSN response. A
different color is used for each trial # to highlight that in repeated
trials the delivered odor waveforms differ by up to 1%. (c) The

PSTH of the OSN response to the frozen noise waveform was
computed using a 20 ms bin size and a 1 ms sampling interval. The
BARS algorithm applied to a PSTH with non-overlapping 10 ms
bins provides an additional estimate of the neural response. (d)–
(f) A one-second-long window from (a)–(c)

output and the predicted output for each model. The
cross-validation in Fig. 5(c) shows that the 1D LNP
cascade model can closely predict the PSTH of the
neuron response.

4.3.3 The 2D LNP model of the Or59b OSN

We have identified the input/output map of the Or59b
OSN in response to a white noise protocol assuming a
2D LNP model as described above. The eigenvectors
corresponding to the two most significant eigenvalues
of the C matrix in Eq. (5) are plotted within the linear
block of the model in Fig. 6(a).

The first filter h1(t) is the eigenvector corresponding
to the eigenvalue with the largest magnitude. It exhibits
a monophasic pattern with a spectrum similar to that
of a low-pass filter with a −3 dB cut-off frequency of
about 20 Hz (Fig. 6(b)). The second filter h2(t) exhibits
a biphasic pattern with positive and negative peaks at
around 75 ms and 150 ms. Its spectrum is similar to that

of a band-pass filter with a −3 dB cut-off frequency of
1 Hz (low) and 12 Hz (high) (Fig. 6(b)).

The nonlinear block of the model was estimated by
matching the output of the two filters to the PSTH
using the 2D ridge estimator (see Section 2.3 in the
Supplemental material). The resulting nonlinearity is
plotted in Fig. 6(a).

The cross-validation in Fig. 6(c) shows that the 2D
LNP cascade model can closely predict the PSTH of
the neuron response. The black trace depicts the PSTH,
whereas the red trace corresponds to the model predic-
tion in response to a white noise input stimulus with
mean μ = 68 ppm and variance σ 2 = 252.

4.4 Concluding remarks

The 1D and 2D phenomenological OSN models de-
scribed in the previous sections were independently
derived. A simple comparison of the predictive power
of these two models is given in Section 4.4.1.
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(a)

(b) (c)

Fig. 5 The one-dimensional LNP cascade model of the Or59b
OSN. (a) The block diagram of the 1D LNP cascade model.
The model input u(t) − ū is filtered with a kernel h(t) and then
passed through a static nonlinearity. The model output λ(t) is
the random intensity rate of the spike train. OSN kernels were
estimated using the RCO, STA, and MID methods. The static
nonlinearity was estimated by matching the output of the linear
block to the OSN PSTH. In this example, both ridge regression
and polynomial regression methods were used to obtain the

nonlinearity for the STA kernel. (b) Spectral estimates of the
RCO, STA and MID kernels. (c) The cross-validation shows that
the 1D LNP cascade model can closely predict the OSN PSTH in
response to novel noise stimuli with the same mean μ = 66 ppm
and contrast σ/μ = 0.38. The RMSE between the PSTH (black)
and the estimated random intensity rate of the spike train is
5.9 Hz, 6.4 Hz, and 7.4 Hz for the RCO (green), STA (red), and
MID (blue) kernels, respectively

The previous neuron identification results were ob-
tained by assuming fixed stimulus statistics as both
the mean and the variance of the white noise odor
waveforms were kept constant. In Section 4.4.2 we
shall briefly highlight the dependence of the system
identification models on the input statistics. As we
shall see, the phenomenological models of OSNs de-
rived here are strongly dependent on the first moment
of the white noise odor stimuli. They are, however,
largely invariant with respect to stimulus contrast
changes.

4.4.1 Comparison of the 1D and 2D LNP models

How do the 1D and 2D LNP cascade models discussed
in the previous sections compare? That is, how do the
models depicted in Figs. 5 and 6 compare? A geomet-
ric interpretation is desirable because of its intuitive
appeal. Can the two models be compared in the same

space say by constructing a common 2D or 3D space?
We opt here for the latter.

Because the two phenomenological models differ in
their dimensionality, we shall first map the nonlinearity
of the 1D model into a two-dimensional space. This is
readily possible because the nonlinearity in Fig. 5(a) is
parametrized by the average value of the input stimu-
lus ū. In Fig. 7(a) the one-dimensional nonlinearity is
shown as a function of the STA filter output and the
average of the input stimulus ū. The STA filter used
in this representation was identified for the medium
stimulus mean value μ = 45 ppm.

Thus, the 1D system identification model of the
OSN can be interpreted as being two-dimensional. The
STA filter output and an average of the stimulus are
the inputs to a two-dimensional nonlinearity as shown
in Fig. 7(a). Clearly, a reinterpretation of the 1D system
identification model of Fig. 5(a) for different average
stimulus values ū leads to a straightforward comparison
with the 2D LNP model in Fig. 6(a).



J Comput Neurosci (2011) 30:143–161 155

(a)

(b) (c)

Fig. 6 The two-dimensional LNP cascade model of the Or59b
OSN. (a) The block diagram of the 2D LNP cascade model.
The model input u(t) − ū is filtered with two kernels h1 and h2
and the filter outputs v1 and v2 are passed through a static 2D
nonlinearity. The model output λ(t) is the random intensity rate
of the spike train. The OSN kernels h1 and h2 were estimated
using the STC method. (b) The Fourier transform of the filters
(H1 and H2) shows that h1 is a low-pass filter with a cutoff
frequency of about 20 Hz and h2 is a band-pass filter with cutoff

frequencies at roughly 1 Hz and 12 Hz. (c) The cross-validation
shows that the 2D LNP cascade model can closely predict the
OSN PSTH in response to novel noise stimuli with the same
mean μ = 68 ppm and contrast σ/μ = 0.38. The RMSE between
the PSTH (black) and the estimated random intensity rate of the
spike train (red) is 6.8 Hz. For comparison, the 1D LNP model
prediction is shown in green. The RMSE between the PSTH
(black) and the estimated random intensity rate of the spike train
(red) is 6.4 Hz

A comparison of the predictive power of the 1D and
2D models is shown in Fig. 6(c). The RMSE between
the OSN PSTH and the response of the 1D and 2D
models are 6.4 and 6.8 Hz, respectively. Thus the 2D
model performs on par with the 1D LNP model with a
RMSE increase of about 5 to 10%.

4.4.2 Dependence on the stimulus statistics

In Fig. 7 we also demonstrate the dependence of the
system identification results on the statistics of the
input stimuli. In Fig. 7(a) we plot the one-dimensional
nonlinearity for three different values of μ = ū, the

first moment of u, while the stimulus contrast σ/μ

is essentially kept constant (in what follows μ and ū
are interchangeably used). Note that the slope of the
nonlinearity varies with different values of ū. While
we depict the nonlinearity for only three values of ū
(23, 45 and 102 ppm), it is clear that a continuum of
such nonlinearities exists for practically the same values
of the contrast σ/μ (0.33, 0.34, 0.35). Thus, assuming
that the contrast is kept fixed, the system identification
results for the 1D LNP model depend upon the average
value of the input stimulus.

A similar dependence is observed in Fig. 7(b) for the
2D LNP model. The filter pair (h1, h2) was evaluated
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(a)

(c)

(b)

(d)

Fig. 7 The dependence of white noise system identification re-
sults on the statistics of input stimuli. (a) The nonlinearity of the
1D LNP model is shown as a function of the output of the STA
filter for three different values of ū: 23 ppm (green), 45 ppm (red)
and 102 ppm (blue) with the corresponding contrast σ/μ values
of 0.33, 0.34 and 0.35. The slope of the nonlinearity decreases
with ū. (b) The nonlinearity of the 2D LNP model also changes
with ū. Note the difference in (overlapping) nonlinearities for the

three different values of ū (same as in (a)). (c), (d) For a constant
average value μ of the stimulus, the stimulus contrast σ/μ does
not qualitatively affect the estimated 1D and 2D nonlinearities.
In this example, (μ, σ/μ) takes the values (58, 0.1) or low, (62,
0.19) or medium, and (67, 0.26) or high contrast, respectively. In
both the 1D and the 2D case, the nonlinearities simply cover a
larger filter output space with the increasing contrast

for the medium mean stimulus value using the STC
method. Here we depict 2D nonlinearities for the same
3 value pairs of (μ, σ/μ) as in Fig. 7(a). A clear gap
is observed between all 3 surfaces even though their
domains overlap. A representation of the footprint
for a range of mean concentration values is shown in
Fig. S4 in the Supplemental material.

If however the contrast of the input stimulus is varied
while the mean is kept constant, no significant change
in the system identification results is observed. In both
cases, a higher contrast simply allows us to cover more
of the space at the output of the filter (Fig. 7(c) and
(d)). The mean value and contrast pair of the stimuli
employed in Fig. 7(c) and (d) are, respectively, (58, 0.1),
(62, 0.19) and (67, 0.26).

To summarize, the system identification results for
both the 1D and the 2D LNP model vary significantly

with the statistics (specifically the first order moment)
of the test odor stimuli. In a cross-validation, both
models perform well when predicting response to novel
stimuli with the same statistics as the test stimuli. How-
ever, the cross-validation fails when the input stimuli
have a mean that differs from that of the test stimuli.
Because this phenomenon is observed for both the 1D
and the 2D LNP model, it points to adaptive coding
properties of the OSN. Thus, the processing and rep-
resentation of the olfactory information appears to be
signal-dependent.

5 Discussion

In Sections 3 and 4 we presented an empirical and
principled system identification methods, respectively,
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and employed them to construct phenomenological
models of OSNs. The basic elements of these mod-
els, the processing filters and the nonlinearities, are
strongly dependent on the signal shapes and moment
statistics. Consequently, the space of input stimuli was
appropriately restricted in these sections. How do these
models compare across different input stimulus shapes
and statistics?

5.1 Exploring the space of odor stimuli

In Section 3 we characterized Or59b OSNs in response
to odor waveforms that explore the input stimulus
space along the odor concentration and concentration
gradient (rate of change). Each triangle odor wave-
form sweeps a given concentration range with a unique
rising/falling gradient value set, and this allows for a
“more uniform” sampling of the input space.

Since the 2D Encoding Manifold from the triangle
protocol and the 2D nonlinearity from the white noise
protocol are plotted in different coordinate systems,
a change of coordinates is required for a meaningful
comparison of the two. In order to compare the em-
pirical model in Section 3 with the principled models
in Section 4, we shall assume that the shape of the
STC kernels is preserved for any arbitrary odor sig-
nal even though the slope of the nonlinearity is input
modulated. Therefore, triangle odor waveforms at the
input of the 2D LNP cascade model are assumed to be
filtered by the two STC kernels (h1, h2) derived using
the white noise protocol for a stimulus with an average
value in the medium range (see Fig. 7). We undertook
a coordinate transformation of the axes in Fig. 3(c)

and mapped the coordinates (amplitude, gradient) to
(h1, h2) (see Fig. S7 in the Supplemental material). A
highly intuitive, geometric comparison is now possible.

The resulting input/output relationship leads us to
the (black) 2D Encoding Manifold in Fig. 8(a). As
before, the 2D Encoding Manifold was obtained by
applying the ridge-regression method described in Sec-
tion 2.2 of the Supplemental material. The shape of
the nonlinearity indicates that the system encodes the
output v2 of the h2 filter “more strongly” than the
output v1 of the h1 filter. The input space has a large
footprint as shown in Fig. 8(b) (also in black).

Overlaid on the transformed 2D Encoding manifold
in Fig. 8(a) are three LNP nonlinearities derived for
three mean odor concentration values. The nonlineari-
ties were obtained using the white noise odor protocol
with the contrast of the odor waveforms kept constant.
Green, red and blue patches depict the 2D nonlinear-
ities corresponding to the (mean, contrast) pairs (23,
0.33) or low, (45, 0.34) or medium, and (102, 0.35) or
high mean, respectively. Clearly, the white noise proto-
col only explores a small subset of possible encodings
of the input space.

Finally, in order to test how well the 2D Encod-
ing Manifold predicts the response of an OSN under
different stimulus conditions, we first applied triangle
odor waveforms at the input of the identified linear sys-
tem (h1, h2) described above. The outputs (v1, v2) of the
filters in response to the three arbitrary triangular odor
waveforms (similar to the waveforms in Fig. 3(b)) are
mapped into the green, red and blue traces on the black
2D Encoding Manifold in Fig. 9(a). The same three
green, red and blue (time) traces are cross-validated
with the black OSN PSTH in Fig. 9(b)–(d).

(a) (b)

Fig. 8 Comparison of the 2D Encoding Manifold and the 2D
nonlinearities for fixed contrast. (a) The nonlinearities of the 2D
LNP model for the white noise odor protocol (green, red and
blue; same as in Fig. 7(b)) and the 2D Encoding Manifold of

the triangle odor waveform protocol (black). (b) Footprint of the
nonlinearities of the 2D LNP model (green, red and blue) and the
2D Encoding Manifold (black)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9 Using the 2D Encoding Manifold to predict the response
of an OSN. (a) Three arbitrary triangle odor waveforms (green,
red and blue) mapped onto the 2D Encoding Manifold (black).
Sample odor waveforms are shown in Fig. 3(b). (b)–(d) Cross-
validation using the three arbitrary triangle waveforms (green,
red and blue) and the OSN PSTH (black). (e) White noise odor

waveforms mapped onto the 2D Encoding Manifold. The white
noise odor waveforms have the mean contrast pairs (58, 0.1) in
green, (62, 0.19) in red, and (67, 0.26) in blue, respectively. (f)–(h)
Cross-validation of three white noise odor waveforms (green, red
and blue) and the corresponding OSN PSTH (black)

Three white noise odor waveforms (shown in green,
red and blue) at the input of the filter pair (h1, h2)

are first transformed into the outputs (v1, v2) and then
mapped as traces onto the black 2D Encoding Manifold
in Fig. 9(e). Figure 9(f)–(h) show the time traces in the
same color code together with the black OSN PSTH of
the recorded spike trains. The model neuron consisting
of the (h1, h2) filter pair and the 2D Encoding Manifold
cascade exhibits a strong predictive capability for trian-
gle odor waveforms. It has, however, a limited utility
for predicting the response to white noise odor stimuli.

Therefore, the identification of OSNs using white
noise odor stimuli leads to a phenomenological descrip-
tion that is quite different from the empirical model
developed based on triangle odor waveforms. Both
models have their respective domains of validity, how-
ever. The empirical model can predict the response
to slowly varying triangle odor waveforms (but not
white noise) whereas the 2D LNP model can predict
the response to white noise (but not to non-stationary
triangle stimuli).

5.2 Final remarks

Fundamentally, system identification deals with the
construction of mathematical models of dynamical sys-
tems based on the response of these systems to test

stimuli. As such, system identification requires a precise
control of the test stimuli and accurate measurements
of both the input and the output of the system.

In olfaction, system identification of sensory neurons
has had limited success primarily because no adequate
measurement of the concentration of time-varying
odor waveforms was available. To our knowledge, the
only exceptions are (Justus et al. 2005; French and
Meisner 2007; Schuckel et al. 2008). However, in these
works the system response is evaluated using electroan-
tennograms that do not provide precise spike-time
recordings.

In this study we investigated the problem of system
identification in olfactory sensory neurons of the fruit
fly using a novel odor delivery and acquisition system
that allowed for a precise control and measurement
of odor concentration on a millisecond time scale. We
recorded the extracellular activity of olfactory sensory
neurons in response to various test stimuli and in-
vestigated the empirical as well as several classes of
mathematical models of OSNs. Two methods of system
identification were employed. They differ both in terms
of the stimuli used and the methodology of identifying
the OSNs.

First, we used triangle odor stimuli and an empirical
method of system identification. The resulting empir-
ical model encodes both the odor concentration and
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the odor concentration gradient with a 2D Encoding
Manifold. The form of the manifold can be estimated
from the spike time recordings using a ridge estima-
tor. The empirical model already demonstrates that
the first layer of the olfactory system is, computa-
tionally, more sophisticated than previously thought.
Consequently, we cannot disregard the fine structure
of the OSN response at the periphery of the olfactory
system and hope to understand odor signal process-
ing in the higher brain centers. More fundamental re-
search on the early olfactory system is needed in order
to understand the odor representation and processing
by OSNs.

Second, we employed white noise odor stimuli and
applied a principled approach to identify OSNs. The
1D and 2D LNP cascade phenomenological models of
OSNs were investigated. For white noise odor wave-
forms as input stimuli we built a 1D LNP cascade
model of the sensory neuron for a fixed mean odor
concentration and fixed contrast. In this model a single
linear filter is followed by a 1D nonlinearity. The in-
stantaneous response of the neuron was determined by
passing a mean-zero signal through the linear filter and
then through the nonlinearity. Although such a model
can predict the response to stimuli with the same mean
and contrast, it fails to do so when the mean concentra-
tion is altered while the contrast remains unchanged.
For a given fixed contrast we demonstrated that the
nonlinear block of the LNP cascade model changes with
the mean concentration of the stimulus. This points to
the fact that the OSN model should be at least two-
dimensional.

We then investigated a 2D LNP cascade model in
which the stimulus is passed through two parallel linear
filters and the output of the filters is fed into a two-
dimensional nonlinearity. By comparing the geometry
of the input/output map associated with the nonlinear
block, we showed that a standard white noise analysis
only provides a partial view of both the footprint and
the transformation of the 2D system. The footprint can
easily be enlarged through the delivery of triangular
odor waveforms, or more generally, time-dependent
waveforms. Exploring other characteristics of the trans-
formation will require experimentation with additional
odor waveforms.

Finally, we evaluated a 2D model of Or59b OSNs
consisting of a pair of filters in cascade with the 2D
Encoding Manifold using both stationary white noise
and non-stationary triangle odor stimuli. This model
exhibits a strong predictive capability for triangle odor
waveforms. It has, however, a limited capability for
predicting the response to white noise odor stimuli. It
suggests an adaptive neural encoding model for Or59b

OSNs with a nonlinearity that depends, for white noise
stimuli with fixed contrast, on the mean odor waveform.
Contrast independence for fixed mean concentration
values was a surprising find.

System identification of OSNs using triangular odor
waveforms offers a number of advantages to the
systems neuroscientist because of the fine level of para-
metrization of the input space. We note that exten-
sive electrophysiology with the same level of stimulus
control has been performed by other researchers on
various neurons and in other organisms. A few ex-
amples include the thermo-receptor neurons in Loftus
(1969), hygro-receptor neurons in Tichy (2003), and the
olfactory sensory neurons in Hinterwirth et al. (2004)
and Tichy et al. (2005). In these studies the output
of sensory neurons were parametrized using two input
signal components: the input amplitude and its rate of
change. Furthermore, even in response to white noise
waveforms, two-dimensional models include two linear
kernels that extract the input amplitude and its rate
of change (Brenner et al. 2000; Slee et al. 2005). In
this light, our work on the system identification of
Or59b OSNs bridges the gap between the high degree
of control of the concentration and the concentration
gradient of odor waveforms and the inference that can
be made about the actual stimulus encoding of these
neurons.

The RCO, STA and MID kernels employed, while
closely related, seem to be stimulus-dependent and
might change depending on the state of the system.
Note that, e.g., the STA kernel has a fundamental
limitation in that it depends on the statistics of the
stimulus (Paninski 2003). Furthermore, a memoryless
Poisson process was assumed that does not really cap-
ture the temporal statistics of neural spike trains (Berry
and Meister 1998; Keat et al. 2001; Reich et al. 1998;
Aguera y Arcas and Fairhall 2003). In addition, the
spike history dependence can bias the estimation of
linear filters (Berry and Meister 1998; Paninski et al.
2003; Paninski 2003; Aguera y Arcas and Fairhall 2003).

Finally, the results presented here are limited to
the class of Or59b OSNs. If and whether the insights
provided here arise in OSNs expressing other receptor
types will be explored elsewhere.
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