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Abstract Binocular rivalry occurs when two very
different images are presented to the two eyes, but a
subject perceives only one image at a given time. A
number of computational models for binocular rivalry
have been proposed; most can be categorised as either
“rate” models, containing a small number of variables,
or as more biophysically-realistic “spiking neuron”
models. However, a principled derivation of a reduced
model from a spiking model is lacking. We present
two such derivations, one heuristic and a second using
recently-developed data-mining techniques to extract
a small number of “macroscopic” variables from the
results of a spiking neuron model simulation. We also
consider bifurcations that can occur as parameters are
varied, and the role of noise in such systems. Our
methods are applicable to a number of other models
of interest.
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1 Introduction

Binocular rivalry occurs when two very different im-
ages are presented to the two eyes (Blake 2001; Blake
and Logothetis 2002; Leopold and Logothetis 1999;
Tong et al. 2006). Instead of perceiving the sum or
average of the two images, the subject typically per-
ceives only one image at a given time. However, there is
normally repeated alternation between the two images
(on the order of once every few seconds). The alter-
nation is not exactly periodic, and the variability leads
to a distribution of “dominance durations” (the times
for which a particular image is perceived, before the
other image is perceived). This phenomenon has been
studied experimentally and computationally modelled
for many years (Freeman 2005; Laing and Chow 2002;
Moreno-Bote et al. 2007; Wilson 2003; Blake 2001;
Grossberg et al. 2008). Some of these models involve a
small number of variables (interpreted as “spiking rate”
or “neural activity” of a subpopulation of neurons),
and these models can be regarded as having been
designed in such as way as to show the behaviour
expected of them, i.e. slow oscillations (Dayan 1998;
Freeman 2005; Stollenwerk and Bode 2003; Ashwin
and Lavric 2010). Often, noise is added to these
models to produce the observed distribution of
dominance durations (Kalarickal and Marshall 2000;
Lago-Fernandez and Deco 2002). Others have studied
more realistic models of biophysically-based spiking
neurons, with some of these authors also discussing
rate models (Laing and Chow 2002; Moreno-Bote et al.
2007; Wilson 2003).

However, a systematic derivation of a rate model
for binocular rivalry from a spiking model is still lack-
ing. Indeed, the derivation of accurate “macroscopic”
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models from detailed “microscopic” models remains
one of the outstanding problems in computational neu-
roscience; for various approaches see, for example,
Wilson and Cowan (1972), Ch. 6 in Gerstner and Kistler
(2002), Cai et al. (2004) and Tranchina (2009). We
perform two such derivations here, using intuition in
the selection of macroscopic variables and the approach
described in Gradišek et al. (2000) for the analysis
of stochastic systems. We first use our experience to
choose several macroscopic variables, and process the
results of a long simulation to extract deterministic
and stochastic components of equations governing the
dynamics of these variables. We then demonstrate that
similar results can be obtained by blindly “data-mining”
the results of a long simulation, to automatically ex-
tract appropriate macroscopic variables. We use the
recently-developed diffusion map approach (Coifman
and Lafon 2006; Erban et al. 2007; Nadler et al. 2006)
to accomplish this.

Note that unlike, for example, Cai et al. (2004)
and Tranchina (2009), we do not provide an analytical
reduction from a microscopic model to a macroscopic
one. Instead, our reduction is numerical and requires
the simulation of the detailed microscopic model at the
parameter value(s) of interest. This paper concerns the
processing of the results of such simulations to obtain,
among other things, estimates of the functions used in
a macroscopic model.

In Section 4 we investigate the effects of varying pa-
rameters in the system and show that we can move from
an “oscillator model” to an “attractor model” (Moreno-
Bote et al. 2007) by changing a single parameter. In
Section 5 we add noise to the system and show that this
affects both the deterministic component and the full
stochastic dynamics of the macroscopic model that we
derive. Section 6 shows how to initialise the system con-
sistent with specific values of the macroscopic variables,
and we conclude in Section 7.

2 Fine-scale model

The model we use is a slight modification of that previ-
ously described by Laing and Chow (2002). We refer to
it as the fine-scale model and briefly describe it here.
The model consists of two populations of Hodgkin–
Huxley-like neurons, excitatory and inhibitory. Each
population has 60 neurons, each of which has a “pre-
ferred orientation,” so that it fires at its maximal rate
when either eye is presented with a grating of that
orientation. The preferred orientations are chosen uni-
formly from the range [0, 180◦], and thus the neurons
in each population can be thought of as lying on a

ring, with position around the ring corresponding to
preferred orientation (see Fig. 1 of Laing and Chow
2002). We propose that a given percept is represented
as a localised group of active neurons (Gutkin et al.
2001; Laing and Chow 2001). We model the situation
in which the two eyes are presented with orthogonal
gratings (Logothetis et al. 1996), and thus inject current
at two locations in the network centred around neurons
whose preferred orientation differs by 90◦, i.e. on oppo-
site sides of the ring.

We also assume that excitatory neurons are synap-
tically coupled with a strength which is a Gaussian
function of the difference between their preferred ori-
entations. There is a similar type of coupling from
excitatory neurons to inhibitory neurons, within the in-
hibitory population, and from inhibitory to excitatory,
with coupling strength always being a Gaussian func-
tion of the difference between preferred orientations.
See Appendix for details.

We include two slow processes in our fine-scale
model. The first is spike frequency adaptation in the
excitatory neurons; this has a time-constant of 80 ms.
The second is synaptic depression in the excitatory–
excitatory connections, with a time-constant of 1 s.
Because of the form of the injected current (see
Appendix) the neurons labelled 1–30 are associated
with one percept and those labelled 31–60 are associ-
ated with the other. The network robustly undergoes
oscillations between one half of the network being
active and the other half being active, switching every
second or two. See Fig. 1 for an example, or Laing
and Chow (2002). The changing calcium concentration
is responsible for spike frequency adaptation, while φ

is the variable controlling synaptic depression. Laing
and Chow (2002) showed that their model reproduced
a number of experimentally observed phenomena.

While this fine-scale model is detailed and biophysi-
cally realistic (and could be made more detailed and re-
alistic) it is clear that from a macroscopic point of view,
the network is undergoing noisy oscillations. However,
it is not clear whether the system should be thought
of as an intrinsic oscillator with added noise, or as a
bistable system, which alternates between states purely
as a result of being driven by noise (Moreno-Bote
et al. 2007; Shpiro et al. 2009). It is this observation
of noisy oscillations at the macroscopic level that is be-
hind the study of various rate models for rivalry which
have few variables (Kalarickal and Marshall 2000;
Lago-Fernandez and Deco 2002; Laing and Chow
2002; Ashwin and Lavric 2010). However, a systematic
derivation of a rate model from a detailed spiking
model has not previously been performed, and it is this
question that we now address.
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Fig. 1 (a): A rasterplot for
the excitatory population.
Each firing of an excitatory
neuron is marked by a black
bar. (b): [Ca] for neurons 15
(solid) and 45 (dashed). (c): φ

for neurons 15 (solid) and 45
(dashed). The activity in the
inhibitory population mimics
that in the excitatory
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3 Macroscopic models

3.1 Deriving a macroscopic model, choosing
macroscopic variables

Based on our observations of the network, i.e. alter-
nation of activity in the two halves of the population,
we define two macroscopic variables: χ is defined to be
the mean of [Ca] for neurons 31–60, minus the mean of
[Ca] for neurons 1–30. � is defined to be the mean of
φ for neurons 31–60, minus the mean of φ for neurons
1–30. We thus expect χ to be a fast variable, relative
to �. Typical behaviour of χ and � is shown in Fig. 2.
We see that in terms of these variables, the system
possesses a stable, “noisy limit cycle,” and it seems
reasonable that another system which has a similar
stable, noisy limit cycle could be an appropriate model
for the microscopic model under investigation.

We do not attempt to analytically derive determinis-
tic nor stochastic differential equations governing the
dynamics of � and χ from fine-scale Eqs. (31)–(40)
given in Appendix. Instead we take the “equation-
free” approach of assuming that such equations ex-
ist and then estimating the right-hand sides of those
equations (Kevrekidis et al. 2003; Laing 2006). We do
this by processing data like that shown in Fig. 2 to ex-
tract estimates of the terms involved in stochastic DEs
(SDEs) for χ and � using the techniques in Gradišek
et al. (2000) (see also Friedrich et al. 2000; Laing et al.
2007; van Mourik et al. 2006). These SDEs will form
our macroscopic model, and are assumed to linearly
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Fig. 2 (a): � and χ as functions of time, directly from a simula-
tion of the fine-scale model. (b): Motion in the �, χ plane for a
simulation of length 30 s. Motion is in the clockwise direction
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combine purely deterministic and purely stochastic
components, i.e. they form a vector Langevin equa-
tion. It should be noted that the fine-scale (Hodgkin–
Huxley-like) system is purely deterministic, with
apparently stochastic switching resulting from finite-
size effects (non-synchronous, individual synaptic in-
puts) and the highly nonlinear nature of the full system.
Also, it is an assumption that such SDEs provide an ac-
curate description of the system. In general, the validity
of this assumption can be checked by comparing results
from these SDEs with those from the full, detailed
system (Eqs. (31)–(40))—see the end of this section for
further discussion.

We define

X =
(

χ

�

)
∈ R

2 (1)

and assume that X satisfies an as yet unknown Langevin
equation. It follows that the probability density P(X, t)
satisfies a Fokker–Planck equation:

∂ P(X, t)
∂t

=
⎡
⎣−

∑
i

∂

∂ Xi
fi(X)+ 1

2

∑
i, j

∂2

∂ Xi X j
Dij(X)

⎤
⎦P(X, t). (2)

The functions fi and Dij are defined from the dynamics
through the following formulas:

fi(Y) = lim
�t→0

〈Xi(t + �t) − Xi(t)〉
�t

∣∣∣∣
X(t)=Y

(3)

and

Dij(Y)

= lim
�t→0

〈(Xi(t+�t)−Xi(t))(X j(t+�t)−X j(t))〉
�t

∣∣∣∣
X(t)=Y

(4)

where the angled brackets denote expectation. Note
from its definition that D is symmetric. The vector

f(X) =
(

f1(χ, �)

f2(χ, �)

)
∈ R

2 (5)

governs the deterministic part of the macroscopic dy-
namics, while D(X) is related to the stochastic aspect
of the Langevin equation for X. We estimate f(X)

and D(X) from a finite-length simulation, using the
following expressions with finite �t (in practice, we
used �t = 10 ms).

fi(Y) ≈ 〈Xi(t + �t) − Xi(t)〉
�t

∣∣∣∣
X(t)=Y

(6)

and

Dij(Y)

≈ 〈(Xi(t + �t) − Xi(t))(X j(t + �t) − X j(t))〉
�t

∣∣∣∣
X(t)=Y

−�t fi(Y) f j(Y) (7)

where the last term in Eq. (7) helps to correct for
the finite size of �t (Ragwitz and Kantz 2001). Hav-
ing a finite amount of data we also have to partition
the relevant part of the phase plane into equal-sized
rectangles, the result being that we obtain estimates
for f(X) and D(X) at a finite number of points in the
X plane (Kuusela et al. 2003). Figure 3 shows f1 and
f2 extracted from a simulation of Eqs. (31)–(40) of
duration 500 s. Note that the maximum magnitude of
f1 is more than ten times that of f2. Figure 4 shows

Φ
 

 

 

(a)

–0.05 0 0.05

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

–1.5

–1

–0.5

0

0.5

1

1.5

χ

χ

Φ
 

 

 
(b)

–0.05 0 0.05

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

–0.1

–0.05

0

0.05

0.1

Fig. 3 Estimates of (a): f1(X) and (b): f2(X), i.e. the components
of the vector in Eq. (5)



J Comput Neurosci (2010) 28:459–476 463

–0.1 –0.05 0 0.05 0.1
–2

–1

0

1

2

χ

χ

 

 

(a)
f
1
(χ,–0.015)

f
1
(χ,0.015)

–0.1 –0.05 0 0.05 0.1
–0.2

–0.1

0

0.1

0.2

 

 

(b)
f
2
(χ,–0.015)

f
2
(χ,0.015)

Fig. 4 Plots of (a) f1 and (b) f2 as function of χ for the two
specified values of � (−0.015 and 0.015)

horizontal “slices” through the images shown in Fig. 3
at two particular value of �.

Since D is symmetric we represent it by its Cholesky
decomposition: D = GGT , where

G =
(

G11 0
G21 G22

)
. (8)

We have

G11 = √
D11 (9)

G21 = D12/G11 (10)

G22 =
√

D22 − G2
21 (11)

Figure 5 shows estimates of G11(X), G21(X) and
G22(X), extracted as above. Note that the maximum
magnitude of G11 is approximately 10 times the max-
imum magnitude of G21, which is approximately 10
times the maximum magnitude of G22. The grid used

in Figs. 3 and 5 has 19 equally spaced points over the
range of χ values shown and 29 equally spaced points
over the range of � values shown.
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Having determined f(X) and D, we can, for example,
simulate the deterministic component of the macro-
scopic dynamics:

dX
dt

= f(X). (12)

The results are shown in Fig. 6 (left column). We see
that the deterministic dynamics is characterised by a
globally attracting limit cycle surrounding an unstable
fixed point.

We can also simulate the full Langevin equation for
X. Choosing a small time step �t, the Euler–Maruyama
scheme is

X((i + 1)�t)

= X(i�t) + �t f(X(i�t)) + √
�t G(X(i�t)) �i (13)

where

�i =
(

�i
1

�i
2

)
∈ R

2 (14)

and �i
1 and �i

2 are independently selected from a nor-
mal distribution with mean zero and variance 1. For
values of X not on the grid mentioned above, linear in-
terpolation of the values of f(X) and G(X) at these grid
points is used in the simulations above. In the course
of the simulation of Eq. (13), X may enter a region
which the original simulation never reached, for which
we do not have estimates of f and G. In these regions we
(somewhat arbitrarily) set G = 0 and f = −0.2X. The
effect of this is to move the trajectory gradually towards
the origin, so that it re-enters the region for which
estimates of f and G are available. The results of such
a simulation are shown in Fig. 6 (right column). The
agreement appears to be quite good. Needless to say,
such simulations are much faster than simulations of
the original system, with the generation of the random
vectors �i consuming most of the computational effort.
The issue of finding estimates of f and G for values of
X not reached by the original simulation is addressed in
Section 6.
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Fig. 6 Left column: a simulation of the deterministic dynam-
ics (Eq. (12)), including transients. (a): � and χ as functions of
time. (b): the trajectory in the top panel laid over the determin-
istic direction field. Right column: Simulations of the Langevin

equation (Eq. (13)). (c): � and χ as functions of time. (d): Motion
in the �, χ plane for a simulation of length 30 s. Compare with
Fig. 2
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It is possible to check the validity of approximat-
ing the dynamics shown in Fig. 2 by a Langevin
equation for X, as we have done. We can choose
a point X̂ in phase space and consider all points
{X(t1), X(t2), . . . X(tm)} that come close to it during a
finite simulation, and then examine the distribution of
differences

{X(t1) − X(t1 + �t), X(t2)

−X(t2 + �t), . . . X(tm) − X(tm + �t)}. (15)

If, for all points X̂, the corresponding distribution of
differences forms a bivariate normal distribution, a
Langevin equation is appropriate. The parameters of
the bivariate normal distribution are directly related to
the values of f and G (Kuusela et al. 2003).

As an example we chose X̂ = (χ̂ �̂)T = (−0.06
0.005)T and examined all points for which (χ, �) ∈
(−0.065, −0.055) × (0.0025, 0.0075), using these points
and the values of χ and � at a time �t later to
form the differences (Eq. (15)). Figure 7(a) shows the
distribution of these differences. Figure 7(c) shows a
histogram of the χ values for these differences, while
panel (d) shows a histogram of the corresponding �

values. Also shown in panel (c) is a normal distri-
bution with mean f1(χ̂ , �̂)�t and standard deviation
G11(χ̂ , �̂)

√
�t, and in panel (d) a normal distribu-

tion with mean f2(χ̂ , �̂)�t and standard deviation√
[G21(χ̂ , �̂)]2�t + [G22(χ̂ , �̂)]2�t. We see that both

distributions are well-fit by normal distributions, with
parameters corresponding to the estimated values of f
and G. The correlation coefficient between the values
of χ and the values of � for the points in Fig. 7(a)
is −0.96397, in excellent agreement with the theoreti-

cal value of G21(χ̂, �̂)/

√
[G21(χ̂ , �̂)]2 + [G22(χ̂ , �̂)]2 =

−0.96397. Repeating this analysis for other values of X̂
gives similar results (not shown).

The Markovian nature of the dynamics can also be
checked (Bahraminasab et al. 2008). Given the time-
series for X and our estimates of f and G, one can,
for example, solve Eq. (13) at each time-step for the
corresponding values of �i

1 and �i
2. If the dynamics are

Markovian we expect these values to be δ-correlated
in time. Figure 7(b) shows the autocorrelation of the
sequence {�i

1}. We see that there are some weak cor-
relations beyond one time-step of �t = 10 ms, but the
rapid decay supports the use of a Langevin equation to
model the dynamics of X.

3.2 Deriving a macroscopic model using
data mining

While the method above was very successful in sug-
gesting a macroscopic model, it relied on us choosing
appropriate variables with which to form the macro-
scopic model, namely χ and �. We were able to do
this successfully because of our experience simulating

Fig. 7 (a): Distribution of
differences (Eq. (15)). (b):
Autocorrelation of the
sequence {�i

1}. (c) and (d)
show χ and � values,
respectively, of the data in
panel (a), together with
normal distributions with
parameter values given by f
and G evaluated at X̂. See
text for more details
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the model, and also because we had access to the fine-
scale model, both in terms of the governing equations,
and being able to simulate them. However, in many
situations this will not be the case. For example, our
fine-scale simulator may be a “legacy code” which we
are not able to inspect or modify, or which was not fully
documented. Alternatively, the results of a simulation
may be too complicated (e.g. having too many degrees
of freedom) for us to use our intuition to correctly
choose appropriate coarse-grained observables (vari-
ables). Instead, we would like an automated method
which can determine, from the results of a fine-scale
simulation, variables which can be used to describe the
dynamics at a macroscopic level.

One approach is to “mine” the data collected from
one or more long, detailed simulations in order to
find an accurate low-dimensional description of it. We
then use coordinates in this low-dimensional space as
macroscopic variables. Since we have dynamics on the
high-dimensional data set, this allows us to observe the
dynamics of the macroscopic variables, thus providing,
in effect, a low-dimensional model. The assumption
behind this approach is that, in fact, there is such a low-
dimensional description of the dynamics. It is similar
in spirit to centre manifold calculations in the neigh-
bourhood of a bifurcation, or to the use of approximate
inertial manifolds (Jolly et al. 1990; Rega and Troger
2005). We will perform this data-mining (or “manifold
learning”) using the recently-developed diffusion map
approach (Coifman and Lafon 2006; Erban et al. 2007;
Laing et al. 2007; Nadler et al. 2006).

3.2.1 Dif fusion maps

In this section we briefly describe the application of
diffusion maps to our problem. The procedure can be
thought of as a nonlinear generalization of principal
component analysis (Jolliffe 2002) and further details
can be found in Erban et al. (2007) and Laing et al.
(2007).

The behaviour of the inhibitory network will
mimic that of the excitatory, so we do not con-
sider the inhibitory neuron variables. We sample the
360 variables associated with the excitatory network
(Vk

e , nk
e , hk

e , sk
e , [Ca]k, φk) for k = 1, . . . 60 at N = 4,000

equally spaced timesteps (10 ms apart). We thus have
N vectors in R

360. Because the variables have different
scales (and indeed units) we first subtract the mean of
each variable:

Xk( j) → Xk( j) − μk
X (16)

for each k ∈ {1, . . . 60} and X ∈ {Ve, ne, he, se, [Ca], φ}
where

μk
X = 1

N

N∑
j=1

Xk( j) (17)

and Xk( j) is the value of Xk at the jth time point. We
then rescale:

Xk( j) → Xk( j)

Mk
X − mk

X

(18)

where

Mk
X = max

j
Xk( j) and mk

X = min
j

Xk( j). (19)

We refer to these shifted and rescaled vectors as
{xi}i=1,...,N . We then construct a similarity matrix K:

Ki, j = exp

[
−

( ||xi − x j||
ε

)2
]

(20)

where || · || indicates the Euclidean norm and ε is a
characteristic distance; here we use ε = √

50. We create
a diagonal normalisation matrix D, where

Di,i =
N∑

j=1

Ki, j (21)

and the Markov matrix M = D−1 K. M has eigenval-
ues 1 = λ0 ≥ λ1 ≥ . . . λN−1 ≥ 0 with right eigenvectors
ν0, ν1, . . . νN−1. Note that the eigenvector ν0 is constant
(all of its entries are 1). If there is a spectral gap
after a few eigenvalues, this suggests that the data
is low-dimensional, and the components of the data
points on the leading eigenvectors, ν1, ν2, . . . provide
a useful low-dimensional representation of the data set
{xi} (Coifman and Lafon 2006; Nadler et al. 2006). Here
we use only the first two eigenvectors. The diffusion
map is then

xi 
→
(

ν
(i)
1

ν
(i)
2

)
∈ R

2 (22)

for i = 1, . . . N, where ν(i)
a is the ith component of νa.

This is a mapping from R
360 to R

2. Note that this pro-
cedure does not use the dynamics of the xi. We refer to
the unbolded ν1 and ν2 as “diffusion map coordinates,”
and regard them as scalar variables. Thus, for example,
ν

(i)
1 is a specific value of ν1.

In Fig. 8 we plot ν1, ν2 and ν3 as functions of time
for the 4,000 data points used to construct the diffusion
map, together with χ and � for the same data points.
The first coordinate ν1 clearly captures the behaviour
of χ , while ν2 captures the dynamics of �. The meaning
of ν3 is less clear, as it varies the same way, irrespective
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Fig. 8 (a): Diffusion map coordinate ν1 (multiplied by 0.03)
and χ as functions of time. (b): Diffusion map coordinate ν2
(multiplied by 0.01) and � as functions of time. (c): Diffusion map
coordinate ν3 (multiplied by 0.01)

of whether ν2 is increasing or decreasing. The variables
ν1 and ν2 were extracted in an almost completely auto-
mated fashion, and their correspondence with χ and �

can be regarded as confirmation that these were indeed
good macroscopic variables.

Several points regarding the results in this section
should be discussed. One point of interest is the sam-
pling rate of 100 Hz. One might be concerned that
such a rate is not fast enough to fully resolve individual
action potentials, leading somehow to ν1 and ν2 only
reflecting the dynamics of the slow variables. However,
this is not the case. The behaviour of the network is
driven by the states of the slow variables, and individual
action potentials do not need to be resolved for the
method to work. All we require is that we sample for
long enough to cover several switches of activity be-
tween sides of the fine-scale network, and that samples
be close enough in time that we can reliably estimate
time derivatives of ν1 and ν2 using finite differences.

As a check we repeated the analysis in this section but
sampling the fine-scale model at 1,000 Hz, and obtained
essentially the same results (not shown). Another issue
is the use of a nonlinear manifold learning algorithm as
opposed to a linear method such as principal compo-
nents analysis. For the data set used here, i.e. {xi}i=1,...N ,
the first two principal components are actually very
similar to ν1 and ν2 (not shown). However, in the
absence of any information regarding the structure of
the data set to be analyzed, the most general algorithm
(i.e. a nonlinear one) should clearly be used.

3.2.2 The Nyström formula

Now that we have identified several variables with
which to describe the macroscopic dynamics of the
system, we would like to do the same as before, i.e. es-
timate functions associated with the deterministic and
stochastic dynamics of those variables. However, we
only have the values of ν1 and ν2 for N = 4,000 data
points. In practice, we cannot significantly increase this
number, since the matrix K has dimensions N × N.
However, based on the assumption (which is supported
by the computed spectrum of M) that the data are
low-dimensional, the Nyström formula for eigenspace
interpolation can be used to find the values of ν1 and
ν2 for any number of other data points not used in
the construction of K (Bengio et al. 2004; Erban et al.
2007). This gives us more ν1, ν2 pairs with which to
estimate the deterministic and stochastic dynamics of
ν1 and ν2.

To do this, we note that M = D−1/2SD1/2, where
S = D−1/2 KD−1/2. M and S are thus similar, and there-
fore have the same eigenvalues, λ0 ≥ λ1 ≥ . . . λN−1. Let
{U j} j=0,...,N−1 be the corresponding eigenvectors of S.
These are related to the eigenvectors of M through

ν j = D−1/2U j. (23)

We have SU j = λ jU j, or

U(i)
j = 1

λ j

N∑
k=1

Si,kU(k)

j (24)

where U(i)
j is the ith component of U j. Suppose we have

new vector xnew, and we want to know the values of ν1

and ν2 associated with it. We create an N × 1 vector
Knew whose kth component is

K(k)
new = exp

[
−

( ||xnew − xk||
ε

)2
]
. (25)
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We also have a generalised kernel vector Snew whose ith
entry is

S(i)
new =

(
N∑

k=1

Ki,k

)−1/2 (
N∑

k=1

K(k)
new

)−1/2

K(i)
new. (26)

The entries in Snew quantify the pairwise similarities
between xnew and the vectors in {xk}, consistent with
the definition of S. The eigenvector component Unew

j
corresponding to xnew is then

Unew
j = 1

λ j

N∑
i=1

S(i)
newU(i)

j (27)

ν 
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Fig. 9 Estimates of the functions governing the deterministic
dynamics of ν1 and ν2. (a): f1; (b): f2
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Fig. 11 Left column: (a) and (b) show ν1 and ν2, respectively,
as extracted from a simulation of the microscopic model. Right
column: (c) and (d) show results of a Langevin simulation (i.e. a
sample path) of ν1 and ν2, respectively, using the functions shown
in Figs 9 and 10

for j = 0, 1, 2 (since we only want the values of ν1 and
ν2) and the value of ν j corresponding to xnew is

νnew
j = Unew

j

Unew
0

. (28)

Performing this procedure for data points not used
in the construction of K, we obtain a large number
of ν1, ν2 pairs from which we can estimate the vector-
valued function f(ν1, ν2), governing the deterministic
dynamics of ν1 and ν2, and the matrix D(ν1, ν2), corre-
sponding to the stochastic component of the dynamics.
Figure 9 shows estimates of the components of f, and
Fig. 10 shows estimates of the coefficients G11, G21, G22

(associated with the matrix D), estimated from a total
of 50,000 data points. Once we have these functions,
we can simulate the corresponding Langevin equation
for ν1 and ν2, as before—see Fig. 11. The compari-
son with dynamics of the fine-scale simulation is again
satisfactory.

4 Changing parameters

So far we have shown how to derive a macroscopic
model for the dynamics, using either “experience-
based” coordinates, or those obtained by data-mining
the results of a simulation, for fixed parameters. We are
also interested in the effects of changing parameters in
the model, as that will cause the dynamics to change.
For example, if we decrease B (the parameter control-

ling the strength of synaptic depression) from 1.3 to
0.8, the average dominance duration increases, but we
still obtain oscillations—see Fig. 12(a), (b). Using the
variables � and χ defined as before, we can extract
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Fig. 12 (a) and (b): Dynamics of the fine-scale model for B =
0.8. (a): � and χ as functions of time. (b): motion in the χ, �

plane. (c): Trajectories from several simulations of the deter-
ministic system (Eq. (12)) when B = 0.8. The attractors are
shown with large f illed circles. Rotation is clockwise in panels (b)
and (c)
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estimates of f and G11, G21, G22, for this new parameter
value. What is interesting in this case is the determinis-
tic dynamics, as shown in Fig. 12(c). The deterministic
dynamics no longer have a stable limit cycle. Instead,
there are two symmetry-related stable fixed points.
The deterministic component of the dynamics at the
macroscopic scale has undergone a bifurcation, even
though the overall stochastic dynamics does not appear
to have done so.

By using linear interpolation in phase space on the
components of f as estimated at discrete points in
the χ, � plane, we can estimate the location of the
unstable fixed points of the deterministic component
of the dynamics as well. The unstable fixed points
are saddles, with one positive and one negative eigen-
value, as expected from their creation in a symmetric
pair of saddle-node bifurcations as B is decreased.
These bifurcations are similar to the saddle-node-
on-an-invariant-circle (SNIC), or saddle-node-infinite-
period (SNIPER) bifurcation, the difference being that
the symmetry of the system forces two pairs of fixed
points (related under the transformation (χ, �) 
→
(−χ, −�)) to appear at the same parameter value.

Decreasing B still further would cause an apparent
bifurcation in the stochastic dynamics, in the sense that
rather than switching between two states the system
would remain practically forever at one noisy fixed
point (not shown).

The underlying cause of switching in binocular ri-
valry is as yet unknown. Moreno-Bote et al. (2007)
recently studied a stochastic model for binocular rivalry
that they referred to as an “attractor model,” since in
the absence of noise the deterministic dynamics asymp-
totically approaches one of two stable fixed points, as in
Fig. 12(c). This is in contrast with “oscillator models”
in which the attractor of the deterministic component
of the dynamics consists of a stable limit cycle, as in
Fig. 6 (left column). However, our results show that we
can move our model in a smooth, continuous fashion
between the two types of dynamics by changing a single
parameter. Approaching the bifurcation from one side
we can make the period of deterministic oscillation ar-
bitrarily long, so the system spends more and more time
in each state. Approaching the bifurcation from the
other side, the eigenvalue closest to zero of the stable
fixed point can be made arbitrarily close to zero. These
smooth changes in the macroscopic dynamics were
also noted by Shpiro et al. (2009) who recently con-
cluded from a study of stochastic mean-field-like mod-
els that, in order to reproduce observed results, their
models must operate with a balance of noise strength

and the strength of the slow processes responsible for
switching.

5 Adding noise to the fine-scale model

As mentioned above, there is debate about the role
of noise in binocular rivalry (Moreno-Bote et al. 2007;
Shpiro et al. 2009). To investigate the role of noise in
the fine-scale model we set B = 1.3 and added noise
to the system by injecting current pulses of the form
I(t) = ±β H(t)e−t/8 into each excitatory neuron, where
H is the Heaviside step function, β is a parameter and
t is measured in milliseconds. The arrival times of these
pulses form a Poisson process with rate 20 Hz, there
is no correlation between arrival times for different
neurons, and ± was chosen with equal probability.
Typical resulting dynamics of � and χ for β = 2/3 are
shown in Fig. 13, and in Figs. 14 and 15 we show how
our estimates of f and G, respectively, change as the
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Fig. 13 The dynamics of � and χ with noise of amplitude β =
2/3 added to the fine-scale model, as described in Section 5. (a):
� and χ as functions of time. (b): Motion in the �, χ plane for a
simulation of length 30 s. Motion is in the clockwise direction
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Fig. 14 Estimates of f1 (left
column) and f2 (right
column) for noise intensities
β = 0 (top row), β = 2/3
(second row), β = 4/3 (third
row) and β = 2 (bottom row)
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noise intensity β is increased. We see that there are
no qualitative changes in the functions f and G as β

is varied between 0 and 2, but increasing noise level
causes the system to explore a larger area of phase
space (and spend more time near the origin) and also
“smoothes out” the functions f and G.

In terms of the macroscopic dynamics of the system,
the behaviour seen in Fig. 2 and Fig. 13 is qualitatively
the same, even though Fig. 2 shows the dynamics of
a purely deterministic fine-scale system, while Fig. 13
shows the dynamics of a stochastic fine-scale system.
Thus, from the macroscopic point of view, we should
regard both systems as having an effective deterministic
component and an effective stochastic component. The
addition of noise to the fine-scale simulation changes

both the deterministic and the stochastic components
of the macroscopic dynamics. Noise intensity can thus
be considered as an additional parameter that can vary
smoothly through zero.

6 Initialising the system at specific values
of the coarse variables

All of the results shown so far have relied on the
processing of data from long simulations. Thus we have
a great deal of data from frequently-visited areas of
phase space but little or none for other regions, lead-
ing to poor or non-existent estimates of f and G—see
Fig. 6(b) for example. To overcome this we would like



472 J Comput Neurosci (2010) 28:459–476

Fig. 15 Estimates of G11 (left
column), G21 (middle
column) and G22 (right
column) for noise intensities
β = 0 (top row), β = 2/3
(second row), β = 4/3 (third
row) and β = 2 (bottom row),
in the same format as Fig. 14.
The colour ranges are—left
column: black= 0,
white= 0.05; middle column:
black=−0.005, white= 0; right
column: black= 0,
white= 0.0003
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to be able to repeatedly initialise the system at a fine-
scale point consistent with a particular macroscopic
phase space point and simulate it for a short amount
of time, recording the evolution of the macroscopic
variables in order to estimate f and G (Laing et al.
2007). Here we describe a method for doing this and
present some results.

Suppose we wish to initialise the system at some “tar-
get” point for which (χ, �) = (χ targ, �targ). In what
should be considered an unphysical, but computation-
ally useful “preparation step,” we introduce a potential


(χ, �) = α1

(
χ − χ targ

)2 + α2

(
� − �targ

)2
(29)

where α1 = 10 and α2 = 350, and effectively add minus
the gradient of this potential to the dynamics for χ and

� in order to drive these variables to their target values.
Recalling that

χ =
60∑

i=31

[Ca]i−
30∑

i=1

[Ca]i and �=
60∑

i=31

φi−
30∑

i=1

φi (30)

where [Ca]i is the value of [Ca] for the ith excitatory
neuron and similarly for φi, we add −∂
/∂[Ca]i to the
right hand side of the existing equation for d[Ca]i/dt
and add −∂
/∂φi to the right hand side of the ex-
isting equation for dφi/dt (see Eqs. (35) and (36) in
Appendix), to create what we refer to as the “con-
strained” system. To approximately initialise the sys-
tem at (χ, �) = (χ targ, �targ) we run the constrained
system for a short amount of time, using as an initial
condition a data-point from an unconstrained simula-
tion with values of (χ, �) close to (χ targ, �targ). If,
after this short constrained simulation, the values of
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Fig. 16 Blue (black) arrows: deterministic vector field as esti-
mated using the techniques in Section 3.1 (Section 6). Red (green)
curve: trajectory following the deterministic vector field shown
with blue (black) arrows
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Fig. 17 (a): χ and � as functions of time for the trajectory
shown in green in Fig. 16, i.e. using the vector field estimated
by initialising based on coarse (χ, �) values. (b): χ and � as
functions of time for the trajectory shown in red in Fig. 16,
i.e. using the vector field estimated using a long simulation of the
fine-scale model

(χ, �) are close enough to (χ targ, �targ), the constraint
is removed, the “natural” system is simulated for a fur-
ther 10 ms and f and G are estimated as in Section 3.1.
If the values of (χ, �) are not close enough to
(χ targ, �targ), this initial condition is rejected and an-
other is chosen. This procedure is repeated a number
of times for a specific (χ targ, �targ), and the values
of (χ targ, �targ) are taken from a uniform rectangular
grid.

As a demonstration of our results, Fig. 16 shows, with
blue arrows, the deterministic vector field as estimated
in Section 3.1, overlaid (in red) with a simulation of this
field, as in Fig. 6(b). Also shown, with black arrows,
is the deterministic vector field as estimated using the
initialisation procedure discussed immediately above,
on a 15 × 15 grid and (in green) a simulation using this
vector field. The two attracting limit cycles are quite
close and, given the sparseness of the grid upon which
we have estimates of the vector field, the agreement
is quite good. Figure 17 (top/bottom) shows the time
series of χ and � associated with the green/red curve in
Fig. 16.

7 Conclusion

We have presented several principled derivations
of macroscopic models for binocular rivalry from a
previously-studied fine-scale model (Laing and Chow
2002). We used both our experience and data-mining
tools to extract several appropriate variables, and then
processed the results of simulations to determine func-
tions governing the dynamics of these variables. The
behaviour of the reduced models agreed very well with
that of the fine-scale model. We also discussed para-
meter variation, the role of noise, and a method for
initialising the coarse variables.

We now discuss more generally the types of results
that can be obtained using the techniques demon-
strated here and their significance. As mentioned in
Section 3.1, for fixed parameters it is much quicker
to simulate a Langevin equation using, for example,
the scheme in Eq. (13) than to simulate the fine-scale
model. However, much more can be obtained from
the estimates of f and G. For example, by using inter-
polation in phase space on the components of f, the
position of the unstable fixed point that appears to
be inside the limit cycle of Fig. 6(b) could be found.
Normal simulations of the fine-scale model cannot be
used to find this fixed point, since it is unstable. As
shown in Section 6, the fact that the unconstrained
fine-scale model spends little time near this unstable
fixed point can be overcome. Alternatively, one may
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want to “control” the system, i.e. be able to apply a
signal in order to, for example, switch the system from
one percept to the other. The reduced models we have
derived could be used to design such a controller, which
would act based on values of the variables in these
models.

As seen in Section 4, bifurcations can occur when
parameters are changed. These bifurcations often cre-
ate or destroy “coarse” unstable invariant sets (fixed
points, periodic orbits). These unstable sets will not
be observed simply by simulating the fine-scale model,
but can be found using the type of reduced model
presented here. It is this fact that enables us to say that
the bifurcation seen in Section 4 is a symmetric SNIC
bifurcation rather than, say, a bifurcation involving a
heteroclinic connection between two symmetry-related
saddle fixed points. We can also use this approach to
determine the precise value of a parameter at which
the system switches from being an “oscillator model” to
being an “attractor model” (Moreno-Bote et al. 2007).

Other interesting observations include the fact that
the noise in the presumed Langevin equation is multi-
plicative, i.e. the components of the matrix G vary as
X is varied—see Fig. 5. Also, the fact that only two
stochastic differential equations (for χ and �, or ν1

and ν2) are required to reproduce the dynamics of the
fine-scale system is consistent with the smallest number
of variables that an “oscillator model” (Moreno-Bote
et al. 2007) must have. (At least for the parameter val-
ues we considered. The number of variables required
in a reduced model may well change as parameters
are varied. Ideally the number of variables used should
change adaptively—by analogy with variable step-size
in adaptive numerical integrators—as parameters are
varied, in a way that preserves the accuracy of the
reduced model (Makeev et al. 2002)).

The problem of deriving accurate “coarse” scale
models from “fine” scale models is one of the
outstanding problems in computational neuroscience
(see Ermentrout 1994; Shriki et al. 2003, for several
successes). Although the results shown here are com-
putationally intensive, the method does provide an
alternative to the special cases just mentioned, for
which analytical progress is possible. The techniques
are very general, and should be applicable to a number
of other systems which show “emergent” macroscopic
behaviour, and for which we have detailed biophysical
models (Marder and Bucher 2001; Rybak et al. 2004).
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Appendix: A model equations

Here we present the model equations. They are very
similar to those in Laing and Chow (2002). For each
excitatory neuron we have

dVe

dt
= Isyn + Iext − Imem(Ve, ne, he) − IAH P (31)

dne

dt
= ψ[αn(Ve)(1 − ne) − βn(Ve)ne] (32)

dhe

dt
= ψ[αh(Ve)(1 − he) − βh(Ve)he] (33)

τe
dse

dt
= Aσ(Ve)(1 − se) − se (34)

d[Ca]
dt

= −0.002gCa(Ve − VCa)

1 + exp [−(Ve + 25)/2.5] − [Ca]/80 (35)

τg
dφ

dt
= 1 − φ − Bσ(Ve)φ (36)

where Imem(Ve, ne, he) = gL(Ve − VL) + gKn4
e(Ve −

VK) + gNa(m∞(Ve))
3he(Ve − VNa) and IAH P = gAH P

[Ca]/([Ca] + 1)(Ve − VK). Other functions are m∞
(V) = αm(V)/(αm(V) + βm(V)), αm(V) = 0.1(V + 30)/

(1 − exp [−0.1(V + 30)]), βm(V) = 4 exp[−(V + 55)/

18], αn(V) = 0.01(V + 34)/(1 − exp [−0.1(V + 34)]),
βn(V) = 0.125 exp [−(V + 44)/80], αh(V) = 0.07 exp
[−(V + 44)/20], βh(V) = 1/(1 + exp [−0.1(V + 14)]),
σ(V) = 1/(1 + exp [−(V + 20)/4]. Parameters are gL =
0.05 mS/cm2, VL = −65 mV, gK = 40 mS/cm2, VK =
−80 mV, gNa = 100 mS/cm2, VNa = 55 mV, VCa = 120
mV, gAH P = 0.05 mS/cm2, gCa = 0.1 mS/cm2, ψ = 3,

τe = 8 ms, τg = 1,000 ms and A = 20. B is initially 1.3,
but is varied in Section 4.

For each inhibitory neuron we have

dVi

dt
= Isyn − Imem(Vi, ni, hi) (37)

dni

dt
= ψ[αn(Vi)(1 − ni) − βn(Vi)ni] (38)

dhi

dt
= ψ[αh(Vi)(1 − hi) − βh(Vi)hi] (39)

τi
dsi

dt
= Aσ(Vi)(1 − si) − si (40)

where τi = 10 ms and other functions are as above.
The synaptic current entering the jth excitatory neu-

ron is

(V+ − V j
e)

1

N

N∑
k=1

g jk
eesk

e φ
k + (V− − V j

e)
1

N

N∑
k=1

g jk
ie sk

i (41)

where V j
e is the voltage of the jth excitatory neuron

in mV, sk
e/ i is the strength of the synapse emanating
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from the kth excitatory/inhibitory neuron, φk is the
factor by which the kth excitatory neuron is depressed,
N = 60 is the number of excitatory neurons (equal to
the number of inhibitory neurons), and the Gaussian
coupling functions are given by

g jk
ee = αee

√
50/π exp {−50[( j − k)/N]2} (42)

and

g jk
ie = αie

√
20/π exp {−20[( j − k)/N]2}. (43)

The reversal potentials are V+ = 0 mV, V− = −80
mV. Similarly, the synaptic current entering the jth
inhibitory neuron is

(V+ − V j
i )

1

N

N∑
k=1

g jk
ei sk

e + (V− − V j
e)

1

N

N∑
k=1

g jk
ii sk

i (44)

where V j
i is the voltage of the jth inhibitory neuron in

mV, and the coupling functions are

g jk
ei = αei

√
20/π exp {−20[( j − k)/N]2} (45)

and

g jk
ii = αii

√
30/π exp {−30[( j − k)/N]2}. (46)

Parameters are αee = 0.285 mS/cm2, αie = 0.36 mS/cm2,
αei = 0.2 mS/cm2 and αii = 0.07 mS/cm2. The external
current to the jth excitatory neuron in μA/cm2 is

I j
ext = 0.4√

2

[
exp

(
−

[
10[ j − N/4]

N

]2
)

+ exp

(
−

[
10[ j − 3N/4]

N

]2
)]

− 0.01 (47)

i.e. the external current injected into the excitatory pop-
ulation consists of two Gaussians, centered at 1/4 and
3/4 of the way around the domain. The equations were
simulated using Euler’s method with a fixed time-step
of 0.02 ms, and no significant changes in the network
behaviour were observed when time-steps of 0.01 or
0.005 ms were used.

Note that the system is completely deterministic.
Section 5 discusses the results from simulating a sto-
chastic version of this network.
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