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Abstract Two key features of sensorimotor prediction are
preprogramming and adjusting of performance based on
previous experience. Oculomotor tracking of alternating
visual targets provides a simple paradigm to study this
behavior in the motor system; subjects make predictive eye
movements (saccades) at fast target pacing rates (>0.5 Hz).
In addition, the initiation errors (latencies) during predictive
tracking are correlated over a small temporal window
(correlation window) suggesting that tracking performance
within this time range is used in the feedback process of the
timing behavior. In this paper, we propose a closed-loop
model of this predictive timing. In this model, the timing
between movements is based on an internal estimation of
stimulus timing (an internal clock), which is represented by
a (noisy) signal integrated to a threshold. The threshold of
the integrate-to-fire mechanism is determined by the timing
between movements made within the correlation window of
previous performance and adjusted by feedback of recent
and projected initiation error. The correlation window size

increases with repeated tracking and was estimated by two
independent experiments. We apply the model to several
experimental paradigms and show that it produces data
specific to predictive tracking: a gradual shift from reaction
to prediction on initial tracking, phase transition and
hysteresis as pacing frequency changes, scalar property,
continuation of predictive tracking despite perturbations,
and intertrial correlations of a specific form. These results
suggest that the process underlying repetitive predictive
motor timing is adjusted by the performance and the
corresponding errors accrued over a limited time range
and that this range increases with continued confidence in
previous performance.
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1 Introduction

Saccades are fast conjugate changes of eye position
between fixations, such as are made when reading this
sentence. The predictive saccade task typically requires a
subject to track a visual target that alternates between
two fixed positions at a fixed rate or interstimulus
interval (ISI; see Fig. 1(a)). In other words, both the
temporal and spatial properties of the stimulus remain
constant throughout the test session and therefore are
completely predictable. A number of investigators have
used variations of this paradigm to study predictive
capabilities in both normal human subjects (Stark et al.
1962; Ross and Ross 1987; Zambarbieri et al. 1987;
Shelhamer and Joiner 2003; Isotalo et al. 2005; Shelhamer
2005; Joiner and Shelhamer 2006a, b; Zorn et al. 2007) and
in patients with neurological disease (Bronstein and
Kennard 1984, 1985; Tian et al. 1991; Ventre et al. 1992;
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Krebs et al. 2001). More recently, functional imaging of the
brain has been used to investigate the neurological areas
responsible for this ability (Gagnon et al. 2002; Simó et al.
2005; Burke and Barnes 2008).

Predictive tracking of alternating targets requires the
correct movement timing (an intersaccade interval close to
the ISI) and the appropriate movement latency (less than
the time required for a typical saccadic eye movement,
approximately 80 ms; Zorn et al. 2007). A sequence of
predictive saccades from a typical normal subject in this
paradigm is displayed in Fig. 1(b). Target position is
represented by the gray line; the black line represents the
subject’s eye position. As displayed in the figure, when the
subject begins to track the alternating targets the first two
saccades are reactive (they occur after the stimulus jump
with respective latencies of 161 and 166 ms). This is due to
the subject having no prior knowledge of the stimulus
timing. However, by the fourth saccade, the eye movement
occurs with a latency of 12 ms signifying that it is a
preplanned predictive movement (visual processing and
motor delay require approximately 80 ms). This predictive
tracking behavior utilizes two sources of feedback from
previous movements: the timing between movements
(intersaccade interval) and the timing error (latency).
Initially, to overcome the early timing error (the reactive
latencies of 161 and 166 ms), the subject must decrease the

intersaccade interval as marked by the upward arrow in
panel (b). Then, following this adjustment, the subject
tracks the targets with minimal timing error: The subject’s
eye movements are in phase with the stimulus. The
intersaccade intervals and latency values of the subsequent
saccades are approximately 556 (the same as the timing of
the stimulus: the ISI) and near 0 ms, respectively.

This adjustment and subsequent tracking behavior is not
a trivial phenomenon. For example, if the subject continued
to make saccades with the same timing as the first
intersaccade interval (that is, no adjustments to the time
between saccades), then subsequent saccades would never
become predictive, and the error would continue to increase
with each eye movement. This is simulated in Fig. 1(c);
note that the eye and target (black and gray traces) become
more out of phase with each eye movement. In addition to
making adjustments based on the timing between previous
movements, the subject must also take the latency or
initiation error of previous saccades into account. For
example, if the subject adjusts the intersaccade interval as
in panel (b) but makes no further adjustments (i.e.,
maintains this new intersaccade interval), then subsequent
eye movements will be predictive (occur before the
corresponding stimulus jump), but the timing error will
increase substantially with each movement. This is simu-
lated in Fig. 1(d). In this case, the subsequent saccades are

Fig. 1 (a) Diagram of the
predictive-saccade task. The
gray circle represents the target
which at the start of the
experimental session begins at
midline (first panel) and then
alternates between two fixed
positions at a fixed rate
(interstimulus interval, ISI). (b)
Behavioral results for one
subject during the predictive-
saccade task. The black trace
represents the eye movement;
the gray trace is target position.
(c) Simulated results not using
feedback of intersaccade
intervals. (d) Simulated results
not using feedback of timing
errors (latency)
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predictive, but the movements are out of phase with the
stimulus as marked by the downward arrow in panel (d).
Thus, predictive tracking of alternating targets involves
adjustments based on both previous intersaccade intervals
and latency values (Zorn et al. 2007).

There are three behavioral results found recently in
our laboratory that suggest that the predictive tracking
behavior displayed in Fig. 1(b) is based on the internal
representation of target timing (i.e., an internal clock),
which is modified by the two sources of feedback
discussed above. We now review these three behavioral
results, as they are relevant to the proposed model that is
the main outcome of this study.

1.1 Continuation of timing despite perturbations

The first relevant behavioral result is the continuation of
predictive saccade timing despite transient changes to the
timing of the stimulus. For example, when the ISI suddenly
changes from small to large (500 to 2500 ms, which is an
abrupt stimulus pacing change from fast to slow) after a
period of steady-state tracking, subjects continue to make
eye movements at the faster pacing rate, although the target
pacing has changed (Joiner and Shelhamer 2006a; Joiner et
al. 2007a). As shown in Fig. 2(a), the subject makes
saccades (black line) with intervals of approximately
500 ms (the eye movements made within the black dashed
line box) after the stimulus pacing perturbation (gray line).
This is also the case if the targets are suddenly extin-
guished. As depicted in Fig. 2(b), after the targets are

abruptly turned off (end of the gray line), the subject makes
one additional internally triggered saccade without a visual
stimulus (marked by the downward arrow) with an interval
of approximately 500 ms (typically, subjects will make two
to three such saccades; see Joiner and Shelhamer 2006a;
Shelhamer 2005). The finding that steady-state predictive
tracking continues in complete darkness and in spite of
changes to the stimulus timing demonstrates that the
required eye movement timing is stored in neural memory
and thus the timing behavior is partly independent of the
stimulus.

1.2 Correlation window

The second result is the finding of correlations between
successive predictive saccades: The autocorrelation func-
tion of the latency time series (consecutive latency values)
during predictive saccade tracking decays slowly, whereas
the autocorrelation for reactive tracking decays very
quickly with increasing intertrial interval (Shelhamer and
Joiner 2003). In other words, the latencies of eye move-
ments separated by several trials during predictive tracking
are correlated (see Fig. 3(d)), while those of reactive
saccades are largely independent. The slow decay for
predictive tracking indicates that there is “significant”
correlation between saccade latencies and suggests that
current movements are based upon (due to the feedback)
prior movements occurring earlier in the time series. A
study of this phenomenon (Shelhamer 2005) analyzed the
slow decay of the autocorrelation function to estimate the
“correlation window” over which subjects utilized this
feedback at different pacing rates. That study showed that
sequences of predictive saccades made at different pacing
rates are correlated over a window of approximately 2 s
(initially when tracking begins). A related observation is
that the ability to synchronize with a pacing stimulus at ISIs
larger than 2 s breaks down for both repetitive tapping
(MacDorman 1962; Mates et al. 1994; Miyake et al. 2004)
and saccadic eye movement tracking (Stark et al. 1962;
Ross and Ross 1987; Shelhamer and Joiner 2003; Joiner
and Shelhamer 2006a, b). These and other results (Getty
1975; Chen et al. 2002) suggest that the influence of
feedback occurs within this 2-s time span of previous
movements.

Another observation regarding the autocorrelation
function of the predictive latency time series is that as
predictive tracking continues for many trials (approxi-
mately 1,000 trials), the correlation window gradually
increases. We made this observation initially in our
previous work (Shelhamer 2005) and verify and quantify
it here experimentally (described below). The basic
finding is that as subjects track for extended durations,
they incorporated performance further in the past into their
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Fig. 2 Behavioral results supporting an internal clock in the
generation of predictive saccades. Following steady-state predictive
tracking, the subject (black trace) continues to track at this rate despite
(a) abruptly increasing the ISI or (b) extinguishing the targets (gray
trace). With kind permission of Springer Science+Business Media
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predictions: They build up a statistical model of confi-
dence in the stimulus. This is revealed by an increase in
the width of the autocorrelation function with trial number
and gives rise to hysteresis in the transition between
reactive and predictive tracking, as we show below.

1.3 Scalar property

The third pertinent result is that distributions of intersac-
cade intervals for predictive tracking at different pacing
rates demonstrate the scalar property. As shown by
others (Gibbon 1977; Gibbon et al. 1997; Medina et al.
2005), when making movements based on an internal
estimate of stimulus timing, the standard deviation of the
intermovement interval distribution is proportional to the
interval length. This is evident during predictive tracking
at different ISIs; the larger the ISI, the more variability in
the intersaccade interval distribution (Fig. 4(a) but also see
Joiner and Shelhamer 2006a; Joiner et al. 2007b).
Furthermore, if response timing during the interval timing

task is the result of an internal timing process, then the
response time interval distributions will be approximately
identical when scaled by the mean of each distribution, a
result known as the scalar property (Gibbon 1977; Gibbon
et al. 1997; Buhusi and Meck 2005). The timing of
saccades during predictive tracking readily demonstrates
this property; the intersaccade interval distributions from
two different ISIs (500 and 833 ms, Fig. 4(a)) overlap
when each distribution is normalized by its corresponding
mean interval (Fig. 4(b); Joiner and Shelhamer 2006a,
Joiner et al. 2007b). Reactive tracking does not exhibit
this property.

1.4 Internal clock model

The established framework for describing interval timing
and the scalar property is an internal clock model (Treisman
1963; Gibbon 1977; Meck and Benson 2002). The first
stage of this model is the estimation of time, which is
accomplished by the neural accumulation of pulses emitted

-15 -10 -5 0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

Relative Shift (Number of Trials)

R
LL

2500 2000 1500 1000 500
-400

-200

0

200

400

La
te

nc
y 

(m
s)

0 1000 2000 3000 4000
0

500

1000

1500

2000

2500

3000

3500

4000

Time Window (ms)

P
ha

se
 T

ra
ns

iti
on

 P
oi

nt
 (
m

s)
2500 2000 1500 1000 500

-400

-200

0

200

400

La
te

nc
y 

(m
s)

Inter-stimulus Interval (ms)

2500 2000 1500 1000 500
-400

-200

0

200

400

La
te

nc
y 

(m
s)

(a)

(b)

(c)

(d)

(e)

Fig. 3 (a, b, c) Three subjects that exhibit the behavioral transition in
tracking behavior (phase-transition experiment) as ISI monotonically
decreases. The circles in each panel represent the saccade latency for a
single trial (target jump). The thick black X is the average saccade
latency for a given ISI. The solid and dashed black lines represent an
abrupt transition fit and a linear regression fit to the data, respectively.
As demonstrated in each panel, saccade latency makes a rapid
transition from reactive to predictive as ISI decreases. The critical
ISI at which the transition occurs is different for each subject; (a) 833,
(b) 1,000 ms, and (c) 1,667 ms. (d) Autocorrelation functions

determined from the latency series at 0.9-Hz pacing (approximately
300 trials) for the same three subjects presented in (a), (b), and (c).
Latency autocorrelation functions also result in different correlation
window lengths (determined when the function crosses a threshold of
0.2, represented by the horizontal bars) for the three subjects. (e) The
critical ISI for the phase-transition experiment (ordinate) scales with
the correlation-window length estimated from the autocorrelation
functions (abscissa) for seven subjects, demonstrating a correspon-
dence between the two
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by a pacemaker (Woodrow 1930; Hoagland 1933; the
pulses have recently been hypothesized to be the action
potentials emitted by dopaminergic neurons in the basal
ganglia, see Matell and Meck 2004). Once the accumula-
tion of the pulses stops, the accumulated value is compared
with a sample value of the expected number of pulses
(representing the required time duration) stored in memory.
If the accumulated value is within the range of the value in
memory, a response is made (for example, an eye or hand
movement). The accumulated value, representing the most
recent inter-response interval, is then pooled with the
distribution of samples stored in memory. In this way, the
new value stored in memory can affect subsequent timing
behavior through feedback of past performance. Rather
than the accumulation of pulses, this process can also be
described as the integration, over time, of some noisy signal
representing the rate of an internal counter. When the
integrated signal reaches a threshold, a timed event occurs
(a movement), and the integrator is reset to start a new
cycle. The error between the time that the integrated signal
reached threshold and the desired time interval as deter-
mined by an external stimulus can then be used to adjust
the timing of future movements via changes in the
integration threshold (feedback). The integrated signal has
a random component due to neural noise, and this leads to
randomness in the event times. More specifically, the
longer the interevent interval, the longer is the integration
time of the random signal, and hence the more variability
there will be in the event times (Schöner 2002). In this
framework, the scalar property derives naturally from the
fact that the variability of estimating the passage of time is
proportional to the interval being estimated (Buhusi and
Meck 2005).

Despite the success of internal clock models in
explaining a large set of behavioral and physiological
results (Buhusi and Meck 2005), established clock
models of repetitive movements do not include the

feedback described above. For example, one of the first
motor-timing models for repetitive tapping to a pacing
metronome (Wing and Kristofferson 1973a, b) incorpo-
rated a clock mechanism in the timing of movements (in
these repetitive tapping experiments, subjects are required
to tap their index finger in synchrony with a pacing
metronome). This model separated total timing error into
central clock variance and motor delays and assumed that
clock intervals and motor delays were independent from
trial to trial. This results in a negative dependence between
successive intervals (short intertap intervals are likely to
be followed by large intertap intervals and vice versa),
with no correlation beyond that. As previously shown
(Shelhamer and Joiner 2003; Shelhamer 2005), this short-
term negative correlation does not hold for sequences of
predictive saccades, which exhibit extensive long-term
correlations between movements. This and other results
(Collins et al. 1998) confirm that repetitive predictive
tracking is not an open-loop process and must depend on
some source of feedback.

Other nonclock models of repetitive tapping incorpo-
rate various forms of feedback in interval production.
Michon (1967) proposed a “linear predictor model” in
which feedback is restricted to the immediately preceding
interval but lacks any correction based on synchronization
error (tapping latency). Hary and Moore (1985, 1987a, b)
suggested a mixed reset model in which feedback is
restricted to the synchronization error of the previous two
movements. Similar to the simulation shown above in
Fig. 1(c), these authors showed that without such feedback
control, the metronome and the tapping responses of the
subject will become out of phase due of the variability of
the tapping responses (Hary and Moore 1987b). In
addition to this feedback, the model incorporates a random
switching between two resetting strategies: metronome
reset in which the next interval is timed from the previous
metronome event and response reset in which the next

0 300 600 900 1200 1500
0.0

0.1

0.2

0.3

P
er

ce
nt

ag
e 

of
 In

te
r-
sa

cc
ad

e 
In

te
rv

al
s

Inter-saccade Interval (ms)

833 ms Interval
500 ms Interval

0.0 0.4 0.8 1.2 1.6 2.0
0.0

0.1

0.2

0.3

Proportion of Mean Inter-saccade Interval (ms)

(a) (b)Fig. 4 Behavioral results
demonstrating the scalar
property. (a) Distributions of
intersaccade intervals at
predictive pacing rates (ISIs of
833 and 500 ms) vary around
the ISI, and the variability
increases with interval length.
(b) When these distributions are
divided by the mean interval,
they overlap, demonstrating the
scalar property. With kind
permission of Springer
Science+Business Media

J Comput Neurosci (2009) 26:119–138 123



interval is timed from the previous tapping response
(Schulze 1992). The second resetting strategy will be
discussed in more detail in Section 2. Similar to Hary and
Moore, Vorberg and Wing (1996) also proposed a model
in which synchronization error was the only source of
feedback. More recent models (Vos and Helsper 1992;
Mates 1994a, b) include the feedback of both synchroniza-
tion errors and inter-response intervals but only
utilize a fixed number of previous responses. As a
result, these models do not sufficiently reproduce the
behavioral results described above for repetitive predic-
tive saccades (e.g., long-term correlations between
synchronization errors).

There has been one previous model of predictive saccade
tracking of targets that alternate in either a symmetric or
asymmetric square wave pattern (Schmid and Ron 1986;
Ron et al. 1989). The model assumed a predictor in each
cerebral hemisphere and was developed using steady-state
tracking data (disregarding the first five cycles of the
stimulus). By basing the model on this limited data,
predictive tracking was not formulated as the result of
feedback from the sources previously described for
Fig. 1(b)–(d). In addition, the prediction of the targets was
not due to an internal timing storage as demonstrated in
Fig. 2(a) and (b). Rather, the ability to predict (the
simulated response time of the eye movement) was based
on excitation and inhibition signals (within each hemi-
sphere) whose accumulation and decay rates were depen-
dent upon the stimulus timing (cycle duration) and the
degree of asymmetry of the square wave pattern. This is an
oversimplified depiction of the tracking behavior that the
authors themselves conceded in their discussion: “This
model can therefore be proposed as the simplest way to
interpret the general behavior of a subject tracking with his
eyes a symmetrical or asymmetrical square wave pattern of
target motion.”

Our goal was to develop an accurate model of the
behavior exhibited during predictive saccade tracking that
utilizes a combination of the concepts previously de-
scribed: (1) reproducing predictive tracking as the
outcome of an internal clock (estimating the time
between movements based on an internal timing storage),
(2) utilizing feedback of previous intersaccade intervals
and timing error/latency, and (3) incorporating a time
span of past movements over which this feedback is
acquired (a correlation window). The model we describe
here reproduces the behavioral results described above: (1)
the continuation of predictive saccade tracking despite
perturbations to the stimulus, (2) the demonstration of the
scalar property by the intersaccade intervals during predic-
tive saccade tracking, (3) the long-term correlations
between predictive tracking synchronization errors, and
also (4) the behavioral phase transition and hysteresis in

tracking behavior (reactive to predictive and vice versa),
which is described in Section 2.

2 Materials and methods

This section is divided into three parts. First we describe the
experimental setup and procedure used to obtain the
previously published behavioral results (presented in
Figs. 1, 2, 3, 4, 6, 8, and 10, 11, 12) and a recent
experiment used to determine the rate of growth of the
correlation window as a function of extended predictive
tracking (Fig. 5). Next, we describe the formulation of the
timing model. Finally, in the third section, we describe a
second experiment (the phase-transition experiment) and the
estimation of model parameters from these behavioral
results.

2.1 Experimental setup and procedure

The experimental data presented in Figs. 1, 2, 3, 4, 6, 8,
and 10, 11, 12 was obtained from eight subjects while they
performed different eye movement tasks (for details, see
Shelhamer and Joiner 2003; Shelhamer 2005; Joiner and
Shelhamer 2006a, b; Joiner et al. 2007a, b). Informed
consent, according to the local institutional research
board, was obtained from each participant. Eye movement
data were acquired on a personal computer-compatible
Pentium 166-MHz computer running real-time experi-
ment control software developed in-house. Horizontal
movements of the eyes were recorded with a Series
1000 Binocular Infrared Recording System (Micro-
guide), sampled at 1,000 Hz. The system was calibrated
prior to data acquisition by having subjects fixate visual
targets at known locations. Subjects were seated in a
dark room in a stationary chair in front of a tangent
screen (124 cm in front of the subject) on which were
located two light-emitting diode targets (3 mcd) on
either side of the vertical midline (left and right 15°).
The head was fixed with a chin rest. Subjects were
given no explicit instructions as to timing or accuracy;
they were told simply to “look at the target.”

Analysis of eye-tracking data was done offline. First,
eye velocity was calculated using a four-point digital
differentiator based upon a least-squares derivative
algorithm (Savitzky and Golay 1964). This is an
efficient iterative method of fitting a third-order poly-
nomial to each data point and the preceding and
following two values, then finding the derivative of
the fitted polynomial. Eye movement latency was
determined by comparing the onset of the primary
saccade to the onset of the target in each trial. Saccade
onset was determined using a velocity threshold (≥60°/s).
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The intersaccade interval was the time between each
primary saccade.

2.2 Experiment: extended tracking

We wished to confirm our initial findings on the size of the
correlation window as a function of number of predictive
saccades (Shelhamer 2005). Five subjects (one example
depicted in Fig. 5) made 1,000 consecutive saccades at the
predictive pacing rate of 0.9 Hz (ISI of 556 ms). The series
of latency values was divided into four 250-point nonover-
lapping segments. The autocorrelation function of each
segment was found, and the size of the correlation window
in each case was determined as the half-width (since it is
symmetric) of the autocorrelation function at a correlation

value of 0.2, as in our previous studies (Shelhamer 2005;
Joiner and Shelhamer 2006c).

2.3 Model construction

To simulate predictive tracking of alternating targets, we
have constructed a closed-loop model that (1) builds an
internal estimation of the stimulus timing based on
previous intermovement intervals and (2) adjusts this
time estimate through the feedback of the preceding
initiation error and the projected initiation error of the
time estimate. The model can be used to examine both
the short-term (perturbations to the stimulus timing) and
long-term (scalar property of intersaccade intervals)
behaviors of the timing system.
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Fig. 5 (a) Autocorrelation func-
tions for one subject (approxi-
mately 1,000 trials) for different
data segments. The data series
was divided into four segments
of approximately 250 trials
each. These segments resulted in
different correlation window
lengths. (b) Correlation window
lengths for the five autocorrela-
tion functions presented in (a).
The black dashed line is a linear
fit to the first three segments (as
used in the model). The gray
dashed line is a logistic function
fit to all segments

Fig. 6 (a) Time estimation is modeled as the accumulation of a noisy
signal to a threshold. Five example time estimation signals are shown.
Variability of the physical time estimate (crossing of the 500- and 833-
ms thresholds) increases with interval length. (b) Depiction of Eq. (5),
which describes the relationship between intersaccade interval (I),
interstimulus interval (ISI), and latency (L). (c) The difference in
duration between consecutive intersaccade intervals plotted as a

function of latency for a sample subject. The latency in this example
is the error experienced between the two intervals. Mean latency
(−72 ms) is represented by the vertical black dashed line; the red
dashed line is the linear regression fit to the data (slope −2.2). There is
a significant negative linear relationship between the two measures
(R2=−0.8, P<0.001) suggesting that only the most recent error affects
the next intersaccade interval duration
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The operation of the model is outlined in the caption
to Fig. 7 and briefly here, before the more detailed
description below. In the model, the timing between eye
movements is based on an internal estimate of stimulus
timing (an internal clock), which is implemented as a
(noisy) signal integrated to a variable threshold. The
interval estimate, which determines the timing between
saccades, is set by the threshold of the integrate-to-fire
mechanism; this threshold is adjusted by feedback of the
timing (intermovement intervals) and error (latency) of
previous movements made within a correlation window of
approximately 2 s.

Previous studies have modeled time estimation in the
form of a linearly increasing signal, which triggers an
event when a threshold level is reached (Schöner 2002).
This is the central timing mechanism of our model as
well. In this paper, we formulate this process as a signal
u(t) that increases linearly with additive noise:

u tð Þ ¼ ft þ u 0ð Þ þW ðtÞ ð1Þ

W tð Þ ¼ W t � 1ð Þ þ n tð Þ;W 0ð Þ ¼ 0 ð2Þ

n tð Þ � N 0; sWð Þ: ð3Þ
In these equations, ft represents the linear rise of the

signal (with slope f, 1 ms−1). Additive noise is in the form
of a Wiener process, W(t), which is a continuous-time
Gaussian stochastic process with independent increments:
N(0,σw) is Gaussian with a mean of 0 ms and standard
deviation, σw, of 5 ms. We chose a noise level (standard
deviation) of 5 ms, since this represents an approximate

lower limit to the interval at which two consecutive visual
stimuli can be distinguished (Artieda et al. 1992). Thus,
5 ms is within the noise level of the neural timing system
when timing information is provided by a visual stimulus.
Figure 6(a) displays an example of five integrated signals
rising to threshold for the time estimation of 500, 833, and
1,000 ms (physical time). Due to random fluctuations in the
signals, the time when an event occurs (the signal crossing
the threshold) is a random variable. The higher the
threshold level, the larger is the variance of the times when
the signal crosses threshold. In terms of timing behavior,
this provides larger variance in the estimation of longer
intervals (as demonstrated in Fig. 4(a)).

The complete timing model, which is depicted in Fig. 7,
was constructed in the following manner (numbers in
parentheses correspond to the graphics in the figure). Based
on previous results on repetitive saccades (Stark et al. 1962;
Ross and Ross 1987; Zambarbieri et al. 1987; Shelhamer
and Joiner 2003; Isotalo et al. 2005; Joiner and Shelhamer
2006a, b) and tapping (Mätes et al. 1994; Engström et al.
1996; Miyake et al. 2004), when the pacing of the stimulus
is slow, the ISI is large, there is no estimation of the target
timing (1), and a reactive response is made after the
stimulus jump (the delay of the eye movement, Δ) (2) (this
is also the case for the first two movements to the
alternating stimulus even at a smaller ISI; the subject can
only estimate the timing of the stimulus and the required
timing between movements, after experiencing at least one
complete intersaccade interval [two movements]).

As previously described, subjects make predictive
responses (4) to targets alternating at small ISIs (3). In
addition to demonstrating the scalar property at these
pacing rates (Fig. 4(b)), recent studies of predictive

Fig. 7 Block diagram of the model. When the ISI is large (1),
consecutive stimulus jumps do not fall within the time (correlation)
window (black dashed-lined box). Thus, there is no estimation of the
stimulus timing; a reactive response (delay Δ) is made (2). When the
ISI is small, consecutive target jumps fall within the time window (3)
resulting in predictive responses (4). Time estimation is modeled as a

linearly rising signal to threshold with added noise. The timing of
future movements, INEW (8), is based on previous intervals (I1, I2, I3,
…IN) (5). The threshold (7) used to estimate INEW is increased or
reduced by the most recently experienced error or latency, L(i), and the
projected future error, L(i+1) (6)
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saccades have shown that there are strong correlations
between trials within a window of approximately 2 s
(Shelhamer 2005). This suggests that when two or more
previous movements fall within a time window (correlation
window) of about 2 s, there can be an estimate of target
timing (ISIs) (3) and feedback from the movements made
within this window to adjust the timing of future move-
ments. Our goal was to develop a model that produces the
correct timing between movements (intersaccade interval)
and also minimizes the error between the stimulus and the
eye movement response resulting in a predictive latency.
The intersaccade interval (I) can be represented in terms of
the ISI and latency (L):

I ið Þ ¼ ISI ið Þ � L ið Þ þ L iþ 1ð Þ: ð4Þ

This scheme is depicted in Fig. 6(b). When the two
latency terms are equal, the timing of the stimulus and the
response are equivalent. When the timing of the response
and the stimulus are not the same (I(i)≠ISI(i)), this is
because the latency at the start of a given interval, L(i), and
the latency at the end of the interval, L(i+1), are not the
same. The model corrects for such errors in timing by
estimating the appropriate values of latency and interval
and using these errors to adjust the duration of the
subsequent intersaccade interval. This adjustment is done
by changing the threshold of the integrate-to-threshold
mechanism. This is a key feature of the model: latency
errors are monitored and used to adjust intersaccade
intervals. Latency is a physiologically relevant error which
should be reduced, while intervals are the controlled
quantity in a predictor/clock model.

More specifically, in the model, I is a manifestation of
the threshold for the time estimation process (for example,
the green line in Fig. 6(a)), which is determined by ISI(i), L
(i), and L(i+1). With the appropriate scaling of these
variables for mathematical convenience, we can make the
threshold directly dependent on these quantities:

thereshold ¼ ISI ið Þ � L ið Þ þ L iþ 1ð Þ: ð5Þ

We now describe how the three quantities on the
right side of this equation are estimated in the model.
Although we describe how our mathematical model
accomplishes these tasks, we note that these computa-
tions are neurally plausible. While we do not suggest
specific neural mechanisms, neither do we propose any
processes that would be unreasonable for a neural
system to perform. First is the estimate of the ISI,
ISI(i), whose exact duration is unknown to the subject.
This duration, however, can be approximated by neural
processing in the subject as the average of previous
intersaccade intervals, specifically those that occur

within the correlation window of previous movements
(I1, I2, I3,…IN) (5):

ISI �
PN
i¼1

Ii

N
: ð6Þ

In this equation, IN is the most recent interval, and I1 is
the least recent interval within the window. This storage
and averaging (with constant weighting) of previous
intervals is plausible given the fact that it is a motor act
that is being accumulated: we consider it likely that the
nervous system can hold and integrate intervals that is has
produced (rather than merely sensed) with high fidelity.
Since these intervals are the result of motor acts generated
by the brain, it would appear to be a simple matter to
maintain an efference copy of these intervals for further
processing.

Next, this estimate of the required interval must be
adjusted by previous errors. For example, if the intersac-
cade intervals were fixed at 450 ms with an ISI (target
interval) of 500 ms, the location of the eye movements
would be completely out of phase with the stimulus
location by the tenth movement. Based on Eq. (4), the
interval estimate is adjusted by the most recently experi-
enced error or latency, L(i), and the projected future error,
L(i+1) (6). Though multiple past errors could conceivably
influence the interval estimate, we have experimental
evidence that suggests that only the most recent previous
error (latency) affects the next intersaccade interval. The
relevant results for a sample subject are presented in
Fig. 6(c). When the difference in duration between
consecutive intersaccade intervals is plotted as a function
of latency, there is a significant negative linear relationship
(R2=−0.8, P<0.001; this latency is the error experienced
between the two intervals; in terms of Eq. (5), Fig. 6(c)
plots I(i)−I(i−1) vs L(i)). In other words, when the error is
less than the mean latency (represented by the dashed
vertical black line in Fig. 6(c), −72 ms), the subject
increases the duration of the next interval. When the error
is more than the mean latency, the subject decreases the
duration of the next interval. This change in duration is near
0 ms at the mean latency, where no change is needed. It is
interesting to note that the significance and magnitude of
this relationship quickly decrease when the change in
duration is compared to errors occurring earlier within the
sequence (data not shown), confirming our contention that
these errors have little or no influence over the adjustment
of subsequent intervals.

Unlike ISI(i), the most recently experienced error, L(i),
can be detected visually by the subject with no need for
long-term storage and is represented in the model as the
latency with added noise, N(0,σN) (as with the time
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estimation process, the noise is Gaussian with a mean of
0 ms and standard deviation, σN, of 5 ms):

L ið Þ � L ið Þ þ N 0; sNð Þ: ð7Þ
The projected future latency must be estimated through a

less direct process, since it is manifest at the end of interval
I(i), which has not yet occurred when the estimate is
needed: L(i+1) is thus the anticipated error resulting from
the duration of the estimated intersaccade interval. This
error is posited to be represented in the brain as a Gaussian
distribution based on predictive tracking experience. For
the model, its parameters were determined from experi-
mental data obtained during steady-state predictive track-
ing, N(μprediction,σprediction) (the determination of the mean,
μprediction, and standard deviation, σprediction, of this distri-
bution is described in the following section).

Altogether, the threshold can now be represented as a
combination of the estimates just discussed:

threshold ¼
PN
i¼1

Ii

N
� L ið Þ þ N 0; sNð Þ

þ N mprediction; sprediction

� �
: ð8Þ

The time that u(t), representing time estimation, reaches
this threshold (7), sets the timing of the future movement,
INEW (8). Once this threshold is reached, u(t) is reset to
zero, and the time estimation process begins again. Thus,
our model utilizes a response reset strategy in which the
next intersaccade interval during predictive tracking is
timed from the previous movement response (Hary and
Moore 1987a; Schulze 1992).

The simulation of this model was done on a PC using
MATLAB™.

2.4 Determination of model parameters
from behavioral data

Previous studies of normal human subjects tracking
alternating targets (Stark et al. 1962; Ross and Ross 1987;
Zambarbieri et al. 1987; Shelhamer and Joiner 2003; Isotalo
et al. 2005; Joiner and Shelhamer 2006a, b) have
demonstrated that there are distinct pacing rates, ISIs,
that promote high-latency-reactive tracking (ISIs ranging
from 1,250 to 2,500 ms) or low-latency-predictive
tracking (ISIs ranging from 500 to 625 ms). Our earlier
experiments (Shelhamer and Joiner 2003; Joiner and
Shelhamer 2006b) reported a behavioral “phase transition”
as subjects tracked alternating targets as ISI monotonically
decreased. When subjects tracked the targets alternating at a
large ISI (2,500 and 1,667 ms), they made reactive eye
movements (latency ~180 ms). As the ISI monotonically
decreased, subjects made an abrupt transition at a critical

ISI (near the ISI of 714 ms) to a predictive response
(latency<80 ms) and continued this behavior at the small
ISIs (556 and 500 ms). This behavioral transition in
tracking behavior is depicted for three subjects in panels
(a), (b), and (c) of Fig. 3. The circles in each panel represent
the saccade latency for a single trial/target jump. The thick
black X is the average saccade latency for a given ISI. The
solid and dashed black lines represent an abrupt transition
fit and linear regression fit to the data. The transition fit
(fitting two lines with zero slopes to the reactive and
predictive ranges) is a significantly better representation of
the data than is the linear fit (see Shelhamer and Joiner
2003; Joiner and Shelhamer 2006b). As demonstrated in
each panel, saccade latency makes a rapid transition from
reactive (approximately 200 ms) to predictive (<0 ms) as
the ISI decreases. The point of transition is different for
each subject; panel (a)833 ms, panel (b)1,000 ms, and panel
(c)1,667 ms.

The results of this experiment can be utilized to
determine parameter values in the model simulation. For
example, the critical ISI for the behavioral transition from
reactive to predictive tracking marks the point at which
target jumps (and saccades) occur sufficiently rapidly for
the subject to begin predicting: predictive tracking can
begin when at least two previous intersaccade intervals fall
within the correlation window (so that a reasonable estimate
of ISI can be made, from these two intersaccade intervals).
As explained below, this transition point can be used to
provide an estimate of the correlation window size over
which subjects utilize the feedback of previous movements.

The autocorrelation function of the predictive latency
time series provides another way to estimate the size of the
correlation window over which past performance is
monitored. As in previous work (Shelhamer 2005; Joiner
and Shelhamer 2006c), we set a threshold value for
“significant” correlation and define a “correlation window”
over which the latencies of past saccades are “significantly”
correlated. In particular, we set the threshold for significant
correlation at RLL=0.2, and determine when the latency
autocorrelation function RLL crosses this threshold; this is
indicated as the set of horizontal bars in panel (d) of Fig. 3,
which shows the autocorrelation functions for the same
three subjects presented in panels (a), (b), and (c) (red,
green, and blue, respectively). The autocorrelation func-
tions for each subject were determined from the latency
time series at 0.9 Hz pacing for 300 trials. The differences
in the autocorrelation functions reflect different correlation
windows across subjects.

In panel (e) of Fig. 3, we compare these two ways of
estimating the size of the correlation window. The mean
and standard deviation of the intersaccade intervals made at
the critical ISI, obtained from the phase-transition experi-
ment, are plotted against the correlation window span,
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obtained from the autocorrelation function of the predictive
latency time series for seven subjects. The data are grouped
around the equality line, demonstrating a correspondence
between the two estimates of the correlation window size.
Thus, we have two related estimates of the window length,
which were derived independently based on observations
on different sets of data. We should note that the mean and
standard deviation of the intersaccade interval data at the
point of the behavioral phase transition are here scaled by a
factor of two; this implements the fact that, as stated in
Section 1, the timing of the stimulus can only be estimated
after two movements (Fig. 1(b)), and it is only on the next
(third) and subsequent movements that this information can
be utilized in programming saccade initiation time (see
Joiner and Shelhamer 2006a). In other words, though
predictive tracking can begin when two movements fall
within the correlation window, the timing between these
two movements is not an estimate of the correlation
window size. The correct estimate is this timing scaled by
a factor of two because it is only on the next movement that
this estimation can be utilized. This is further supported by
the relationship between latency and the difference between
consecutive intersaccade intervals presented in Fig. 6(c). It
is this realization that led us to investigate the relationship
described in Fig. 3(e), which suggests that subjects make
the transition from reactive to predictive tracking when two
consecutive movements fall within the correlation window
and that the correlation window size is approximately twice
the duration of the movement timing demonstrated at the
transition.

Two final experimental observations have a bearing on
parameters in the model. First, as described previously and
in more detail in Section 3, the correlation window
increases with tracking experience (Fig. 5(b)). We model
this as a linear increase in the size of the window as a
function of the number of predictive saccades.

window ¼ N mwindow; swindowð Þ þ bNp: ð9Þ
In this equation, μbase and σbase are the initial size and

variability of the correlation window (the mean and
standard deviation of the time window are estimated by
the scaled intersaccade interval distribution at the reactive–
predictive transition in tracking behavior during the phase-
transition experiment), β is the growth rate of the window
size (determined from the extended tracking experiment
described in Section 3), and Np is the number of previously
experienced predictive saccades.

The second experimental observation involves the
steady-state reactive and predictive tracking behavior
observed during the phase-transition experiment. The
latency data in the reactive range of the phase-transition
experiment (immediately before the first and after the
second behavioral transition) are used to estimate the

distribution of the latency (or delay, Δ) of reactive
saccades that occur when the timing of the stimulus is
outside the correlation window. As mentioned previously,
the latency data when predictive saccades are made
(immediately after the first and before the second behav-
ioral transition) are used to determine the parameters
(μprediction and σprediction) of the Gaussian distribution of
the projected future error, L(i+1).

3 Results

3.1 Experiment: extended tracking

Autocorrelation functions for predictive tracking laten-
cies (approximately 1,000 trials at 0.9 Hz pacing) for
one subject are presented in Fig. 5(a). The latency data
were divided into four segments of approximately 250
trials each, and the four autocorrelation functions (colored
traces) are based on these four segments; the black trace is
the autocorrelation function for the entire data set. As
demonstrated in the figure, correlation window lengths
(estimated by the width of the autocorrelation functions at
a level of 0.2 as represented the horizontal lines, see
Section 2) increased as the respective segment occurred
later in the data set. The correlation window lengths for
the five autocorrelation functions presented in Fig. 5(a) are
plotted as a function of consecutive trial number in
Fig. 5(b). A logistic function fit (gray dashed line)
represents the increase in time window length across all
segments (R2=0.96, P=0.02). However, over a smaller
range (500 trials), a linear fit over the first three segments
(black dashed line) is a sufficient representation (R2=0.96,
P=0.19). Utilizing this linear relationship, we determined
the growth rate of the window size, β, as a function of
number of predictive trials, Np. For example, setting β to
0.0025 s per trial, 40 predictive trials equates to an
increase of 100 ms in the correlation window length. We
make use of this simplified linear fit in the development of
our model, since it encompasses the data set sizes on
which other aspects of the model are based.

3.2 Model

A comparison of normal subject and simulated predictive
saccade-tracking behavior is presented in Fig. 8. The same
data presented in Fig. 1(a) for a sample subject are
displayed again in panel (a) of Fig. 8. Panel (b) plots the
change in latency and intersaccade interval throughout the
data displayed in panel (a). As described in Section 1, when
the subject begins to track the alternating targets, the first
two saccades are reactive (they occur after the stimulus
jump with respective latencies of 161 and 166 ms). By the
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fourth movement, the subject’s eye movement occurs with
a latency of 12 ms signifying that it is a preplanned
predictive movement. To overcome the initial timing error
(the first two reactive movements), the subject must
decrease the intersaccade interval. These changes are
displayed in panel (c): latency begins near 200 ms and
decreases to approximately 0 ms by 2.5 s. Correspondingly,
the intersaccade intervals begin near 550 ms, decrease to
approximately 400 ms at 2.2 s, and rise again to 550 ms.

The simulation results for the same stimulus pacing rate
(an ISI of 556 ms) are displayed in panels (b), (d), and (e)
of Fig. 8. In panel (b), the simulated results are displayed in
the same format as the eye and target position traces
presented in panel (a). The repetitive noisy internal-counter
signals and respective thresholds for the simulated data in
panel (b) are displayed in panel (d) (the noisy signals in
panel (d) are the same as those described in Fig. 6(a)).
There are three important aspects of the model that are
displayed in panel (d) that should be noted. First, the
internal estimation begins only after the first two saccades;
at least one intermovement interval is required for time
estimation. Second, the threshold for the internal estimation
changes based on feedback (see Section 2); the vertical
positions of the red bars change throughout the simulation.
Third, the response reset strategy (the next intersaccade
interval is timed from the last movement response)
described in previous reports (Hary and Moore 1987a;
Schulze 1992) is demonstrated; the noisy signal is reset to
zero after the threshold is reached. The changes in latency

and intersaccade interval throughout the simulation are
presented in panel (e). It is important to note that these
aspects of the simulation resemble those of the sample
subject (panel (c)): to overcome the initial initiation-timing
error (the first two reactive movements), the intersaccade
interval is decreased and then increased once the latency
has been reduced.

The predictive-timing model was presented with the
same stimulus timing (ISIs) as were the subjects in the
experiments presented in Figs. 2 and 3. The model
performed similarly to these normal subjects when the
timing of the stimulus was abruptly changed. For example,
to simulate the perturbation experiment (Fig. 2(a)), the
model was presented with ISIs that suddenly changed from
small to large (500 to 2500 ms). In the simulation
(Fig. 9(a)), the model continued to produce movement
timing at the preperturbation rate despite the increase in ISI.
This is due to the model estimating the timing of future
movements based on previous trials. When the error of
previous trials exceeds the tolerable error (more than the
estimated ISI), the model reverts to a reactive mode as
shown by the simulated eye movement occurring after the
stimulus jump (for example, the eye movement that occurs
at approximately 7 s). Similar to the observed behavior
when subjects track alternating targets that are abruptly
extinguished (Fig. 2(b)), when the model is presented with
several cycles of a small ISI (500 ms) that abruptly end
(Fig. 9(c)), the preprogrammed movements continue in the
absence of a visual stimulus.
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Fig. 8 (a) The predictive track-
ing behavior (eye and target
position, black and gray traces,
respectively) for the sample
subject presented in Fig. 1(a).
(c) The change in latency (red
trace) and intersaccade interval
(blue trace) for the data pre-
sented in (a). (b) The simulated
results for the same stimulus
pacing rate (an ISI of 556 ms)
utilized in (a). (d) The noisy
internal counter signal (black
trace, see Fig. 6(a)) integrated to
threshold (horizontal red bars)
for the simulation presented in
(b). (e) The change in latency
and intersaccade interval
throughout the simulated data
presented in (b) and (d)
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Evidence that subjects utilize the same internal-timing
mechanism during predictive tracking at different pacing
rates was provided by the scalar property: timing
variance (intersaccade interval standard deviation) in-
creased proportionally with interval length (Fig. 4(a)).
As a result, normalized intersaccade interval histograms
for different ISIs overlap (Fig. 4(b)). To determine if the
simulation also demonstrated this property, the model was
presented with ISIs of 500 and 833 ms for 300 trials each.
The simulated intersaccade intervals produced by the
model are distributed around the ISI, and the variability
(width of the distribution) increased with interval length
(Fig. 9(b)). These distributions also demonstrate the scalar
property when they are divided by the mean interval
(Fig. 9(d)).

We also wished to compare the simulated steady-state
predictive tracking to normal subject behavior. Specifically,
we wished to demonstrate that the statistics (mean,
variability, and correlation structure) of the simulated
tracking resembled that of normal subjects. The latency
time series for tracking at an ISI of 556 ms for 300 trials is
plotted in Fig. 10(a) and (c) for a sample subject and for the
simulation. The mean and standard deviation of the latency
(−29±93 and −49±89 ms) and the intersaccade intervals
(556±102 and 556±84 ms) were comparable between the
experimental and simulated time series. Additionally, the

shape of the autocorrelation functions of the latency time
series (panels (b) and (d) for the subject and simulation,
respectively) were similar and yielded comparable esti-
mates of the correlation window size (1,300 and 1,500 ms,
respectively).

In addition to simulating the behavioral results listed
above, the model demonstrates the behavioral phase
transition in tracking behavior. As described in Section 2,
there is an abrupt “phase transition” from reactive to
predictive tracking behavior when the ISI begins large
(2,500 ms) and monotonically decreases to a small value
(500 ms). In addition, there is hysteresis in this behavior as
the ISI subsequently increases monotonically: subjects
continue to predict the target jump at ISIs that initially
promoted reactive movements. This hysteresis is demon-
strated in Fig. 11(a) and (c) for one subject (the same
subject presented in Fig. 3(a)). The direction of the ISI
change (monotonically increasing or decreasing) is indicat-
ed by the direction of the arrow. The individual latency
values are plotted as a function of ISI along with their
mean. Mean latency varies in a systematic manner with ISI.
During the ISI decrease (panel (a)), mean latency at the
largest ISIs (2,500–1,000 ms) is almost constant at 150 ms,
indicating that the subject is reacting to each target jump
with a “normal” saccade latency. At the ISI of 833 ms, the
subject undergoes a transition between tracking states and
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Fig. 9 When presented with
stimulus timing (gray trace) that
abruptly changes (small→large
ISI, (a)) or stops (c), the model
continues to produce movement
timing (black trace) at the pre-
existing predictive pacing rate.
In (a), this continuation of pre-
dictive tracking despite the
stimulus perturbation is high-
lighted within the dashed box.
In (b), the continuation is
marked by the downward arrow.
(b) When presented with a con-
stant ISI of 833 or 500 ms, the
time between the simulated
movements varies around the
ISI, and the standard deviation
increases with ISI. (d) Simulated
distributions demonstrate the
scalar property when divided by
the mean interval
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makes predictive movements after this point: At the
smallest ISIs (714–500 ms), mean latency is near constant
at −85 ms, signifying that the subject is making saccades in
a predictive manner, in anticipation of each target jump.
Latency data for the same subject, as ISI subsequently
increased, are shown in Fig. 11(c). The subject predicts the
target jump at the four smallest ISIs (833–500 ms), with
a mean latency of −105 ms. At the ISI of 1,000 ms,
there is a transition from predictive to reactive tracking.
It is important to note that ISI at this transition point is
greater than that at the previous transition (833 ms)—
that from reactive to predictive as ISI decreased
(Fig. 11(a); the method by which these transition points
were statistically verified is described in Joiner and
Shelhamer 2006b). After this transition, tracking behavior
is steadily reactive at the two largest ISIs (2,500 and
1,667 ms), with a mean latency of 120 ms. When
presented with the same monotonic change in stimulus
timing (large→small→ large ISI), the model simulated the
same hysteresis in tracking behavior: Behavioral phase
transitions are made at ISIs of 833 and 1,000 ms for ISI
decreasing and increasing (panels (b) and (d), respective-
ly). This hysteresis is a natural consequence of the

increase in size of the correlation window with repeated
predictive tracking (Fig. 5(b)): The window increases in
duration after many cycles of predictive saccades, and the
larger window can contain two movements at a larger ISI
than is initially the case.

One final result relates to the statistical structure of
the intertrial correlations (which are manifest by the
gradual decay of the autocorrelations of consecutive
saccade latencies, as in Figs. 5 and 10). Our previous
work (Shelhamer 2005) showed that the correlations
decay as a power law: The autocorrelation of the
latency series has the form of RLL~τ

−b where t is the
relative shift (in trials), and the power spectrum of
the same data has the form of SLL~ f

−α (this is not the
case for reactive saccades). Figure 12 shows the autocor-
relation functions and power spectra for two implemen-
tations of the current model: As described above (panels
(c) and (d)) and without the modulation of the
correlation window as described by Eq. (9) (i.e., β=0;
panels (a) and (b)). In both cases, the results suggest a
correlation structure as found in our previous work in
behavioral data (e.g., Fig. 5): power law decay of
autocorrelation, 1/f type of spectrum. However, the
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Fig. 10 Latency time series for
tracking at an ISI of 556 ms for
300 trials for (a) a sample
subject and (c) simulation. Au-
tocorrelation functions for the
respective latency time series are
shown in (b) and (d)
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implementation of the dynamic window modulation based
on experience (panels (c) and (d)) produces what appears
to be a better spectral fit; note especially deviations from
the best-fit straight line (gray line which represents 1/f α

on a log–log plot) at lower frequencies with the static
window ((a) and (b)). Possible reasons for this discrepancy
are discussed below.

4 Discussion

4.1 Comparison to previous models

As stated in Section 1, there are several previous models
of motor synchronization to a pacing stimulus. We
believe that the model presented in the current manu-
script is novel for several reasons. First, whereas other
models restricted feedback to a predefined number of
previous movements (Michon 1967; Hary and Moore

1985, 1987a, b; Vos and Hlsper, 1992; Mates 1994a, b),
the feedback used in our model is gathered over a
temporal window (correlation window) of previous per-
formance. Next, the model combines aspects of the
internal clock framework (Treisman 1963; Gibbon 1977;
Meck and Benson 2002) with the monitoring of previous
movements within a temporal window. In our model,
predictive saccade tracking is based on an internal clock
(internal estimation of the stimulus timing represented by
the integrate-to-fire mechanism), the duration (threshold)
of which is modified by feedback from previous inter-
saccade intervals and recent and projected timing errors
(latencies). Third, the model reproduced a number of
different behavioral results (change from reaction to
prediction on initial tracking, phase transition, hysteresis,
scalar property, continuation of predictive tracking despite
perturbations, and intertrial correlations) with very few
basic principles, while other timing studies and models
have addressed these issues more or less independently
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Fig. 11 Experimental and simulated results during the phase-
transition paradigm. The direction of the ISI change (monotonically
increasing or decreasing) is indicated by the arrow. At each discrete
ISI, the latency of each primary saccade is plotted as a single point; X
represents the mean latency at a given ISI. (a) Saccade latency as a
function of decreasing ISI for one subject (the same subject presented
in Fig. 3(a)). A straight line was fit to the latency data via linear
regression (dashed line), which represents the hypothesis of a smooth
change in latency with interstimulus interval. A “transition fit” was
also made, in which data in the reactive range (2,500–1,000 ms) and

in the predictive range (714–500 ms) were fit with separate horizontal
lines through the two group means; this represents the hypothesis of
an abrupt “phase transition” in latency as a function of ISI, at the ISI
of 833 ms. (c) Layout and interpretation as for (a) for increasing ISI.
Transition fit in this case is based on a transition at 1,000 ms. When
presented with the same monotonic change in stimulus timing
(large→small→ large ISI), the model simulated the same hysteresis
in tracking behavior: Behavioral phase transitions are made at ISIs of
833 and 1,000 ms for (b) ISI decreasing and (d) increasing,
respectively

J Comput Neurosci (2009) 26:119–138 133



(see Schöner 2002; Matell and Meck 2004; Mauk and
Buonomano 2004; Buhusi and Meck 2005). For example,
previous models have taken a more theoretical approach in
quantitatively describing behavioral phase transitions
(Haken et al. 1985; Schöner et al. 1986; Jirsa et al.
1994; in these studies, the models describe the transition
between two coordinative patterns of the hands rather than
timing and describe the transition in terms of oscillators).
In the present model, the behavioral phase transition in
timing behavior is due to the width of the correlation
window; reactive or predictive tracking is dependent upon
whether there is a sufficient amount of information (the
number of movements) within the temporal window to
estimate the stimulus timing. Though theoretical, this
parameter of the model was determined experimentally.
As described in Section 2, the duration of the window time
span was estimated from two independent experiments,
and the correspondence between the two estimates further
suggests that the transition occurs when the timing
information is sufficient. In addition, the behavioral
hysteresis is a natural consequence of the widening of
the window with extended predictive saccade tracking,
another experimental finding.

4.2 Integrate-to-fire mechanism

There is recent evidence that temporal processing may not
be centralized but rather distributed among different neural
structures (Rao et al. 1997; Mauk and Buonomano 2004;
Buhusi and Meck 2005). In our proposed model, the
estimation of time is represented by a single integrate-to-
threshold process. It is not our intent to suggest that the
estimation of time is single centralized mechanism. Rather,
we propose that the variability of time estimation, whether
centralized or distributed, in the temporal range where
subjects demonstrate predictive tracking behavior (approx-
imately 500 to 1,500 ms) can be represented as a noisy
integration process. The Gaussian distribution of the noise
can be considered as the averaged effect of the many
independent sources of variability that could arise from
different neural areas (Gardiner 2004). Though we could
have modeled time estimation as a process with a constant
rise that varied from trial-to-trial, we chose the noisy
integration process (the combination of a random walk
process with a process that increased at a constant rate with
time) for two reasons: (1) The neurobiological sources of
variability throughout the time estimation process (Meck
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Fig. 12 Simulated results on
intertrial correlations. (a) Auto-
correlation function for model
data, with a static correlation
window (β=0 in equation 9). (b)
The power spectrum of the data
used in (a). (c) Autocorrelation
function from model data with a
correlation window that varies
with experience (β=0.0025 in
equation 9). (d) The power
spectrum of data in (c). Both
autocorrelations show a gradual
decay, consistent with the power
law behavior. However, the
power spectrum in the case of
the varying window is better
approximated by a 1/f α form
(gray straight line)
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and Benson 2002; Buhusi and Meck 2005) suggests that the
rate is subject to noise, which is captured with the random
walk process (Schöner 2002), and (2) the finding that the
scalar property holds for repetitive predictive saccade
sequences (Fig. 4) suggests that the longer this variability
is integrated into the estimate, the more variability there is
in the timing distribution (Fig. 6(a)).

This type of noisy integration process has successfully
been utilized to describe some aspects of cognitive
behavior. For example, Sigman and Dehaene (2005)
utilized this mechanism to model the decision-making
process and the resulting reaction time distributions from
a dual task: Subjects performed a number classification task
followed by a tone discrimination task. Though simple, the
model made predictions that held over a range of task
manipulations (i.e., presenting the numbers as digits or in
spelled words), which enabled the authors to parse the task
into serial and parallel components. In addition, similar
theoretical models have been used to describe the reaction
time of single reactive saccadic eye movements (LATER
model: Carpenter and Williams 1995; Reddi and Carpenter
2000). Rather than the integration of a noisy signal, the
process that initiates the eye movement in these studies is a
linear accumulation to threshold with a growth rate that
varies randomly from movement to movement. This rise-to-
threshold behavior has been identified in single-neuron
recordings of the frontal eye fields and superior colliculus
(Hanes and Schall 1996; Hanes et al. 1998; Paré and Hanes
2003) and supports the theory of a trigger threshold in
movement initiation.

4.3 Application to repetitive tapping movements

There are several behavioral similarities between repetitive
tapping and saccades that suggest that the proposed model
could also be applied to synchronized tapping. For
example, repetitive tapping movements to a pacing metro-
nome also demonstrate a behavioral phase transition from
reactive to anticipatory as the ISI monotonically decreases
(Engström et al. 1996). In addition, it has been previously
proposed that synchronized tapping (anticipatory behavior)
is based on a temporal integration of previous movements
occurring within a time window of approximately 3 s
(Mates et al. 1994). Thus, it is likely that the framework of
the model described in the current manuscript (correlation
window, feedback of timing error and intermovement
interval, time estimation modeled as a noisy integration
process) could also be applied to repetitive tapping move-
ments. However, despite these behavioral similarities, there
is an important difference between the two movements that
may require adjustments to the model to adequately depict
repetitive tapping. The timing error during repetitive
tapping movements is sensed as tactile information as

opposed to the visual error during repetitive saccade
tracking. This sensory difference may require a change in
the feedback of the timing error. For example, an
adjustment in the weighting of the previous and projected
error may account for this difference between the two
movements. In addition, differences have been found in the
cortical representations of different effectors in the neural
pathway for the transformation from sensory to motor
signals (e.g., Calton et al. 2002; Lawrence and Snyder
2006), which suggests that different predictors/timers might
exist for different effectors.

4.4 Intertrial correlations

Our latency data, both behavioral and simulated, show a
statistical structure that resembles long-term correlations
(often called “long-range dependence”). This is manifest
as a gradual (power law) decay of the autocorrelation
function and a 1/f α form of power spectrum. The
implications of these long-range correlations have been
discussed in many other contexts (for example Hausdorff et
al. 1995; Linkenkaer-Hansen et al. 2001; Peng et al. 1995).
While the most common explanation of these correlations is
the interaction of many different neural processes acting on
many different time scales, more recent work suggests that
a more straightforward mechanism might be at work:
Simple summation of a small number of random processes
with different short-term time scales can produce time
series that exhibit (or appear to) long-range correlations
(Wagenmakers et al. 2004; Wing et al. 2004). One such
formulation is white noise added to moving-average-filtered
versions of white noise. This loosely resembles our
implementation of the modulation of the correlation
window with tracking experience (Eq. 9): intersaccade
interval errors are monitored over the time specified by this
window, and this window increases in size with extended
predictive tracking.

It is important to note that though we use a distribution
of predictive latencies as a parameter of the model, L(i+1),
the use of this data is not what produces the correlations
between simulated trials (Fig. 10(d)). L(i+1) is the
projected error of the current interval estimate, INEW or
threshold, and the values are drawn from this distribution
(uncorrelated samples). Additionally, this latency value is
only used in setting the threshold of the integrate-to-fire
mechanism. In fact, it is the termination of the integrate-to-
fire mechanism with respect to the stimulus jump that
actually determines the error of the synchronization (for
example, the latencies plotted in Fig. 10(c)). The intertrial
correlations of the simulated data suggest that it is the
influence of multiple previous intermovement intervals (not
latency errors) within the correlation window that results in
the correlations seen experimentally (Fig. 10(a)). One
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question these results raise is how this source of timing
information is encoded and stored. Recent findings suggest
that the estimation of time passage may be accomplished by
the accumulation of the action potentials emitted by
dopaminergic neurons in the basal ganglia (Matell and
Meck 2004). In addition, there is evidence that the storage
of these time estimates may be mediated by the frontal and
hippocampal systems (Meck et al. 1987).

Physiologically, we suggest that the increase in correla-
tions with extended tracking, shown in Fig. 5, reflects the
brain’s increasing confidence in stimulus history: As pacing
continues at the same rate, it is safe to use performance
from further in the past in guiding future tracking.
However, this might instead be an epiphenomenon of
tracking performance becoming less variable with experi-
ence. While this is an interesting possibility, in fact,
tracking performance does not typically become less
variable with experience (data not shown). This raises the
question of why the tracking system should bother to
increase the correlation window if it does not lead to
improved performance. We propose that building up a
longer correlation window is an effective way to persever-
ate storage of previous tracking, which is useful if
predictive pacing is briefly interrupted or if experience
must be pieced together from several short segments of
consistent tracking. Another interesting question is how the
size of the correlation window is determined and modulated
with experience. We suspect that the window increases in
size for each trial in which tracking error is below a
tolerable limiting value. Evaluation of this idea is an aim of
our future work.

While our results do not make a definitive statement as
to the provenance or neurobiological role of these correla-
tions, they do show that some aspects of our model—in
particular the feedback of recent timing error and the real-
time adjustment of the window over which this feedback
takes place—can generate correlations that are similar to
those that we find in behavioral data.

4.5 Relation to timing behaviors and neurological disease

While continuous tracking of periodic targets is not very
biologically meaningful, we note that the model is based
on these data but can reproduce the initiation phase of
tracking—the first few saccades, a more biologically
relevant situation. Furthermore, other types of rhythmic
behaviors such as music and dance are biologically
relevant for communication and socialization—any in-
crease in our knowledge of timing behaviors in general
could have a bearing on this understanding. For example,
our model may contribute to the understanding of
internally timed movements by its application to data
acquired from patient populations that exhibit deficits in

the ability to produce anticipatory movements. Two likely
neural structures involved in the internal estimation of
time are the basal ganglia and the cerebellum (Harrington
and Haaland 1999; Buonomano and Karmarkar 2002;
Mauk and Buonomano 2004; Buhusi and Meck 2005). For
example, patients with disorders of the basal ganglia exhibit
deficits in predictive tracking of targets alternating at ISIs
of approximately 1,000 ms (Bronstein and Kennard 1984,
1985; Crawford et al. 1989; Tian et al. 1991; Ventre et al.
1992). These deficits include an increase in timing
variability and a decrease in the proportion of anticipatory
responses compared to control subjects. In addition,
patients with Parkinson’s disease demonstrate an increase
in timing variability during repetitive tapping that is
attributed to an increase in internal clock variability rather
than motor delay (Wing et al. 1984; Harrington et al. 1998).
Based on the hypothesized involvement of the basal ganglia
in the internal clock mechanism (see Matell and Meck
2004), this decrease in the percentage of predictive move-
ments and increase in total timing variability may be
replicated in simulation by increasing the noise added to the
linear-rising signal.

The cerebellum has also been shown to play a critical
role in rhythmic timing. Similar to Huntington’s and
Parkinson’s disease patients, cerebellar patients display an
increase in timing variability during rhythmic tapping to an
auditory metronome pacing at an ISI of 550 ms (Ivry and
Keele 1989; it should be noted that the ISI of 550 ms
promotes anticipatory tapping behavior; Engström et al.
1996). These results are supported by the impairment of
time perception in the millisecond range (400–600 ms) by
induced disruption (via repetitive transcranial magnetic
stimulation) of specific cerebellar regions (Koch et al.
2006; Lee et al. 2007). The cerebellum has also been shown
to play a role in response timing adjustments. Dreher and
Grafman (2002) demonstrated that the cerebellum is more
active when subjects perform a task with timing irregularity
rather than with constant timing. Similarly, a recent
functional magnetic resonance imaging study (Schlerf et
al. 2006) reported that specific regions of the cerebellum
are involved in timing error correction. During a paced
button press task, distinct regions of the cerebellum
showed greater activity when the timing of the stimulus
was variable rather than isochronous. These results
suggest that the cerebellum may be involved in both
the time estimation process and the feedback of inter-
response intervals and timing errors. The increase in the
intermovement variance by cerebellar patients during
rhythmic finger tapping may be the result of damage to
the timing error feedback mechanism. For example,
adding random noise to the feedback of timing errors
during the simulation (random fluctuations in the thresh-
old of the internal counter) will also result in an increase
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in the intermovement variance. Similar to the example
described for Parkinson’s patients, in this manner, it may
be possible to attribute such functions as error feedback
or time estimation during predictive repetitive movements
to specific neural structures.
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