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Abstract The Ornstein-Uhlenbeck process has been
proposed as a model for the spontaneous activity of a
neuron. In this model, the firing of the neuron corre-
sponds to the first passage of the process to a constant
boundary, or threshold. While the Laplace transform
of the first-passage time distribution is available, the
probability distribution function has not been obtained
in any tractable form. We address the problem of
estimating the parameters of the process when the
only available data from a neuron are the interspike
intervals, or the times between firings. In particular, we
give an algorithm for computing maximum likelihood
estimates and their corresponding confidence regions
for the three identifiable (of the five model) parame-
ters by numerically inverting the Laplace transform.
A comparison of the two-parameter algorithm (where
the time constant τ is known a priori) to the three-
parameter algorithm shows that significantly more data
is required in the latter case to achieve comparable
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parameter resolution as measured by 95% confidence
intervals widths. The computational methods described
here are a efficient alternative to other well known esti-
mation techniques for leaky integrate-and-fire models.
Moreover, it could serve as a template for performing
parameter inference on more complex integrate-and-
fire neuronal models.
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1 Introduction

There are a variety of mathematical techniques for
modelling neuronal behavior observed at the individ-
ual, cellular level (Rabinovich et al. 2006). The pre-
dictive power of these techniques ranges from purely
qualitative, which is often the result of simple phe-
nomenological models, to quantitatively precise, which
arises from comprehensive descriptions of the sub-
cellular biophysics. The seminal work on quantitatively
precise models is due to Hodgkin and Huxley (HH)
(Hodgkin and Huxley 1952). The HH model and its
many simplifications (Morris and Lecar 1981), provide
accurate predictions of the neuronal dynamics leading
to action potential generation for a broad range of
input currents. While the HH model’s success is due to
its detailed biophysical accounting, the intricate detail
also yields a very large parameter space making any
robust analysis difficult and a complete understanding
unfeasible. With that in mind, simpler descriptions of
neuronal dynamics have been pursued. Integrate-and-
fire (IF) models are one approach that attempt to
describe broader features of neuronal dynamics while
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maintaining sufficient simplicity to enable deeper ana-
lytic understanding.

The leaky integrate-and-fire (LIF) model (Stein
1965; Burkitt 2006a) has received significant atten-
tion recently because it provides quantitative accuracy
(Jolivet et al. 2006) while simultaneously maintain-
ing a degree of simplicity that HH models lack. LIF
models represent neurons as single compartment en-
tities in which the spatial structure of the neuron is
neglected. The time evolution of the membrane po-
tential is formulated as an electric circuit containing
a resistor and capacitor in parallel. There are several
accounts of the neurophysiological background lead-
ing to these models (Ricciardi and Sacerdote 1977;
Tuckwell 1988). In the absence of synaptic input, the
membrane potential decays to its rest state with a
characteristic time constant; this is referred to as the
leakage. Synaptic input is usually accounted for in two
ways. current-based or conductance-based. The former
typically yields models allowing for greater analytic
development; the latter are more biophysically realistic
because they include the effects of reversal potentials
(Lánský et al. 1995). The input can be modelled as
temporally homogenous Poisson events. In limit of a
large number of synapses, the diffusion models like the
Ornstein–Uhlenbeck (OU) emerge (Uhlenbeck and
Ornstein 1954). Time-dependent synaptic current has
also been considered recently (Shimokawa et al. 1999);
a thorough review of this variation on the LIF is given
in Burkitt (2006b).

Action potentials or spikes are generated by im-
posing a threshold condition. The simplest of these
conditions corresponds to resetting the membrane po-
tential to its rest state once it reaches a certain value.
More complex conditions that compare the time rate
of change of the membrane potential to the time rate
of change of the threshold value have also been con-
sidered (Jolivet et al. 2006). Many neurons undergo
refractory periods after spiking–this phenomenon can
be adopted into the LIF model.

An important aspect in the analysis and validation of
LIF models has focused on parameter estimation from
a given data set (Keat et al. 2001). The methods are dis-
tinguishable by the following charateristics: the types of
data available for the estimate, the model being consid-
ered, the corresponding computational approach, and
the target parameter set under consideration. The types
of data come in three categories: first-passage time
or interspike interval (ISI) data, subthreshold voltage
traces gathered through patch-clamp techniques (Sharp
et al. 1993a,b), and input stimulus current traces. The
models can have different threshold conditions or stim-
ulus current while the computational approaches are

varied. The parameters sets are grouped into intrinsic
variables like the time constant, threshold value, the
reset value, and the reversal potentials. Then, there are
parameters associated with the input to the neuron.

One of the first attempts was made by Ricciardi and
Sato (1988), who made a detailed study of a simplified
version of an LIF model by assuming that the mean of
the input current is constant. This assumption reduces
the LIF model to an OU model. They were able to
provide useful approximations to some of the models
parameters. However their analysis was incomplete in
that they could not estimate the leakage parameter.
This was also the case in more recent studies (Inoue
et al. 1995; Ditlevsen and Ditlevsen 2006).

More sophisticated techniques have surfaced
recently in the literature for more general LIF models
with time-dependent stochastic input (Plesser and
Tanaka 1997; Burkitt and Clark 2000). These studies
provide a simple algorithm for computing the first-
passage time density by numerically solving a Volterra
integral equation. In particular, Plesser and Tanaka
(1997) showed that an optimal signal to noise ratio
(SNR) can be estimated from ISI data only. This
optimal measure is computed from the power spectral
density which is related to the Fourier transform of
the first-passage time distribution. It was shown that
the optimal SNR occurs for strictly positive noise
coefficients thus giving rise to the phenomenon known
as “stochastic resonance”. However, this approach is
limited because it assumes a simple form for the input
stimulus current.

Alternatively, (Pillow et al. 2004; Paninski et al.
2004) employed a technique based on both ISI data
and time-dependent stimulus current traces. First, any
time-dependent stimulus current was decomposed into
a linear combination of basis functions. Then, they nu-
merically solved a Chapman–Kolmogorov (Karlin and
Taylor 1981) partial differential equation representing
the transition probability density of the membrane
potential. The solution was then used to construct a
likelihood or cost function which was then optimized
through an ascent based technique over a high di-
mensional parameter space; ≈ 15 parameters for the
stimulus current decomposition and 3 for the intrinsic
parameters of the LIF-threshold model. Properties of
the likelihood function imply that the result of their
optimization was unique and that their method was
robust.

Lánský et al. (2006) devised a technique based on
subthreshold voltage traces and ISI data. Like Ricciardi
and Sato (1988), they assumed that the mean of the
input stimulus current was constant, thus their LIF
model reduces to OU. Parameter estimations were then
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performed using regression and maximum-likelihood
techniques. Their optimization techniques were com-
putationally simple due to the availability of the
subthreshold voltage traces, and the existence of an
exact solution for the subthreshold membrane poten-
tial for the OU process. In general, they found that
the regression technique produced more reliable re-
sults when comparing experimentally gathered voltage
traces to simulated voltage traces using the optimized
parameters.

Then, there are computational methods based on
the availability of all three data types: subthreshold
voltage traces, stimulus current traces, and ISI data
(Jolivet et al. 2004, 2006). In these studies, the pa-
rameters of the spike response model (SRM) and a
nonlinear leaky integrate-and-fire (NLIF) models were
estimated. They compared the optimized SRM and
NLIF models to a full conductance based (HH) model.
Remarkably, they found that the simple models re-
produced 70-80 percent of the spikes generated by
the full HH models. These results suggest that NLIFs
can accurately reproduce the dynamics of more com-
plex neuronal models, and that a simple representa-
tion of the stimulus current is not always such a bad
assumption.

In the present paper, we outline an algorithm for
computing maximum likelihood (ML) estimates for
parameters of the OU model. We assume that the
input stimulus current has constant mean, thus the LIF
model reduces to OU. In addition, we assume that
ISIs are the only available data and show that OU
has three identifiable parameters, which are themselves
functions of the five OU model parameters. The main
difficulty with the study of first-passage times using
the OU model is that the probability density function
(pdf) of these times is not analytically tractable. We use
the properties of the Laplace transform (Darling and
Siegert 1953) and known inversion algorithms to com-
pute the first-passage time density and its parameter
partial derivatives. We assume that the firing threshold
is constant, and that each time the neuron fires, it is
instantly reset to its resting potential; that is, we ignore
the refractory period so the spike train forms a renewal
process. This implies that the spike occurs fast enough
to be approximated as a point event.

In Section 2, we summarize the known properties
of the OU process and we extract the estimable or
identifiable parameters of the process. Then, we give
an expression for the first-passage time density in
terms of its Laplace transform and the identifiable
parameters, which themselves are combinations of the
intrinsic variables of the neuron and the input to the
neuron. In Section 3, the algorithm for generating ML

estimates (MLEs) is described in detail. This includes
an overview of the ML method for known densities
Section 3.1 and techniques for calculating the densities
by inverting the Laplace transform Section 3.2. This
section also discusses methods for maximizing the ef-
ficiency Section 3.3 and robustness of the algorithm
Section 3.4 and finishes with a comparison of the algo-
rithm in a case where the exact pdf is known. Section 4
opens with a description of techniques for calculating
confidence intervals and regions for the estimations.
This is followed by numerical results for two and three-
parameter algorithms. We conclude with a discussion of
the main results in Section 5.

2 SDE, first-passage time

Let {X(t), t ≥ 0, X(0) = X0} be a stationary, Gaussian,
Markovian process that is continuous in probability.
Any such process is referred to as an OU diffusion
and it satisfies a linear stochastic differential equation
(SDE) of the form (Arnold 1974):

dX(t) =
(

μ − X(t)
τ

)
dt + σdW(t)

X(0) = X0 . (1)

Here, {W(t), t ≥ 0} denotes Brownian motion with zero
mean and unit variance and dW(t) represents white
noise. OU diffusions have continuous sample paths.
That is, for any ε > 0,

lim
h→0

P {|X(t + h) − X(t)| > ε} = 0 ,

where P is the probability measure. The infinitesimal
drift and variance, μ and σ 2, are defined through
expectation operators:

μ = lim
h→0

1

h
E
{

X(t + h) − X(t)
}

σ 2 = lim
h→0

1

h
E
{
[X(t + h) − X(t)]2

}
.

More general diffusions can have both spatial and tem-
poral dependence in the drift and variance, μ(X(t), t)
and σ 2(X(t), t) (Karlin and Taylor 1981), although this
study focuses on the case where μ and σ 2 are constant.
In the context of a neuron, X(t) represents the depo-
larization or membrane potential at time t. μ captures
the mean excitatory (μ > 0) or inhibitory (μ < 0) input
from the surrounding neural network while the net vari-
ance in that signal is stored within σ 2. The remaining
parameter, τ , is a physiological parameter of the cell.
It defines the rate at which X(t) decays to its resting
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potential, X0, in the absence of external stimuli (μ =
0, σ 2 = 0). We can further simplify by assuming X0 = 0
by translation. OU processes are commonly referred to
as mean-reverting due to the presence of the attracting
equilibrium, X = μτ , in the deterministic limit of the
SDE (σ → 0). The solution to (1) is given in terms of
W(t):

X(t) = μτ
(
1 − e−t/τ )

+X0e−t/τ + σ

√
τ

2
e−t/τ W

(
e2t/τ − 1

)
. (2)

Note that in the limit σ → 0, (2) converges to the
solution of the deterministic case.

The first-passage time of the OU process to a hori-
zontal barrier, X(t) = X f , is a random variable T:

T = inf
{
t > 0 : X(t) = X f

}

= inf

{
t > 0 : θ2 = θ1e−t/θ3 + e−t/θ3

√
2

W(e2t/θ3 − 1)

}
,(3)

where θi (i = 1, 2, 3) are the identifiable parameters:

� = (θ1, θ2, θ3)
T (4)

=
(

X0 − μτ

σ
√

τ
,

X f − μτ

σ
√

τ
, τ

)T

. (5)

Given only a set of first-passage time data �T =
{T1, · · · , Tn} and a method for calculating the pdf of
(3), estimates of � can be generated using the ML
method. It is not possible though, to estimate the full set
of parameters

{
X f , X0, μ, σ, τ

}
given only first-passage

time data. This would require auxiliary experiments
to fix two of the parameters to determine the full
parameter set.

Tractable expressions for the pdf of T exist only in
the special case X f = μτ (Darling and Siegert 1953):

p (t, ζ, θ3) = 2ζe2t/θ3

√
πθ3

(
e2t/θ3 − 1

)3/2 exp

[
− ζ 2

e2t/θ3 − 1

]

ζ = X f − X0

σ
√

τ
(6)

For all other parameter values, exact representations
for p(t, �) are more difficult to generate. However,
progress can be made by considering the Laplace
transform of the pdf, p̂(ν, �) = L(p(t, �)), which is
computed from the Chapman–Kolmogorov backward
equation for the transition probability density for the
OU process(Arnold 1974):

∂ f
∂t

= μ(X)
∂ f
∂x

+ σ 2(X)
∂2 f
∂x2

. (7)

Since μ(X) = μ − X/τ and σ(X) = σ are time-
independent, the transition probability is stationary in
time and thus satisfies the strong Markov property:

f (t, X0, Xf ) =
∫ t

0
p(s, X0, X)

× f (t − s, X, Xf )ds X0 < X < Xf .

Here p(t, X0, X) is the first-passage time pdf. This
convolution can be solved via Laplace transforms;
the result is given in terms of the identifiable
parameters, �:

p̂(ν, �) = f̂ (νθ3, θ1, θ)

f̂ (νθ3, θ2, θ)
∀θ > θ1,2

A tedious but manageable computation of f̂ yields
(Darling and Siegert 1953; Siegert 1951):

p̂(ν, �) = Hνθ3 (θ1)

Hνθ3 (θ2)
. (8)

Here, Hν(θ) are parabolic cylinder or Hermite func-
tions that satisfy the ODE,

H′′
ν (θ) − 2θ H′

ν(θ) − 2νHν(θ) = 0 , (9)

and the derivative are with respect to θ . Solutions of
(9) are uniformly convergent power series for all θ

(Lebedev 1972):

Hν(θ) =
∞∑

n=0

�

(
n + ν

2

)
(2θ)n

�

(
ν

2

)
n!

. (10)

ν is the variable of the Laplace transform domain and is
called the order parameter. When ν ∈ Z

+ , the Hermite
functions reduce to the Hermite polynomials. The real
density, p(t, �), can then be obtained through an in-
verse Laplace transform, also known as the Bromwich
integral (Churchill 1981):

p(t, �) = L−1
(

p̂(ν, �)
)

= 1

2π i

∫ σ0+i∞

σ0−i∞
etν p̂(ν, �)dν . (11)

The contour integration in (11) extends ν to the com-
plex plane (ν = νreal + iνimag). The integration path
(νreal = σ0, −∞ < νimag < ∞) is chosen such that the
abscissa of convergence, σ0, is greater than the real
part of all singularities of p̂(ν, �). Properties of the
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Hermite functions simplify this contour integration.
For instance, Hν(θ) is an entire function of ν ∈ C and
does not vanish for νreal ≥ 0. This implies σ0 ≥ 0. More-
over, Hν(θ) = 0 at a countable set of points residing
along the line νreal < 0, νimag = 0. Therefore, p̂(ν, �)

has a countable set of simple poles at the zeros of the
Hermite function Hνθ3 (θ2). If one extends the contour
to contain these poles, then residue theory can be ap-
plied to generate a formal expression for p(t, �) [see
Eq. (28) in Ricciardi and Sato (1988)]; however, these
representations are cumbersome.

Despite the existence of the formal representation
for the real density, it is not used in the algorithm
discussed in Section 3 and Section 4. The decision was
motivated by computational efficiency and implemen-
tation considerations. The formal representation for
p(t, �) is an infinite series whose coefficients are also
power series in the parameters θ1,2,3. The asymptotic
behavior of these series is not completely understood,
therefore robust and efficient calculation for large pa-
rameter ranges could prove difficult. More importantly,
the MLE will be generated via Newton’s method and
requires all parameter derivatives out to second or-
der. Generating and implementing these derivatives
would be difficult for the formal representation. How-
ever, these calculations are comparatively simple in the
Laplace transform domain.

3 Algorithm

We begin by describing the ML method for parameter
estimation. This method assumes that the pdf and its
partial derivatives with respect to the parameters can
be readily computed. This is followed by a summary of
the algorithms for generating a function when only its
Laplace transform is available. Then, the focus turns
to the computational efficiency of the ML method.
Next, we discuss techniques for maximizing the algo-
rithm’s effectiveness over the broadest possible para-
meter space. Finally, we give results of the algorithm
for the specific case where the pdf is known.

3.1 ML estimation

The method of ML provides estimates of parameters
of a distribution. The goal of ML is to maximize the
likelihood function,

L(�| �T) =
n∏

i=1

p(Ti, �) , (12)

with respect to the identifiable parameters �. Here,
the switch in the order of the arguments, �T and �,
reflects the idea that the observed data �T now acts
as the parameters of the function. Maximizing (12) is
equivalent to maximizing the log-likelihood function,

ln L(�| �T) =
n∑

i=1

ln p(Ti, �) , (13)

with respect to �. Moreover, ML assumes that the pdf
is available and can be evaluated at the data points
p(Ti, �). With sufficient smoothness, the MLE, �̂ =(
θ̂1, θ̂2, θ̂3

)T
, is then the solution to the nonlinear sys-

tem of equations:

∂

∂θ1
ln L(�| �T) = 0

∂

∂θ2
ln L(�| �T) = 0

∂

∂θ3
ln L(�| �T) = 0 . (14)

This system can be solved numerically with a multidi-
mensional root-finding algorithm. If the derivatives of
p(Ti, �) with respect to θ1,2,3 are available out to sec-
ond order, then application of Newton’s method gives
an algorithm that is asymptotically efficient (Lehmann
1983):

�(n+1) = �(n) − H(�(n))F(�(n))

�(n) =
(
θ

(n)
1 , θ

(n)
2 , θ

(n)
3

)T
.

Here, H(�(n)) is the Hessian matrix containing the
second derivatives of ln L(�| �T), and F(�(n)) is the
system (14). Then, the MLE is the limiting value of
the sequence:

�̂ = lim
n→∞ �(n) = lim

n→∞

(
θ

(n)
1 , θ

(n)
2 , θ

(n)
3

)T =
(
θ̂1, θ̂2, θ̂3

)T
.

Typically it is found that only a few iterations are
needed for convergence. This is due to the fact that
ln L(�| �T) is a log-concave function of � (Iyengar
and Mullowney, submitted for publication). Moreover,
convergence of the algorithm requires an initial guess
within the basin of attraction. Estimates for θ1 and
θ2 can be generated through the method of moments
(Inoue et al. 1995), although no such technique exists
for θ3 . For the typical neuron, θ3 is on the order of 5 −
20 milliseconds. This range can be used to formulate an
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appropriate initial guess, although a bit of guesswork is
certainly required.

3.2 Inversion of the Laplace transform

In this section, we consider techniques for computing
the inverse Laplace transform of a function (11). There
are a number of methods available with each having
their own benefits and drawbacks. In Weeks’ method
(Weeks 1966), the desired function is written as an
expansion in Laguerre polynomials. This routine can
be computationally efficient if one needs to perform
multiple evaluations in the time domain. However,
the implementation is not as straightforward as the
other methods. Alternatively, the Post–Widder algo-
rithm (Kano et al. 2005) has a simple form for its
expansion and is easy to use. However the convergence
is slow and the method is computationally prohibitive
when multiple time domain evaluations are needed.
The Fourier Series technique of De Hoog (De Hoog
et al. 1982; D’Amore et al. 1999) is a good choice
because it is highly efficient for multiple time evalu-
ations and straightforward to program. In this algo-
rithm, the path of the contour integration of (11) is
discretized as:

νk = σ0 + ik�ν 0 ≤ k ≤ N . (15)

The grid spacing parameter is given by �ν = π/Tmax

where Tmax is a parameter to be determined. Any
numerical integration technique could be employed at
this juncture; the trapezoidal rule gives a simple Fourier
series expansion:

p̃N(t, �)

= eσ0t

Tmax
Re
[

p̂(σ0, �)

2
+

N∑
k=1

p̂
(

σ0 + ikπ

Tmax
, �

)
e

ikπ
Tmax

]
.

(16)

The error in the approximation, | p̃N(t, �) − p(t, �)|
converges to the trapezoidal discretization error as
N → ∞. This holds for t ∈ [0, Tmax] provided p(t, �)

has period Tmax . Otherwise, the method suffers from
the Runge phenomenon at the boundaries of the in-
terval. In the context of the problem at hand, σ0 = 0
due to the properties of the Hermite functions. Tmax is
chosen to be greater than the maximum stopping time
max {T1, · · · , Tn} while N is chosen sufficiently large to
achieve a desired accuracy in the Fourier Series approx-
imation. Equation (16) also requires the evaluation of
the Laplace transform, p̂(ν, �), at an evenly spaced grid
on the complex ν-axis.

3.3 Efficiency

Given this technique for inverting Laplace transform,
we now consider the requirements of the ML algorithm:

density : p(t, �)

first derivatives : ∂θ1 p(t, �), ∂θ2 p(t, �), ∂θ3 p(t, �)

second derivatives : ∂2
θ1

p(t, �), ∂2
θ2

p(t, �), ∂2
θ3

p(t, �),

∂2
θ1θ2

p(t, �), ∂2
θ1θ3

p(t, �), ∂2
θ2θ3

p(t, �) .

Although the formal representation of p(t, �) ex-
ists and the required derivatives could be analytically
computed, such expressions are impractical. Alterna-
tively, one can work in the Laplace transform do-
main where the density and its derivatives have simple
representations that can be computed efficiently and
accurately for all parameter values. Then, the Fourier
series inversion method can be used to generate the
real density and its parameter derivatives. For p(t, �),
a careful application of (16) gives the real density. For
the parameter derivatives more work is required. In
Iyengar and Mullowney (submitted for publication), it
has been shown that the order of the differentiation and
contour integration can be switched for any parameter
partial derivative of p(t, �), i.e.

∂

∂θi
p(t, �) = ∂

∂θi

(
1

2π i

∫ σ0+i∞

σ0−i∞
etν p̂(ν, �)dν

)

= 1

2π i

∫ σ0+i∞

σ0−i∞
etν ∂

∂θi
p̂(ν, �)dν

The efficiency of the algorithm would be significantly
hindered in the event that this switch were not possi-
ble. First, the parameter derivatives would need to be
approximated using finite differences. Second order ac-
curacy in all the parameter partial derivatives using the
traditional [1, −2, 1] stencils or some variation therein
would require 27 separate inversions of p̂(ν, �) for
parameter values near �(n) . This would be necessary
at each ML iteration. Moreover, it would introduce
another source of error in the computations. Although
one could use Broyden’s method (Broyden 1965), this
would require a second initial approximation to the
parameters which is not readily available. For these
reasons, the ML method is optimal provided the para-
meter partial derivatives of p̂(ν, �) can be generated in
a time-efficient manner.

3.4 Algorithmic parameter range

In order for the ML algorithm to be robust, accurate
representations of p̂(ν, �) and all its parameter par-
tial derivatives are necessary for the widest possible
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parameter range: −∞<θ2 <θ1 <∞, 0<θ3 <∞. This is
a nontrivial computational task whose details merits
some explanation. Consider first, the computation of
p̂(ν, �). Recall from (8) that p̂(ν, �) is defined as a ratio
of Hermite functions that are uniformly convergent
power series in their arguments, θ1,2, and that the order
parameter always has the form νθ3. In addition, recall
that the Fourier inversion algorithm (16) requires eval-
uations of p̂(ν, �) along the complex axis of the order
parameter. When the argument of the Hermite function
is small (|θ1,2| < 2 roughly), the power series can be
used to calculate H and thus p̂(ν, �) for all νθ3 values
on the complex axis with approximately 100 terms.
However, for larger |θ1,2|, the power series suffers from
catastrophic cancellation as νθ3 → ∞ (on the complex
axis). Catastrophic cancellation occurs when the sum
of an alternating series results in cancellation across
orders of magnitude greater than the accuracy of the
chosen floating point representation. The onset of the
phenomenon is observed for smaller νθ3 with increasing
|θ1,2| until eventually, the power series gives unreliable
results.

The observations above indicate that limiting rep-
resentations of the Hermite functions are needed for
|θ1,2| → ∞ and |νθ3| → ∞. Using the known relation-
ships between the Hermite and parabolic cylinder func-
tions (Lebedev 1972; Abramowitz and Stegun 1972),
the following asymptotic representation can be derived
for the case ξ = √

x2 + 4νθ3 − 2 → ∞:

Hνθ3(x)= 23/4

√√√√√√√√
�

(
νθ3 + 1

2

)

�

(
νθ3

2

) ×exp

[
x2

2
± ϑ

+ G
(

νθ3 − 1

2
, x

√
2

)]

ϑ = xξ

4
+
(

νθ3 − 1

2

)
ln

⎛
⎜⎜⎝ x + ξ

2

√
νθ3 − 1

2

⎞
⎟⎟⎠

G
(

νθ3 − 1

2
, x

√
2

)
= − ln ξ

2
+ g3

ξ 3
+ g6

ξ 6

+ g9

ξ 9
+ g12

ξ 12
+ O

(
1

|ξ |15

)
(17)

The exact form of the coefficients g3, g6, · · · is given by
(19.10.13) in Abramowitz and Stegun (1972); note that
each is a function of x and νθ3.

Now, consider a situation where the power series
representation of H gives reliable results for small νθ3

before succumbing to catastrophic cancellation. (17) is

particularly useful in this scenario because it can accu-
rately compute H well before the onset of the numeri-
cal instability. Thereafter, the approximation improves
for larger νθ3 thus giving a precise representation of
H over the entire integration range. Next, consider
the situation where the power series never gives re-
liable results (|x| → ∞). Equation (17) gives reason-
able approximations of H when |νθ3| << |x|. In this
regime though, another expansion is far more accurate
(Lebedev 1972):

Hνθ3(x) = 2

�
(

νθ3
2

)
{
(−2x)−νθ3

[ n∑
k=0

(−1)k�(νθ3 + 2k)

k!(2x)2k

+ O
(|x|−2n−2) ]

+ h(x)
√

πex2
xνθ3−1

[ n∑
k=0

�(1 − νθ3 + 2k)

�(1 − νθ3)k!(2x)2k

+ O
(|x|−2n−2

) ]}
, (18)

where h(x) is the Heaviside function. For larger
νθ3, (18) loses validity while the (17) approximation
improves. Thus, one can generate an accurate com-
putation of H over the entire integration range for
any parameter values by piecing together the different
representations.

Figure 1 shows the relative error between the three
representations of Hνθ3(x) for νθ3 along the complex
axis. In this case, x is moderately large (x = −4.47) and
the power series suffers from catastrophic cancellation
giving at least O(1) errors for |νθ3| > 3. The dotted
trajectory shows that (18) gives an excellent approxima-
tion of (10) as |νθ3| → 0. As expected though, the ap-
proximation diminishes as |νθ3| increases. On the other
hand, (17) gives a poor approximation for small |νθ3|
but improves significantly for larger values. Eventually
though the approximation degrades due to the onset of
the cancellation in (10). For |x| < 2, this error would go
to 0 because the power series does not suffer from can-
cellation in this regime. Finally, the dashed line gives
the error between the two asymptotic approximations.
While (17) should improve with increasing |νθ3| for any
x, (18) loses validity when |x| ∼ |νθ3|. This picture is
typical for any x value, the only difference between the
location where the different representations gain/lose
validity.

We now address the computation of the parameter
derivatives of H and thus p̂(ν, �). In the power series
representation (10), uniform convergence implies that



186 J Comput Neurosci (2008) 24:179–194

0 0.5 1 1.5 2
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

R
el

at
iv

e 
E

rr
or

 

 

⎥H
1
−H

2
⎥/⎥H

1
⎥

⎥H
1
−H

3
⎥/⎥H

1
⎥

⎥H
2
−H

3
⎥/⎥H

2
⎥

ντ

Fig. 1 Relative error versus νθ3 for the three Hermite function
representations for θ3 = 5, θ = −4.47. The solid line gives the
error between the power series (10) and the Darwin expansion
(17), the dotted line compares (10) and (18), and the dashed line
measures the error between (17) and (18)

the infinite series can be differentiated term by term to
give a series that is also uniformly convergent:

∂

∂x
Hνθ3(x) = 2νθ3 Hνθ3+1(x) .

The same holds for the second derivatives with respect
to x although for computation purposes, it would be
easier to use (9). For the θ3 derivatives, direct differ-
entiation of (10) also yields convergent power series.

Parameter derivatives of all types can be computed
from the asymptotic expansion (17). Here, convergence
is guaranteed because it is generated as a solution to a
differential equation (Miller 1955; Bender and Orzag

Fig. 2 Probability distribution function (pdf) versus t for{
X0, Xf , μ, σ, τ

} = {0, 15, 3, 1.5, 5}. Solid line gives the exact rep-
resentation, (6) while the markers (dots) give the pdf through (16)

1978). This is not the case when differentiating (18)
with respect to the parameters because it was derived
as an approximation to an integral (Lebedev 1972). In
practice though, it has never been shown to fail.

Recall the special case, θ2 = 0 or Xf = μθ3, where
the exact pdf is given by (6). Figure 2 displays (6) and
the numerically inverted pdf from (16) on a semilog
scale. The numerical inversion does a very good job
across most of the distribution although we note dis-
crepancies for small t. In this regime though, the proba-
bility density is very small, O(10−7) and smaller. To the
eye, (16) accurately computes the exact distribution.

4 Numerical results

In this section, numerical results for the algorithm are
given. First, we consider the case of estimating the
two parameters, (θ1, θ2), when θ3 is fixed. In particular,
we focus on the construction and testing of approxi-
mate confidence intervals and regions for the estimates.
Then, results for the full three-parameter estimation
θ1,2,3 are given. Comparisons with the two-parameter
case will be discussed. Here, we note that simulated
data from (2) is used to generate the first-passage time
samples for all parameter estimation studies. The data
sets are generated via discrete mapping in time:

ti = i�t

Wi =
√

2�t
θ3

eti/θ3 Zi + Wi−1

Xi = (X0 − μθ3)e−ti/θ3 + μθ3 + σ

√
θ3

2
e−ti/θ3 Wi . (19)

Here, Zi are standard, independent Gaussian variates
and Wi is the position of the Wiener process with W0 =
0. Since the probability that Xn = Xf at some tn = n�t
is zero, linear interpolation is used to find the time
of the boundary crossing once Xn first exceeds Xf . It
is important to emphasize that the reliability of the
sample in representing a true OU diffusion is inversely
proportional to �t. This fact will have an important
effect on both the quality of the estimates as well as the
confidence intervals and regions as we shall see in the
two-parameter estimation case study.

In order to construct approximate confidence inter-
vals and regions for the estimates, we make use of the
Hessian evaluated at the MLE, H(�̂), or the observed
Fisher information matrix:

J
(
�̂
)

= −H
(
�̂
)

.
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It has been shown in Iyengar and Mullowney (submit-
ted for publication) that the MLEs of the embedded
parameters � are asymptotically normal as the number
of first-passage time samples, n, tends to ∞, i.e.:√

J
(
�̂n

) (
�̂n − �

)
→ N(0, I) (20)

J
(
�̂n

)−1

=

⎡
⎢⎢⎢⎣

Var
(
θ̂1,n

)
Cov

(
θ̂1,n, θ̂2,n

)
Cov

(
θ̂1,n, θ̂3,n

)
Cov

(
θ̂2,n, θ̂1,n

)
Var

(
θ̂2,n

)
Cov

(
θ̂2,n, θ̂3,n

)
Cov

(
θ̂3,n, θ̂1,n

)
Cov

(
θ̂3,n, θ̂2,n

)
Var

(
θ̂3,n

)

⎤
⎥⎥⎥⎦ .

(21)

Here, we adopt the notation �̂n =
(
θ̂1,n, θ̂2,n, θ̂3,n

)T
to

specify the sample size dependence of the estimate
thereby distinguishing it from the iteration of the ML
algorithm given by the superscript �̂(n) . Typically J
is referred to as the covariance or error matrix. I is a
vector of ones whose dimension equals the number of
parameters being estimated. Using (20) and (21), one
can construct individual confidence intervals for each
parameter in the usual manner via:

θ̂1,n ± z 1−α
2

√
J(�̂n)

−1
11 (22)

θ̂2,n ± z 1−α
2

√
J(�̂n)

−1
22 (23)

θ̂3,n ± z 1−α
2

√
J(�̂n)

−1
33 (24)

where z 1−α
2

= 1.96 when α = .95.1 The intersection of
these regions in the θ1θ2θ3 space defines an α percent
confidence box. For (22–24), note that the square root
operation is taken after computing J(�̂n)

1
ii

Alternatively, one can construct more restrictive
confidence ellipsoids. To do this, we assume that (13)
can be modeled with an ellipsoid around the MLE:

F(θ1, θ2, θ3) = a1θ
2
1 + a2θ

2
2 + a3θ

2
3 + 2a4θ1θ2 + 2a5θ1θ3

+ 2a6θ2θ3 + 2a7θ1 + 2a8θ2 + 2a9θ3 + a10.

(25)

Then, use the following facts to determine the
parameters, ai :

– (13) is maximized at �̂n and thus F is as well. This
gives 3 constraints.

1The decimal and percentage interpretations for α are used
interchangeably hereafter.

– The second derivatives of (13), i.e. the Hessian,
must coincide with the second derivatives of F. This
gives 6 constraints since the Hessian is symmetric.

– Equating the two functions at the MLE gives 1 con-
straint and determines the center of the ellipsoid:

ln L(�̂n| �T) = F(θ̂1,n, θ̂2,n, θ̂3,n) .

Given this, we must now determine which contour
of F defines the α% confidence region. To do this,
we first compute the square root of the covariance
matrix. This is done via eigenvalue decomposition
since the covariance matrix is always positive defi-
nite. Let {λmax, vmax} be the eigenvalue-eigenvector pair
corresponding to the maximum eigenvalue. vmax de-
fines the direction of the ellipsoids’ semi-major axis.
The other eigenvectors define the minor axes. Then,
the contour of F, z 1−α

4

√
λmax units from the center of the

region in the direction of vvmax yields the approximate
α% confidence ellipsoid. This contour could equally
be determined using the other eigenvalue-eigenvector
pairs. Notice here that z 1−α

4
is used rather than z 1−α

2
.2

This arises from the fact that confidence ellipsoids
measure the joint probability of the true parameters
residing within the region. Thus, a larger z value must
be used to accommodate the combined variation. For
uncorrelated parameters, z 1−α

4
is sufficient for a reason-

able approximation. For highly correlated parameters,
z > z 1−α

4
is necessary.

4.1 2-D results: fixed θ3

The results in of the previous section instill confidence
in the accuracy and reliability of the inversion algo-
rithm. We now proceed with an analysis of the MLEs
in the case where θ3 is fixed. Figure 3(a) shows a
histogram of a simulated first-passage time sample for
θ1 ≈ −3.354 and θ2 ≈ 1.118. Figure 3(b) displays the
true pdf evaluated on a grid of points in t with the exact
parameters used to generate the sample in Fig. 3(a). It
also shows the ML pdf evaluated at the first-passage
sample shown in Fig. 3(a) using the MLE parameters:
θ̂1,n ≈ −3.231, θ̂2,n ≈ 1.134. Each density is calculated
from the inversion technique (16). To the eye, the
ML pdf does a good job of approximating the true
distribution although deviations are certainly evident
especially near the maximum.

2For α = .95, z 1−α
4

= 2.243
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(a) (b)

Fig. 3
{

X0, Xf , μ, σ, τ
}={0, 20, 3, 2, 5} ⇔�=(−3.354, 1.118, 5)T .

Simulation parameters: n = 1000 samples with time step �t =
10−4. (a) Distribution of first-passage times and (b) ML pdf using

θ̂1,n ≈ −3.231, θ̂2,n ≈ 1.134 (dots) versus true pdf (solid line).
Each distribution was generated from (16)

Contours of the log-likelihood function (13) are
shown in Fig. 4 in the θ1θ2 plane for two cases of θ2.
The true values of the parameters, (θ1, θ2), and the
estimate (θ̂1,n, θ̂2,n) are also given for reference. The
95% and 99% confidence regions/ellipses are plotted
as thick, dark contours. The 95% and 99% confidence
intervals/boxes are also shown to contrast the ellipses.
At first we glance, we note that the contours are ap-
proximately elliptical and that the MLE resides at the
center of the concentric ellipses. Note the different
scales of the axes in the two pictures. The ratio of the el-
lipse’s major to minor axes is roughly 10 : 1 in Fig. 4(a)
and 4 : 1 in Fig. 4(b). These pictures are representative
of the log-likelihood (13) when θ2 > 0 (Fig. 4(a)) and
θ2 < 0 (Fig. 4(b)). In Fig. 4(a), ln L(�| �T) is broad in the
θ1 direction and sharp in the θ2 direction. These features
are a byproduct of the mean reverting nature of the
OU process. As θ1 → −∞, the process has a stronger
inclination to revert back to μθ3 as indicated by (1).
Therefore, large changes in θ1 in either direction should
have little effect on the first-passage time distribution.
On the other hand, large positive increases in θ2 yields
significantly longer first-passage times since the natural
tendency of the process is to revert back to μθ3 (recall
that θ2 > 0 gives a threshold greater than μθ3). Then
given enough samples (n = 1000 for both cases), it
is not surprising that one has enough information to
make a precise estimate of the θ2 as indicated by the
length of the semi-minor axis of the 95% confidence
ellipsoid or the size of the 95 confidence interval in
θ2. If one chooses Xf < μθ3 as in Fig. 4(b), the aspect

ratio decreases dramatically as noted above, however,
the correlation between θ1 and θ2 increases as measured
by the rotation angle of the ellipse. The correlation
increases as θ2 → θ1 and the ellipses tend to circles. Due
to this higher correlation, it is likely that the calculated
95% confidence ellipse in Fig. 4(b) underestimates the
true region.3

Now we consider the quality of the estimations with
regard to the confidence intervals and regions. In par-
ticular, we expect asymptotic normality in the para-
meters for large sample sizes and we expect an α%
confidence interval/region to contain the true parame-
ter in α% of a set of trials. To test this, 100 simulations
are run with each consisting of 1000 first-passage times.
Asymptotic normality is measured by looking at the
distribution of (20) using the Anderson-Darling test
at the 95% level (Stephens 1974). The confidence re-
gions/intervals can be tested by counting the number of
times the true parameter(s) fall within the appropriate
regions for all simulations. These tests are performed
as a function of the simulation time increment �t.
The results are shown in Table 1 Clearly, refining the
simulations with smaller times steps yields statistics
consistent with the theoretical predictions when con-
sidering the asymptotic normality of the estimates, and
the predictive power of the confidence intervals and
regions/ellipses. More importantly, the data suggests

3The first-passage sample in Fig. 3 gives the MLEs and contours
in Fig. 4(a). A different first-passage sample was used in Fig. 4(b).
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(a) (b)

Fig. 4 {X0, μ, σ, τ } = {0, 3, 2, 5} ⇒ θ1 = −3.354. Simulation pa-
rameters: n = 1000 samples with time step �t = 10−4. Contours
of log-likelihood function (13) in the θ1θ2 plane. The thick

contours give the 95% and 99% confidence ellipses. (a) Xf =
20 ⇔ θ2 = 1.118 and (b) Xf = 12 ⇔ θ2 = −.67082

that simulated data is only reliable when small time
steps are taken. It should also be mentioned that the
results in Table 1 are consistent for different values of
θ1 and θ2 in all aspects

4.2 3-D results

In the previous section, estimates for θ1 and θ2 were
computed from first-passage time samples for fixed θ3.
This may incorrectly constrain the optimization since
(3) is clearly a function of three identifiable parame-
ters: θ1,2,3. Thus, we now allow for variation in θ3

and see what effect this has on the estimates. First,
the ML pdf is computed from the sample shown in
Fig. 3(a). The algorithm yields the estimates: �̂n =
(−2.653, 1.035, 5.984)T . The associated pdf is shown in
Fig. 5. To the eye there is little discernible difference

with the two-parameter estimation given in Fig. 3(b).
Although, once again, there are deviations from the
true pdf around the maximum. The degree of similarity
can be quantified by computing the r.m.s error between
the true pdf evaluated at the first-passage times and
the ML pdf for both the two and three parameter
estimations, i.e.:

ε j =
√√√√ n∑

i=1

[
p(Ti, �) − pj(Ti, �̂n)

]2

The subscript j denotes the two and three parameter
estimates respectively and p(Ti, �) is the true pdf with
parameters � = (−3.354, 1.118, 5)T . For the data given
in Fig. 3 and Fig. 5, we find that ε2 ≈ 3.7 ∗ 10−4 and
ε3 ≈ 6.7 ∗ 10−4. Both errors are of the same order as the

Table 1
{

X0, Xf , μ, σ, τ
} = {0, 20, 3, 2, 5} ⇔ � = (−3.354, 1.118, 5)T

�t θ1 θ2 (θ1, θ2)

Interval Normal Interval Normal Ellipse

90 95 99 95 90 95 99 95 90 95 99

10−1 66 75 92 No 6 8 25 No 6 12 31
10−2 86 95 99 No 74 83 92 No 73 82 91
10−3 90 98 100 Yes 84 94 98 No 83 90 99
10−4 94 97 100 Yes 87 95 100 Yes 89 94 100

Number of times θ j falls within α% confidence interval, the number of times (θ1, θ2) falls within α% confidence region/ellipse, and the
asymptotic normality of (20) for 100 samples, 1000 first-passage times per sample generated with time step �t.
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Fig. 5
{

X0, Xf , μ, σ, τ
} = {0, 20, 3, 2, 5} ⇔ � = (−3.354, 1.118,

5)T . Simulation parameters: n = 1000 samples with time step
�t = 10−4. ML pdf (dots) using �̂n = (−2.653, 1.035, 5.984)T

versus true pdf (solid line). Each distribution is generated
from (16)

trapezoidal rule integration error O(10−4)(�ν = .015)

in the inversions.
The previous computations measured the relative

accuracy of the ML pdf for the two and three parameter
algorithms. Now, we consider their respective degrees
of variability, i.e. the confidence intervals for the es-
timates. To do this, we compute the 95% confidence
intervals from (22–24) as a function of the sample size
n. 20 unique simulations are performed for each n. For
each sample size, we tabulate the number of times, N,
that the true parameter value resides within the 95%
interval as well as the average width (resolution) of the
95% confidence interval:

〈�CI〉i,n = 2z 1−α
2

20

20∑
j=1

√
J(�̂n j)

−1
ii . (26)

The results are given in Table 2 for both the two
and three-parameter algorithms. From this data, it is
obvious that the two-parameter algorithm provides a
much higher resolution of the true parameter values for
each sample size. This is because 〈�CI〉1,n and 〈�CI〉2,n

are 4 − 5 and 7 − 9 times larger than their respective
two-parameter algorithm counterparts. Even at 10000
samples, 〈�CI〉1,n ≈ 30% larger than the same interval
using the two-parameter algorithm and 1000 samples.
This suggests that a much larger range of parameters
is capable of representing the true distribution with
reasonable accuracy. Thus, if θ3 is not known a priori,
then a significantly larger sample size is required to
resolve the parameters with the same accuracy as the
two-parameter algorithm.

Fig. 6
{

X0, Xf , μ, σ, τ
} = {0, 20, 3, 2, 5} ⇔ � = (−3.354, 1.118,

5)T . Simulation parameters: �t = 10−4. Average width of the
95% confidence interval, 〈�CI〉i,n, versus the number of samples
for each parameter and each algorithm

In Fig. 6, 〈�CI〉i,n is plotted against n for each pa-
rameter and each algorithm on a loglog scale. Each
data set is fit with a function of form 〈�CI〉i,n = βnγ .
The results show that 〈�CI〉i,n ∼ n−1/2 as expected.
Extrapolating these trends to larger n, we find that us-
ing the three-parameter algorithm with roughly 16000
samples gives the same resolution as the two-parameter
algorithm with 1000 samples on θ̂1,n. For θ̂2,n, nearly
50000 samples are required.

Fig. 7
{

X0, Xf , μ, σ, τ
} = {0, 20, 3, 2, 5} ⇔ � = (−3.354, 1.118,

5)T . Simulation parameters: �t = 10−4. θ̂3,n versus θ̂2,n for all
sample sizes and simulations in Table 2. The true value of � (i.e.
the simulation parameters) is given by the red dot
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Table 2
{

X0, Xf , μ, σ, τ
} = {0, 20, 3, 2, 5} ⇔ � = (−3.354, 1.118, 5)T

n θ̂1,n θ̂2,n θ̂3,n

3 Parameter 2 Parameter 3 Parameter 2 Parameter 3 Parameter

N 〈�CI〉1,n N 〈�CI〉1,n N 〈�CI〉2,n N 〈�CI〉2,n N 〈�CI〉3,n

1000 18 3.972 19 0.936 20 0.524 19 0.064 19 5.292
2000 19 2.588 19 0.646 20 0.370 17 0.045 20 3.612
3000 18 2.395 19 0.534 20 0.273 20 0.037 20 2.508
4000 20 2.029 19 0.466 20 0.237 19 0.032 20 2.180
5000 19 1.679 18 0.406 19 0.218 20 0.029 19 2.045
6000 20 1.536 18 0.374 20 0.198 18 0.026 20 1.846
7000 19 1.458 20 0.346 19 0.187 18 0.024 19 1.747
8000 20 1.350 17 0.324 20 0.169 20 0.023 19 1.561
9000 20 1.323 20 0.307 19 0.159 18 0.021 19 1.449
10000 19 1.230 18 0.290 19 0.153 20 0.020 19 1.407

Simulation parameters; �t = 10−4, 20 simulations with n samples in each simulation. Number of times, N, that the true parameter falls
within the 95% confidence interval for θ̂1,n, θ̂2,n, and θ̂3,n for the two and three parameter algorithms. Also, the average width of the
95% confidence interval, 〈�CI〉i,n versus n.

A close inspection of the data yielding the statistics
in Table 2 also reveals a strong correlation between θ̂2,n

and θ̂3,n. Figure 7 gives a scatter plot of θ̂3,n versus θ̂2,n

for every simulation in every sample size n. A marker
denoting the true parameter value used for the simula-
tion is given for reference. These results are not at all
surprising considering the physics of the OU process,
although the strength of the correlation is surprising. To
see this, imagine two distinct OU processes labeled A
and B that are subject to the same input drift μ and vari-
ance σ . Moreover, let them have the same resting and
firing thresholds X0 and Xf . Lastly, let A have a larger
time constant, θ3. Since A has a larger time constant,
the state variable of A, XA(t), will decay more slowly
than XB(t) and thus can be expected to have shorter
first-passage times. Shorter first passage-times implies
a smaller value of θ2 due to mean-reversion. The same
argument can be applied in reverse thus explaining the
strong negative correlation between these parameters.

Although a variety of additional parameter studies
could be performed at this juncture, we believe that the
main differences between the two and three-parameter
algorithms have been demonstrated. Moreover, since
the results are typical for any set of parameters, �, we
expect that our conclusions are quite general.

5 Discussion

We have given an algorithm for computing parameter
estimates for the three identifiable parameters of the

OU–LIF model using only ISI data. The computa-
tional approach is based on a numerical inversion of
the Laplace transform of the first-passage time pdf.
It then uses ML to find the optimal parameters. This
technique differs significantly from other estimation
approaches on LIF models in a variety of ways. Other
recent approaches (Lánský et al. 2006; Paninski et al.
2004; Jolivet et al. 2004) make use of more data, like
subthreshold voltage traces or stimulus current traces,
to do an optimization over a (much) larger parameter
space. Our approach is computationally efficient, ro-
bust in the parameter space, and can easily generate
standard errors for the estimates. However, precise
estimates of the parameters requires many ISI samples.
In contrast, (Lánský et al. 2006) made estimates from a
single ISI.

In Ricciardi and Sato (1988), Inoue et al. (1995),
Ditlevsen and Ditlevsen (2006), estimations based on
ISI data focused on the two-parameter case where the
time constant, or leakage parameter τ is known a priori.
However, τ is clearly an identifiable parameter from
ISI data as shown here, thus the full three-parameter
estimation is necessary. Our results show unequivoca-
bly that the addition of the τ parameter in the esti-
mation procedure dramatically decreases the resolution
of θ1,2 for a fixed sample size. Here, a decrease in
resolution corresponds to an increase in the width of
the parameters’ 95% confidence intervals. In fact, our
computations show that roughly 15 times more samples
are required to resolve θ1 to the same accuracy as the
two-parameter algorithm. For θ2, the situation is con-
siderably worse since roughly 50 times more samples
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are required for comparable resolution between the
algorithms. However, since the typical neuron can
yields between 500 − 50000 samples in the spike train
(Ricciardi and Sato 1988), this algorithm could resolve
the identifiable parameters with good accuracy.

The difficulty in estimating τ is consistent with
several recent studies in the literature. For instance,
Lánský et al. (2006) noted that while their estimated
firing threshold was consistent with that of Inoue et al.
(1995) (with similar experimental conditions), their es-
timate of the mean input had a significantly smaller
range which was closer to 0. This yielded an estimate
of τ seven times larger than the value selected a priori
in Inoue et al. (1995). As noted above, a priori assump-
tions on τ based only ISI data can be misleading. Our
computations show that the size of 95% confidence for
the normalized input (θ1) and the normalized threshold
(θ2) are at least an order of magnitude larger when
the full three parameter estimation is performed. Thus,
algorithms which work on a restricted subset of the
full parameter space cannot necessarilly be trusted.
Furthermore, Lánský et al. (2006) computed τ with two
algorithms from a single ISI under the OU approxima-
tion. For each method, the spread was rather large. In a
time frame on the scale of a single spike (subseconds),
it is not clear whether the input stimulus current can
be written in such a simple form. This could give rise
to the large fluctuations in their results. However, this
approximation may be more suitable when many ISIs
are recorded.

Similar problems in estimating τ were observed in
Jolivet and Gerstner (2004). They compared the effec-
tive membrane time constant of a conductance-based
IF model containing reversal potentials to a HH type
model. They found that in regions where excitatory
discharge dominates inhibitory, CIF agrees very well
with HH models. When there is no clear dominant
factor, the results are drastically different. Of course,
our analysis of the OU model does not contain in-
formation on excitatory or inhibitory discharge and
thus we cannot make a direct comparison between the
studies. However, extensions of our work to the more
general LIF models containing reversal potentials will
enable more meaningful comparisons. For instance,
models that include inhibitory reversal potentials while
neglecting the excitatory are a good approximation to
neuronal behavior (Lánský et al. 1995). An example of
this is the Feller process;

dX = μ(X)dt + σ(X)dW

μ(X) = α − β X

σ 2(X) = σ 2(X − XI) .

Here XI is the inhibitory reversal potential and 1/β

is the effective membrane time constant of the neu-
ron. Initial investigations into this model reveal four
identifiable parameters from ISI data. Moreover, the
lack of time dependence in μ(X) and σ(X) implies
time-homogeneity in the evolution of the membrane
potential. Thus, we need only find the Laplace trans-
form of the transition density, from a corresponding
Chapman–Kolmogorov equation, in order to compute
the Laplace transform of the first-passage time density.
Any attempt in this direction will benefit from the
analysis in Capocelli and Ricciardi (1972). which gives
the necessary conditions for a function to be a pdf
of a first-passage time random variable for any time-
homogeneous Markov diffusion process. Since similar
results are given for the Laplace transform, it may be
possible to analytically compute the Laplace transform
of the first-passage time pdf for the Feller process.
Then, an inversion technique similar to ours can be
used for the parameter estimation from ISI data only.
In this sense, we assert that our technique should
generalize to any time-homogenous diffusion process
provided the mathematical details, like identifiability
and Laplace transform computation, are tractable.

Unfortunately, it is not clear whether this approach
will apply to situations with time-dependent input cur-
rents. Although the problem can be recast as an OU
LIF that defines the subthreshold membrane poten-
tial, the spike-generation threshold conditions become
time-dependent. In this case, all the mathematical ma-
chinery based on time-homogoneity break down and a
Laplace transform is not the right approach.

Our results also indicate that simulated first-passage
time data can only be trusted when the time step of the
simulation is small. This suggests the need for greater
computational power when simulating and testing OU
processes. This point is further reinforced by the fact
that the data in Table 2 took roughly 30 h to generate on
a dual-core multiprocessing cpu. Moreover, it is reason-
able to conclude that this result would hold for any type
of stochastic IF model with comparable complexity like
the CIF or Feller process thus suggesting the need for
greater computational power when simulating stochas-
tic neural behavior. A natural extension of this work
to coupled, stochastic IF models would impose an even
greater computational burden thus demanding parallel
implementations for the purpose of simulation. This
demand will be unavoidable as the size of the coupled
network grows, and complexity of the cellular models
increases.

The availability of robust and efficient algorithms
that relate the measurable data to the biophysi-
cal parameters would be an invaluable tool for any
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neurobiologist. In particular, it would allow for rapid
model evaluation and comparison based on rigorous
estimates of the parameters and their standard errors.
Moreover, changes in experimental conditions that im-
pact the neuron’s behavior could be evaluated with
algorithms of this type enabling a more precise under-
standing of the biophysics.
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