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Abstract We consider distributed parameter identifi-
cation problems for the FitzHugh–Nagumo model of
electrocardiology. The model describes the evolution
of electrical potentials in heart tissues. The mathemat-
ical problem is to reconstruct physical parameters of
the system through partial knowledge of its solutions
on the boundary of the domain. We present a par-
allel algorithm of Newton–Krylov type that combines
Newton’s method for numerical optimization with
Krylov subspace solvers for the resulting Karush–
Kuhn–Tucker system. We show by numerical simula-
tions that parameter reconstruction can be performed
from measurements taken on the boundary of the do-
main only. We discuss the effects of various model
parameters on the quality of reconstructions.

Keywords FitzHugh–Nagumo model ·
Electrocardiology · Parameter identification ·
PDE-constrained optimization · KKT system ·
Newton–Krylov method · Inverse problems

1 Introduction

Parameter identification problems for electrocardi-
ology models have received wide attention in the last
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decade (Brooks et al. 1999; Cheng et al. 2003; Cox
and Griffith 2001; Cox and Ji 2003; Cox and Wagner
2004; MacLeod and Brooks 1998; Moreau-Villéger
et al. 2006; Shahidi et al. 1994; Vanier and Bower
1999; Willms et al. 1999). By parameter identification
we mean the estimation or reconstruction of coeffi-
cients in an electrocardiology model (usually a system
of differential equations) from partial observations of
the behavior of the model (e.g., the solution of the
differential equation system). The knowledge of such
coefficients can be very useful for diagnostic purposes.
However, they are not directly measurable. Instead,
they have to be inferred from measurements of other
types of information. We consider in this work a
parameter identification problem for the FitzHugh–
Nagumo system of equations (FitzHugh 1961; Murray
1993; Nagumo et al. 1962). This system models the
evolution of electrical potentials in hearts and other
excitable media, such as systems of neurons. Our ob-
jective is to reconstruct the reactive coefficient that
controls the excitability of the medium. Two special
features of our study are as follows. First, instead of
identifying only spatially uniform coefficients, which
is the focus of much previous research on parameter
estimation problems for electrocardiology models (Cox
and Wagner 2004; Pernarowski 2001), we try to recon-
struct the reactive coefficient as a function of space,
i.e., we consider a distributed parameter identification
problem (Banks and Kunisch 1989). Second, we assume
that only surface measurements are available, instead
of requiring measurements from the interior of the
heart. Reliable interior measurements are hardly likely
to be available in practice.

Our ultimate aim is to develop a numerical
method that exploit large-scale parallelism to solve the
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reconstruction problem. Here, we perform numerical
simulations to demonstrate the algorithm in a mod-
estly parallel environment, leaving detailed scaling
and performance studies to a forthcoming paper. We
emphasize herein the effect of various physical para-
meters and algorithmic parameters on the quality of the
reconstructions.

The paper is structured as follows. In Section 2
we briefly recall some basic results concerning the
FitzHugh–Nagumo model and formulate the parameter
identification problem for the model. We then propose
in detail a numerical procedure to realize the recon-
struction in Section 3. Section 4 is devoted to illustrative
examples of numerical reconstructions from synthetic
data. Conclusions are offered in Section 5.

2 Problem description

We begin with a multidimensional, diffusive version
of the classic FitzHugh–Nagumo system of semilinear
reaction-diffusion equations.

2.1 The FitzHugh–Nagumo system

Let � ⊂ R
n be the spatial domain of interest and ∂� its

boundary. We then define Q ≡ � × (0, T) and ∂ Q ≡
∂� × (0, T). The FitzHugh–Nagumo model in which
we are interested is a two-component reaction-diffusion
model

∂tu = μ�u + u(u − α)(1 − u) − v, in Q,

∂tv = κ�v + ε(ϑu − γ v), in Q, (1)

where � denotes the Laplacian operator and ∂t ≡ ∂/∂t.
Physically, the function u(x, t) denotes the transmem-
brane electrical potential at (x, t) and v(x, t) denotes
a likelihood that a particular class of ion channel
is open (Hoffman et al. 1997). The diffusion coefficients
satisfy κ � μ. ε � 1 and ϑ, γ > 0 are nondimension-
alized parameters. The nonlinear function f (u, α) =
u(u − α)(1 − u) represents the reactive properties of
the medium. The reactive coefficient α(x), taking values
in (0, 1), is a function of space. We assume that the
system is at rest at time t = 0. In other words, we
consider the following initial condition

u(x, 0) = 0, v(x, 0) = 0 in �. (2)

A current stimulus I(x, t) is applied on the boundary of
the domain, expressed as an inhomogeneous Neumann
boundary condition

n · ∇u(x, t) = I(x, t), n · ∇v(x, t) = 0 on ∂ Q. (3)

There are many variants of system (1) in the lit-
erature. For example, in some versions with the con-
ductivity coefficient μ a function of space, μ�u is left
in the more general form ∇ · μ∇u. In many other
versions, the term κ�v is dropped. The analysis and
algorithms described in the following sections can be
adapted to those variants straightforwardly.

FitzHugh–Nagumo models are simplifications of the
more complicated bidomain models (Franzone et al.
2005; Patel and Roth 2005; Roth 2004). These have
been extensively studied in the past a few decades
from both physical point of view (Argentina et al.
2000; Bernus et al. 2002; Dauby et al. 2006; Scott 1975;
Suckley and Biktashev 2003; Yamada and Nozaki 1990)
and via rigorous mathematical analysis (Chen and
Oshita 2006; Colli Franzone and Pavarino 2004; Elmer
and Van Vleck 2005; Gao and Wang 2004; Krupa et al.
1997; Murillo and Cai 2004; Nii 1997; Pennacchio et al.
2006; Petersson 2005; Sneyd et al. 1998; Tsai and Sneyd
2005). It has been shown that there exist many types
of fast and slow wave solutions in the system. In fact,
these models have served as the basis for models of
formulation of spiral waves in excitable media such
as hearts and systems of neurons which have been of
interest to physicists and physicians during last two
decades (Bub et al. 2002; Courtemanche et al. 1990;
Winfree 1990). Spiral waves are integral to the study
of certain diseases of the heart (Davidenko et al. 1992;
Riccio et al. 1999; Weiss et al. 1999).

2.2 The reconstruction problem

The parameter identification problem (inverse prob-
lem) for the FitzHugh–Nagumo model is to reconstruct
the coefficient α(x) from the knowledge of the solution
of the equations. Natural and important questions are
how much data is available in practice and how well
we can do with relatively little data. It turns out that
v is not measurable in physical experiments. Only u
can be directly measured, via voltage-sensitive probes.
Furthermore, it is not convenient to measure u at
arbitrary locations. It is realistic to measure u only on
the boundary of the domain (surface of the medium).
Thus, the data to be measured is

h = u(x, t), at some finite subset of points on ∂ Q.

(4)

One can measure the boundary potential for various
applied current stimuli I. The objective is thus to re-
construct the function α(x) through the knowledge of
all available pairs (I, h). Mathematically, the above
measurement process is often described by the so called
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time-dependent Neumann-to-Dirichlet map (Isakov
1998)


 : I(x, t) → h. (5)

Note that since we do not have access to v(∂�, t),
u(x, T) and v(x, T), the Neumann-to-Dirichlet map (5)
is not complete. We have only a partial Neumann-to-
Dirichlet map. With the help of this notation, we can
now formulate the parameter identification problem as

Identification problem Reconstruct the reactive func-
tion α(x) in Eq. (1) from full or partial knowledge of the
incomplete Neumann-to-Dirichlet map 
.

There appear to be no theoretical uniqueness or sta-
bility results on this identification problem so far. There
are only partial results on much simplified versions.
For example, in the case α is assumed to be a con-
stant instead of a function of space (which significantly
simplifies the reconstruction problem), it is shown
in Cox and Wagner (2004) that one can reconstruct the
term f (u) ≡ f (u, α) = u(u − α)(1 − u) from boundary
measurements. In the case when a full Neumann-to-
Dirichlet map is available, it is shown (Isakov 1998,
Theorem 4.2) that α(x) can be uniquely reconstructed.
However, full measurements of u(x, T), v(x, T) and
v(∂�, t) are unavailable in practice.

The lack of theoretical results on the identifiabil-
ity and stability of the identification problem is part
of the motivation of the current work, in which we
seek computational experience and intuition about the
reconstruction problem.

3 Matrix-free Newton–Krylov inversion method

In absence of analytical reconstruction formulas, pa-
rameter identification problems are usually solved by
numerical optimization algorithms. The idea is to min-
imize the discrepancy between observed data and the
data produced by the forward model over the space
of admissible parameters. In the case when the for-
ward model is a set of partial differential equations
(PDE), the problem can often be formulated as a
PDE-constrained optimization problem (Akcelik 2002;
Akcelik et al. 2006; Biegler et al. 2003; Biros and
Ghattas 2005a,b).

3.1 PDE-constrained optimization

In practical applications, only a finite number of sources
and detectors can be used in experimental measure-
ments. Let us assume that we have Ns sources and for

each source we have Nd measurement points. We then
define the functional to be minimized as

F(α, u) :=1

2

Ns∑

s=1

Nd∑

j=1

∫ T

0

∫

∂�

(us−hs)
2δ(x−x j)

× dσ(x)dt + ρR(α), (6)

where us and hs are model solutions and measure-
ments corresponding to source Is, respectively. x j, j =
1, ..., Nd, are detector positions. To simplify notation,
we have used u = (u1, ..., us, ..., uNs). dσ denotes the
surface measure on ∂�. R(α) is a regularization func-
tional. It is used to put additional constraints on the
solution α. ρ is the regularization parameter used to
establish the strength of the regularization. The regu-
larization used in this paper is the Tikhonov functional.
An analytical expression of the functional is given in
Section 4.

The reconstruction problem can now be defined as
the following PDE-constrained optimization problem

min
α,u

F(α, u)

subject to

∂tus = μ�us + f (us, α) − vs, in Q,

∂tvs = κ�vs + ε(ϑus − γ vs), in Q,

us(x, 0) = 0, vs(x, 0) = 0, in �,

n · ∇us = Is(x, t), n · ∇vs = 0, on ∂ Q, (7)

for s = 1, 2, ..., Ns, where there are Ns source scenar-
ios producing detectable measurements, all starting
from rest.

To solve the above constrained minimization prob-
lem, it is convenient to use the machinery of distributed
Lagrange multipliers. Let us introduce the Lagrangian
functional to convert the problem to unconstrained
minimization in a higher dimensional space.

L(u, v, α, λ, η) = F(α, u) + L1 + L2 + L3 + L4, (8)

where again full sets of variables corresponding to dif-
ferent sources, such as v = (v1, ..., vs, ..., vNs), are used.
The terms L1, L2, L3 and L4 are integrals over Q or its
boundary:

L1 =
Ns∑

s=1

∫ T

0

∫

�

λs
[
∂tus − μ�us − f (us, α) + vs

]
dxdt,

L2 =
Ns∑

s=1

∫

�

λsus(x, 0)dx+
Ns∑

s=1

∫ T

0

∫

∂�

λs(n · ∇us− Is)dσdt,

L3 =
Ns∑

s=1

∫ T

0

∫

�

ηs
[
∂tvs − κ�vs − ε(ϑus − γ vs)

]
dxdt,

L4 =
Ns∑

s=1

∫

�

ηsvs(x, 0)dx+
Ns∑

s=1

∫ T

0

∫

∂�

ηsn · ∇vsdσ(x)dt,
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with λs and ηs denoting the Lagrangian multipliers (ad-
joint variables) corresponding to us and vs, respectively.

3.2 First-order optimality conditions

The solution to the constrained minimization prob-
lem satisfies the first-order optimality condition of the
Lagrangian functional, which states that at a local min-
imum the gradient of the Lagrangian functional must
vanish. This condition is also called the the first-order
Karush–Kuhn–Tucker (KKT) condition. It results in
the nonlinear system of equations:

Lλ(u, v, α, λ, η) = 0, Lη(u, v, α, λ, η) = 0,

Lu(u, v, α, λ, η) = 0, Lv(u, v, α, λ, η) = 0,

Lα(u, v, α, λ, η) = 0. (9)

Here the subscript u (respectively v, α, λ and η) de-
notes differentiation. Considering the Lagrangian func-
tional Eq. (8), we can work out the explicit form of the
optimality conditions in Eq. (9) by the method of calcu-
lus of variations. In fact, the first two optimality con-
ditions reproduce the constraints in the optimization
problem, i.e., the FitzHugh–Nagumo model (7). The
third and the fourth optimality conditions form the ad-
joint equations for the constraints. We refer readers to
Cox (2006) for more details about the adjoint method.
These adjoint equations and their side conditions are

∂tλs + μ�λs − f ′(us, α)λs + εϑηs =0, in Q,

∂tηs + κ�ηs − εγ ηs − λs =0, in Q,

λs(x, T) = 0, ηs(x, T)=0, in �,

n·∇λs =∑Nd
j=1(us−hs)δ(x−x j), n·∇ηs =0, on ∂ Q, (10)

for s = 1, ..., Ns. Here f ′(us, α) ≡ ∂us f = 3u2
s − 2(α +

1)us + α. The adjoint equations are similar to the
state equations with the important difference that they
march backwards in time and are driven by the mis-
match in the objective function. Note that just as with
the forward problems, the adjoint equations for differ-
ent s are independent of each other. However, each
of them depends on the solution of the corresponding
forward problem.

The last optimality condition is often referred to as
the control problem. It reads

ρR′(α) +
Ns∑

s=1

∫ T

0
λsus(1 − us)dt = 0 (11)

in our case. R′(α) denotes the derivative of R(α) with
respect to α. Note that unlike the forward and adjoint
problems, the control problem is not a differential
equation.

In summary, the first-order optimality conditions of
the Lagrangian functional consist of the set of mul-

ticomponent forward problems (7), the set of mul-
ticomponent adjoint problems (10), and the control
problem (11).

3.3 The Newton–Krylov method

The optimality conditions make up a set of quasilinear
partial differential equations of reaction-diffusion type
and algebraic equations. The solution of this set of
equations requires not only the discretization of the
PDEs, but also algebraic solvers for the resulting non-
linear algebraic systems. The Newton–Krylov family of
methods provides an efficient way to solve such PDE
systems (Knoll and Keyes 2004).

Let us briefly recall Newton’s method for nonlin-
ear problems. To compress the notation, we denote
(u, v, α, λ, η) by u, and rewrite the first-order optimality
condition (9) as:

Lu(u) = 0. (12)

To find a solution of Eq. (12), Newton’s method
iteratively improves a given value of u, from an initial
guess u0, updating u according to

uk+1 = uk + lkδuk, (13)

until certain stopping criteria are satisfied. Here, the
update direction δuk at Newton iteration k is given by
solving the saddle point problem

Luu(uk)δuk = −Lu(uk), (14)

and the step length lk is given by a line search method
or other globalization technique. Equation (14) is often
referred to as the KKT system. We need to solve one
KKT system per Newton iteration. The operator Luu is
the full-space Hessian operator (a matrix, in discretized
form).

For the discretized version of a distributed para-
meter identification problem, the KKT system (14)
is a large sparse linear system. It can be solved by
any of several numerical iterative solvers. When a
Krylov subspace method is used to solve the system,
we call the nested iteration method Newton–Krylov
method (Knoll and Keyes 2004). The method has re-
ceived wide attention in recent years; see the references
cited in Knoll and Keyes (2004).

For the FitzHugh–Nagumo model we consider here,
the KKT system has the form
⎛

⎜⎜⎜⎜⎝

Luu 0 Luα Luλ Luη

0 0 0 Lvλ Lvη

Lαu 0 Lαα Lαλ 0
Lλu Lλv Lλα 0 0
Lηu Lηv 0 0 0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

δu
δv

δα

δλ

δη

⎞

⎟⎟⎟⎟⎠
= −

⎛

⎜⎜⎜⎜⎝

Lu

Lv

Lα

Lλ

Lη

⎞

⎟⎟⎟⎟⎠
. (15)
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where

δu=

⎡

⎢⎢⎢⎣

δu1

δu2
...

δuNs

⎤

⎥⎥⎥⎦, δv=

⎡

⎢⎢⎢⎣

δv1

δv2
...

δvNs

⎤

⎥⎥⎥⎦, δλ=

⎡

⎢⎢⎢⎣

δλ1

δλ2
...

δλNs

⎤

⎥⎥⎥⎦, δη=

⎡

⎢⎢⎢⎣

δη1

δη2
...

δηNs

⎤

⎥⎥⎥⎦,

(16)

and, the Lu, Lv , Lλ, Lη are similarly defined. Be-
cause the forward problems for different sources are
decoupled, the operator Luu has diagonal structure:

Luu =

⎛

⎜⎜⎜⎝

Lu1u1

Lu2u2

. . .

LuNs uNs

⎞

⎟⎟⎟⎠ , (17)

and similarly for operators Luλ, Luη, Lvλ and Lvη and
their adjoint operators, Lλu, Lηu, Lλv and Lηv .

Operators Luα and Lλα have the structure

Luα =

⎡

⎢⎢⎢⎣

Lu1α

Lu2α

...

LuNs α

⎤

⎥⎥⎥⎦ , and Lλα =

⎡

⎢⎢⎢⎣

Lλ1α

Lλ2α

...

LλNs α

⎤

⎥⎥⎥⎦ . (18)

Lαu and Lαλ are their adjoint operators, respectively.

3.4 The Hessian-free reduced-space algorithm

In each Newton iteration, one can, in principle, solve
the the KKT system as one large system and update u,
v, α, λ and η simultaneously. In this way, us, vs and α

do not necessarily satisfy the forward equation (with
source Is) during each Newton iteration but only at
convergence. In other words, this method progresses
through a PDE-infeasible set of us,vs and α (for s =
1, ..., Ns). This approach is used in (Biros and Ghattas
2005a,b). For time-dependent problems, this full-space
method seems impractical because of the huge storage
requirement (Akcelik 2002).

We adopt a reduced-space method in this work. In
each Newton iteration, for a given α, we first solve
the FitzHugh–Nagumo model (7). We then solve the
adjoint problem (10). After this, the terms Lu, Lv , Lλ

and Lη vanish in the KKT system. The KKT system
thus becomes
⎛

⎜⎜⎜⎜⎝

Luu 0 Luα Luλ Luη

0 0 0 Lvλ Lvη

Lαu 0 Lαα Lαλ 0
Lλu Lλv Lλα 0 0
Lηu Lηv 0 0 0

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

δu
δv

δα

δλ

δη

⎞

⎟⎟⎟⎟⎠
= −

⎛

⎜⎜⎜⎜⎝

0
0
Lα

0
0

⎞

⎟⎟⎟⎟⎠
. (19)

We can now perform a Gauss elimination on Eq. (19)
to eliminate the δu, δv, δλ and δη to obtain

Hredδα = −Lα, (20)

where the reduced gradient Lα is given by

Lα =
Ns∑

s=1

∫ T

0
λsus(1 − us)dt + ρR′(α) (21)

and the reduced Hessian Hred is given by

Hred = Lαα − LαuW − W∗Luα + W∗LuuW, (22)

with W defined as

W = [L−1
λu + L−1

λu (Lηv − LηuL−1
λu )−1LηuL−1

λu ]Lλα. (23)

Here W∗ denotes the adjoint of W. The reduced
Hessian Hred has a much smaller size (and is much
denser) than the original Hessian Luu. It is easy to see
that Hred = H∗

red, that is, Hred is a self-adjoint operator.
We can now solve the reduced KKT system (20) to

find an update for α, δα. The overall process is repeated
until we converge to α. Since us, vs and α satisfy the
forward equation in each Newton iteration, it is appar-
ent that we are solving the problem on a feasible set
of us, vs and α. By doing this, we actually convert the
constrained full-space problem into an unconstrained
problem for α.

Though the reduced Hessian operator is self-adjoint,
it is not guaranteed to be positive definite, and it
requires special care. Here, we try to obtain positive
definiteness by using the Gauss–Newton approxima-
tion (Haber et al. 2000; Nocedal and Wright 1999),
where we drop the second derivative information in the
Lαu and Luα terms. The reduced Hessian can now be
replaced with:

HGN
red = Lαα + W∗LuuW. (24)

For those cases in which the forward model is lin-
ear, the operator Luu is positive definite, and so is
HGN

red . Here, because of the cubic nonlinear term in
the forward problem, instead of being a positive defi-
nite Boolean operator as usual, Luu in this problem is
defined by the action:

(Luuû)ũ =
Ns∑

s=1

Nd∑

j=1

∫ T

0

∫

∂�

ûsũsδ(x − x j)dσ(x)dt

+
Ns∑

s=1

∫ T

0

∫

�

ûsũsλs(6us − 2α − 2)dxdt, (25)

where again û ≡ (û1, ..., ûNs) and ũ ≡ (ũ1, ..., ũNs). One
can see that Luu is not in general positive, since the
second term in Eq. (25) is not necessarily positive. To
obtain positive definiteness for the reduced Hessian
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operator, we also need to suppress the second term in
Eq. (25); then Eq. (24) becomes

HGN−PD
red = Lαα + W∗LB

uuW, (26)

where (LB
uuû)ũ ≡

Ns∑

s=1

Nd∑

j=1

∫ T

0

∫

∂�

ûsũsδ(x − x j)dσ(x)dt.

We are able to use the conjugate gradient (CG)
method (Saad 2003) to solve the positive definite form
of KKT operator. However, the positive definiteness
of the KKT operator is not necessary if we are will-
ing to use the generalized minimal residual (GMRES)
method (Saad 2003) to solve the KKT system.

We thus come to the following reduced-space
Newton’s algorithm. We will denote by F(α) the
objective function F(α, u) introduced in Eq. (6).

Algorithm 1 Reduced-space Newton algorithm

1: set kmax, ε1, ε2

2: guess α0(x); set k = 0
3: evaluate F(α0)

4: while (k < kmax &
‖Lαk ‖

‖1+F(αk)‖ > ε1 & F(αk)

F(α0)
> ε2) do

5: evaluate Lαk by Eq. (21)
6: compute δαk by Eq. (20)
7: compute lk by a line search
8: αk+1 = αk + lkδαk

9: evaluate F(αk+1)

10: k = k + 1
11: end while

The reduced gradient Lαk can be computed using the
following algorithm.

Algorithm 2 Computing reduced gradient

1: set s = 1, Lαk = 0
2: while (s ≤ Ns) do
3: compute us

4: compute λs

5: compute Lαk = Lαk +
∫ T

0 λsus(1 − us)dt
6: s = s + 1
7: end while
8: compute R′(αk)

9: Lαk = Lαk + ρR′(αk)

As seen above, the reduced Hessian has a rather
complicated form. In practice, it is hard to build this
Hessian operator (a matrix in discrete form) explic-
itly. Fortunately, there is a well-known way around
building it explicitly in solving the reduced KKT sys-
tem (20). The idea is to use Krylov subspace methods to

solve the linear system. Instead of requiring explicitly
the reduced Hessian operator, the Krylov subspace
methods require only the action of the Hessian on
functions. In discrete form, they require only matrix-
vector products without reference to the full ma-
trix. This property allows one to build the so called
matrix-free method (Knoll and Keyes 2004) to solve the
system (20).

To see how we can calculate the action of Hred on an
arbitrary vector ζ , let us write

HGN−PD
red ζ = Lααζ + W∗LB

uuWζ. (27)

Let us now introduce the auxiliary variables ws
1, ws

2 and
ws

3 (s = 1, 2, · · · , Ns) that solve the systems

⎧
⎨

⎩

Lλsusw
s
1 = Lλsαζ

Lηsvsw
s
2 − Lηsusw

s
3 = Lηsusw

s
1 .

Lλsusw
s
3 = ws

2

(28)

We then define the variable Ys
1(x, t) = −LB

usus
(ws

1 + ws
3)

and introduce further the auxiliary variables ws
4, ws

5 and
ws

6 (s = 1, 2, · · · , Ns) that solve the systems

⎧
⎨

⎩

Lusλsw
s
4 = Ys

1
Lvsηsw

s
5 − ws

6 = ws
4 .

Lusλsw
s
6 = Lusηsw

s
5

(29)

We then define Ys
2(x) = Lαλs(w

s
4 + ws

6). We can then
show that

HGN−PD
red ζ = Lααζ −

Ns∑

s=1

Ys
2. (30)

We finally arrive at the following algorithm for com-
puting Hessian-function product in the kth Newton
iteration.

Algorithm 3 Hessian-vector product

1: set s = 1, H = 0
2: while (s ≤ Ns) do
3: solve Eq. (28), store Ys

1
4: solve Eq. (29), store Ys

2
5: H = H-Ys

2
6: s = s + 1
7: end while
8: compute R′′(αk)ζ

9: HGN−PD
red ζ = H + ρR′′(αk)ζ

The explicit expressions for the various operators
introduced in this section can be found in the Appendix.
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Fig. 1 Geometrical
configuration for the
reconstructions

3.5 Numerical implementations

We present here some details about the numerical
implementation of the algorithms introduced above.

3.5.1 Discretization of the PDEs

All the partial differential equations involved in the
above methods have been discretized using elementary
finite differences for the spatial and time variables.
For the adjoint equations, we first perform a change
of variable t = T − t′. Then the adjoint equations be-
come initial boundary value problems for time vari-
able t′. These new equations have structure similar to
the forward problems and are discretized using the
same methods as those forward problems.

3.5.2 Line search for optimization

We implemented both cubic line search and quadratic
line search (Dennis et al. 1996; Nocedal and Wright
1999) methods to find the step length lk in Newton it-
eration k. We did not observe much difference between
the performance of the two methods in our simulations.
We enforce the Wolfe conditions (Nocedal and Wright
1999) on both line search methods. That is, we look
for an lk that solves the one-dimensional minimization
problem

min
lk>0

F(αk + lkδαk), (31)

and satisfies:

F(αk + lkδαk) ≤ F(αk) + c1lk∇FT(αk)δαk, (32)

∇FT(αk + lkδαk)δαk ≥ c2∇FT(αk)δαk. (33)

Here c1 and c2 are two small positive constants. In our
simulations, we take the values suggested in Nocedal
and Wright (1999), these are, c1 = 10−4 and c2 = 0.1.

3.5.3 Regularization

We adopt the Tikhonov regularization (Engl et al.
1996) in this study. The Tikhonov functional we take
here is

R(α) = 1

2

∫

�

∇α · ∇α dx. (34)

It is straightforward to check that the first- and second-
order derivatives of this functional with respect to α are
defined by

R′α̂ = −
∫

�

α̂∇ · ∇αdx +
∫

∂�

α̂n · ∇αdσ, (35)

and

(R′′α̃)α̂ = −
∫

�

α̂∇ · ∇α̃dx +
∫

∂�

α̂n · ∇α̃dσ, (36)

respectively. The regularization parameter, ρ, is chosen
by the L-curve method (Vogel 2002). A simple contin-
uation method is adopted to reduce the computational
cost of choosing this parameter; see the discussion in
Section 4.4.

3.5.4 Linear solvers

We use the GMRES algorithm (Saad 2003) to solve all
the linear systems encountered in this paper. Because
the reduced Hessian Hred is symmetric and positive-
definite after the Gauss–Newton approximation, we
also consider using the conjugate gradient method. The
choice of linear solvers does not have much impact on
the quality of the reconstructions, as observed in our
simulations. The rates of the convergence for the two
methods vary only slightly from case to case.

3.5.5 Parallelization

For the time-dependent FitzHugh–Nagumo model we
consider in this paper, solving KKT system requires

Fig. 2 Reconstructed α(x) with different initial guesses (a)-(d) reconstructed α(x) with initial guess 0.075, 0.1, 0.125, 0.15, respectively
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Fig. 3 Left: Convergence history of the reconstructions in Fig. 2; Right: Relative error as function of the values of homogeneous initial
guesses

a significant amount of memory and CPU resources;
thus parallel solution techniques are unavoidable. Both
the PDEs (after discretization) and the KKT sys-
tems are solved on parallel processors in our simula-
tions. The algorithms are implemented in the PETSc
software (Balay et al. 2007).

We finally remark that the algorithm we have devel-
oped here is an “optimization first and discretization
second” type of method. We formulate everything on
a continuous level. Alternatively, one can discretize
the FitzHugh–Nagumo equation first and then perform
minimization on the discretized system.

4 Reconstructions with synthetic data

In this section, we test our numerical algorithms by
performing reconstructions under various situations.
We will focus on two-dimensional (n = 2) reconstruc-
tions, although our algorithms are designed for both
2D and 3D cases. The goal is to reconstruct the distrib-
uted parameter α(x) with only boundary measurements
of time-dependent electrical potential u(x, t). We use
eight sources (Ns = 8) in the experiments of this section
except Section 4.2. All the potential “measurements”
used in the following simulations are synthetic data.

The configuration of the reconstructions is as
follows. We try to reconstruct two small inhomo-
geneities in a homogeneous background. More pre-
cisely, the “true” α is given by

α(x) =
⎧
⎨

⎩

0.3 x ∈ D1,

0.2 x ∈ D2,

0.1 otherwise,

(37)

where D1 and D2 are small rectangles as shown in
Fig. 1.

4.1 Effect of initial guess

We first consider the reconstruction of α(x) with dif-
ferent initial guesses. Since this is a highly nonlinear
inverse problem, the objective functional might have
multiple local minima. We expect that when the initial
guess is too far from the true value, we will have no
guarantee of being able to recover the objects.

We present in Fig. 2 the reconstruction of two rec-
tangular inclusions starting from different values of
homogeneous initial guess of α.

We find that experimentally the initial guess must be
relatively close to the true solution to obtain reasonable
reconstructions. This is not very surprising because the
problem is highly nonlinear. There exist various local

Fig. 4 Reconstructed α(x) with data only on the (a) left, (b) bottom, (c) right and (d) top part of the boundary
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Fig. 5 Reconstructed α(x) with data in different time intervals. (a) t ∈ [0, T/4]; (b) t ∈ [0, T/2]; (c) t ∈ [0, 3T/4]; (d) t ∈ [0, T]

minima of the objective functional. Multilevel tech-
niques have recently been designed to deal with this
problem (Akcelik 2002; Benzi et al. 2006), and should
be further investigated in this context. In practice, a
priori information on the distribution of α may be
available. One can always guess around the real
distribution.

Figure 3 shows the convergence history of the
Newton’s method and relative l2 error for the recon-
structions in Fig. 2. If we denote by αt the true value
of α and by αr the reconstructed α, then the relative l2

error is defined here as ‖αr − αt‖l2/‖αt‖l2 .
The inverse problem is in some sense initial guess-

dependent.

4.2 Effect of measurement locations

We now consider the reconstruction problem with data
on only part of the boundary. This is useful when some
parts of the boundary are practically unavailable. We
consider four different cases: data from left, bottom,
right and top part of the boundary only. Note that in
all the cases, the localized sources are also placed on
the part of boundary where measurements are taken.

Fig. 6 Convergence of relative l2 error with respect to the length
of measurement time

The simulation results are presented in Fig. 4. The
relative l2 errors in the reconstructions are 0.69, 0.35,
0.36 and 0.30, respectively.

We observe that only the inclusion close to the detec-
tor positions can be reconstructed. This is because the
forward solutions are traveling waves and these travel-
ing waves collect information of the underlying medium
when they propagate through the medium. The detec-
tors on only part of boundary (where the source is)
cannot get enough information of the medium since
the traveling waves propagate away. There is only small
wave energy, scattering back to and being received by
the detectors.

4.3 Effect of propagation time

It is obvious that one needs the potential measurements
on a sufficiently long time interval to obtain reasonable
reconstructions. We present in Fig. 5 reconstructions
with full boundary measurements on different time
intervals.

The reconstructions measured over too short a time
interval are not as accurate as those reconstructions
over longer time. We also observe from our numerical
simulation that the quality of the reconstructions does
not improve anymore when we take measurements
over period longer than T, see Fig. 6, because the
traveling waves in the forward model starting on one
side of the domain propagate cross the opposite side of
the rectangular domain at time T. After time T, these
traveling waves just propagate away without reflecting
back.

4.4 Effect of noise

We now consider the effect of noise on reconstructions,
by polluting our synthetic data with uniformly distrib-
uted noise. We consider here only multiplicative noise.
In other words, if h is our measurement without noise,
we then use h(1 + ς ∗ random) as our noisy data, where
“random” is a random number in [−1, 1] with uniform
distribution.
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Fig. 7 Reconstructions of
α(x) with data of various
noise levels. From left to
right: ς =1, 3 and 5%,
respectively

We present in Fig. 7 the reconstructions with differ-
ent noise levels. Those reconstructions are done with
the optimal regularization parameters which are chosen
with the L-curve method (Vogel 2002). Although there
exist proofs that the L-curve method fails to converge
for certain classes of inverse problems (Vogel 1996), we
have observed satisfactory results in our applications.
We plot the log of the regularization functional against
the squared norm of the regularized residual for a range
of values of the regularization parameter. The optimal
parameter ρ is the one at which the L-curve reaches the
maximum of its curvature (Hansen and O’Leary 1993;
Vogel 2002).

Since the L-curve method requires several recon-
structions for any single problem, it is very time-con-
suming. Here we adopt a simple continuation method
proposed in Haber et al. (2000) to reduce the computa-
tional cost of regularization parameter selection.

We start the first reconstruction with a relatively
large ρ. The result of this reconstruction is then taken to
be the initial guess of next reconstruction with a smaller
ρ. If the two ρ are not dramatically different from each

Fig. 8 L-curve used to choose the optimal regularization para-
meter for the reconstruction with data of 1% noise in Fig. 7. Here
Q(α) ≡ F(α, u) − ρR(α)

other, then the two reconstructions should converge to
similar results. Thus, the reconstruction with smaller ρ

is supposed to converge fast since its initial guess is cho-
sen to be close enough to its true solution. The process
can be repeated to perform reconstructions with sev-
eral values of ρ. In practice, this continuation method
saves tremendous computational time for finding opti-
mal regularization parameters. We present in Fig. 8 the
L-curve we have used in the reconstructions of Fig. 7 to
choose the optimal regularization parameter ρ.

4.5 Reconstructions in two states

As we know, the FitzHugh–Nagumo model has two
states depending on the injection current stimuli: a
stable rest state and a stable traveling wave. We now
discuss the effect of source strength on the quality of
reconstruction.

We find that the reconstruction qualities are very
different when the forward problems belong two dif-
ferent states. The forward solution cannot be a stable
traveling wave when the injection current stimulus is
too small, which means that the detectors on the bound-
aries cannot receive any information of the underly-
ing medium. Thus the inclusions in the α domain can
not be reconstructed, see Fig. 9(a). On the contrary,
the reconstruction quality is good when the forward
solution is a stable traveling wave, see Fig. 9(b),(c).
In this case the information of the medium can be
propagated to the detectors through the traveling wave.
However, for those cases that forward solutions are
stable traveling waves, the reconstruction qualities are
similar independent of amplitude.

4.6 Effect of inexactness

We now consider the reconstructed α with different
maximum GMRES iterations, that is, when the inner
linear iterations are truncated well short of the solution.
This is inspired by the observation that very accurate
solution of the update δα(x) requires a large number
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Fig. 9 Reconstruction with
different source strengths;
(a) Is = 0.5; (b) Is = 0.8;
(c) Is = 100

of Krylov iterations. However, with a much smaller
number of iterations, we can achieve similar accuracy
already as we can see from the left plot in Fig. 10.

We perform reconstructions with two different
Krylov solvers, one with maximum iteration number
30 and the other with maximum iteration number 60.
The results are presented in Fig. 11. The evolution of
the objective function in the reconstruction process for
the two reconstructions are shown in the right plot of
Fig. 10.

There are no major differences observed between
these reconstructions. This is important in practice
since it allows one to do reconstruction with similar
quality using much less computational resources (by
saving extra Krylov iterations, which, in the case of
GMRES, cost both additional work and memory). For
example, in the two reconstructions here, the one with
large Krylov iteration bound takes almost twice as
much CPU time as the one with small Krylov iteration
bound. Of course, if the maximum Krylov iteration
number is too small, the algorithm will not converge
at all. We observed this in our numerical experience.
Some directional information must be carried back to

the nonlinear iteration. Some theoretical results con-
cerning the convergence of the inexact Newton method
can be found in Eisenstat and Walker (1994).

4.7 Reconstructions with varying excitability contrast

The contrast of α between the inclusions and the ho-
mogeneous background affects the quality of the re-
constructions considerably. Here we consider the case
that α in the inclusions is much larger than it in the
background compare to the numerical setting used
in all former numerical experiments. We observe in
Fig. 12(a) that the reconstruction is better when the
contrast of α is greater.

Figure 12(b) shows the reconstruction in the case
that the value of α in the inclusions is smaller than it in
the background. In Section 4.5, we showed that nothing
can be reconstructed if there is no electrical potential
wave propagating in the forward models, therefore, one
must ensure that the electrical potential waves in the
forward models are not shut down when tuning the
parameters.

Fig. 10 Left: Convergence history for the Krylov solver at different Newton iterations. Right: Evolution of objective functions in
reconstructions with accurate (line) and inaccurate (symbol) Krylov solver



262 J Comput Neurosci (2007) 23:251–264

Fig. 11 Reconstructed α with different maximum GMRES
iterations

5 Conclusions and discussion

We have considered distributed parameter identifi-
cation problems for the FitzHugh–Nagumo system
that models the propagation of electrical potentials in
excitable media such as systems of neurons and hearts.

The mathematical problem consists of reconstruct-
ing physical parameters in the system through par-
tial knowledge of its solutions on the boundary of
the domain. We have developed a parallel algo-
rithm of Newton–Krylov type that combines Newton’s
method for numerical optimization with Krylov sub-
space solvers for the resulting Karush–Kuhn–Tucker
system. We show by numerical simulations that the pa-
rameter reconstructions can be done with measurement
data only on the boundary of the domain.

We discuss the effect of data quality, data amount
and some algorithmic parameters on the quality of re-
constructions. Future research will be focus on acceler-
ating the current code, extending it to three dimensions
on much larger numbers of processors, and comparing
simulations on more realistic geometries with experi-
mental measurements.

Finally, we remark that although we consider specifi-
cally the reconstruction of the reactive parameter in this
paper, the methodology can also be used to reconstruct
other parameters in the model, such as the conductivity.

(a) (b)

Fig. 12 Reconstructions with varying excitability contrast; (a) the
new objective α is given by α(x) = 0.6 (x ∈ D1), 0.4 (x ∈ D2), 0.1
(otherwise); (b) the new objective α is given by α(x) = 0.05 (x ∈
D1), 0.1 (x ∈ D2), 0.2 (otherwise)
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Appendix: Operators in the KKT system

We record here the explicit expressions for the various
operators introduced in the KKT system (15). Note
that since the operators for the problems with different
sources are the same, we will drop their dependence on
s, the source index.

Operators for the first equation in KKT system

Luu(u)δu :=
( Nd∑

j=1

δ(x − x j) + λ f ′′(u, α)

)
δu (38)

Luα(u)δα := λ(1 − 2u)δα (39)

Luλ(u)δλ :=
⎧
⎨

⎩

−∂t(δλ) − μ�δλ + f ′(u, α)δλ

δλ(x, T) = 0
n · ∇δλ = 0

(40)

Luη(u)δη := −ϑεδη (41)

Operators for the second equation in KKT system

Lvλ(v)δλ := δλ (42)

Lvη(v)δη :=
⎧
⎨

⎩

−∂t(δη) − κ�δη + εγ δη

δη(x, T) = 0
n · ∇δη = 0

(43)

Operators for the third equation in KKT system

Lαu(α)δu :=
∫ T

0
λ(1 − 2u)δudt (44)

Lαα(α)δα := ρR′′(α)δα (45)

and

Lαλ(α)δλ :=
∫ T

0
u(1 − u)δλdt (46)
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Note that the boundary condition of the operator in
Eq. (45) is determined by the regularization functional.

Operators for the fourth equation in KKT system

Lλu(λ)δu :=
⎧
⎨

⎩

∂tδu − μ�δu + f ′(u, α)δu
δu(x, 0) = 0
n · ∇δu = 0

(47)

Lλv(λ)δv := δv (48)

Lλα(λ)δα := u(1 − u)δα (49)

Operators for the fifth equation in KKT system

Lηu(η)δu := −ϑεδu (50)

Lηv(η)δv :=
⎧
⎨

⎩

∂tδv − κ�δv + εγ δv

δv(x, 0) = 0
n · ∇δv = 0

(51)
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