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Abstract Deep brain stimulation (DBS) of the subthal-
amic nucleus, typically with periodic, high frequency
pulse trains, has proven to be an effective treatment
for the motor symptoms of Parkinson’s disease (PD).
Here, we use a biophysically-based model of spiking
cells in the basal ganglia (Terman et al., Journal of Neu-
roscience, 22, 2963–2976, 2002; Rubin and Terman,
Journal of Computational Neuroscience, 16, 211–235,
2004) to provide computational evidence that alterna-
tive temporal patterns of DBS inputs might be equally
effective as the standard high-frequency waveforms, but
require lower amplitudes. Within this model, DBS per-
formance is assessed in two ways. First, we determine
the extent to which DBS causes Gpi (globus pallidus
pars interna) synaptic outputs, which are burstlike and
synchronized in the unstimulated Parkinsonian state, to
cease their pathological modulation of simulated thala-
mocortical cells. Second, we evaluate how DBS affects
the GPi cells’ auto- and cross-correlograms. In both
cases, a nonlinear closed-loop learning algorithm iden-
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tifies effective DBS inputs that are optimized to have
minimal strength. The network dynamics that result dif-
fer from the regular, entrained firing which some
previous studies have associated with conventional high-
frequency DBS. This type of optimized solution is also
found with heterogeneity in both the intrinsic network
dynamics and the strength of DBS inputs received at
various cells. Such alternative DBS inputs could poten-
tially be identified, guided by the model-free learning
algorithm, in experimental or eventual clinical settings.
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1 Introduction

During high-frequency deep brain stimulation (DBS)
therapy for Parkinson’s disease (PD), rhythmic
(> 100 Hz) pulsatile voltage transients are typically
applied to the subthalamic nucleus of the basal ganglia.
The therapeutic effects are often dramatic, alleviating
motor symptoms and decreasing dependence on
dopaminergic drugs (Krack et al. 2003; Kleiner-Fisman
et al. 2003; Rodriguez-Oroz et al. 2004, 2005; Deep
Brain Stimulation for Parkinson’s Disease Study
Group 2001; Benabid 2003), and the corresponding
physiological effects are under intensive study—
specifically, how DBS modulates activity in the target
areas.

One possible answer is suggested by the similar
effects of GPi lesions and DBS of the subthalamic
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nucleus (STN): that DBS suppresses firing (STN excites
Gpi; see Fig. 1) (Benabid 2003; Olanow et al. 2000;
Benabid et al. 2001; Benazzouz et al. 2000; Boraud et al.
1996; Beurrier et al. 2001). However, some experiments
indicate that high-frequency DBS can enhance output
of the stimulated areas (Windels et al. 2000; Hashimoto
et al. 2003; Maurice et al. 2003). This discrepancy is
addressed by the computational modeling of McIntyre
et al. (2004), which indicates that DBS can suppress fir-
ing of cell bodies while exciting axons at approximately
the frequency of the DBS drive.

If high frequency DBS enhances synaptic output,
its therapeutic effect cannot be due to its mimick-
ing a lesion. An alternative hypothesis, and that
adopted here, is that DBS otherwise modulates the ac-
tivity of the BG network to “mask” the pathologi-
cal firing patterns that characterize the Parkinsonian
state (Benabid 2003; McIntyre et al. 2004; Hashimoto
et al. 2003; Montgomery and Baker 2000; Rubin
and Terman 2004). Specifically, GPi neurons in the
Parkinsonian vs. normal state are more synchro-
nized, rhythmic, and burstlike (Terman et al. 2002;
Bergman et al. 1998; Magnin et al. 2000; Nini et
al. 1995). Using a conductance-based network model,
(Rubin and Terman 2004) demonstrate that peri-
odic, high-frequency DBS can elicit similarly periodic,
high-frequency firing of STN and GPi cells, thereby

STN

GPe
striatal input

DBS 

excitatory input 

1 2 3 4 5 6 7 8

GPi

TC

Fig. 1 The “structured, sparsely-connected” network architec-
ture adopted from Terman et al. (2002); Rubin and Terman
(2004). Lines ending with arrows and open circles indicate excita-
tory and inhibitory synaptic connections, respectively. Each GPe
neuron inhibits two immediate GPe neighbors as well as two STN
neurons, skipping the three STN cells located nearest to it in the
‘arrays’ of cells. Each STN cell sends excitation to the nearest
GPe cell in the array. In addition, GPe neurons receive simulated
striatal inhibition, and excitatory DBS inputs are applied to STN
neurons in some cases. Each GPi cell receives inhibition from
the nearest GPe cell and excitation from the nearest STN cell.
Each of two TC cells receives inhibitory input from the four GPi
neurons shown, and the TC cells also (uniformly) receive model
excitatory sensorimotor input. As in Terman et al. (2002); Rubin
and Terman (2004), the network architecture has a periodic
structure, so that cells 1 and 8 in each array are neighbors, etc

replacing Parkinsonian firing with a mask of tonic ac-
tivity (cf. Hahn et al. 2005). These authors show that
this tonic Gpi activity restores the simulated function
of downstream (thalamocortical) cells.

Other computational studies (see Section 4) seek
DBS inputs that achieve similar “masking” effects
but have alternative temporal patterns, often requir-
ing lower amplitudes than high-frequency DBS (Tass
1999, 2001; Rosenblum and Pikovsky 2004; Popovych
et al. 2005; Hauptmann et al. 2005). As these authors
emphasize, considering alternatives to high-frequency
DBS is important for several reasons. If clinically effec-
tive lower-amplitude DBS inputs were identified, their
use would preserve stimulator batteries (which require
surgical replacement) and might also lessen DBS side
effects. Additionally, an open question is whether al-
ternative patterns would be effective in patients who do
not respond effectively to high-frequency DBS (Okun
et al. 2005), or whose symptoms nevertheless worsen
over time (Krack et al. 2003).

We propose and computationally test a new ap-
proach to identifying such alternatives to high-
frequency DBS: using a nonlinear closed-loop learning
algorithm to search for DBS inputs that optimally al-
leviate Parkinsonian firing patterns with the minimal
possible amplitudes. The proposed algorithm conducts
a global search to identify optimal DBS inputs drawn
from any user-specified class of possible waveforms,
and hence has the capability to identify highly novel
solutions. We apply the algorithm to the computational
subthalamopallidal model of Terman et al. (2002). Our
goals are twofold: to determine whether alternative
DBS patterns exist within this model that have com-
parable or superior performance to high-frequency in-
puts, and whether closed-loop learning algorithms can
effectively search the space of possibilities to identify
these optimal DBS inputs. We find positive answers on
both accounts.

The balance of the paper proceeds as follows. We
first review the model of (Terman et al. 2002), and
then undertake a systematic study of the influence of
standard DBS parameters (cf. Rubin and Terman 2004;
Rizzone et al. 2001). Surprisingly, we find that certain
DBS currents with relatively low frequency and ampli-
tude desynchronize GPi neurons, disrupting rhythmic
patterns characteristic of PD and restoring function
in stimulated thalamocortical cells. Subsequent closed-
loop optimization identifies DBS currents which si-
multaneously achieve this effect and minimize average
levels of DBS currents. Next, to relax assumptions
about thalamocortical function, a general statistical
measure of the GPi cells’ firing pattern is devised as
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the criterion to distinguish normal and Parkinsonian
states. This measure is then utilized in the closed-loop
learning algorithm to directly identify DBS currents
that optimally transform the synchronized, burstlike
firing dynamics of the Parkinsonian cells into firing
patterns whose statistics match those of normal cells. In
this process, we consider both standard periodic DBS
inputs and more general DBS currents whose pulse
timings are defined by either an optimally determined
12-parameter probability distribution function, or by a
16-parameter discrete, periodic (Haar) basis. The effec-
tiveness of these latter types of DBS input is of interest,
because it suggests evaluating a greater variety of DBS
patterns in experimental settings. We also demonstrate
that optimal solutions can be found in the presence of
heterogeneity in both the intrinsic network dynamics
and the strength of DBS inputs received at various cells.

2 Model and methods

2.1 The network model

The subthalamopallidal network model we use was
developed and compared with experimental firing pat-
terns by Terman et al. (2002) and applied to a study of
high-frequency DBS by Rubin and Terman (2004). It
consists of model neurons belonging to three basal gan-
glia nuclei: the STN, GPe (external segment of globus
pallidus), and GPi, as well as thalamocortical relay (TC)
cells. We adopt the “sparsely connected, structured” ar-
chitecture (Fig. 1) to reproduce both tonic and bursting
firing modes, as in Terman et al. (2002). There are eight
STN cells and eight GPe cells: each STN cell receives
inhibition from two GPe cells as well as the external
DBS current, and each GPe cell receives excitatory
input from one STN, an input from the (unmodeled)
striatum, and inhibition from two adjacent GPe neu-
rons. There are also eight GPi neurons, each receiving
inhibition from one GPe and excitatory input from
one STN (Rubin and Terman 2004). Finally, two TC
cells are included in the model, each receiving synaptic
inhibition from four GPi cells and an excitatory input
representing sensorimotor signals (Rubin and Terman
2004).

The details of network connectivity are described
in Terman et al. (2002); Rubin and Terman (2004) and
Fig. 1. All of the network simulations presented here
are run for 2,500 ms (to allow the effects of transients
and initial conditions to decay) before plots are pro-
duced (over the following 800 ms) and statistics are
computed over the following 6,500 ms.

2.2 Conductance-based neuron equations

As in Terman et al. (2002); Rubin and Terman (2004),
all four cell types are described by single-compartment
conductance-based neuron models motivated by the
underlying physiology. STN, GPe, GPi, and TC are
used as subscripts to denote variables and functions
corresponding to the various cell types. The synaptic
current from cell type α to β is denoted as Iα→β . The
parameter settings, including initial conditions, are as
described in Terman et al. (2002); Rubin and Terman
(2004).

The voltage of the STN neurons is modeled via

Cm
dvST N

dt
= −IL − IK − INa − IT − ICa − IAH P

−IGPe→ST N + IST N + IDBS, (1)

where IL is the leak current, IK is the potassium cur-
rent, INa is the sodium current, IT is a low-threshold
T-type Ca2+ current, ICa is the high-threshold Ca2+
current, IAH P is a Ca2+-activated, voltage-independent
afterhyperpolarization K+ current, IGPe→ST N is the
synaptic input from GPe to STN, IST N is a constant
depolarizing current, and IDBS is the DBS current in-
put. Most of these currents (and those below) are deter-
mined by the standard auxiliary differential equations;
see Terman et al. (2002) for details.

The voltage of the GPe neurons follow

Cm
dvGPe

dt
= −IL − IK − INa − IT − ICa − IAH P

−IGPe→GPe − IST N→GPe + IGPe, (2)

where IGPe→GPe represents the interpallidal inhibition
between GPe cells, IST N→GPe is the synaptic excitation
from STN to GPe, and IGPe is a constant depolariz-
ing current. The voltage dynamics of the GPi cells is
similar:

Cm
dvGPi

dt
= −IL − IK − INa − IT − ICa − IAH P

−IGPe→GPi − IST N→GPi + IGPi, (3)

where IGPe→GPi and IST N→GPi denote the synaptic in-
put from GPe and STN to GPi, respectively, and IGPi

is a constant depolarizing current. The TC cells are
modeled via

Cm
dvTC

dt
= − IL − IK − INa − IT − IGPi→TC + ISM, (4)
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where IGPi→TC is the synaptic input from GPi cells to
TC, and ISM represents the sensorimotor input to the
thalamus and is modeled as

ISM = iSM H(sin(2π t/ρSM))

×[1 − H(sin(2π(t + δSM)/ρSM))], (5)

where H is the Heaviside step function; that is, H(x) =
0 if x < 0 and H(x) = 1 if x ≥ 0 (Rubin and Terman
2004). Here, ρSM is the period of ISM and iSM is its
amplitude. In the simulations, the parameter values
for ISM are iSM = 10.0pA/μm2, ρSM = 50.0 ms and
δSM = 5.0 ms.

Although we use overlapping notation above, the
membrane currents (e.g., IT) differ as appropriate for
the distinct types of neurons. Their voltage and time
dependence is as described in Terman et al. (2002);
Rubin and Terman (2004); the code used here, con-
taining all parameter settings and equations, is available
upon request.

2.3 Parameterizing DBS waveforms

2.3.1 Standard DBS waveforms

The periodic DBS waveforms typically used in clinical
settings are modeled, as in Rubin and Terman (2004),
by applying to STN cells a square-wave pulse train
described by

IDBS = iD H(sin(2π t/ρD))×[1−H(sin(2π(t+σD)/ρD))].
(6)

Here there are three parameters: iD is the stimulation
amplitude, ρD is the stimulation period, and σD is the
duration of each impulse.

2.3.2 Stochastic DBS waveforms

We also consider DBS waveforms consisting of pulse
trains with random inter-pulse delays. Specifically, we
specify a probability density function (PDF) P(d) (sat-
isfying

∫
P(d) dd = 1) which defines the probability for

two adjacent DBS pulses to be spaced by a time delay d.
A piecewise constant PDF P(i), i = 1, 2, . . . , I is used,
where the ith piece P(i) defines the probability for
two adjacent DBS pulses to be separated by a time in
the range [(i − 1)�, i�] (within which a time delay d
is randomly selected), and

∑I
i=1 P(i) = 1. Here, P is

defined by I = 10 constants, with � = 5 ms (so that
the maximum pulse delay is 50 ms). Such DBS wave-
forms are described by 12 parameters: ten P(i) values,

the pulse amplitude iD, and the pulse width σD. Even
more flexible stochastic waveforms could be considered
as well.

2.3.3 Nonpulsatile DBS waveforms

We also consider more general (periodic) DBS wave-
forms represented by a Haar basis. First, a parameter τ

is used to define the period of summed basis functions
so that for iτ ≤ t < (i + 1)τ ≤ T (i = 0, 1, . . .), x = (t −
iτ)/τ . Within each period, the DBS current is

IDBS(x) =
P∑

j=0

2 j−1∑

k=0

c jkψ jk(x), (7)

where ψ jk(x) ≡ ψ(2 jx − k) and

ψ(x) =
⎧
⎨

⎩

1 0 ≤ x < 1/2
−1 1/2 ≤ x < 1
0 otherwise

To define the jth order Haar basis, 2 j parameters are
needed. Haar bases up to the third order (i.e., P = 3)
are used in our simulations, thereby the total number
of GA parameters is 1 + 2 + 4 + 8 + 1 = 16, where one
parameter is the period τ .

2.4 The closed-loop optimization algorithm

We use a Genetic Algorithm (GA) (Goldberg 1989),
a type of global optimization method, to iteratively
search for periodic or aperiodic DBS currents that
alleviate the simulated Parkinsonian condition in the
network model, where we consider different criteria
to assess the extent to which this objective has been
achieved. In the first step of the GA, N different trial
DBS currents Ii

DBS(t), i = 1, 2, . . . , N are applied to
the STN cells, and a quantitative measure xi ≥ 0 char-
acterizing PD symptoms in response to each Ii

DBS(t)
is computed from the simulated neural dynamics. Two
different measures are used here. The first measure,
Rel, represents the reliability of TC cells in transmitting
sensorimotor signals (as in Rubin and Terman 2004);
the second measure, Cor, compares statistical proper-
ties of GPi cells in the presence of DBS stimulation
with those in the normal state. The details will be
described in Section 3 . The possible currents Ii

DBS
are usually described by vectors of parameters ai, so
that optimizing the criterion x over all possible DBS
currents corresponds to optimizing with respect to a.

The overall quality of each Ii
DBS is determined by

a cost function Ji which guides the GA optimization.
In the simplest case, Ji = xi. In real applications, the
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algorithm also needs to take into account practical
constraints and requirements, such as the desirable
property of minimizing the average and/or peak mag-
nitude of DBS current to alleviate side effects and
reduce battery usage. An extra term R ≥ 0 representing
such factors to be minimized can be added to the cost
function, so that Ji = xi + wR, where w ≥ 0 is a weight
parameter. The GA then compares Ji for all trial DBS
currents and selects a certain percentage with the best
effects (i.e., the minimal Ji values) to generate the
next set of N trial DBS currents by “crossover” and
“mutation” operations (Goldberg 1989). This iterative
optimization process continues until one or a few DBS
currents are found that achieve satisfactory outcomes.
Because of the computational demands of numerically
solving the differential equations introduced above, the
GA is implemented on a parallel computer cluster with
26 nodes. The GA used here has a population size (N)
of 25, replacement rate of 40%, crossover rate of 70%,

and mutation rate of 30%. The advantages of the GA
relative to grid-sampling or local search algorithms will
be discussed in Section 3.

3 Results

3.1 Normal and Parkinsonian states, and the effect
of high-frequency DBS

It was demonstrated in Terman et al. (2002); Rubin and
Terman (2004) that the model described above can pro-
duce several different firing patterns, depending on pa-
rameter settings representing normal vs. Parkinsonian
states (see below). Figures 2 and 3(a) and (b) illustrate
the behavior of the full network in the normal state.
The voltage traces of the first and second (according
to the indexing in Fig. 1) neuron of each cell type are
plotted. STN, GPe, and GPi cells all display irregular
firing times that are only weakly correlated (Fig. 2),

Fig. 2 Voltage profiles for
STN, GPe, and GPi neurons
in the normal state. Two cells
of each type are plotted. The
firing patterns of each type of
cells are irregular and
uncorrelated
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Fig. 3 (a) Raster plot of the spike times for all eight GPi cells
in the normal state. (b) Voltage traces of the two TC neurons in
the normal state with ISM displayed beneath the voltage traces;
solid line is cell 1 of Fig. 1, dashed line is cell 2, shifted up
by 50 mV for clarity. Note that ISM input is faithfully relayed.
(c) Raster plot of GPi cells in the Parkinsonian state, showing
clustered, synchronous bursting. (d) Voltage of TC cells in the
Parkinsonian state, where the TC cells fail to relay the ISM input
faithfully. (e) Raster plot of the Parkinsonian GPi cells with
high frequency DBS current applied (iD = 200pA/μm2, ρD =
6 ms, σD = 0.6 ms, and average 〈IDBS〉 = 20pA/(μm2ms)). The
Gpi neurons are entrained to the DBS input, firing at half
the DBS frequency (STN cells fire at the DBS frequency, see
Fig 6(c)). (f) Voltage of TC cells shows that high frequency
DBS has restored the faithful transmission of ISM signals, as in
Rubin and Terman (2004)

and TC cells respond faithfully to the excitatory sen-
sorimotor input (Fig. 3(b)), meaning, as in (Rubin and
Terman 2004), that only one TC voltage spike appears
“immediately” after each ISM impulse, and that there
are no extraneous TC voltage spikes (i.e., those not
triggered by an ISM impulse). As in Rubin and Terman
(2004), this reliability is quantified by Rel, the ratio of
ISM pulses that lead to one spike in a TC cell only within

0.25 ms after the end of the pulse; for the normal state,
Rel = 0.99. This desynchronized and irregular normal
state is also illustrated by the spike time raster plot of
all eight GPi cells in Fig. 3(a). Similar plots will be used
below to represent and distinguish different states of
the network’s dynamics.

As in Terman et al. (2002); Rubin and Terman
(2004), a physiologically motivated increase in the con-
stant bias current IGPe and a decrease in lateral synaptic
strengths IGPe→GPe switches the network from the nor-
mal to the Parkinsonian state. Figure 3(c) shows that
GPi cells demonstrate bursting spike patterns with a
characteristic clustering (see Terman et al. (2002) and
references therein); STN and GPe cells display similar
clustering and bursting. These groups are organized as
follows (see Fig. 1): cells {1, 5}, {2, 6}, {3, 7}, {4, 8} are
almost exactly synchronized, and the first and second
(and third and fourth) of these pairs themselves fire
periodically with only a small phase lag. This pairing
may be understood directly from the network architec-
ture: each cell within a pair of STN cells (STN cells
{1, 5}, etc.) receives the same input from other cells
in the network, no matter how desynchronized these
other cells might be (although the grouping is preserved
upon introducing mild network heterogeneity, a case
we also consider below). Therefore, if the pair of STN
cells tends to entrain to this input, the pair will become
synchronized; the simulations show that this is what
occurs in the Parkinsonian state (while entrainment
does not occur in the normal condition). The resulting
partially synchronized, burstlike output of GPi cells
compromises the faithful relay of the sensorimotor in-
put by model TC neurons, as bursts of incoming inhibi-
tion suppress TC cells’ membrane voltage, leading (via
thalamic IT currents) to rebound bursts of TC spikes
which follow offset of this inhibition but which are not
related to the ISM signal (see Rubin and Terman (2004),
and the present Fig. 3(d)). The resulting reduced relia-
bility of TC cell firing is Rel = 0.43.

High-frequency DBS of the STN cells, as is typical
clinically, is modeled via Eq. (6). Three parameters
characterize such square-wave, periodic waveforms: the
amplitude iD, period ρD, and impulse duration σD.
Figure 3(e) shows the dynamics of the GPi neurons dur-
ing high-frequency DBS. Despite the high frequency
inhibition from the GPi, the TC cells completely re-
cover the ability to reliably transmit sensorimotor sig-
nals (Fig. 3(f)): the corresponding Rel value is ∼ 1.0.
As explained in Rubin and Terman (2004), this reliable
transmission is restored because the intrinsic dynamics
of the model network is essentially entrained by the
strong, high frequency DBS input, which elicits regular,
high-frequency firing in STN and hence in Gpe and Gpi
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cells. We note that DBS induces similar neural dynam-
ics in the network model of (Hahn et al. 2005). This
entrainment eliminates (or, in the words of McIntyre
et al. 2004, “masks”) the Parkinsonian bursts of inhibi-
tion to TC cells that, as explained above, compromise
their transmission of model sensorimotor inputs.

3.2 Influence of standard DBS parameters:
from entrained to desynchronized
network dynamics

Rubin and Terman (2004) studied how the transmission
of sensorimotor signals ISM in their model depends on
the parameters of simulated DBS currents. We start
with a similar analysis, but over increased dynamic
ranges for the standard DBS parameters and while
covarying the stimulation period ρD and amplitude iD

(while pulse duration σD remains fixed). Figure 4 illus-
trates the dependence of TC cell transmission reliability
on the DBS pulse period ρD and amplitude iD, via
the measure Rel described above. It can be seen that
reliable signal transmission of the TC cells mostly oc-
curs in the high frequency (low period), high amplitude
region of the parameter space, which is consistent with
the results in Rubin and Terman (2004). However,
high reliability values are also found in a small region
corresponding to low impulse frequencies and moder-
ate amplitudes: this is the “peak” around ρD ≈ 80 ms,
iD ≈ 80 pA/μm2 in Fig. 4. The network dynamics in
response to DBS with these parameters is shown in
Fig. 5(a–c). Note that, unlike the high-frequency DBS
of Fig. 3(e–f), Gpi spike times are not entrained to the
DBS inputs. Rather, the lower-frequency DBS input
results in a more subtle declustering of the GPi cells,
relative to the unstimulated Parkinsonian state. Note
that the cell pairs synchronized in the Parkinsonian
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Fig. 5 (a) A low frequency, periodic DBS current with pa-
rameters ρD = 80 ms, iD = 80 pA/μm2, σD = 0.6 ms, giving
time-average 〈IDBS〉 = 0.6pA/(μm2 ms). (b) Raster plot for the
Parkinsonian GPi cells during application of the DBS current
in (a), which largely desynchronizes them. (c) Faithful TC cell
signal transmission is restored by the current in (a). (d) A GA-
optimized periodic DBS current (ρD = 93 ms, iD = 60pA/μm2,
σD = 0.3 ms, and < IDBS >= 0.19pA/(μm2 ms)). (e) Raster plot
of the Parkinsonian GPi cells with the DBS current in (d). (f) TC
voltage profile with the DBS current in (d)

condition (cells {1, 5}, {2, 6}, {3, 7}, {4, 8}) remain es-
sentially synchronized following the application of
the DBS current, but these pairs become largely de-
synchronized relative to one another. This restores
the transmission reliability Rel to a value of 0.95,
as the summed inputs to the TC cells are more
smoothly distributed over time. Furthermore, the
average DBS current 〈IDBS〉 (i.e., the time aver-
age of the IDBS shown in Fig. 5(a)) that achieves
this desynchronization and attendant reliability is
〈IDBS〉 = 0.6pA/(μm2ms), substantially lower than the
value 〈IDBS〉 = 20pA/(μm2ms) of the high-frequency
current in Fig. 3(e–f).

The mechanism for this network desynchronization
is not immediately evident. However, an expansion



272 J Comput Neurosci (2007) 23:265–282

(Fig. 6(a)) of the temporal scale of the voltage pro-
files for two STN cells in the Parkinsonian state in-
dicates that, although the two cells demonstrate very
similar bursting patterns, there is still a small time
lag (phase shift) between their spikes. The standard
high-frequency DBS technique employs strong, high
frequency current inputs, which force the STN neu-
rons to be phase-locked with the high-frequency DBS
current (Fig. 6(b) and (c)). In contrast, the low fre-
quency DBS impulses in Fig. 5(a) do not always trig-
ger voltage spikes at their onset. Instead, such DBS
input regulates the subthreshold dynamics of distinct
neurons in a slightly different way due to the time
lag, and this difference propagates over time in a
complex, nonlinear fashion, resulting in the desyn-
chrony among cell pairs seen in (Fig. 6(d) and (e)).
Again, we note that the cells within a given pair (the
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Fig. 6 (a) A zoomed plot of the voltage traces for STN cell 1
(solid line) and 2 (dashed line) in the Parkinsonian state, show-
ing subthreshold dynamics. Note that both the spike times and
subthreshold fluctuations have a small time lag. (b) The high-
frequency DBS applied to the PD cells as in Fig. 3(e). (c) The
voltage profiles of two Parkinsonian STN cells with the DBS
current in (b). (d) The low-frequency DBS applied to the PD
cells as in Fig. 5(a). (e) The subthreshold voltage profiles of two
Parkinsonian STN cells with the DBS current in (d)

pairs being {1, 5}, {2, 6}, {3, 7}, {4, 8}, as above) remain
synchronized, as the STN cells within each pair are
entrained to identical synaptic inputs (being connected
to the same other cells in the network) and identical
IDBS currents. Overall, we emphasize that the present
modeling result should not be interpreted as a sugges-
tion that these same low-frequency DBS currents will
be effective in clinical applications, but as illustrating
the general possibility of DBS inputs that produce
desynchronized dynamics differing substantially from
entrained network responses to high-frequency DBS.

In the laboratory setting, the currents induced in
different neurons by DBS depend not just on stimulator
parameters but also on factors including properties of
the extracellular medium and the orientation of target
cells (e.g. McIntyre and Grill 2002; McIntyre et al.
2004). To test the robustness of DBS effects against
such factors, we first smooth the DBS pulse train by
applying a Gaussian filter with standard deviation of
2ms to the square waveform considered above. We
then include heterogeneity in the DBS input by dif-
ferentially and randomly scaling the current impulse
iD received by each STN neuron. Figure 7(a–c) shows
that these factors do not alter the entraining effect of
high-frequency DBS currents. Similarly, the network’s
response to the low-frequency DBS input of Fig. 5(a) is
robust to the smoothing and heterogeneity: the input
disrupts the regular alternating, clustered Gpi firing
patterns of the DBS state (Fig. 7(d–f)), yielding Rel =
0.94, although cells do drift in and out of different types
of overlapping-in-time clusters on longer timescales.
Note that this heterogeneity is insufficient to substan-
tially desynchronize neurons within cell pairs (i.e., cells
{1, 5}, etc. are still synchronized, due to common synap-
tic inputs); further simulations (not shown) with addi-
tional heterogeneity at a level of 50–80% do begin to
desynchronize the cells within these pairs, a result that
may be roughly explained by considering the relative
orders of magnitude of DBS and synaptic currents.

3.3 Optimization of periodic DBS currents

The observation that DBS inputs can interact with
intrinsic network dynamics to desynchronize and make
more irregular firing in the simulated Parkinsonian
state suggests that PD symptoms might be treated
by introducing carefully tuned DBS currents that
evoke firing patterns resembling the normal state
(hence restoring, for example, normal functioning of
thalamocortical relay cells). This is in contrast to the
present model of the standard high-frequency DBS
procedure, which also restores normal functioning of
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Fig. 7 Robustness of DBS effects. A Gaussian filter of standard
deviation 2 ms is first applied to the DBS current to smooth the
edges of the square pulses; iD is increased to compensate for
the loss in DBS amplitude due to filtering. The DBS currents
received by each STN cell are then multiplied by an independent,
random factor with mean 1 and standard deviation 0.1 (over the
full extent of the DBS input), to model a 10% heterogeneity in
DBS effects. (a) Voltage profiles of two STN cells following the
filtered, heterogeneous high-frequency DBS input in Fig. 3. (b)
Raster plot of the Parkinsonian GPi cells with the high-frequency
DBS current. (c) Voltage traces for the TC cells, demonstrat-
ing that faithful transmission of model sensorimotor inputs is
maintained. (d) Voltage profiles of two STN cells following the
heterogeneous, filtered lower-frequency DBS input of Fig. 5(a),
showing that desynchronized GPi spiking persists among cell
pairs. (e) Raster plot of the Parkinsonian GPi cells with the low-
frequency DBS current. (f) Voltage profiles of TC cells show that
transmission remains largely reliable

thalamocortical relay cells, but via entraining the sub-
thalamopallidal network to rapid and regular firing that
differs substantially from its normal-state activity.

Despite the fact that a fairly coarse grid sampling of
DBS frequency and amplitude identified novel, lower-
frequency parameter settings that give satisfactory TC
cell transmission reliability Rel for the computational

model of Terman et al. used here, it is not known
whether such a sampling strategy, or even a local opti-
mization algorithm such as gradient descent, would be
effective in identifying novel patterns of DBS inputs in
experimental or clinical applications. This circumstance
arises because the efficacy of such strategies would
depend upon a relatively simple relationship between
levels of clinical PD symptoms and the full range of
possible DBS parameter settings. To demonstrate how
such a problem might eventually be overcome, and to
identify further DBS patterns that are effective within
the present computational model, we employ the Ge-
netic Algorithm (GA) as a closed-loop learning tech-
nique to identify optimal DBS parameter settings that
best achieve simulated physiological outcomes. The
GA’s global search capability is especially important
in this application, as Fig. 4 indicates that multiple
local minima/maxima can exist even in a simple two-
parameter case, so that local search algorithms can
be easily trapped without finding the best solutions.
Another overriding advantage of the GA in a clinical
setting is its model-free operation. The GA opera-
tion requires only knowledge of the trial DBS para-
meter settings and measurement of the corresponding
neurophysiological properties, thus it can be directly
integrated with the instrument capabilities in clinical
applications. Issues related to GA’s practical applica-
tions are addressed elsewhere (Feng et al. 2007).

We first illustrate the GA based closed-loop search
over the three standard DBS parameters of pulse pe-
riod ρD, amplitude iD, and duration σD to identify
values that maximize TC reliability Rel (note that all
three of the standard DBS parameters are covaried, in
contrast to the two-parameter grid search of Fig. 4). A
current cost is subtracted to reduce the energy usage of
the DBS input. Consequently, the function which the
GA seeks to maximize is

J = Rel − w

∫ T

t=0
IDBSdt, (8)

where
∫ T

t=0 IDBSdt is the total DBS current over the
duration of the DBS stimulation (T = 6, 500 ms) and
the weight parameter w ≈ 0.001. The GA quickly finds
several DBS parameter settings with high J values.
Figure 5(d) shows one solution that achieves both re-
liable TC cell signal transmission and substantial cur-
rent reduction. Specifically, while the reliability Rel is
slightly reduced in comparison with the DBS current of
Fig. 5(a) identified from the two-parameter grid search
above (Rel = 0.95 vs Rel = 0.90), the averaged current
〈IDBS〉 in Fig. 5(c) is about three times lower than that
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in Fig. 5(a) and 100 times lower than that for high-
frequency DBS in Fig. 3(e). This suggests that the two
terms in J can have significant competing effects. It
is also notable that in both cases with low-frequency
DBS, the cells remain in the four pairs discussed above,
with spiking of each pair being relatively irregular in
time and the different pairs being desynchronized. This
pairing is a common characteristic of DBS solutions
found by the GA.

3.4 Statistical measure of Gpi spiking patterns

In addition to the desynchronizing DBS currents such
as that shown in Fig. 5(c), the GA utilized in optimizing
the periodic DBS also identifies multiple currents that
give reliable transmission (i.e., Rel ≈ 1), but where the
GPi cells are mostly synchronized (data not shown),
similar to the effects of high frequency currents dis-
cussed above. This behavior shows that, when Rel is
used as the cost function, the GA is not selective for
tonic and regular, more synchronized vs. irregular, less
synchronized Gpi firing patterns. To allow for such
selectivity, we introduce a new measure of the network
dynamics based directly on the statistical properties of

these firing patterns. The TC cells are therefore not
included in the simulations upon which these imple-
mentations of the GA are based.

Figure 8(a) shows the synaptic (conductance) output
from GPi cells one and two in the normal state (see
Rubin and Terman 2004, for details). To calculate the
new measure, which we call Cor (see Section 2), the
synaptic pulse time ta

i (defined as when the ith pulse
in conductance of the ath GPi cell’s synapse reaches
its maximum) is numerically determined. Then, we
compute the pulse delay da

ij = ta
j − ta

i (i < j) between all
pairs of these pulse times for the same GPi cell, and
quantify the number ka

m of da
ij values located in each of

a set of discrete “interspike interval bins” [tm, tm + �],
where tm represents the mth (m = 1, 2, . . . , M) bin with
width � = 10ms, and the full set of bins cover the
period over which the network is simulated (following
an initial transient, as described above). A plot of ka

m
counts against the corresponding time tm gives a dis-
crete measure of the autocorrelation for the ath GPi
cell’s spike train (Fig. 8(b)). A Gaussian filter of width
10ms is then applied to smooth this autocorrelation
function, resulting in k∗,a

m for each bin. The same proce-
dure is then executed to calculate the crosscorrelation
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Fig. 8 Left panel: normal cells; right panel: Parkinsonian cells. (a)
and (d): the synaptic (conductance) output from two GPi cells;
(b) and (e): the autocorrelation of GPi1’s synaptic output; (c)

and (f): the crosscorrelation between GPi1 and GPi2’s synaptic
outputs. The calculation of the auto- and cross-correlation is
described in Section 3.4
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k∗,a,b
m of the synaptic spike time delay between two

different GPi cells a and b (Fig. 8(c)). Cor is then
represented as

Cor= α1
1

N

N∑

a=1

[∑M
m=1(k

∗,a
m − k̄∗,a

m )2

M

]1/2

+ α2
2

N(N − 1)

×
∑

1≤a<b≤N

[∑M
m=1(k

∗,a,b
m − k̄a,b

m )2

M

]1/2

+ α3k̄a,b
0 ,

(9)

where k̄∗,a
m and k̄∗,a,b

m are the mean values of k∗,a
m and

k∗,a,b
m , respectively, and N = 8 is the number of neurons

simulated. The first and second terms in Eq. (9) repre-
sent the standard deviation of the bin counts for the
auto- and cross-correlations, respectively, normalized
over all GPi cells. That is, the first term measures the
extent to which firing of the Gpi cells deviates from a
uniform (Poisson) process, while the second measures
the extent to which pairs of Gpi cells are synchronized,
or display preferred phase shifts in their firing times.
A third term k̄a,b

0 is added as a separate measure of
purely synchronized Gpi firing. This third term serves
to make the GPi firing statistics more similar to those
of the normal state, as normal cells have fewer counts
in this first bin (Fig. 8(c)). α1, α2, and α3 are the positive
weighing parameters for the three terms, respectively,
and their values in the simulations are α1 = 2.0, α2 =
1.0, and α3 = 2.0 × 10−5.

Figure 8 reveals the expected substantial differences
in these statistical measures of GPi firing patterns be-
tween normal and Parkinsonian states. In the nor-
mal state, the auto- and cross-correlation values are
roughly similar for most spike delays, indicating that
spike times are approximately uniformly distributed
both within and across GPi cells (although a moder-
ately preferred interspike interval is apparent). For the
normal state, k̄a,b

0 is also low in magnitude, showing an
anticorrelation in synaptic pulse times among GPi cells.
In contrast, in the Parkinsonian state both the auto-
and cross-correlation curves show strong periodic os-
cillations due to the synchronized bursting dynamics of
GPi cells; the relatively high value of k̄a,b

0 also follows
from the synchrony. Evidently, the normal state has
lower values for all three terms in Eq. (9) than the
Parkinsonian state, so that Cor is a good indicator to
distinguish between the two states; below, the GA will
be used to find DBS currents that minimize Cor. Other
measures of network dynamics, including those based
more directly on the power spectrum of the GPi spike
pattern, have been tested. We find that the correlation
measure Cor is better suited to extract statistical prop-

erties of Gpi synaptic output that distinguish normal
and Parkinsonian firing, while filtering out the less
important details related to spike shape and amplitude,
and, additionally, that Cor produces a stable character-
ization of network dynamics with a limited amount of
data in the form of conductance impulses.

Figure 9 illustrates the dependence of the measure
Cor on changes in the standard DBS parameters of
pulse period ρD and amplitude iD, with fixed pulse
duration σD. Very high Cor values are observed in
the high frequency, high amplitude region of the pa-
rameter space, resulting from the largely synchronized
GPi spikes induced by standard high-frequency DBS.
Other settings of the parameters generally lead to lower
Cor values, and in general the ‘landscape’ of Cor as
a function of parameters ρD and iD alone is highly
complex, suggesting that, especially when additional
parameters such as pulse duration σD are introduced,
it will be difficult to identify optimal parameter settings
(giving the lowest possible values of Cor) without the
guidance of a global search algorithm.

Based on the observation mentioned above that the
normal state has lower Cor value than the Parkinsonian
state, we next apply the GA to search for periodic DBS
parameter settings (period, amplitude, and duration)
that minimize J = Cor in the Parkinsonian network.
Note that, in contrast to the case of maximizing re-
liability Rel, a current cost is no longer necessary in
minimizing Cor, because the GA search a priori avoids
the high frequency region, which is usually associated
with high Cor values (Fig. 9). Figure 10(a–d) shows
an optimal solution found by the GA. Both the auto-
and cross-correlation curves are roughly similar to the
normal state, although Gpi firing is more burstlike.
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Fig. 9 The dependence of Cor, the statistical measure of GPi
cells’ spike patterns, on DBS pulse period ρD and amplitude iD.
As in Fig. 4, the impulse duration σD is fixed at 0.6 ms. The region
where Cor > 1.0 is truncated to show the complex landscape at
lower frequencies
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Fig. 10 GA optimization of the statistical measure Cor. Left
panel: periodic DBS, optimization with the GA cost function
value J = Cor. Right panel: stochastic DBS, optimization with
J = Cor + w

∫ T
t=0 IDBSdt. (a) and (e): the evolution of J over

generations of the GA; minimum and mean J values are given for
the parameter settings tested at each generation. (b) and (f): the
optimal currents found by the GA. DBS current parameters are

ρD = 100 ms, iD = 40pA/μm2, σD = 0.6 ms, giving < IDBS >=
0.24pA/(μm2ms) for the periodic current and iD = 20pA/μm2,
σD = 0.4 ms, < IDBS >= 0.21 for the stochastic current. (c) and
(g): raster plot of GPi spike times. (d) and (h): GPi1’s (filtered)
spike time autocorrelation and GPi1–GPi2 (filtered) spike time
crosscorrelation

Similar to Fig. 5, the eight GPi neurons fire in four pairs
that are desynchronized with respect to one another.

3.5 Optimization of stochastic DBS currents

We next explore stochastic DBS currents to study
whether additional effective inputs can be found by
enlarging the space of possible currents. The primary
motivation resides in the argument that random DBS
inputs might be better suited than periodic ones for
inducing irregular firing patterns. Beyond insights for
this model, it is intuitively reasonable that stochasti-
cally defined inputs could provide a useful alternative
in cases where patients are unresponsive to standard,
periodic DBS currents or the effects of periodic DBS
decay as the disease progresses (cf. Lyons et al. 2001;
Hariz et al. 1999), although this question clearly must
be adjudicated experimentally.

The GA is employed to identify random DBS cur-
rents that optimally return Gpi firing patterns to their
normal state, as measured by minimal values of the

measure Cor. In general, such a random current can
be represented in many different ways. Here the proce-
dure consists of generating each DBS pulse train from
a probability density function (PDF) which determines
the probability of interpulse delays (see Section 2). To
enable an efficient GA search, we use a 10-parameter,
piecewise-constant PDF. The GA then optimizes 12
parameters: the 10 constants defining the PDF, the
pulse amplitude iD, and the pulse width σD. Comparing
with the three-parameter case of purely periodic square
wave DBS currents, the advantages the GA are clear in
the present case because the high dimensionality makes
grid search methods unfeasible (cf. Rizzone et al. 2001).

GA optimization of stochastic DBS currents is per-
formed both with and without the addition of a cur-
rent cost, as considered above. Due to the randomness
in generating the DBS pulse train from realization-
to-realization and the fact that J is measured from
finite-length (6,500 ms) simulations, the minimum J
values fluctuate throughout the GA optimization (see
Fig. 10(e)). However, the GA is still able to quickly
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converge to DBS parameter settings that desynchronize
the GPi cells (both with and without the current cost),
confirming that stochastically defined DBS inputs can
be effective in this manner if their parameters are
properly chosen. Nevertheless, stochastic DBS inputs
still produce Gpi firing that is more burstlike than
in the normal state, as clusters of transiently (nearly)
synchronized cell pairs continuously and irregularly
form and dissipate over timescales of 100 ms. Figure 10
(e–h) shows the case including the current cost (i.e., J =
Cor + w

∫ T
t=0 IDBSdt), which also minimizes the DBS

current amplitude (data for similar results without cur-
rent cost not shown). Similar to Fig. 10(a–d), clustering
and bursting lead to periodic oscillations evident in the
correlograms, but which are nevertheless more moder-
ate than those observed in the unstimulated PD state
(Fig. 8(d–f)). Additionally, the optimal DBS currents
obtained via GA optimization of the Cor-based cost
function also produce highly reliable signal relay by the
TC cells (Rel > 0.9), further confirming the utility of
this measure for seeking optimal DBS currents. (We
note that work in progress (D. Terman et al., unpub-
lished observations) studies the relation between Gpi
firing patterns and TC reliability in greater detail.)

3.6 DBS currents with alternative waveforms

As emphasized in Tass (2001), it is possible that cur-
rents deviating from the standard ‘pulsatile’ form tradi-
tionally used in DBS may be more effective in realizing
clinical objectives. Here we choose a discrete, periodic
(Haar) basis to represent general DBS waveforms (see
Section 2), and we explore computationally whether the
GA can identify such general waveforms that achieve
the objectives quantified above.

Figure 11(a) and (b) shows optimal solutions iden-
tified using the Rel (with current cost weight w =
10−5) and Cor cost functions, respectively. Figure 11(a)
demonstrates a substantial improvement in TC cell
signal transmission reliability compared with the un-
stimulated PD state (Rel = 0.98 vs. Rel = 0.43). This
follows even though Gpi cells are mostly synchronized
under this DBS input, because their firing pattern is
more tonic than burstlike. The right panel, for the Cor
cost, shows that the synchronized, periodic bursts of
the PD state have been reshaped to be more irregular
in duration, although they are still largely coordinated
across cells. These results indicate that DBS waveforms
other than sparse pulses can modulate the otherwise
bursting and clustered firing patterns of the network
in diverse ways depending on the optimization objec-
tive specified. Nevertheless, the net current used in
the present DBS patterns is much greater than for

the standard pulsatile inputs (〈IDBS〉 = 24pA/(μm2ms)
and 〈IDBS〉 = 90pA/(μm2ms) for the Rel and Cor cost,
respectively), indicating that sustained input currents
may not be as efficient in achieving a given type of
network state.

3.7 Optimal DBS in heterogeneous networks

Here, we add heterogeneity to the intrinsic dynamics
of the STN-Gpe network, and explore how this affects
the form and quality of the optimal DBS solutions
found by the GA. Specifically, we first introduced a
1% multiplicative heterogeneity (that is, independent,
random prefactors with mean 1 and standard deviation
0.01) to each intrinsic current in each STN and GPe cell,
as well as to all synaptic currents among STN and GPe
neurons (i.e., IGPe→GPe, IGPe→ST N , and IST N→GPe).
We also included prefactors for the DBS currents to
STN cells, with 10% random heterogeneity in cell-to-
cell values, as in Fig. 7. Additionally, the values of
the synaptic and intrinsic currents IGPe→GPe and IST N

were adjusted to ensure that (i) the intrinsic dynamics
of the network is Parkinsonian in character (i.e., the
cells burst in synchronized clusters, as in Fig. 3(c)) and
(ii) high frequency DBS (as in Fig. 3(e)) restores the
faithful transmission of ISM signals.

The GA was then used, as above, to search for
periodic, stochastic, and alternative (defined via the
Haar basis) DBS currents that optimize either the Rel
or the Cor cost function. Figure 12 shows one DBS
optimal input of each type, for the case where Cor
is optimized (as above, with no extra term penalizing
total current); data for Rel is not shown here. For
all three types of DBS, optimized inputs modified the
highly rhythmic auto- and cross-correlation statistics of
the unstimulated Parkinsonian state, producing lower
values of Cor. For the periodic and alternative DBS
inputs, firing times are largely synchronized across Gpi
cells (evidenced by the similarity between auto- and
cross-correlograms in panels (a) and (c)), although they
are not directly entrained to the inputs. In comparing
with analogous optimal DBS currents found without
network heterogeneity (Figs. 10 and 11), the most sub-
stantial enhancement of DBS effects due to the pres-
ence of heterogeneity is for the case of stochastic DBS
(Fig. 12(b)); auto- and cross-correlograms in this case
also most closely resemble those of the normal state.
This result raises the possibility that a stochastic class
of input may also be the best equipped to exploit the
far more complex forms of neuronal heterogeneity that
will be encountered in experimental or clinical settings,
and the outcome also illustrates the efficacy of the GA
in identifying novel DBS patterns without relying on a
purely homogeneous network structure.
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Fig. 11 Optimization of IDBS
represented by discrete Haar
basis (Eq. (7)). (a) using the
Rel cost function with current
weight w = 10−5. Plots from
the top are: one optimal DBS
current found by the GA, the
corresponding GPi raster
plot, spike patterns of TC1
and TC2. (b) using the Cor
cost function with no current
cost. Plots from the top are: an
optimal DBS current found
by the GA, the corresponding
GPi raster plot, GPi1 spike
time autocorrelation, and
GPi1 − GPi2
crosscorrelation
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4 Discussion

4.1 Summary

In the present paper, we test a novel strategy for
identifying optimal DBS waveforms for the treatment

of Parkinson’s Disease using a computational network
model for the basal ganglia previously developed by
Terman and collaborators (Terman et al. 2002; Rubin
and Terman 2004). We employ two statistical measures
that gauge the effect of the DBS inputs on the network:
Rel (following Rubin and Terman 2004), which assesses
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Fig. 12 Optimized IDBS currents in the case of 1% random het-
erogeneity in the intrinsic network currents of STN and GPe cells,
as well as their synaptic interactions (see text). 10% heterogeneity
was also included in the DBS input into different STN neurons.
The Cor cost function with no current weight was used in all cases
shown. Panel (a) periodic DBS; Panel (b), stochastic DBS; Panel
(c); DBS currents defined via the Haar basis. For each panel,

plots from the top are: optimal DBS current found by the GA,
the corresponding GPi raster plot, and autocorrelation of the first
Gpi cell plotted with the crosscorrelation between spike times of
Gpi cells 1 and 2. DBS current parameters are ρD = 89 ms, iD =
60pA/μm2, σD = 2.2 ms, giving < IDBS >= 1.5pA/(μm2ms)
for the periodic current and iD = 20pA/μm2, σD = 3.5 ms,
< IDBS >= 2.0pA/(μm2ms) for the stochastic current

the impact of Gpi firing on the reliability of simulated
thalamocortical transmission, and Cor, based on the
auto- and crosscorrelation of simulated Gpi cell firing
times. A GA global optimization method searches the
multidimensional parameter space describing DBS in-
puts to seek parameter settings that desynchronize fir-
ing times between clusters of Gpi cells and cause firing
within these clusters to become more irregular, while
also minimizing total DBS current flux 〈IDBS〉. These
optimal DBS inputs differ substantially from stan-
dard DBS inputs in both their waveform (e.g., being
stochastic or of lower frequency) and their impact on
the network (often desynchronizing rather than en-
training cells).

Three types of DBS waveforms are tested: three-
parameter periodic square pulses with constant spacing
(of the square wave form used clinically), 12-parameter
stochastic inputs generated from a piecewise constant
probability distribution function, and 16-parameter
nonpulsatile waveforms generated from a discrete,
periodic Haar basis. The GA converges to optimal
parameter settings for all three types of waveforms,
which achieve satisfactory desynchronization and reg-

ularization of Gpi firing times. This corresponds to
minimized values of Cor. Moreover, the optimized
square wave and stochastic waveforms are sparse in
time, and therefore require average IDBS amplitudes
substantially lower than those used in models of high-
frequency DBS. In all three cases, we observe that
the DBS inputs that minimize Cor also maximize the
reliability measure Rel. The converse is not true: DBS
waveforms yielding high Rel values do not necessarily
desynchronize the Gpi cells, and hence do not necessar-
ily give low values of Cor. Finally, when heterogeneity
was introduced into both the network and DBS para-
meters, we found that the stochastic waveforms were
most effective in minimizing Cor. This illustrates a po-
tential advantage of this novel class of DBS waveform,
which bears further exploration in more sophisticated
models and in experimental settings.

4.2 Relationship to previous computational studies

Previous studies (Tass 1999, 2001; Rosenblum and
Pikovsky 2004; Popovych et al. 2005; Hauptmann et al.
2005) have also used computational models to explore
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alternative DBS patterns, with similar overall objec-
tives of identifying effective currents with lower total
amplitude. In these studies, the basal ganglia is ap-
proximated by a large ensemble of simplified oscillators
that is often (but not always (Hauptmann et al. 2005))
globally coupled so as to produce synchronized dynam-
ics representing the Parkinsonian state. Techniques of
“demand controlled” stochastic phase-resetting (Tass
1999, 2001, 2003), and linear (Rosenblum and Pikovsky
2004) or nonlinear (Popovych et al. 2005; Hauptmann
et al. 2005) delayed feedback of averaged oscillator
states are used to identify DBS currents that desyn-
chronize the model oscillators and differ in form from
traditional high-frequency inputs. The models indicate
that these alternative DBS currents may be comparably
effective, or even more so, in achieving desynchrony
with respect to their high-frequency counterparts, while
requiring a substantially lower current integral. Our
study, therefore, adds to this previous computational
evidence that alternatives to high-frequency DBS might
exist in the Parkinsonian brain itself. However, differ-
ences in the underlying computational models among
these previous studies and the present one preclude a
direct comparison of the various types of currents they
suggest.

4.3 Limitations and interpretation of the
computational model

Our results are found using the computational sub-
thalamopallidal network model developed in Terman
et al. (2002) and applied to studies of standard high-
frequency DBS waveforms in Rubin and Terman
(2004). While it is physiologically detailed and carefully
fit to experiments, it has limitations in describing the
Parkinsonian basal ganglia in vivo. First, the model
was originally parameterized to match activity in slice
experiments (Terman et al. 2002); while parameter ad-
justments to bring model dynamics closer to the in vivo
range were explicitly made and described in Rubin and
Terman (2004), some differences may be expected to
remain. Moreover, the simulated nuclei represent only
the indirect pathway from striatum to Gpi: backpro-
jections from Gpe to striatum as well as the general
closed-loop structure of the cortico-striatal-thalamic
network are neglected. Within the indirect pathway, the
model necessarily includes only a representative sub-
network of cells, with equal numbers belonging to each
nucleus. Finally, following, e.g., Rubin and Terman
(2004); Popovych et al. (2005), we study only the effects
of DBS waveforms applied directly as (homogeneous
or heterogeneous) intracellular currents. Thus, we ne-
glect the important stage by which voltage transients at

the DBS electrode are transduced to transmembrane
currents, a process explicitly modeled in, e.g., Hahn
et al. (2005); McIntyre and Grill (2002).

Nevertheless, the computational model of Terman
et al. (2002); Rubin and Terman (2004) exhibits key
features that make it well suited for our study of the ef-
fects of novel DBS waveforms, and of how closed-loop
learning algorithms might identify and optimize such
waveforms. The conductance-based equations for the
individual neurons contain membrane currents which
were matched in Terman et al. (2002) to the dis-
tinct physiology of the different basal ganglia nu-
clei, producing, e.g., post-inhibitory rebound bursts.
Moreover, these model neurons, when coupled (via
experimentally-motivated synaptic dynamics) in the
present sparse, regular network architecture, have been
shown to display both archetypal normal-state and
Parkinsonian modes of activity, according to the level
of two network parameters whose values are known to
change with neurodegeneration in PD (Terman et al.
2002). Thus, we believe that the computational model
has the critical components of cellular physiology, net-
work connectivity, and normal and Parkinsonian dy-
namics to serve as a first testing ground for the impact
of qualitatively novel classes of DBS waveforms and
algorithms.

This said, we do not expect that the DBS patterns
found to be effective or optimal for the computational
model of Terman et al. (2002); Rubin and Terman
(2004) will again be optimal for more detailed models
or in experimental or clinical settings. Indeed, given the
model’s structure as highlighted above, such a quantita-
tive match is extremely unlikely. However, the point of
this paper is not to suggest specific DBS waveforms that
could be applied, for example, clinically, but rather to
provide computational evidence that (1) different types
of DBS waveforms exist that could be equally or more
effective than the standard high-frequency patterns,
and (2) these novel waveforms can be identified by
standard, model-independent learning algorithms.

4.4 Conclusion

The objective of this study is to test, using a biophys-
ically-based model of the basal ganglia, whether closed-
loop nonlinear learning optimization techniques can
identify DBS waveforms that differ from standard high-
frequency patterns and nonetheless modulate network
dynamics according to various criteria. The learning
algorithm we use requires no knowledge about the
dynamics of the underlying system, so that it can in
principle be used with models or even experimental or
clinical systems of arbitrary biological scale, complex-
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ity, and detail. We hope that the positive findings here
will inspire experimental tests of the present optimiza-
tion strategy as a first step toward possible clinical im-
plementation of an alternative strategy for alleviating
the motor symptoms associated with PD and related
neurodegenerative diseases. Further issues relevant to
experimental or eventual clinical applications are dis-
cussed in an upcoming paper (Feng et al. 2007).
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