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Abstract Dynamical behavior of a biological neuronal
network depends significantly on the spatial pattern of
synaptic connections among neurons. While neuronal
network dynamics has extensively been studied with simple
wiring patterns, such as all-to-all or random synaptic
connections, not much is known about the activity of
networks with more complicated wiring topologies. Here,
we examined how different wiring topologies may influ-
ence the response properties of neuronal networks, paying
attention to irregular spike firing, which is known as a
characteristic of in vivo cortical neurons, and spike
synchronicity. We constructed a recurrent network model
of realistic neurons and systematically rewired the recurrent
synapses to change the network topology, from a localized
regular and a “small-world” network topology to a
distributed random network topology. Regular and small-
world wiring patterns greatly increased the irregularity or
the coefficient of variation (Cv) of output spike trains,
whereas such an increase was small in random connectivity
patterns. For given strength of recurrent synapses, the firing
irregularity exhibited monotonous decreases from the
regular to the random network topology. By contrast, the
spike coherence between an arbitrary neuron pair exhibited
a non-monotonous dependence on the topological wiring

pattern. More precisely, the wiring pattern to maximize the
spike coherence varied with the strength of recurrent
synapses. In a certain range of the synaptic strength, the
spike coherence was maximal in the small-world network
topology, and the long-range connections introduced in this
wiring changed the dependence of spike synchrony on the
synaptic strength moderately. However, the effects of this
network topology were not really special in other properties
of network activity.
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1 Introduction

The spatial or topological pattern of neuronal wiring
determines how neurons communicate with one another
and may be important for information processing performed
by neuronal networks (Buzsaki et al. 2004). Our knowledge
on the details of cortical neuronal wiring is rapidly
accumulating (Gupta et al. 2000; Holmgren et al. 2003;
Sporns and Zwi 2004; Stepanyants et al. 2004; Foldy et al.
2005; Kalisman et al. 2005; Song et al. 2005; Yoshimura
and Callaway 2005; Yoshimura et al. 2005). However, such
knowledge is limited on the synaptic contacts among a
small number of neurons, and the topological pattern in
which thousands or tens of thousands of neurons are wired
together remains unknown. Different wiring topologies give
rise to different degrees of clustering among neurons (how
densely a population of neurons is mutually connected) and
different mean path lengths (on average, how many
synapses are present along the shortest path connecting a
neuron pair), both of which can influence the temporal
structure of synaptic inputs to each neuron in a population
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and hence that of the output spike sequences. The
connection probability between a pair of pyramidal neu-
rons, for example, drops below 50% of the maximum
possible value, typically when the distance between the pair
becomes greater than 200–300 μm. The volume of such a
small local region contains 10,000–100,000 neurons, a
sufficient number of neurons for making different network
topologies meaningful.

In the present study, we investigated how different kinds
of network topologies influence spike statistics of individ-
ual neurons and spike coherence between neuron pairs in
the model cortical network. In vivo, spontaneously firing
cortical neurons are considered to be in a high conductance
state, a condition generated by continuous bombardment of
background synaptic inputs (Destexhe et al. 2001). This
state typically exhibits high coefficient of variation (Cv)
values that are close to, or even greater than, unity (Shadlen
and Newsome 1998; Softky and Koch 1993). Attempts
have been made to clarify the source of such variability,
since it occurs ubiquitously in various regions of the
cerebral cortex (Shinomoto et al. 2005) and may play an
active role in cortical computations (Destexhe and Paré
1999; Fukai 2000; Maass et al. 2002; Wolfart et al. 2005).
Stochasticity in spike generation (Chow and White 1996) is
an unlikely source, since the neuronal spike generator
faithfully converts input current to output spike trains
(Mainen and Sejnowski 1995). Irregular output spikes of
cortical neurons, therefore, reflect a certain stochastic
nature of noisy synaptic inputs, such as independent noisy
excitatory and inhibitory synaptic inputs (Destexhe et al.
2001) or transiently synchronous synaptic inputs super-
posed on noisy background inputs (Stevens and Zador
1998). However, the influences of neuronal wiring structure
on the temporal structure of synaptic inputs have not been
extensively studied.

Synchronization of output spikes is another important
measure that characterizes the dynamical states of a
neuronal network. For instance, in a randomly connected
network of integrate-and-fire neurons and delta-function
synaptic transmissions, the stable network state exhibits
asynchronous spike firing in a regime of weak synapses,
whereas it displays synchronous spike firing in a regime of
strong synapses (Brunel 2000). The transitions occur
sharply between the two types of the stable states (we note
that the network also has other types of the stable state),
when the synaptic strength crosses a certain critical value. It
is intriguing to study whether and/or how such a state
change may occur with other types of neuronal wiring,
using realistic models of neurons and synapses.

To investigate how sensitive the variability or the
synchronicity of neuronal activity is to local network
structure, we systematically changed the topology of
neuronal wiring in a two-dimensional model neuronal

network. By rewiring synaptic connections, we varied the
network topology from a locally clustered, regular network
pattern to a randomly connected pattern. In an intermediate
kind of topology, the network remains in a high-clustering
arrangement, with a small fraction of long-range connec-
tions. These connections make the average path length
between arbitrary neuron pairs sufficiently short. Such a
network topology is called a “small-world” organization
and appears in many biological and real-world networks
(Watts and Strogatz 1998) including the functional network
between various cortical regions (Achard et al. 2006).

2 Materials and methods

2.1 Neurons

Our model of cortical networks consisted of two types of
neurons—excitatory and inhibitory. Both types of neurons
had single compartments that were modeled by conductance-
based membrane dynamics. Each excitatory neuron had a
leak current (IL), spike-generating sodium and potassium
currents (INa and IK), and a non-inactivating potassium
current (IM), all of which followed the channel kinetics
formulated by Destexhe and Paré (1999). The dynamics of
the membrane potential obeyed the following equation:

CmdV=dt ¼ �IL � INa � IK � IM � Isyn � Ibg;

where Isyn and Ibg represent synaptic input from other
neurons and background synaptic input, respectively. These
currents are defined below. The conductance densities of
these currents were set to gL=0.045 mS/cm

2, gNa=50.0 mS/cm
2,

gK=5.0 mS/cm2, and gM=0.07 mS/cm2. The reversal
potentials were set to EL=−80 mV, ENa=50 mV, and
EK=−90 mV. Fast-spiking interneurons (FS neurons) were
modeled as having Kv3.1–Kv3.2 potassium channels
(Erisir et al. 1999),

CmdV=dt ¼ �IL � INa � IK � Isyn � Ibg;

where Isyn and Ibg were similar to those in the excitatory
neuron model. These neurons could fire at high frequencies,
even frequencies greater than 200 Hz. The activation and
inactivation functions for the gating variables were shifted
by −1 mV in both the sodium and potassium channel model
components, as given in Erisir et al. (1999).

2.2 Synapses

The excitatory synaptic currents were mediated by compo-
nents modeled after characteristics of AMPA (IAMPA) and
NMDA (INMDA) receptors, and the inhibitory currents were
mediated by components modeled after characteristics of
GABA-A receptors (IGABA). The AMPA synaptic current
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exhibited short-term depression of transmitter release in the
condition of repetitive activation of the synapses (Tsodyks
and Markram 1997). Depressing synapses were modeled as

IAMPA ¼ gAMPAw V � EAMPAð Þ;
τ inactdw=dt ¼ �wþ U r δ t � tpre

� �
;

τ recdr=dt ¼ 1� r � wð Þ;

where w represents the fraction of the “effective” state, r the
fraction of the vesicles available at presynaptic terminals, U
the probability of transmitter release, and tpre the times of
presynaptic spikes. The time constant of inactivation was
set to τinact=2.7 ms. At cortical AMPA synapses, recovery
from short-term depression shows a range of time constants
(Petersen 2002). Therefore, the values of τrec were
determined according to a Gaussian distribution of 500±
150 ms (mean±SD). The maximum conductance was set to
gAMPA/gL=0.504, which corresponds to an EPSP of 0.8 mV
at a resting potential of about −80 mV. In some simulations,
we multiplied the value of gAMPA by a scaling factor.
Typically, we took 1.125×gAMPA and 1.25×gAMPA, which
yielded EPSPs of 0.9 and 1.0 mV at the resting potential,
respectively.

The NMDA synaptic current was modeled by first-order
kinetics as,

INMDA ¼ gNMDArf Vð Þ V � ENMDAð Þ;
dr=dt ¼ αT 1� rð Þ � βr;

f Vð Þ ¼ 1:0þ 0:28 Mg2þ
� �

e�0:062V
� ��1

;

where [Mg2+]=1.0 mM and ENMDA=0 mV (Jahr and
Stevens 1990). T is a binary variable, which takes a value
of 1 for 1 msec after an occurrence of a presynaptic spike,
otherwise it takes a value of 0 (Destexhe et al. 1998). We set
α and β equal to 0.5 and 0.007, respectively, which gave
rise to decay time constants of 1.97 and 143 ms, respectively
(Destexhe et al. 1998). The maximum conductance gNMDA

has been reported to range from 0.2 to 0.4 nS (Koch 1999),
or from 0.0126 to 0.0252 in the unit of gL, if the total area of
a cell is estimated to be about 3.5×10−4 cm2 (Destexhe et al.
2001). Therefore, we randomly drew a value for gNMDA for
each synapse from a Gaussian distribution having a mean of
0.0189 (0.3 nS) and a standard deviation of 0.0063 (0.1 nS).

The GABAergic synapses were represented by first-
order kinetics as,

IGABA ¼ gGABAr V � EGABAð Þ;
dr=dt ¼ αT 1� rð Þ � βr;

where α=5.0, β=0.1, EGABA=−75 mV, and gGABA/gL=
0.094. As is the case with the AMPA synapses, we

multiplied the value of gGABA by a scaling factor in some
simulations.

2.3 Background synaptic input

Both excitatory and inhibitory neurons received back-
ground synaptic inputs in our model. To study spike
sequence statistics, we employed a point-conductance
model that mimics highly variable spike discharges of in
vivo cortical neurons (Destexhe et al. 2001). The back-
ground synaptic current Ibg consisted of excitatory and
inhibitory components:

Ibg ¼ ge tð Þ V � EAMPAð Þ þ gi tð Þ V � EGABAð Þ:

Fluctuations in ge(t) and gi(t) were modeled as,

dge tð Þ=dt ¼ � ge tð Þ � ge0ð Þ=Ce þ ηe tð Þ;
dgi tð Þ=dt ¼ � gi tð Þ � gi0ð Þ=Ci þ ηi tð Þ;

where gx0 and τx (x=e or i) represent the average
conductance and the time constant of synaptic integration,
respectively, and ηx(t) introduces Gaussian white noise. The
noise satisfies <ηx(t)>=0 and <ηx(t)ηx(t′)>=Dxδ(t– t′),
where Dx is the diffusion coefficient and <> denote
temporal averaging.

Stochastic processes of gx(t) are known to give a
Gaussian distribution with mean gx0 and variance σx

2=
Dxτx/2. The values of parameters were set as ge0=12Q nS,
σe=3Q

1/2 nS, τe=2.7 ms, gi0=57Q nS, σi=6.6Q
1/2 nS, and

τi=10.5 ms to reproduce membrane fluctuations in layer IV
pyramidal neurons (Destexhe et al. 2001). Note that Q
rescales the intensity of background synaptic input to adjust
the net amount of membrane fluctuations in an appropriate
range in the presence of recurrent synaptic input; typi-
cally, Q=0.8.

2.4 Network structure

Our cortical network consisted of 4,096 excitatory and
1,024 inhibitory neurons. The excitatory and inhibitory
neurons were arranged in a two-dimensional space on grids
of 64×64 and 32×32 arrays, respectively. Thus, the density
of excitatory neurons was four times larger than that of
inhibitory neurons. In the regular network topology, each
excitatory or inhibitory neuron made synaptic contacts with
all neurons within a distance of four lattice-lengths, which
implies that the excitatory and the inhibitory neuron
projected to 48 excitatory and 12 inhibitory neurons,
respectively. Thus, the connection probability between
modeled pyramidal neurons was about 1.2%, which is
within the reported range of experimental observations for
local cortical circuits (Holmgren et al. 2003). In an analysis,
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the conduction delay in synaptic transmissions was
increased in proportion to the distance between presynaptic
and postsynaptic neurons. We set the delay equal to 1 ms
between a neuron pair separated by a distance of 64 units.

We randomly rewired the synaptic connections of the
regular neuronal network according to the following rule. Let
p be the probability of rewiring. We selected the synapses of
axons sent by each neuron with a probability of p, and
rewired the selected synapses to randomly chosen neurons
irrespective of the distance between the neuron pairs. The
probability p defined the topology of neuronal wiring in the
network. At p=0, the network remained a regular neuronal
network (Fig. 1(a), top). At p=1, all synapses were
randomly rewired, hence we obtained a random network
(Fig. 1(a), middle). If p took on an intermediate but
relatively small value, a small fraction of the synaptic
connections were long-range connections, while most of
them were short-range local connections (Fig. 1(a), bottom).
This kind of network topology is called a “small-world”
network (Watts and Strogatz 1998). In most of the present
simulations, we only rewired excitatory synaptic connec-
tions. However, we also rewired inhibitory synapses in some
simulations to explore how the topology changes in both
synapse types may influence activity of the network.

Network topology can be characterized by two statistical
measures for connectivity: one is the average, shortest path
length (steps) between neuron pairs, L(p); and the other is
the clustering coefficient, C(p). In calculating L(p), we
counted the number of steps from one neuron to another
along the shortest synaptic pathway and averaged these
numbers over all neuron pairs. The clustering coefficient
C(p) represents the probability that two neurons connected
to another neuron are again connected. A regular network is
characterized by a large L(p) and a large C(p), whereas both
quantities are small in a random network. By contrast, a
small-world network has a small L(p) and a large C(p)
(Fig. 1(b)). As Fig. 1(b) shows, the normalized L(p) is
rapidly reduced by the increase in p, whereas the
normalized C(p) remains relatively large in comparison
with L(p). In the present study, we set p=0 (regular), 0.05
(small-world), and 1.0 (random) as typical examples.
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Fig. 1 Network connectivity in a two-dimensional small-world
network paradigm. (a) For different values of a rewiring probability
p, typical connectivity of sampled neurons is illustrated. Lines
represent in-coming “fibers” to neurons located on a two-dimensional
grid. As p increases, a given neuron receives more afferents from
distant neurons. (b) Indicated are the average shortest path length and
clustering coefficient, each of which is normalized by a value when
p=0. The average shortest path length decreased at very small p
values, whereas the clustering coefficient remained large for a
comparably large p. Connectivity patterns having short path lengths
and a large clustering coefficient are referred to as small-world
networks

b

240 J Comput Neurosci (2007) 23:237–250



2.5 Spike data analyses

We analyzed the statistical properties of neuronal activity
obtained in the numerical simulations using several statis-
tical measures often used in neurophysiological experi-
ments. First, we calculated the ISIs of spike sequences
emitted of individual neuron firing. Then, we analyzed the
Cv, which is defined as the ratio of the standard deviation
of the ISI distribution, σT, to the average, <T>, namely,

Cv ¼ σT= Th i:

This quantity is widely used for characterizing the
variability of neuronal activity. If a spike sequence obeys
a Poisson process, the Cv takes on a value of 1. By contrast,
if spikes occur periodically, both measures become 0.

2.6 Analysis of spike synchrony

To analyze the relationship between the circuit structure and
the global network activity, we examined a degree of spike
synchronization in the model network. As a measure of
spike synchronization, we applied the coherence measure
proposed by Wang and Buzsáki (1996). Firstly, we binned
spike sequences such that each bin contained at most one
spike to obtained 01-sequences for the pair of neurons, {Xi}
and {Yi} (i=1, 2, …, Nb). Nb is the number of bins in a 01-
sequences. Then, we calculated the coherence measure for
the pair,

kXY ¼
PNb

i
XiYiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNb

i
Xi
PNb

i
Yi

s :

We obtained values of the measure for all possible pairs and
regarded an average value as a measure of global spike
synchronization. The bin size used for the analysis was set
as 4 ms.

2.7 Numerical simulations

Simulation program was written in C and parallelized with
MPI programming. Simulations were conducted on a PC
cluster that consisted of eight or 16 Pentium4 CPUs.

3 Results

We conducted numerical simulations of spontaneous
activity in a recurrent network of modeled excitatory and

inhibitory neurons and accumulated 50 sec of spike data.
We adopted the excitatory neuron that was modeled by
Destexhe and Paré (1999) to account for the spike
variability in in vivo cortical neurons. In our regular
network, the excitatory and inhibitory neurons distributed
in a two-dimensional space were arranged on individual
grids having either a 64×64 or a 32×32 lattice, respective-
ly. Thus, the neuronal spatial density was four times larger
in the excitatory neuron population than in the inhibitory
neuron population. We introduced excitatory-to-excitatory,
excitatory-to-inhibitory, inhibitory-to-excitatory, and inhib-
itory-to-inhibitory synaptic connections to all neurons
located in the local neighborhood of each excitatory or
inhibitory neuron. This arrangement resulted in a locally
connected regular network. Then, we identified each
excitatory-to-excitatory synapse with probability p, and
rewired it to a randomly chosen excitatory neuron regard-
less of the distance to that neuron (Fig. 1(a)). Through this
rewiring procedure, the topology of neuronal wiring could
gradually be changed from a topology characterizing a
regular (p=0) network to one characterizing a random
(p=1) network. Between the two extremes, the excitatory-
neuron network displayed the small-world property, which
is characterized by a large cluster coefficient and a small
average path length (Fig. 1(b)). Next, we tested how the
statistical properties of spike outputs generated by excit-
atory and inhibitory neurons might change with changes in
the wiring pattern. Unless otherwise stated, the only
difference between our different network models was the
neuronal wiring defined by p. Other parameters in the
model remained unchanged.

3.1 Time courses of neural activity

Figure 2 shows activity snap shots of excitatory neurons in
two-dimensional networks with different network topolo-
gies (64×64 neurons). The maximum conductance of
excitatory synapses was 1.125×gAMPA. The gray-scale plot
in a given snap shot represents the number of spikes elicited
from four neighboring neurons located at each spatial
position within the corresponding interval of 20 ms. In the
regular network (p=0), neuronal activity induced sponta-
neously in a local area slowly propagated to neighboring
neurons through the localized patterns of excitatory
synaptic connections between neighbors. The propagating
activity initially grew, but it finally disappeared 200–
300 ms after its initiation due to the depressing property
of AMPA synapses. Such temporally localized activities
appeared intermittently in the regular network. Similar
spontaneous neuronal activities were also observed in a
small-world network obtained at p=0.05. Neuronal activa-
tions at a local site spread over a broader region in this
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network than in the regular network. It is, however, noted
that the spatiotemporal activity pattern depended signifi-
cantly on the maximum conductance of excitatory synapses
in the small-world network topology. For instance, neuronal
activities were spatially and temporally much more local-
ized at smaller values of the conductance (data not shown).

We will study later how neuronal activity depends on the
strength of recurrent excitation in detail. In the random
network (p=1), individual neurons fired irregularly without
creating temporal clusters of spikes.

Figure 3(a) shows the time course of the membrane
potential of a modeled excitatory neuron and the sum of all
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Fig. 2 Spiking activities in neu-
ronal networks having different
wiring topologies. The AMPA
synaptic conductance was set to
1.125×gAMPA(=0.567). “Snap
shots” of the activity of 64×64
pyramidal cell arrays over time
are shown in each 20 ms
time window. The rewiring
parameter was set at (a) p=0
(regular network), (b) 0.05
(small-world network) and
(c) 1.0 (random network).
The same set of random spike
trains was used for noisy back-
ground synaptic inputs in all
three neuronal networks
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intrinsic and synaptic currents. The total ionic current was
obtained by clamping the membrane potential at −75 mV
(i.e., reversal potential of the GABAergic synaptic current)

in the simulations. Therefore, fluctuations in the total
current essentially represented those in EPSCs. In the
highly clustered networks (p=0, p=0.05), bursts of action
potentials were elicited intermittently by coincident arrivals
of presynaptic spikes, as indicated by the large fluctuations
in the total current. By contrast in the random neuron
network, large fluctuations and spike bursts were rare. To
characterize the frequency of large current fluctuations, we
calculated power spectra of the total ionic current
(Fig. 3(b)). While all three neuronal networks exhibited
frequency components higher than 10–20 Hz with almost
identical power, the lower frequency components displayed
stronger power when p=0 and p=0.05 than when p=1.
Since the peaks of the low-frequency components were
located at about 1.2 Hz in the highly clustered networks
(p=0, p=0.05), the intervals between the successive
arrivals of coincident presynaptic spikes were typically
800–1,000 ms.

3.2 Network topology and spike variability

To further characterize the different network activities
represented by bursts of output spikes, we calculated the
distributions of ISIs from the spike trains of the individual
neurons. Figure 4(a) represents the ISI histograms summed
over all excitatory neurons. As evident from the figure, ISIs
longer than ∼100 ms occurred at almost equal frequencies
in all types of neural networks. However, the counts of
shorter ISIs grew rapidly as p decreased.

The irregular firing of in vivo cortical neurons is often
characterized by the Cv. Therefore these statistical quanti-
ties are of particular interest to experimental neuroscientists.
As shown below, the Cv values of excitatory neurons
ranged from a low of ∼0.7 to a high of ∼1.5 in our
numerical studies. The ISI histogram of high-Cv neurons
displayed a remarkable peak at short ISIs (<∼50 ms) along
with a long tail extending out to more than 1 s (inset of
Fig. 4(a), upper panel). By contrast, the ISI histogram of
low-Cv neurons did not display this peak at short ISIs,
indicating that these neurons generated bursts of spikes less
frequently (inset of Fig. 4(a), bottom panel).

A specific network topology significantly enhanced the
variability of neuronal activity in our recurrent network
models. In Fig. 4(b), we display the Cv values of ISIs for
all excitatory and inhibitory neurons. The top and bottom
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Fig. 3 Time course of the membrane potential and the total ionic
current in modeled neurons. (a) Typical time course of the membrane
potential (upper trace) and the total ionic current (lower trace)—
including both intrinsic ionic currents and synaptic currents—of a
model pyramidal neuron are presented for the three kinds of
differently wired networks. (b) Power spectra of the total ionic current
in each neuronal network
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panels display the excitatory and inhibitory neurons in the
different network types, respectively. In both panels of the
figure, the curves of “isolated” show the Cv distributions of
excitatory and inhibitory neurons in the network where all
synaptic connections were decoupled, namely, all the
neurons in the network were driven only by background

synaptic inputs. The Cv distribution in the random network
was almost unchanged from that of the decoupled neurons,
indicating that this network topology did not create an extra
amount of variability. By contrast, the Cv values shifted to
significantly larger values in the small-world network.
These values distributed within the largest value range of
the regular network. The regular and small-world networks,
in particular, exhibited average Cv values that were greater
than unity. The Cv values of these networks were large,
because their output spike trains consisted of a mixture of
short and long ISIs (Fig. 4(a)). The Cv distributions of
inhibitory neurons were not modulated much by the
network structure in comparison with excitatory neurons.

3.3 Distributed spike synchronization in different
network topologies

In addition to spike variability, the degree of spike
synchronization is a frequently studied characteristic of
neural activity. To analyze how network topology affects a
spatial distribution of spike synchronization, the degree of
spike synchronization for a pair of neurons can be
measured by a coherence index (Wang and Buzsáki
1996). Figure 5(a–c) displays the coherent indices averaged
over all the excitatory neuron pairs separated by a given
spatial distance. Each figure shows the indices obtained in
the three different networks with a magnitude of the AMPA
synapses. Each symbol or error bar represents the average
and standard deviation, respectively. Figure 5(a) indicates
the coherence indices as functions of distances between
neuron pairs in the networks with a reference synaptic
strength gAMPA. In this case, the regular network exhibited
the strongest synchrony among the three networks although
the synchrony was observed only at adjacent pairs.
Figure 5(b) and (c) show the indices for the networks with
increased synaptic strengths of 1.125×gAMPA and 1.25×
gAMPA, respectively. In the regular network, the coherence
index took a maximum value between nearby cells and
rapidly dropped off as the spatial separation was increased.
The coherence index of the small-world network deterio-
rated moderately compared with that of the regular
network, and remained to be relatively large even between
distant pairs. The degree of spike synchronization was, as
expected, independent of the spatial separation between a
neuron pair in the randomly-connected network. Thus, the
profile of the index for each the network was preserved
even though the synaptic strengths were increased. The
small-world network, however, showed the largest value of
the index in Fig. 5(b) whereas the degree of synchrony for
the random network became the largest in Fig. 5(c). The
pairwise synchrony was enhanced in different manners,
depending on the network topology.
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Fig. 4 Inter-spike interval histograms of modeled neurons in the three
networks. (a) The ISI histograms summed over all excitatory neurons
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neuron that exhibited the maximum value of Cv (1.55) in the regular
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minimum Cv (0.73) in the random network (p=1). (b) Dependence of
Cv distributions on network connectivity. The top and the bottom
panels show the distribution over all excitatory or inhibitory neurons,
respectively. The “isolated” distribution in each panel is obtained
when the corresponding neurons only receive background synaptic
inputs without recurrent synaptic inputs
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We further examined whether local and distant neuron
pairs exhibit different dependences of synchrony on the
network topology and synaptic strength (Fig. 5(d)). In the
analysis, we defined a neuron pair as local or distant if
the spatial separation between them was within or greater
than eight unit lengths, respectively. In the figure, the
curves labeled “local” or “distant” represent the coherence
indices averaged over all local or distant pairs in the
network, respectively. As the AMPA synapses were
strengthened, the coherence indices were increased mono-
tonically in both local and distant pairs. At a given strength
of the AMPA synapses, the differences between the local
and distant coherence indices were relatively large for small
p. As p increased, however, the local and distant coherence
converged since the physical distance is meaningless in the
random network. In the local pairs the spike coherence was
moderately changed with the changes in p. By contrast, the
average coherence in the distant pairs was significantly
changed with the changes in p, especially for strong AMPA
synapses (>×1.25), presumably due to the existence of
long-range connections.

3.4 Combined effects of excitatory-to-excitatory network
topology and synaptic strength

The results shown in Fig. 5 demonstrated that the network
activity depends highly on the combination of the network
topology and the synaptic strength. Below, we analyze the
dependency of Cv, the coherence index and firing rate on
the network topology and the strength of AMPA and
GABAergic synapses. Here, we examined the following
three cases: (1) Only the strength of excitatory synapses are
changed keeping that of inhibitory ones unchanged; (2)
only the strength of inhibitory synapses are changed
keeping that of excitatory ones unchanged; (3) the
magnitudes of both types of synapses were changed keep-
ing the ratio between the AMPA and GABAergic con-
ductances unchanged. We scaled the relative conductance
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of the AMPA and GABAergic synapses with factors (1.125,
1.25, …, 2.0) in the case (1) and (1.125−1, 1.25−1, …,
2.0−1) in the case (2). It was unchanged in the case (3). We
rewired only excitatory synapses, but not inhibitory ones.
We will later study the effect of simultaneously rewiring of
both synapse types.

We fitted the Cv distributions by Gaussian distributions.
Then, the means and standard deviations of these distribu-
tions were plotted against the rewiring probability for
various magnitudes of AMPA and GABAergic recurrent
synapses (Fig. 6(a)). In the case (1), for relatively weak
AMPA synapses (×1.0 and ×1.125), the average Cv value
was decreased as the network topology approaches a
random one. With increased synaptic weights (×1.250
and ×1.5), ISI was highly variable and the Cv value was
saturated at about 1.5. The ISI histograms resembled those
presented in Fig. 4(a) (data not shown), and the increase in
Cv values was due to the increase in bursts of spikes. In the
case (2), increasing the maximum conductance of GABAer-
gic synapses suppressed the variability of spike trains in the
regular networks, but this suppression was generally not so
significant. The results in the case (3) differed little from
those in the case (1).

We analyzed the spike synchrony in a similar manner
(Fig. 6(b)). In general, synchronization was greatly en-
hanced as we strengthened the AMPA synapses. However,
the way the spike coherences depend on the synaptic
strength differed qualitatively in different wiring topologies.
When p>0.1, the coherence index displayed a large change
at a value between 1.125×gAMPA and 1.25×gAMPA as we
increased the synaptic strength. This change may represent
a phase transition between synchronous and asynchronous
firing states in random networks (Brunel 2000). However,
confirming whether this is really the case requires analytic
studies of the network dynamics, which are beyond the
scope of this paper. When p<0.1, changing the synaptic
strength varied the degree of synchrony in a graded manner.
Thus, the spike coherence depends on the strength of
recurrent connections only moderately in the regular or the
small-world network topology.

At a given excitatory synaptic strength, there exists a
unique topological pattern that maximizes the coherence
measure. For example, with the maximum conductance of
1.125×gAMPA, the spike coherence was maximized at
p=0.1. With a stronger maximum conductance, the spike
coherence was maximized in a network topology closer to
the random one. Increasing the GABA conductance slightly
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Fig. 6 Spike variability and spike synchrony modulated by the
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suppressed the average spike coherence. When we strength-
ened both types of synapses, the coherence indices showed
a network topology-dependence similar to that exhibited
when we only strengthened the AMPA synapses.

The average firing rate also depended on the network
topology, but this dependency was relatively weak at all
values of the synaptic strength (Fig. 6(c)). As shown above,
increasing the GABAergic conductance concurrently with
the AMPA conductance had little effect on Cv and the spike
coherence. However, such a change significantly decreased
the average firing rate of excitatory neurons, especially in
the network consisting of strong synaptic connections.

3.5 Effects of rewiring other types of excitatory
and inhibitory synapses

So far, we have analyzed the activity patterns induced by
rewiring only excitatory-to-excitatory (e–e) synapses.
However, the present network also contains excitatory-
to-inhibitory (e–i), inhibitory-to-inhibitory (i–i), and inhibito-
ry-to-excitatory (i–e) synapses.We investigated the effects of
rewiring these types of synaptic connections on neuronal
firing patterns. We rewired those synapses by the same
rewiring procedure as previous. Increasing the strength of
AMPA synapses enhanced the average Cv value (Fig. 7(a))
and the average coherence index (Fig. 7(b)) in all types of
neuronal rewiring. Rewiring all types of synapses simulta-
neously reduced both spike variability and spike synchrony
to some degree at relatively large values of p. However,
these manipulations kept the essential behavior of networks
unchanged. Rewiring only AMPA synapses on excitatory
and inhibitory neurons also reduced the variability and
synchrony at a smaller degree. Rewiring only GABAergic
synapses had little influence on neuronal firing patterns, and
the network behavior was essentially governed by regularly-
wired excitatory synaptic connections.

3.6 Effect of conduction delays in synaptic transmission

We investigated how the conduction delay in synaptic
transmissions alters the statistical properties of network
activity. For this purpose, we introduced distance-dependent
conduction delays such that the delay was 1 ms in a
neuron pair separated by 64 unit lengths. Figure 8 displays
Cv and the average spike coherence obtained by varying
the rewiring probability and AMPA synapse strength. For
relatively weak AMPA synapses, the presence of conduc-
tion delays did not qualitatively change the dependence of
Cv on the network topology (compare Fig. 8(a) with
Fig. 6(a)). However, unlike in the previous simulations
without conduction delays, Cv was increased monotonical-
ly as p→1 if the synapses were strong enough. By contrast,
the conduction delays hardly changed how the spike

coherence depends on the network topology and synaptic
conductance (compare Fig. 8(b) with Fig. 6(b)).

4 Discussion

The statistical properties of neuronal activity may provide a
clue for understanding the dynamics of neuronal responses
and the nature of input they receive in the brain. Several
experimental studies have reported highly variable cortical
neuron activity (Shadlen and Newsome 1998; Softky and
Koch 1993). We have investigated to what extent the
spatiotemporal patterns and the statistical nature of spiking
activity might depend on the topology of neuronal wiring in
two-dimensional neuronal network models. The neuronal
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wiring was set to regular, small-world, or random connec-
tion patterns within a one-parameter family of the network
topology.

Results of the present numerical simulations have shown
that the regular and small-world neuronal networks formed
intermittent clustered spikes, whereas such spike clusters
rarely appeared in the random neuronal wiring. In the
former two networks, recurrent connections densely
interconnected nearby excitatory neurons, yielding relative-
ly large clustering coefficients. The clustered neurons easily
displayed a spatially localized excitation. Spike clusters
should also be temporally localized, since short-term
synaptic plasticity rapidly suppressed synaptic transmis-
sions between the clustered neurons. The recovery of the
synapses from the depression set the neuron clusters ready
for another transient excitation. These above processes

repeated to produce a mixture of short and long ISIs,
producing high Cv values in the present simulations.

The regular and small-world networks displayed large-
amplitude membrane potential fluctuations that were
presumably induced by correlated presynaptic spikes
(Fig. 3(a)). Such correlated spike inputs have been
proposed to be a likely source of the irregular firing of in
vivo cortical neurons showing high Cv values (Stevens and
Zador 1998). Our results indicate that the highly-clustered
neuronal wiring in the regular and small-world networks
produced highly irregular neuronal firing. Actually, the
regular and small-world networks exhibited high probabil-
ities of producing coincident spikes between adjacent
neuron pairs (Fig. 5).

The existence of “short cuts” between distant nodes is a
characteristic feature of the small-world network. A small
fraction of such short-cut connections drastically reduces
the average path lengths between an arbitrary node pair
(Fig. 1). The short cut pathways allow the local neuronal
activity to rapidly spread over the entire network, perhaps
enhancing the global synchrony within the network activity
(Netoff et al. 2004; Buzsáki et al. 2004). Our results
obtained with a high conductance state of realistic neuron
models were consistent with this naive expectation when
the excitatory synapses were sufficiently strong (Figs. 5(d)
and 6(b)). We, however, note that the small-world network
topology produced no special effects on the network
activity in other situations.

Somewhat unexpected results are the dependence of the
spike coherence in the different wiring types on the
synaptic strength. The spike coherence exhibited a large
susceptibility to a subtle change in the synaptic strength in
the randomly-wired network (Fig. 6(b)). It was previously
proved that a randomly-connected network of integrate-
and-fire neurons and delta-function synaptic couplings
undergoes a phase transition from asynchronous to syn-
chronous firing, when the excitatory synapses were grad-
ually strengthened (Brunel 2000). Thus, the present results
in the random network seem to be consistent with the above
analytical results. By contrast, the phase-transition-like
drastic changes in the spike synchrony disappeared in
networks with small p, such as the regular and small-world
networks (Fig. 6(b)). To our knowledge, these network-
topology-dependent modulations of the spike coherence
have not been known. In addition, the spike coherence was
maximized for the network topology with an intermediate
value of p (∼0.1), only if the strength of recurrent excitatory
synapses was within a certain range (see the result for the
“×1.125” case in Fig. 6(b)). This property of the small-
world network topology was previously suggested in a
network of Hodgkin-Huxley neurons (Lago-Fernández
et al. 2000). However, the present results have demonstrat-
ed that this advantage may not always be the case.
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Increasing only the GABAergic conductance almost
completely inhibited the network activity. It also reduced
the spike variability and spike coherence since they reflect
the transient increases in excitatory activities (Fig. 6).
Increasing the AMPA conductance compensates for the
above reductions in the spike variability and coherence, but
not necessarily for the rate reduction. The changes in the
spike coherence are consistent with the previous theoretical
result that the fast-spiking interneurons coupled via
GABAergic synapses exhibit asynchronous firing (Lewis
and Rinzel 2003; Nomura et al. 2003). Although the
inhibitory connections reduced the spike coherence and
the network activity, the result in Fig. 6 suggested that
characteristic behaviors of the spike statistics were essen-
tially governed by excitatory synapses. The spike synchro-
ny was maximized when both excitatory and inhibitory
synaptic connections obey the small-world network topol-
ogy (Fig. 7(b)). However, changing the topology of
GABAergic synapses alone neither enhanced spike syn-
chrony nor spike variability (Fig. 7(a,b)).

The degree of spike synchrony may crucially depend on
the conduction delay (Traub et al. 1996; Ermentrout and
Kopell 1998). To investigate the effect of the conduction
delay, we introduced delays of about 1 ms into the synaptic
transmissions of our model network that represents a local
region of cortical networks. The conduction delays gener-
ated no qualitative changes in neither of the spike
variability and spike coherence (Fig. 8).

The present model of local cortical networks is certainly
over-simplified. Therefore, it is worth while comparing the
present results with those of a more realistically modeled
network. Dentate gyrus of the hippocampus exhibits
structural reorganization during epileptogenesis. The reor-
ganization undergoes two characteristic biological process-
es, the loss of hilar neurons and the sprouting of mossy
fibers, in the dentate gyrus neuronal network. Recently,
these changes were shown to enhance the overall small-
world characteristic of the dentate gyrus network model,
which consisted of several distinct neuron types (Dyhrfjeld-
Johnsen et al. 2007). Moreover, the enhanced small-world
characteristic resulted in hyperexcitability of the network
activity. Interestingly, we may find a similar tendency in the
results of the present simple network model: For instance,
the average firing rate is increased in Fig. 6(c) as the
network topology is changed from the small-world to a
more regular type, as was the case in the dentate gyrus
network model. We, however, note that the above changes
in the small-world network topology occurred in a slightly
different way in the two network models. In the present
model, both clustering coefficient and the shortest mean
path length increases toward the regular topology, whereas
in the dentate gyrus model the latter is increased, but the
former is decreased. This fact might suggest that the

network excitability is more sensitive to the shortest mean
path length. However, the network topologies have quite
different description levels in the two models, and further
careful inspections seem to be necessary to derive any
conclusive statement.

In the present study, we applied noisy external input to
neurons to enhance the irregular spontaneous activity. The
existence of the external source of fluctuations limits the
validity of our results demonstrating the significant influ-
ences of the network topology on the irregular neuronal
firing. An interesting expansion of this study would be to
feed the irregular output of each neuron back into the
network in a recursive manner as the source of spontaneous
activity, and to find a “fixed point” of this recursive map in
the spike statistics. Such a study, however, requires a
tremendous computational resource and remains open for
further studies.
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