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Abstract Rhythmic bursting activity, found in many bi-
ological systems, serves a variety of important functions.
Such activity is composed of episodes, or bursts (the ac-
tive phase, AP) that are separated by quiescent periods (the
silent phase, SP). Here, we use mean field, firing rate mod-
els of excitatory neural network activity to study how AP
and SP durations depend on two critical network parameters
that control network connectivity and cellular excitability. In
these models, the AP and SP correspond to the network’s
underlying bistability on a fast time scale due to rapid re-
current excitatory connectivity. Activity switches between
the AP and SP because of two types of slow negative feed-
back: synaptic depression—which has a divisive effect on
the network input/output function, or cellular adaptation—a
subtractive effect on the input/output function. We show that
if a model incorporates the divisive process (regardless of the
presence of the subtractive process), then increasing cellular
excitability will speed up the activity, mostly by decreas-
ing the silent phase. Reciprocally, if the subtractive process
is present, increasing the excitatory connectivity will slow
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down the activity, mostly by lengthening the active phase. We
also show that the model incorporating both slow processes
is less sensitive to parameter variations than the models with
only one process. Finally, we note that these network models
are formally analogous to a type of cellular pacemaker and
thus similar results apply to these cellular pacemakers.
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1. Introduction

Bursts, i.e periodic alternation between periods of activity
and periods of quiescence, are generated by a variety of cells
and cell assemblies. Cellular pacemakers include secretory
cells, respiratory neurons, cardiac cells and invertebrate neu-
rons (Coombes and Bressloff, 2005). Assemblies of such
cells give rise to population bursting activity, but network
bursting can also occur even if no cell within the network has
pacemaker capabilities. For example, developing and disin-
hibited networks exhibit such episodic activity (O’Donovan,
1999).

These rhythmic activities play essential roles in an organ-
ism (control of hormone secretion, respiration, locomotion,
etc.) or in the development of neuronal circuits. The char-
acteristics of these activities, for example its period, may
be critical in achieving a given function (respiration, cardiac
beating) or developmental pattern (Gu and Spitzer, 1995). In
addition, to ensure function despite internal or external per-
turbations, these characteristics must be robust to changes in
cellular or circuit parameters. The purpose of this paper is
to study how the duration of the active and silent phases of
episodic (i.e., periodic) activity in excitatory neural networks
depend on cellular excitability and network connectivity.
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Neuronal oscillators can be conceptualized as systems
with fast positive feedback that leads to regenerative activ-
ity, modulated by slow negative feedback that terminates this
activity, thereby allowing a new cycle to begin (Friesen and
Block, 1984; Ermentrout and Chow, 2002). Here, we con-
sider idealized, mean field models of excitatory networks
(Wilson and Cowan, 1972), in which fast positive feedback
is provided by the recurrent excitatory connections. Such net-
works can be bistable, in which case they are in either one of
two states, a state of low activity and a state of high activity
(Tabak et al., 2000; Wilson and Cowan, 1972). Episodic ac-
tivity in this network is achieved by periodically switching
between the active (high) state and the inactive (low) state,
due to one or several slow negative feedback processes. We
consider two types of slow negative feedback processes that
act to terminate episodes in excitatory networks. The first
one, synaptic depression, acts by decreasing the effective
synaptic connectivity, directly reducing the amount of pos-
itive feedback in the system (a divisive effect). The second
one, cellular adaptation, acts by reducing the excitability of
the neurons in the network, opposing the positive feedback
process (a subtractive effect).

We first analyze models that use either one of these two
episode termination processes, in terms of how the duration
of both the inter-episode intervals (or silent phase, SP) and
the episodes (active phase, AP) are affected by network con-
nectivity and cellular excitability. We show that despite shar-
ing similar dynamical principles, the two models can be dis-
tinguished by the way they respond to perturbations in these
two parameters (network connectivity and cell excitability).
This is a generalization of results that were presented in the
context of the spontaneous activity in the developing spinal
cord (Tabak et al., 2000).

Because neural circuits often incorporate two or more
types of feedback mechanisms, we then analyze a model
that incorporates both negative feedback processes. We note
that, in this multiple feedback model, the two slow processes
are indirectly coupled through firing rate. We then analyze
how, in this model, AP and SP are affected by network
connectivity and cell excitability. Surprisingly, the model’s
qualitative response to variations of these parameters is not
affected by the ratios of the time constants of the two slow
processes. Finally, the model incorporating the two slow
processes can generate episodic behavior over a much larger
range of parameter values than the models incorporating
either one processes.

2. Methods

We use a mean field type formulation of an excitatory net-
work. Network activity is described by the variable a that
represents the firing rate in the network (relative to the max-

imum network firing rate), averaged over the population and
over the time scale of the synaptic dynamics (Pinto et al.,
1996; Wilson and Cowan, 1972). Here, a varies between 0
(no activity in the network) to 1 (all cells fire at their high-
est frequency). Activity varies according to the following
equation:

τa ȧ = a∞(s̃ · a − θ̃ ) − a (1)

where a∞ represents the input/output (i/o) function of the
network. The sigmoid-shaped a∞ accounts for the individ-
ual cells’ i/o properties, the fast unitary synaptic conductance
time course, as well as noise and heterogeneity in the net-
work. The effective input to the network, s̃ · a − θ̃ , depends
on activity because of the recurrent excitatory connections,
which are the source of the positive feedback. The effective
connectivity, s̃, and the effective average threshold, θ̃ are the
two key factors that can be modulated to affect network ac-
tivity. Connectivity is the gain of the positive feedback loop,
it encapsulates the effect of the network, while θ̃ defines the
set point of the network i/o, it represents the effect of cellular
excitability. Figure 1 shows how the input/output function is
affected by these two quantities.
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Fig. 1 The input/output (i/o) relationship of the excitatory network a∞
can be modulated in two ways. (A) Decreasing the effective connectivity
lowers the gain of the positive feedback loop (divisive effect). (B)
Increasing average threshold shifts the i/o curve horizontally to the
right (subtractive effect)
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In our s-model, effective connectivity is slowly modulated
while the cellular threshold is constant: s̃ = w · s and θ̃ = θ0,
where w is a parameter representing network connectivity, s
is the synaptic depression variable, representing the fraction
of available (i.e., undepressed) synapses, and θ0 is a param-
eter representing the average firing threshold in the neuronal
population. The s-model consists of the two equations:

τa ȧ = a∞(w · s · a − θ0) − a (1s)

τs ṡ = s∞(a) − s (2)

where s∞ is a sigmoidal function decreasing with a, so activ-
ity depresses the synapses (s = 0: all synapses are depressed,
s = 1: all synapses are available). Synaptic depression de-
creases the gain of the fast positive feedback, a divisive effect
(Fig. 1(A)).

In our θ -model, effective connectivity is constant while
the effective threshold is slowly modulated by a cellular
adaptation process (for example, a slow outward current).
Thus, s̃ = w (constant) and θ̃ = θ0 + θ with θ representing
the activation of the slow adaptation process:

τa ȧ = a∞(w · a − θ0 − θ ) − a (1θ )

τθ θ̇ = θ∞(a) − θ (3)

with θ∞(a) a sigmoidal function, increasing with a, so activ-
ity renders the cells less likely to fire by increasing the effec-
tive threshold; θ can vary between 0 (no cellular adaptation)
and 1 (maximal frequency adaptation). Cellular adaptation
shifts the input/output function horizontally (Sanchez-Vives
et al., 2000), a subtractive effect (Fig. 1(B)).

Finally, in the more general case, both synaptic depression
and cellular adaptation combine to regulate episodic activity
(θ -s-model):

τa ȧ = a∞(w · s · a − θ0 − θ ) − a (1sθ )

τs ṡ = s∞(a) − s (2)

τθ θ̇ = θ∞(a) − θ (3)

with the sigmoidal functions for the three models given by

a∞(v) = 1
/(

1 + e−v/ka

)

s∞(a) = 1
/(

1 + e(a−θs )/ks

)

θ∞(a) = 1
/(

1 + e−(a−θθ )/kθ

)

The time constants τ s and τθ are very large compared
to the network recruitment time constant τ a, so we are in
the relaxation limit, i.e. the transitions between high and

Table 1 Values of the parameters used for each model, unless other-
wised mentioned in text or figure

param. s-model θ-model θ-s-model

w 1 1 1
θ0 0.17 0 0
τ a 1 1 1
ka 0.05 0.05 0.05
τ s 250 250
θs 0.3 0.3
ks 0.05 0.05
τ θ 250 250
θθ 0.3 0.3
kθ 0.05 0.05

low activity states are fast so the network is either in the
low or high state. This simplifies the analysis of the models.
Also, note that the two slow processes vary similarly (but
in opposite ways) with a. This simplifies the analysis of the
model incorporating both processes, but for slow processes
with different dynamics the results described here may not
apply in some situations (we have obtained similar results in
a few cases for which the dynamics of s and θ were made
different, but have not completed a systematic study).

Simulations and analysis were done using XPPAUT
(Ermentrout, 2002). Mathematica was also used to plot
simulation results and phase space pictures. Commonly
used values for the parameters are given in Table 1.

3. Results

3.1. Models with a single negative feedback process

The two models (s-model, using synaptic depression, and θ -
model, using cellular adaptation) generate episodic activity
using a common dynamical principle. In both models, a slow
negative feedback variable (s or θ , depending on the model)
periodically switches the network between a low and a high
activity states. We now ask if the two models are affected
similarly by variations of the two parameters w (network
connectivity) and θ0 (average cellular threshold in the ab-
sence of adaptation). Although this question was addressed
previously in a different context (Tabak et al., 2000), the
simpler models used here allow for a more complete anal-
ysis. We first show how each model responds to parameter
variations, then explain these responses using phase plane
analysis, and finally compare the parameter ranges that al-
low periodic activity for each model.

3.1.1. Effects of parameter variations on the
characteristics of episodic activity

Experimentally, it is possible to manipulate both network
connectivity and cellular excitability, using pharmacological
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agents. Changes in both network connectivity and cellular
excitability affect global network excitability. We now char-
acterize how these changes in network excitability affect the
episodic activity, specifically looking at the duration of the
active and silent phases (TAP and TSP).

Figure 2(A) shows the effects of decreasing the con-
nectivity, w, on the time course of activity for each model.
Experimentally, this could be done by using a low dose of
an excitatory neurotransmitter antagonist. When activity
is regulated by synaptic depression (s-model, left panel)

a decrease of connectivity leads to a slowing down of
the episodic activity. This slowing down is due to an
increase in the silent phase duration, as shown on Fig. 2(B),
left.

If activity is instead regulated by a dynamic cellular
threshold (θ -model, right panel), the same manipulation (de-
creasing w) speeds up the episodic activity. This faster os-
cillation is marked, mostly, by a decrease in the active phase
duration. Thus, the two models respond differently to a re-
duced connectivity.

Fig. 2 Effect of changing w and θ0 on episodic activity. (A) Time
courses for activity and slow depression variable. The vertical dashed
line indicates the time when w was decreased. Left, s-model, θ0 = 0.17.
Right, θ -model, θ0 = 0. (B) Variations of active and silent phase dura-
tions with connectivity. Decreasing connectivity (w) leads to larger TSP

for the s-model (left) and shorter TAP for the θ-model (right). (C) Vari-
ations of TAP and TSP with average cellular threshold. Left, s-model,
increasing θ0 increases TSP. Right, θ-model, increasing θ0 increases
TSP and decreases TAP. For each panel in B, C, network excitability
increases rightward
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Another possible experimental manipulation is to change
neuronal excitability, which is modeled here by changes of
the cellular threshold θ0. Again, the two models differ in
their sensitivity to this parameter. For the s-model, increasing
cellular excitability by decreasing θ0 decreases the silent
phase, (and slightly decreases the active phase, C, left panel).
However, for the θ -model, decreasing θ0 causes both TAP to
increase and TSP to decrease (C, right panel).

To summarize, increasing network excitability (through
an increase in either connectivity or cellular excitability)
shortens the silent phase for the s-model, while it lengthens
the active phase for the θ -model (and shortens the silent
phase, in the case of a decrease in cellular threshold).

3.1.2. Phase plane analysis

These differences in response to parameter variations can be
easily explained by looking at phase space diagrams (Rinzel
and Ermentrout, 1998). The time courses of a and s (or θ ) of
Fig. 2(A) correspond to trajectories in the phase plane (a, s)
(or (a, θ )). Let us first examine the left panel of Fig. 3(A). We

have represented the a-nullcline (S-shaped curve, shown for
3 different values of connectivity) and the s-nullcline (dashed
curve). The nullclines are the curves for which the corre-
sponding variable has zero time derivative. The S-shaped
a-nullcline represents the steady states of the excitatory net-
work for each value of the negative feedback variable s, if s
was frozen. It comprises a region of bistability (of width �s)
where the system can be in either of two stable steady states,
one at high and one at low activity (there is also a middle,
unstable state). However, s varies slowly, decreasing when
the network is in the high activity state (active phase, ds/dt
< 0 above the s-nullcline) and increasing when the network
is in the low activity state (silent phase, ds/dt > 0 below the
s-nullcline). The “knees” of the S-shaped a-nullcline (HK
high knee, LK low knee) correspond to the transition points
between active and silent phases. During each phase of the
activity, the slow variable s covers the interval �s between
the two knees. The durations of the active and silent phases
are determined by the horizontal position of the knees, thus
in the following we focus on how the knees are affected by
parameter changes.

Fig. 3 Understanding the effects of parameter variations: phase plane
pictures. (A) Sensitivity of the a-nullcline to w. Left, s-model, θ0 =
0.17; Right, θ -model, θ0 = 0. The trajectory coresponding to the time
courses from Fig. 2(A) (left part of each panel) is represented. Transi-
tions between high and low activity states are indicated with vertically

oriented arrows. HK, high knee; LK, low knee. (B) Sensitivity of the
a-nullcline to θ0. Left, s-model, w = 1; Right, θ-model, w = 0.9.
Panels A and B of this figure correspond to the cases shown in panels
B and C of Fig. 2. The horizontal bars below each plot represent the
bistability range (�s, �θ) for each case
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When the connectivity, w, is decreased, the a-nullcline is
simply scaled such that the product w · s (the effective con-
nectivity) is conserved at any value of a. This mostly shifts
the bistability range �s to the right (the values of s at the
low/high knees, slk/hk , are changed by a variation in connec-
tivity δw by a scaling factor: δslk/hk = −slk/hk · δw/w). How
does this affect the duration of the active and silent phases?
At any time, s varies with a velocity proportional to s∞(a)
− s, that is, the horizontal distance between the s-nullcline
and the current state of the system in phase space. If the
a-nullcline is moved to the right, then this distance increases
for the active phase and decreases for the silent phase. Thus
decreasing connectivity would decrease TAP and increase
TSP. However, in addition to the horizontal shift to the right
of the bistability range, there is also a moderate expansion of
this range. This increases the distance s has to travel between
each knee, increasing similarly TAP and TSP. The two effects
(shift and expansion of �s) add to increase TSP, but they act
in opposite ways on TAP, so the net effect is a decrease that
is small compared to the increase in TSP.

The effect of a connectivity change on the θ -model is
very different (Fig. 3(A) right), despite the similar dynamic
nature of the oscillations in that case (the difference in
shape of the a-nullcline, now Z-shaped, is simply because
θ decreases during the silent phase and increases during the
active phase, in opposite way to s). In this case, a change
in w affects only one knee. When w is decreased, the upper
knee is moved to the left (for a variation of connectivity δw,
the corresponding horizontal variation of the upper knee
δθhk can be calculated as shown in Appendix A; δθhk � δw)
while the lower knee is almost not affected. This shortens the
bistability range �θ , so both TAP and TSP are decreased. But
the decreases of TAP and TSP are not equal. This is because
the move of the higher knee to the left removes the portion
of the trajectory closest (horizontally) to the θ -nullcline
during AP (i.e., the slowest portion of the trajectory during
AP) while it removes the portion of the trajectory furthest
away from the s-nullcline during the SP (i.e., the fastest part
of the trajectory during SP). Thus, TAP decreases more than
TSP (also, the slight movement of the low knee towards the
θ -nullcline tends to slow down θ during the silent phase,
opposing the decrease due to the movement of the high
knee; if the low knee is very close to the θ -nullcline, this
effect could be strong enough that the net effect on TSP is an
increase).

A similar situation is shown for the sensitivity of the
s-model to θ0 (Fig. 3(B), left panel). Variations of cellular
excitability affect the low knee much more than the high
knee. This difference in shift between low and high knees
means that the bistability range is increased with θ0.
Therefore, both TSP and TAP lengthen when cell excitability
is decreased. However, this right shift means that the hori-
zontal distance between the trajectory and the s-nullcline is

decreased during the silent phase, further increasing TSP. On
the other hand, s will vary faster during the active phase, so
TAP increases only slightly with θ0 compared to TSP. From
this case and the previous one, we see that when a parameter
change affects the low (high) knee much more than the high
(low) knee, TSP and TAP vary in the same way but TSP (TAP)
is much more affected than TAP (TSP).

On the other hand, when both knees are moved in the same
fashion, TAP and TSP vary in opposite way. This is illustrated
by the last case (Fig. 3(B), right panel), where a variation
of cellular threshold δθ0 leads to a translation −δθ0 of the
bistability range without affecting its width. Thus, when θ0

is increased, TAP decreases and TSP increases similarly.

3.1.3. Reciprocal roles of connectivity and cellular
excitability

We have noted a correspondence between panels 3B left
and 3A right. A variation of θ0 causes a great variation
of the low knee for the s-model. On the other hand, a
variation of w causes minimal change in the low knee of
the θ -model. This correspondence exists because the two
models are based on the same equation for the time course
of activity (Eq. (1)). The a-nullcline in each model is defined
by a = a∞(s̃ · a − θ̃ ). At a knee, if s̃ changes by δs̃, the
corresponding variation of θ̃ to keep this equation verified
is δθ̃ = δs̃ · a (as shown in Appendix A). This last equation
indicates both the horizontal movement of a knee δθ̃ in the θ -
model due to a variation in s̃ = w and the movement of a knee
δs̃ of the s-model due to a variation of θ̃ = θ0. In particular, at
the low knee, a � 0, so the low knee of the θ -model is almost
unaffected by a change in connectivity, while the low knee of
the s-model changes dramatically with a change in cellular
excitability.

Thus, there is a reciprocity of effects of the two parameters
w and θ0 on the two slow variables θ and s. This reciprocity
can be demonstrated graphically. We rewrite the nullcline
equation as a−1

∞ (a) = w · s · a − θ0 (s-model) and a−1
∞ (a) =

w · a − θ − θ0 (θ -model). Let us consider the θ -model. The
left hand side of this last equation is shown on Fig. 4 (thick
curve). If w and θ0 are fixed, the right hand side is a straight
line of slope w, which is moved vertically by changing θ .
There are two particular positions of this line (i.e. two values
of θ , θ lk and θhk), such that it is tangent to the curve a−1

∞ (a),
and these two positions define the low and high knees of
the a-nullcline. The changes δθlk and δθhk due to a variation
δw of connectivity are shown on Fig. 4. The same variation
on the slope w of the tangent line entrains a much smaller
variation of θlk than θhk , simply because the tangent point is
much closer to the vertical axis for the low knee than for the
high knee.

The same argument can be applied to changes of θ0 when
considering the s-model. On Fig. 4, replace δθlk/hk by δθ0
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Fig. 4 Reciprocity between the effects of connectivity and cell ex-
citability on the knees. If we consider the θ-model, the knees of the
a-nullcline correspond to values a, θ verifying a−1

∞ (a) = w · a − θ − θ0

such that the left and right hand sides are tangent. The thick curve cor-
responds to the left hand side of the equation, the thin straight lines
are four examples of the right hand side that are tangent to the thick
curve. If the slope of the straight line is altered by δw, the intercept

of that line with the vertical axis must be changed so that the line is
still tangent with the curve. For the same δw, this vertical change is
much smaller for the solution corresponding to the low knee (δθlk ) than
for the high knee (δθhk ). Similarly, for the s-model, a small change in
the vertical intercept corresponding to the low knee would change the
slope of the straight line by the same amount as a larger change of the
vertical intercept corresponding to the high knee

and δw by δslk/hk . A very small variation δθ0 creates the
same δs at the low knee that a large δθ0 creates at the high
knee. Thus, whichever knee will change most depends on
which is the parameter (w or θ0) and which is the variable
(θ or s). The pattern of knee variations shown on Fig. 3(A)
right and (B) left is present because 1) both models share the
same activity equation and 2) one negative feedback process
has a divisive effect (i.e. controls the slope of the lines shown
on Fig. 4) while the other process has a subtractive effect
(i.e. controls the vertical position of the lines shown on
Fig. 4).

3.1.4. Range of parameter values that supports
episodic activity

We can further characterize how the horizontal position of the
knees in Fig. 3 vary with parameters. Consider the θ -model
(θ̃ = θ + θ0 and s̃ = w). We have shown that the knees’
horizontal positions are altered by connectivity w (Fig. 3(A)
right). We now plot the horizontal position of both knees
θ̃lk/hk , as connectivity is varied, on Fig. 5(A). The equa-
tions of the two resulting “curves of knees” θ̃lk/hk(s̃) are
derived in Appendix A. The trajectory showed in the (θ ,
a) phase space (Fig. 3(A) right) corresponds to a vertical
trajectory between the two curves of knees in (s̃, θ̃ ) space
(5A). Changing connectivity simply shifts this vertical tra-
jectory horizontally (and stretches it to fit between the two
curves of knees). We first note that the two curves meet for
a particular value of connectivity (wc). If connectivity falls

below this value, the knees disappear so there is no longer
bistability. Second, we see that the slope of the curve cor-
responding to the low knee is much smaller than the slope
of the high knee curve. Again, this illustrates our previous
point that the low knee, in the θ -model, is very insensitive to
connectivity.

From this figure, we can graphically determine the
ranges of parameter values for w and θ0 that allow periodic
activity, that is, 1) the two knees exist (w > wc) and 2) they
correspond to values of θ between 0 and 1. Since θ̃ = θ + θ0

oscillates between θ̃lk(w) and θ̃hk(w), θ oscillates between
θ̃lk(w) − θ0 and θ̃hk(w) − θ0. Therefore condition 2 requires
that θ0 < θ̃lk(w) and θ0 > θ̃hk(w) − 1. These conditions
define a region in parameter space (w, θ0) which is shown on
Fig. 5(B).

If we now consider the s-model (θ̃ = θ0 and s̃ = w · s),
and plot the position s̃lk/hk of the knees as θ0 is varied,
we obtain the same curves of knees (Fig. 5(C)), since the
a-nullcline and in particular the knees are defined in the same
way for both models (a = a∞(s̃ · a − θ̃ )). Note, we have kept
the axes in the same directions as in panel A (s̃ horizontal, θ̃

vertical) for comparison with panel A. So now the trajectory
is horizontal, showing s vary between s̃hk and s̃lk , and this
trajectory shifts vertically when θ0 is changed. Similarly to
the previous case, the knees (and therefore bistability) exist
only if θ0 > θc. Also, since s ≤ 1, episodic behavior requires
that w > s̃lk(θ0) otherwise s̃ = w · s can never reach the
low knee s̃lk . These two conditions are represented on
Fig. 5(D).
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Fig. 5 Curves of knees and parameter ranges for bistability and
episodic behavior. (A) Curves of knees of the excitatory network. For
the θ -model, w (here 0.9) determines the range of variations of ef-
fective the threshold [θ̃ lk, θ̃hk]. The trajectory of episodic activity is
represented by a vertical lines between these two bounds. Assuming
the condition for bistability is met (w > wc), periodic activity can occur
only if θ̃hk (w) − 1 < θ0 < θ̃lk (w). (B) Graphical representation of these
three conditions in the (w, θ0) plane, defining the parameter region for

which the θ-model can generate episodic activity. (C) Curves of knees
for two values of ka . For the s-model, θ0 (here, 0.17) determines the
position of the horizontal trajectory, with bounds [s̃hk , s̃lk ]. For a given
θ0 satisfying the condition for bistability (θ0 > θc), episodic activity
only occurs if w > s̃lk (θ0). (D) These two conditions are represented in
the (w, θ0) plane and define a region in parameter space for which the
s-model can generate episodic activity

Comparing panels B and D, we see that the θ -model can
operate over a wide range of values of cellular threshold,
but for a limited range of connectivity values. On the other
hand, the s-model will generate episodic activity for a wide
range of connectivity, but for a restricted range of cellular
threshold. Thus, each model is robust to perturbations of the
parameter linked to its own slow variable, since the slow
variable can easily compensate a variation of that parameter.
The conditions represented on panels B and D are necessary
for episodic activity to occur. Whether they are sufficient
depends on the dynamics of the slow variable. If the slow
variable nullcline (the dashed curves in Fig. 3) intersects the
a-nullcline at a point on either the high or low branch, this
intersection defines a stable steady state and episodic activity
does not occur. For instance, panel D shows that w has no
upper limit in the case of the s-model, but for large values
of w, the high knee show on Fig. 3(A) left will move to the
left close to the vertical axis, and s-nullcline could intersect

with the high branch of the a-nullcline. In this paper, we have
used s∞ and θ∞ functions steep enough that these intersec-
tions would only occur if the knees horizontal position were
extremely close to 0 or 1 and thus the boundaries show on
Fig. 5 (B) and (D) are not significantly reduced.

Finally, we examined how the parameter ka affected these
ranges of parameter values. As shown on Fig. 5(C), increas-
ing ka affects the curves of knees in a way that moves the
bistability range to higher values of the parameters. This is
because, according to the definition of the a∞ function (the
network input/output function), multiplying ka by a factor x
is equivalent to dividing both w and θ0 by the same factor x.
Thus, to keep the same network activity, if ka is multiplied
by x, w and θ0 must be too. For instance, the critical values of
the parameters, (wc, θc) = (4ka, 2ka) (cf. Appendix B), are
increased by the same factor as ka . Consequently, for higher
ka the excitatory network is bistable for higher connectivity
and higher cellular threshold.
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The consequence of this transformation for the s-model
is that the range of threshold values θ0 becomes larger. Sim-
ilarly, increasing ka leads to a larger range for w to allow
episodic behavior of the θ -model.

The value ka indicates the spread of the a∞ function,
which itself depends on the smoothness of the cellular in-
put/output (i/o) function, and on the distribution of thresh-
olds among the population. The steeper the cellular i/o rela-
tionship and the narrower the distribution of thresholds are,
the smaller ka will be. If the cells have steep i/o functions
and there is little heterogeneity, ka is small, thus bistabil-
ity can be observed for low connectivity and high cellu-
lar excitability. However, in that case, the range of cellular
threshold values allowing episodic behavior of the s-model
will be very limited, i.e. the s-model will be extremely sen-
sitive to changes in cellular excitability (cf. the large vari-
ations of the low knee with θ0 in Fig. 3(B), left). In or-
der for the s-model to generate robust episodic behavior
(with respect to cellular excitability), it is thus necessary
for the network to either have shallow cellular i/o functions,
or to have a substantial degree of heterogeneity in cellular
excitability.

3.2. Model with both cellular adaptation and synaptic
depression

The model incorporating both cellular adaptation and synap-
tic depression is given by the following three equations:

τa ȧ = a∞(w · s · a − θ0 − θ ) − a (1sθ )

τs ṡ = s∞(a) − s (2)

τθ θ̇ = θ∞(a) − θ (3)

with the sigmoidal functions for the three models given by

a∞(v) = 1/
(
1 + e−v/ka

)

s∞(a) = 1/
(
1 + e(a−θs )/ks

)

θ∞(a) = 1/
(
1 + e−(a−θθ )/kθ

)

As in the previous models incorporating either one of
the slow processes (2D models), the model with both slow
processes (θ -s-model, or 3D model) switches between a low
and high activity state due to the variations of both variables.
During an episode, s is decreasing and θ is increasing,
as shown in Fig. 6(A). However, now the phase space is
three-dimensional (Fig. 6(B)), so the trajectory alternates
between a high and a low state defined on a surface, the
a-nullsurface (the surface of solutions to da/dt = 0).

We can still use a two-dimensional representation by pro-
jecting the three-dimensional picture on the (s, θ ) plane, as
shown in Fig. 6(C). The folds of the a-nullsurface in the
3D space become the curves of knees in the 2D space. These
folds of the a-nullsurface are like the knees of the a-nullcline
in the previous 2D models, the transition points between the
high and low states. The curves of knees are the same as in
Fig. 5, since activity in the 3D model is defined exactly as in
the 2D models.

However, for the 2D models, the trajectory in phase space
was fully determined by the a-nullcline, assuming the slow
variable nullcline intersected only on the middle branch. In
other words, the dynamics of the slow variable only affected
the speed at which the trajectory was followed, but not the tra-
jectory itself. For the 3D model, the exact trajectory depends
on the relative dynamics of the two slow variables, which are
indirectly coupled through the fast variable a. Thus, simply
looking at the nullsurface is not enough to determine the
trajectory in phase space. Similarly, in the (s, θ ) space, the
trajectory goes back and forth between the curves of knees
(Fig. 6(C)) but it is not horizontal or vertical, that is, it is
not determined uniquely from the parameters w and θ0. The
location of the two points (LK, HK) on the curves of knees
that are reached by the trajectory depends on the dynamics
of the slow variables.

For a given value of each parameter w and θ0, how can
we determine what the trajectory will be? We approach
this problem by noting that the two variables s and θ are
indirectly coupled through a, so we can find a relation-
ship between them. If we compute the average over a
period of each slow variable’s Eq. (2) and (3), since both
derivatives’ average are zero we get, after rearranging,
<s> = <s∞(a)>and<θ> = <θ∞(a)>(the <> notation
denotes time average). Assuming that the sigmoidal
functions are steep enough, during an episode s∞(a) � 0
and θ∞(a) � 1 (since a is high). Similarly, during the
interepisode interval s∞(a) � 1 and θ∞(a) � 0. This
implies that s∞(a) + θ∞(a) � 1 and <θ∞(a)> � %AP (the
duty cycle, i.e. TAP/(TAP + TSP). This implies in turn that:

<θ> � %AP (4)

<s> + <θ> � 1. (5)

This shows that the average of each variable is directly
related to the duty cycle, and thus there is a relationship
between the averages of the two variables. Using similar
arguments, we can also get a relationship for the range
of variation of each variable. If we define �s and �θ as
the ranges covered by s and θ during episodic activity (cf.
Fig. 6(C)), we can show that (cf. Appendix C)

�s/�θ � τθ/τs, (6)
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in agreement with our intuition that the faster variable
necessarily covers a wider range than the slower variable in
the same interval of time. This relationship between �s and
�θ is also apparent on Fig. 6(A), (C) (τθ/τs = 2, so s varies
over a range twice as large as θ ).

To summarize, the model incorporating both slow
processes follows the same dynamical principles as the
models incorporating only one slow process. However,
because there is a surface—not simply a curve—of possible
steady states, the system’s trajectory is not predetermined
by the undepressed network dynamics, it also depends on
the relative timescale of the two slow processes’ dynamics.

� Fig. 6 Representations of the model incorporating two slow nega-
tive feedback processes, s and θ . (A) Time course of a, s and θ in
the case τθ = 2τs . �s/�θ = 1.91, close to the ratio τθ /τs . The cal-
culated average values of the slow variables are <s> = 0.726 and
<θ> = 0.274, close to the percent silent phase (0.729) and active
phase (0.271), respectively. (B) Corresponding phase space trajectory,
oscillating between high and low states of the a-nullsurface. The points
for which the trajectory switches between states belong to the folds of
the surface (LF, HF). Note that the lower fold is almost parallel to the
s axis. The projections of the two folds on the (s, θ) plane are shown
(HK, LK). The vertical double arrowheads at the transitions from low
to high state correspond to the vertical double arrowheads on the time
course of activity in panel A. The horizontal arrowheads on each state
correspond to the arrows of the 2D trajectory on panel C. (C) Trajectory
projected on the (s, θ) plane, slowly oscillating between the curves of
knees . When the trajectory meets a curve of knee there is a transition
between the two stable activity states (double arrowheads in A, B) and
both ds/dt and dθ /dt change sign. The slope of the lower curve of knees
is very small (compared to the higher curve), because the lower fold
in B is almost parallel to the s axis. Note, the difference with Fig. 5 is
that we used the (s, θ) plane, not the (s̃, θ̃ ) plane, in order to see the
variations of the slow variables s and θ . Therefore the “curves of knees”
HK and LK will vary when the parameters w and θ0 are changed. LF,
low fold; HF, high fold; LK, curve of low knees; HK, curve of high
knees

Because the two slow variables are indirectly linked through
activity, there are some relationships between their average
over a period and between their ranges of variation, which
define the trajectory in phase space.

3.2.1. Effects of parameter variations on the
characteristics of episodic activity

We now ask how the parameters w (connectivity) and θ0

(fixed component of the firing threshold) affect the dura-
tion of the active and silent phases and how these changes
compare to those described previously for the 2D models.
Because the ratio of timescales of the two slow processes
affects the system’s trajectory in phase space, we examine
three cases: τs � τθ , τs = τθ and τs � τθ .

If τs � τθ , θ varies little compared to s (cf. Eq. (6)) so
the full system resembles the s-model. Then, does it react to
parameter variations like the s-model? Figure 7(A) and (B),
left panels, shows that a decrease in connectivity leads to a
decrease in both TAP and TSP, with a larger relative variation
for TAP. Thus, even though τs � τθ , the θ -s-model does
not react qualitatively like the s-model, but instead behaves
like the θ -model (compare with Fig. 2(B)). This qualitative
behavior (a reduction in connectivity decreases TAP) is also
obtained for the other values of the ratio τθ/τs , as shown on
Fig. 7(A) and (B).

Similarly, when θ0 is varied, the θ -s-model reacts with a
change in TSP, as observed for the s-model, and this behavior
is also independent of τθ/τs , as shown Fig. 7(C) (compare
with Fig. 2(C)). Together, these results show that for the
model incorporating both slow processes, the durations of the
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Fig. 7 Effects of parameter variations on TSP and TAP of the θ-s-
model for various τθ /τs ratios. (A) Time courses of a, s and θ , before
and after connectivity decrease. (B) Plots of TSP and TAP dependence

on w. (C) Plots of TSP and TAP dependence on θ0. Left panels: τs = 250,
τθ = 2500; middle panels: τs = 250 τθ = 250; right panels: τs = 2500,
τθ = 250

active and silent phases can be set almost independently: TAP

is set by connectivity, while TSP is set by cellular excitability.
Finally, comparing the range of parameter values on

Fig. 7(B), (C) and Fig. 2(B), (C), we see that the θ -s-model
is able to generate periodic activity over a similar range of w

values as the s-model and over a similar range of θ0 values as
the θ -model. As the s-model and θ -model both show robust-
ness to the parameter variation that affects their own slow
process, the model incorporating the two processes shows
robustness to both parameters.

3.2.2. Description of model behavior for τθ � τs

For τθ � τs , only θ varies significantly to terminate and
initiate episodes. As shown on Fig. 7(B) and (C), right
panels, varying w leads to a similar response as the θ -model,
but a variation of θ0 leads to a response resembling the
s-model. Why doesn’t the θ -s-model (with τθ � τs) always
react like the θ -model (and similarly, we could ask why
the θ -s-model with τs � τθ doesn’t always react like the

s-model)? This is because after a parameter change the duty
cycle is altered, which in turn causes the slower variable (s in
the case τθ � τs) to slowly vary. After a transient period, it
reaches a new level (see for example Fig. 7(A), right panel:
after a decrease of connectivity, s slowly increases to a new
level, partly compensating the decreased w; a similar effect
is shown in Bertram et al. (2000)). Thus, the net effect of
a parameter change must take into account a compensatory
change in the level of the slower variable. In the following,
we describe the consequences of each parameter change, in
the case τ θ � τ s, using phase pictures in the (s, θ ) plane.

Figure 8 shows the curves of knees and the trajectories
in the (s, θ ) plane for 4 combinations of values of w (vary-
ing vertically) and θ0 (varying horizontally). Note that the
curves of knees vary with these parameters. Changing the
connectivity changes the slope of the high knee curve (since
this slope is approximately equal to w) with little effect on
the curve of low knees. On the other hand, changing cellu-
lar excitability simply shifts both curves vertically, the shift
being equal to the variation of θ0.
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Fig. 8 Phase picture projection in the (s, θ) plane. The curves of knees
are shown as well as the trajectory for various parameter combinations.
From row B to A, connectivity w is decreased from 1.5 to 0.7. From
columns 1 to 2, the cellular threshold θ0 is increased from − 0.15 to
0.15. To show how these two manipulations affect the trajectory, we
have distinguished two steps. Decrease in connectivity (panel B1 to
A1): the trajectory is first affected by the change in curves of knees
(step 1, green dotted arrow to green trajectory), then settles to a new
equilibrium value of s (step 2, dashed arrow). The net effect is a de-
crease in the length of the trajectory, mainly through a decrease of the

value of θ at the end of an episode. Increase in threshold (panel B1 to
B2): similarly, we show the new trajectory as if s was constant (after
step 1, in green), and the final trajectory after s has equilibrated (step 2,
dashed arrow). The net effect is an increase in the length of the trajec-
tory, mostly through a decrease of the value of θ at the begining of an
episode. Note, the green trajectories were not computed, they are only
shown for illustration purposes. Blue lines are defined by θ = 1 − s
and the red curves represent %AP(s), which depends on both w and
θ0. This is %AP for the θ-model, treating s as a parameter, calculated
using an approximate formula (derived in Appendix D)

Superimposed on these plots are the projected (s, θ ) tra-
jectories (in black). Recall that during the active phase the
trajectory moves from the low to the high curve of knee,
during the silent phase it returns to the low curve of knee (cf.
Fig. 6). Because τs � τθ , the trajectories are nearly vertical,
as for the θ -model. Thus, TAP, TSP and %AP are approx-
imately equal to those for the θ -model with connectivity
equal to w · s (they can be calculated, as shown in Appendix

D). Before describing how the trajectory is changed by a pa-
rameter variation, we must first determine where the trajec-
tory resides in the (θ , s) plane. Since the trajectory is almost
vertical, this means finding which value of s the system has
equilibrated to.

Consider the diagram shown in panel B1 (θ0 = −0.15,
w = 1.5). We recall that there is a relationship linking
the averages of the two slow variables over one period:
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<θ> = 1 − <s> � 1 − s since s is almost constant. The
line θ = 1 − s is plotted in blue. Furthermore, we recall that
<θ> = %AP (Eq. (4)). We plotted the %AP of the θ -model
as a function of s (red curve). The system operates at the
value of s that meets the two conditions <θ> = 1 − s and
<θ> = %AP(s) simultaneously, thus defined by 1 − s =
%AP(s), that is, the intersection of the red and blue curve.
Note that %AP(s) depends both on θ0 and w and thus is
different on each panel; the operating value of s (intersection
of %AP(s) with the blue line) varies accordingly.

Now let us consider a decrease of connectivity. How is
the trajectory affected? Because s is much slower than θ , we
separate the effects of the parameter variation in two distinct
steps, first keeping s constant (step 1) and then allowing it to
equilibrate (step 2). The decrease of connectivity changes the
curves of knees to the ones shown in panel A1. If s is constant,
the trajectory simply adapts to the new curves of knees and
becomes the one shown in green in A1 (step 1, represented
by the green dotted arrow). The result is a reduction of the
value of θ at the high knee, as we have described previously
for the θ -model (Fig. 3(A) right), so active phase duration is
reduced. However, this decreases the duty cycle, and there-
fore s will slowly increase to reach a new equilibrium, as seen
on Fig. 7(A), right panel (step 2, represented by the dashed
arrow). This equilibrium is defined by the intersection of the
blue line and the new red curve of panel A1. Note that the shift
to the right of the trajectory changes the value of θ at the high
knee. This slightly counteracts the effect of the downward
change in the high curve of knees (from step 1), but the net
effect is still a decreased θ value at the end of the episode. On
the other hand, the value of θ at the beginning of an episode
has barely changed. Thus, the effect of decreasing connectiv-
ity in the θ -s-model is similar to that in the θ -model, but is less
intense because s has partly compensated for this decrease.

Going back to panel B1, we now consider an increase in
θ0 that changes the curves of knees to those of panel B2.
In the θ -model (s constant), this simply shifts the trajectory
along with the knees, as shown in green in B2 (step 1). The
effect is that θ is closer to its asymptotic value (θ = 0)
during the interval (going down) and further away from its
asymptotic value (θ = 1) during the episode (going up). Thus,
TAP decreases while TSP increases. But again, this decreases
the duty cycle, so s will slowly equilibrate to a higher value,
increasing the effective connectivity (step 2). This shifts the
trajectory to the right and therefore increases the value of θ

at the high knee, which is back to a similar value as before
the change in θ0 (compare with panel B1). This brings TAP

close to its original value before changing θ0, so the net
effect (from step 1 and step 2) is mostly an increase in TSP.
Changing θ0 in this model has the same effect as changing
θ0 in the s-model, mostly affecting the “low knee” (i.e., the
beginning of the active phase).

We have described the effects of parameter variations in
two steps: 1, immediate changes in the curves of knees due to
the parameter variation and 2, slow compensatory change of
the slower variable. A similar explanation can be constructed
for τs � τθ . Regardless of which is the slower variable, a
decrease in connectivity w shortens the trajectory by moving
the “high knee,” affecting mostly the active phase duration;
an increase in the cellular threshold θ0 increases the length
of the trajectory, mostly by moving the “low knee” end, thus
predominantly affecting the silent phase. In the following
section, we demonstrate that this is also the case when the
two slow variables vary on the same timescale.

Finally, we note that decreasing connectivity always de-
creases TAP, but does not always decrease TSP. If cell ex-
citability is low, that is, if θ0 is high (above 0.1) decreasing
connectivity may increase TSP. This was already pointed out
for the θ -model and can be understood by looking at Fig. 8
panels A2, B2. Because θ0 is high (0.15), the low curve of
knees is close to the asymptotic value of θ during the silent
phase (0). When connectivity is decreased, the low curve of
knees’ small displacement (from B2 to A2) brings the tra-
jectory even closer to the dashed line and this greatly slows
down the recovery of θ close to 0, increasing the duration of
the silent phase. In the case shown by panels B1 and A1, the
low curve of knees is so far away from the lower dashed line
that this effect is too small to increase TSP.

3.2.3. Phase plane analysis of a reduced model for
τθ = τs

We now use a 2D reduction of the θ -s-model based on the fact
that the relationship shown above between the two slow vari-
able (<s> + <θ> � 1) becomes s + θ � 1 when τs = τθ .
As previously, we use the fact that s and θ have similar (but
opposite) dynamics, i.e. s∞(a) + θ∞(a) � 1. Thus, adding
the equations for the two slow variables (Eqs. (2) and (3)),
we get τs (ṡ + θ̇ ) � 1 − (s + θ ), which means that the sum
s + θ approaches 1 with a time constant τs . Therefore, after
an initial transient, θ = 1 − s so there is only one indepen-
dent slow variable and we can replace θ by 1 − s in Eq. (1sθ ):

τa ȧ = a∞(w · s · a − θ0 − 1 + s) − a.

Since there is only one depressing variable, s, the phase space
is two-dimensional and we can draw nullclines in this phase
plane, as we did previously for the s- and θ -model.

Figure 9(A) shows how the a-nullcline is affected by
changes in w. Mostly the high knee is affected. We can
show that the value of s at the knees (high or low) varies
with connectivity as: δsk � −sk · δw/(w + 1/ak), where ak

is the level of activity at the knee. Activity is much lower
at the low knee, this is why the high knee is more affected.
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Fig. 9 Phase plane picture for the reduced model (model incorporating
the two slow negative feedback processes such that s + θ = 1). (A) the
a-nullcline is shown for different values of connectivity. The low knee
is much less affected by variations in w than the high knee. Compare
to the θ -model, Fig. 3(A) right. (B) Variations of the a-nullcline with
θ0. The low knee varies more than the high knee, as with the s-model,
cf. Fig. 3(B) left

Because it is mainly the high knee that varies with w, the
results are similar to the θ -model (cf. Fig. 3(A), right), de-
creasing connectivity decreases TAP (and TSP, unless the low
knee is very close to the s-nullcline). Since the variations in
the high knee are smaller than for the θ -model, connectivity
can be varied over a wider range.

In addition, since the high knee varies less with connec-
tivity than for the θ -model, the values of w we have used
are such that the high knee is still far away from the slow
variable nullcline (the dashed curve), compared to the situa-
tion shown on Fig. 3(A) right. This explains why the plot of
TAP vs w (Fig. 7(B), middle panel) does not show the same
exponential increase at high w as shown for the θ -model on
Fig. 2(B) right, for the θ -model.

The changes in the a-nullcline due to changes in θ0 are
shown on Fig. 9(B). We can show that the change in the
value of s at each knee δsk can be expressed with respect to
the changes in the s- and θ -model: 1/δsk = (1/δsk)s-model +
(1/δsk)θ-model. Thus, the knees vary less than for either of the
2D models. More specifically, δsk = δθ0/(1 + w · ak), so for
the high knee the change is given by δshk � δθ0/(1 + w),
while for the low knee, δslk � δθ0. Thus, the low knee varies

more than the high knee (by a factor 1 + w). This picture is
therefore similar to the picture for the s-model (cf. Fig. 3(B)
left) and thus TSP increases with θ0. However, since the low
knee does not vary as much as for the s-model, the range of
θ0 values over which episodic activity occurs is much wider
than for the s-model.

3.2.4. Range of parameter values supporting episodic
activity: Comparison between 2D and 3D models

We have noted above that the model incorporating the two
slow negative feedback processes (reduced or not) could gen-
erate episodic activity over a wider parameter range than each
of the models incorporating only one slow process. To illus-
trate the increase in parameter range due to having two slow
processes, we plot this range in the (w, θ0) plane (Fig. 10(A)).
As for the 2D models (Fig. 5(B) and (D)), for a given connec-
tivity (w), there is an upper and lower limit on the average
cellular threshold (θ0) for periodic activity to occur.

The upper limit on θ0 is the same as for the θ -model
(and s-model) (cf. Fig. 5(B) and (D)). If θ0 is too high for
the θ -model to generate episodes, then adding the synaptic
depression variable s cannot help since s can only decrease
the effective connectivity. At best s = 1 (the network has
recovered totally from synaptic depression), so the effective
connectivity is w as for the θ -model. Thus we get the same
upper limit on cellular threshold θ0(w) (corresponding to the
low curve of knees) as found for the θ -model (or similarly,
we could say for a given θ0 this is the same lower limit on
connectivity w(θ0) as for the s-model).

To determine the lower limit on θ0, we first consider the
reduced (θ = 1 − s) model. The system must be bistable
for episodic behavior to occur. This condition is obtained
similarly to the conditions for bistability of the s-model and
θ -model given above (see Appendix B), but it now involves
both parameters θ0 and w simultaneously:

1 + θ0 − θc > wc/w (7)

(with θc = 2 · ka and wc = 4 · ka). This second condition,
together with the first, defines the range of parameter val-
ues for which the reduced model exhibits episodic activity
(Fig. 10(A)).

Note that these two limits also apply to the non-reduced
case, i.e. to the θ -s-model for any ratio τθ/τs . To understand
these limits geometrically, we plot the curves of knees in
the (s, θ ) plane for a given connectivity and for two extreme
values of the average cellular threshold θ0, as well as the
line θ = 1 − s (Fig. 10(B)), as in Fig. 8. The trajectory of
episodic behavior, if it exists, goes from one curve of knees to
the other. So in order to have episodic activity, it is necessary
that the curves of knees be in the plane bounded at 0 and 1 on
each axis (because both θ and s vary between 0 and 1). If θ0
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Fig. 10 Parameter range for episodic activity of the θ-s-model (re-
duced or not). (A) Range of parameter values allowing episodic activity.
For a given connectivity w, the cellular threshold θ0 has to be between
the curves. The upper curve corresponds to the low curve of knees.
The lower curve corresponds to θ0 such that the line θ = 1 − s (panel
B) intersects the curves of knees at their cusp. The two “x” symbols
correspond to the cases shown in B. (B) Graphical determination of
the bounds on θ0. For w = 1, two sets of curves of knees are shown

in the (s, θ) plane, corresponding to the lower and upper limits of θ0

that allow episodic behavior. θ0 = 0.19: the lower curve of knees is
almost entirely below the horizontal axis. For values of θ0 above 0.19,
the lower curve disappears entirely and episodic activity is lost. θ0 =
− 0.7: The cusp defined by the intersection of the curves of knees (co-
ordinates (w/wc, θc − θ0)) intersects the line θ = 1 − s. At this value
of θ0 or below, no trajectory can satisfy <θ> = 1 − <s>, so episodic
behavior is impossible

is too large (θ0 � 0.19) the lower curve of knees disappears
at the bottom of the plane and episodic behavior is no longer
possible, the system remaining at a low steady state, unable
to reach a “low knee.” This defines the upper limit on θ0.
On the other hand, if θ0 is too low (θ0 ≤ − 0.7) the curves
of knees are above the line θ = 1 − s. In this case, there
is still a region of bistability with borders (the LK and HK
curves) in the (s, θ ) plane, but nevertheless the system cannot
oscillate between the high and low state because this range
of bistability is above the line θ = 1 − s. Recall that the
coupling between the two slow variables imply that <θ> =
1 − <s>. This constraint cannot be met if the curves of knees
are above the line θ = 1 − s, because the point (<s>,<θ>)
is always between the curves of knees (since the trajectory
evolves between these two curves). It is therefore necessary
that the curves of knees intersect the θ = 1 − s line, which
imposes on θ0 the lower limit given by Eq. (7).

Figure 10(A) also shows the union of the parameter ranges
for the θ -model and s-model from Fig. 5(B) and (D), as a
grayed area. The parameter range for the model incorporat-
ing both slow processes is greatly expanded compared to
this gray area, illustrating that this model benefits from the
robustness of each 2D model with respect to the parameter
associated to its slow variable (w for the s-model, θ0 for the
θ -model). Notice nevertheless that part of the range of pa-
rameter values allowing episodic activity in the θ -model is
excluded from the range allowing episodic behavior of the
θ -s-model. This range of values does not support episodic
behavior of the θ -s-model because of the indirect cou-
pling between the two slow variables that requires <θ> =
1 − <s>.

4. Discussion

We have used mean field type models of episodic behavior
in excitatory networks to understand how the characteristics

of episodic activity—the duration of the active and silent
phases—are affected by two parameters that set the global
network excitability: network connectivity (w) and average
cellular threshold (θ0). Excitatory networks are conditionally
bistable. To periodically switch network activity between a
high and a low state, we have considered two slow processes:
one that modulates connectivity (synaptic depression) and
one that modulates cellular excitability (cellular adaptation).

The model using synaptic depression (s-model) responded
to a decrease in network excitability (i.e. a decrease in con-
nectivity or an increase in cellular threshold) with a signifi-
cant increase in silent phase duration (Fig. 2(B) and (C), left
panels). The active phase was not affected as much as the
silent phase. On the other hand, the model employing cellu-
lar adaptation (θ -model), responded to a decrease in network
excitability with a significant decrease in active phase dura-
tion (Fig. 2(B) and (C), right panels). Cellular excitability,
but not connectivity, could also affect significantly the silent
phase duration for that model.

These sensitivities translate into limited dynamic ranges
(i.e., parameter ranges over which oscillations occur). There
is only modest dynamic range in the s-model for variations
in cellular threshold and in the θ -model for variations in
synaptic connectivity. In contrast, wide dynamic range is
found in the s-model for changes in connectivity and in the
θ -model for changes in cellular excitability. Such robust-
ness derives naturally from the compensatory relationship
between the parameter and the slow variable; in the s-model
their product (s · w) remains within an operating range dur-
ing oscillations and in the θ -model the sum (θ + θ0) does. In
the s-model the operating range of s shifts upward as con-
nectivity decreases and in the θ -model the operating range
of theta shifts upward as cellular threshold decreases. Thus,
each model shows robustness for variations in the parameter
that can be compensated by the slow variable.

We then asked how the same parameter manipulations
affected the active and silent phases in a model using both
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Table 2 Sensitivity of each model to variations in cellular threshold
and connectivity. Direction of change is indicated in parenthesis

θ0 (↑) w (↓)

s-model sensitive (TSP ↑) robust (TSP ↑)
θ-model robust (TSP ↑, TAP ↓) sensitive (TAP ↓)
θ-s-model robust (TSP ↑) robust (TAP ↓)

slow processes. We first reasoned that if one process was
much faster than the other, the θ -s-model would react simi-
larly to the model incorporating only the faster process. This
was not the case because the slowest of the two variables
would equilibrate to a new level after a parameter was var-
ied (cf. Fig. 7(A) left and right panels), thus affecting the
model’s response to parameter variations. Independently of
the relative speed of the two variables, a change in con-
nectivity would affect mostly episode termination (the high
knee) and thus active phase duration, as for the θ -model.
On the other hand, a change in cellular threshold affected
more episode onset and thus silent phase duration, as for the
s-model.

Finally, because both slow variables can change their
range of variations following a perturbation, the model
employing both processes inherits the robustness charac-
teristic of each slow process. Thus, the θ -s-model is robust
to changes in both connectivity and cellular excitability
(Fig. 10(A)).

The effects of parameter variations on all three models can
be summarized as follows. If a slow synaptic depression vari-
able (which changes the slope of the network input/output
function) is present, then changing cellular excitability (θ0,
which sets the horizontal position of the network i/o func-
tion) affects the silent phase more than the active phase.
Reciprocally, if a slow dynamic cellular threshold is present
(θ , which changes the horizontal position of the i/o function),
then changing connectivity (w, which sets the slope of the i/o
function) affects the active phase more than the silent phase.
The sensitivities of each model to θ0 and w are summarized
in Table 2.

4.1. Generality and extensions of the models

We have used an idealized formulation of excitatory net-
works, that embodies regenerative effects (fast positive feed-
back) via recurrent excitation. This conditionally bistable
excitatory network was modulated by one or two slow neg-
ative feedback processes. One of these feedback processes,
synaptic depression, modulates the excitatory feedback, a
multiplicative factor in the equation defining the time course
of the activity. It is said to have a divisive effect. The other
process shifts the network input/output function, as an addi-
tive factor. It is said to have a subtractive effect. Generally
speaking, we have thus studied a fast positive feedback sys-

tem with slow divisive and/or subtractive negative feedback
processes. Although we have used the terminology “synaptic
depression” for the divisive process and “cellular adaptation”
for the subtractive process, the actual biophysical nature of
each process is not relevant to the models’ behavior. This has
important consequences.

First, spike frequency adaptation, a process analogous to
“cellular adaptation” may change the slope of the cellular
frequency/current relationship, instead of shifting its thresh-
old point (Ermentrout, 1998). This implies that the effects
of spike frequency adaptation can be modeled as divisive,
not subtractive (Wilson, 2003). Thus, a cellular process (as
opposed to a synaptic process) should not necessarily be
modeled as a subtractive process, as we have done here
for a process that dynamically affected the cellular firing
threshold.

Other mechanisms can also be modeled as either divisive
or subtractive processes. Shunting inhibition has a subtrac-
tive effect (Holt and Koch, 1997). On the other hand, Heeger
et al. (1993) have modeled synaptic inhibition as a divisive
suppression factor. A divisive effect can be obtained if in-
hibitory cells, activated by excitatory neurons, project back
presynaptically onto axon terminals of the excitatory neu-
rons, effectively decreasing network connectivity. This ef-
fect would be slow if the presynaptic inhibition is mediated
through GABAB receptors.

Given the results presented here showing different re-
sponses to parameter variations depending on the nature of
the slow negative feedback process, it is important to care-
fully consider whether a slow process should be modeled as
subtractive or divisive.

Finally, the formalism used here for our models of net-
work activity is qualitatively similar to the Hodgkin-Huxley
(HH) formalism describing the membrane potential of
excitable cells (see appendix E). Fast positive feedback in
HH models is provided by fast sodium channels, the analog
of excitatory neurons in our network models. Active phases
in HH models are terminated by two slower processes,
sodium current inactivation (divisive effect, analogous to
synaptic depression here) and potassium current activation
(subtractive effect, analogous to cellular adaptation here, or
to activation of inhibitory neurons in other Wilson-Cowan
type models). Therefore, the results presented here also
apply to a class of cellular pacemakers (Results not shown,
but see Tabak and Rinzel, 2005). In particular, to get
bistability in cellular models, the activation function of
the inward current responsible for the autocatalysis must
be steep enough. For a less steep activation function, the
conductance of that current must be increased, or the
applied current must be decreased. Also, the relationship
obtained between the two slow variables in the case
of the network with two negative feedback processes
translates into a relationship between the gating variables
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controlling inactivation of the inward current (h) and
activation of the outward current (n) in a cellular pacemaker
model. This relationship, <h> + <n> � 1, is similar to the
expression commonly used to reduce the number of variables
in Hodgkin-Huxley-type models of cellular excitability
when h and n have similar time scales (Rinzel, 1985).

4.2. Limitations of the models

The simplicity of the present models allowed us to perform
a detailed analysis of their behavior. In this subsection we
discuss the various simplifications implicit in these models.
Despite these simplifications our idealized models capture
essential features of more complex systems.

4.2.1. Networks of spiking neurons and synaptic
inhibition

Do network models constructed from populations of spiking
neurons have the same properties as the mean field models
described here? Obviously, the global mean field-type mod-
els cannot describe phenomenons such as wave propagation
occuring in network architectures with spatially localized
coupling (Butts et al., 1999; Netoff et al., 2004). We thus
limit this discussion to (mostly excitatory) networks with
simple topology, such that most cells in the network are ac-
tivated together during the episodes. Within this limit, do
our mean field models describe the mechanisms of episodic
activity in networks of spiking neurons with synaptic depres-
sion or cellular adaptation?

Several studies have indeed shown that excitatory net-
works of leaky integrate and fire (LIF) neurons with a slow
negative feedback process (either synaptic depression or cel-
lular adaptation) can generate episodes of activity. As de-
scribed here, a slow, activity-dependent negative feedback
process terminates episodes by depressing network excitabil-
ity and the ensuing silent phase allows the network to re-
cover from this depression (Giugliano et al., 2004; Tsodyks
et al., 2000; Wiedemann and Lüthi, 2003). However, our own
work using a network of LIF neurons with synaptic depres-
sion suggests that the heterogeneity of cellular excitability
allows a regime of episodic activity whereby episodes can
be generated even though the undepressed network is not
bistable (Vladimirski et al., submitted). This effect of het-
erogeneity cannot be captured with mean field models that
describe the activity of one population of neurons. Never-
theless, even in this new regime of episodic activity, we
found that the network responded to changes in parameters
controlling connectivity and cellular excitabilitity similarly
to the s-model (Vladimirski et al., submitted). Preliminary
results also showed that a network of LIF neurons with cel-
lular adaptation behaved similarly to the θ -model (J. Tabak,
unpublished results).

By definition, we have considered purely excitatory net-
works. Whether or not our results apply to networks with
inhibition will depend on the network architecture and ex-
pression mechanism of the synaptic inhibition. In many cen-
tral pattern generators, for example, two sides are connected
by reciprocal inhibition, allowing an alternating pattern of ac-
tivity between the two sides (Marder and Calabrese, 1996).
Our results do not apply to this type of network compris-
ing two interacting populations that have distinct activities.
We note, however, that some experimental and modeling
studies have shown that networks with limited synaptic in-
hibition generate episodic activity using mechanisms sim-
ilar to those described here (Compte et al., 2003; Latham
et al., 2000; Staley et al., 1998; Tabak and Latham, 2003;
Tsodyks et al., 2000). In these systems, inhibition proba-
bly limits network excitability, without delimiting distinct
subpopulations or playing a major role in terminating the
episodes.

It should also be noted that if inhibitory neurons are
present in the network, synaptic depression and cellular
adaptation acting on these neurons are not negative feed-
back processes as in the case of the purely excitatory circuits
described here, but have a stimulatory effect on the excitatory
population.

4.2.2. Fast oscillations during episodes

In many networks, the high state of activity during episodes
may be oscillatory instead of steady (Bracci et al., 1996;
Tabak et al., 2000). This fast cycling, superimposed on the
slow episodes, is due to at least one additional variable,
whose time scale is more like that of a. We have ignored
fast cycling here, concentrating on the episodic behavior.
Adding a fast synaptic depression variable to the s-model
adds cycling but does not change qualitatively the behavior
of the model (Tabak et al., 2000). However, we note that fast
cycling may modify the response of the model to parameter
variations for different model formulations (Marchetti et al.,
2005).

4.2.3. Cellular oscillators

As discussed above, our mean field network model is
analogous to some cellular pacemaker models. However,
it must be emphasized that in the present model there
are no driving force terms (i.e, it’s a current based, not
conductance based, formulation) and the time constants are
not activity-dependent. Activity-dependent time constants
would not change the trajectories of the phase diagrams
of the s-model and θ -model (unless the slow time scale
became too fast) and therefore would not affect the results
qualitatively. However, adding different activity-dependence
to the time constants for s and θ may confer new properties
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to the model incorporating both processes (Smolen and
Sherman, 1994). Because of their simplicity, the present
models may provide a basis for more realistic models by
adding other components (driving force, activity-dependent
time constants, faster variables, etc.). The differences
between the extended and simple models would then
provide insight into the effects of the various added
components.

For example, our θ -model is similar in form to the Morris-
Lecar model of excitable cells. In its oscillatory regime,
the period (TAP + TSP) of the Morris-Lecar model first
decreases with applied current, then either plateaus or in-
creases back to previous levels for even higher current
(Skinner et al., 1993). The θ -model shows such a decrease
followed by an increase (not shown, but see Fig. 2(B),
right). However, in no cases did we observe a plateau of
the period when θ0 was decreased, as in the Morris-Lecar
model. Thus, there are some subtle differences between the
two models, which could be explored using phase plane
analysis.

More biophysically detailed examples are given by Butera
et al’s models of cellular pacemakers in respiratory networks
(Butera et al., 1999). In this work, two conductance-based
models of bursting neurons (including a spike generation
mechanism) were constructed. In their Model 1 (analogous
to our s-model), bursts were terminated by the slow
inactivation of a sodium channel, while their Model 2
(analogous to our θ -model) relied on the activation of a slow
potassium channel. These models 1 and 2 responded like
our s-model and θ -model to variations of applied current
and maximal conductance of the inward current (Figs. 6
and 8 in Butera et al.). There was nevertheless a difference
between our θ -model and their Model 2: the burst period
of Model 2 would not increase for high applied current,
but remained at a plateau level (like the Morris-Lecar
model, cf. above). Also, Butera et al’s Model 1 is very
sensitive to changes in applied current (compared to their
Model 2), similarly to the sensitivity of our s-model to θ0

(not shown).
These examples show that although they are missing some

biophysical details, our idealized models capture the behav-
ior of more complex models of cellular oscillations.

4.3. Significance of the results

The results presented here show and explain how the duration
of the active and silent phases are set by network excitabil-
ity and average threshold in bursting excitatory networks, or
analogously in pacemaker cells. Therefore our results may
have a wide range of applications, from developing or dis-
inhibited networks to respiratory networks, from bursting
cells involved in motor patterns to cardiac pacemakers and
hormone releasing cells.

4.3.1. Identification of the single (or multiple) feedback
process(es)

Our present results also suggest ways to distinguish experi-
mentally between different slow feedback processes. In the
developing chick spinal cord, we have shown that decreasing
excitatory connections leads to increased silent phase, with-
out large changes in the active phase, supporting a model
of episode generation based on synaptic depression, not cel-
lular adaptation (Tabak et al., 2000). Changing the level of
cellular excitability (possibly by changing the extracellular
potassium concentration in in vitro experiments) provides
a similar experimental test. Here, we also showed that in
some cases it will be necessary to conduct both tests (i.e.,
look at changes in active and silent phases induced by both
variations in connectivity and in cellular excitability), be-
cause the model incorporating both types of negative feed-
back can appear as one of the 2D models if only one test is
conducted.

These results also apply to cellular oscillators. Consider
the bursting pacemaker neurons that are involved in res-
piratory pattern generation, in the mammalian brainstem.
Among these bursters, some are sensitive to cadmium, a
calcium channel blocker, and some are sensitive to rilu-
zole, a persistent sodium current blocker (Pena et al., 2004).
Some recent results have shown that norepinephrine, thought
to upregulate an inward current, had different effects on
these different types of burster. Norepinephrine increased
the burst duration of the cadmium-sensitive bursters, while
it decreased the interburst interval of the riluzole sensitive
bursters (Viemari and Ramirez, 2004). This suggests that
the cadmium-sensitive bursters operate as our θ -model, i.e.
using activation of a slow (calcium-activated) outward cur-
rent to terminate the bursts (Model 2 of Butera et al.), while
the riluzole-sensitive bursters operate as our s-model, us-
ing the inactivation of a persistent sodium current to ter-
minate the bursts (Model 1 of Butera et al.). Having these
two types of mechanisms may enhance the robustness of
the respiratory pattern, ensuring some sort of breathing ac-
tivity takes place in a variety of physiological conditions
(Pena et al., 2004).

It is also crucial to identify which type of negative feed-
back mechanism can be involved in limiting epileptiform
activities. Epileptic hippocampal networks are hyperex-
citable networks that can behave like our s-model (Staley
et al., 1998). Such networks generate bursting activity that
is similar to interictal activity in epileptic patients. If one
wishes to stop this interictal activity, at least two strategies
are available: use drugs that decrease cell excitability, or
drugs that reduce excitatory connections (or increase the
strength of inhibitory connections). It is thus important to
understand how active and silent phases will be affected by
such pharmacological agents. We note that Yee et al. (2003)
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have shown that to understand the role of anti-convulsant
agents it is necessary to understand how they affect the range
of variation of the slow depression process, as we have done
here.

In biological systems, including neural networks, there
are often not just one but several regulatory processes. The
disinhibited rat spinal cord generates periodic bursts of ac-
tivity on a timescale of a few seconds (Bracci et al., 1996).
It is thought that these bursts are terminated by a cellu-
lar process. However, blocking this process did not abolish
episodic activity, instead replacing it with slower episodes
(timescale one minute), controlled by a slow type of synap-
tic depression (Rozzo et al., 2002). This synaptic process
is much slower than the cellular process and had not been
detected before blocking the cellular process. Thus synaptic
depression is not thought to play a significant role in this dis-
inhibited spinal cord preparation when the cellular process
is not blocked. Our results indicate, however, that it could af-
fect the response of the disinhibited spinal cord to variations
of cellular excitability.

4.3.2. Implication for developing networks

Finally, because network activity affects network
properties—particularly in the developing nervous system—
understanding the dynamics of spontaneous episodic activity
will be crucial in disentangling the reciprocal and interacting
effects of network structure and function. Moreover, it is
likely that the temporal pattern of activity is important
in the regulation of cellular properties and refinement of
synaptic connections (Borodinsky et al., 2004; Hanson and
Landmesser, 2004; Stellwagen and Shatz, 2002). As the net-
work matures, cellular and synaptic properties will change
(in part due to the activity itself), affecting the activity
pattern. We have shown previously (Tabak et al., 2000, 2001)
that such episodic activity based on a synaptic depression
(i.e. divisive) process was robust with respect to variations
in the excitatory connectivity. Here, we also suggest that
activity based on a cellular adaptation (i.e. subtractive)
process would be robust to changes in cellular excitability.
If both types (divisive and subtractive) of processes are
involved in episodic behavior, activity will be robust to
developmental changes in both synaptic transmission and
cellular excitability. This robustness will be manifest in that
a larger parameter range will support episodic activity and
in that parameter variations will cause smaller changes in
the duration of the active and silent phases. Thus, it would
be advantageous for developing networks to incorporate
both types of slow negative feedback processes, preventing
quick changes in activity pattern to be induced by network
development.

Appendix

A. Curves of knees

We consider the general equation for an excitatory network:

τa ȧ = a∞(s̃ · a − θ̃) − a. (1)

where s̃ and θ̃ represent the effective connectivity and ef-
fective average cellular threshold. These two quantities can
be slowly (compared to a) varying in an activity-dependent
way.

At steady state, ȧ = 0. This defines a surface, the a-
nullsurface (shown on Fig. 6(B), its equation being written
as

s̃(a, θ̃ ) = (θ̃ − ka · ln(1/a − 1))/a

or

θ̃ (a, s̃) = s̃ · a + ka · ln(1/a − 1).

If one of the two quantities θ̃ or s̃ is fixed, these become
the expressions s̃(a) or θ̃ (a) of the a-nullcline for the
s-model and the θ -model, respectively. In other words, the
a-nullclines are the projection of the a-nullsurface on the
planes θ̃ = θ0 or s̃ = w. The knees of the a-nullclines
correspond to the folds of the a-nullsurface. They are
transition points, i.e. when the system passes a fold/knee it
switches between two levels of activity. The projection of the
folds on the (s̃, θ̃ ) plane gives the curves of knees shown on
Fig. 5.

To derive the equations for the curves of knees we con-
sider the a-nullsurface θ̃ (a, s̃) but treat s̃ as a parame-
ter. Along the folds, ∂θ̃/∂a = 0. The last equality implies
that ∂θ̃/∂a = s̃ − ka/(a(1 − a)) = 0. This equation gives
the values of a at the knees as a function of s̃, alk/hk(s̃) =
0.5(1 ∓ √

1 − 4ka/s̃) with the indices lk/hk meaning “low
knee” / “high knee.” The curves of knees, shown in Fig. 5,
are then given by the equation

θ̃lk/hk(s̃) = s̃ · alk/hk(s̃) + ka · ln(1/alk/hk(s̃) − 1). (8)

The two curves of knee meet when alk = ahk = 0.5, i.e. for
s̃ = 4ka , for which θ̃ = 0.5 s̃ = 2 ka.

We can gain more insight into how s̃ affects θ̃lk/hk(s̃)
by calculating ∂θ̃/∂ s̃ = a + ∂a/∂ s̃ · s̃ − ∂a/∂ s̃ · ka/(a(a −
1)). Since at the knee s̃ − ka/(a(1 − a)) = 0, we find that

∂θ̃lk/hk(s̃)/∂ s̃ = alk/hk(s̃).

In the case of the θ -model (s̃ = w), this expression be-
comes dθlk/hk/dw = alk/hk and describes how the knees
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are affected by the connectivity parameter w. In general
alk � 0 and ahk � 1, we get dθlk � 0 (the low knee is al-
most unaffected by a change of connectivity) and dθhk � dw

(cf. Fig. 3(B), right). Similarly, for the s-model we get
dslk/hk/dθ0 = 1/(w · alk/hk), so the low knee varies highly
with θ0 and for the high knee dshk � dθ0/w (cf. Fig. 3(A),
left).

B. Conditions for bistability

Bistability is defined by the existence of two stable states for
a range of value of the slow variable of interest. The bistable
zone is the zone between the two knees (between the folds
for the model with two slow variables). The conditions for
bistability is thus the condition for the two knees to exist.
For the θ -model, the knees are defined from the nullcline
equation θ (a) by dθ /da = 0, so w − ka/(a(1 − a)) = 0, as
shown above. Thus, the condition for bistability is that

w > 4ka .

If we consider the s-model, we similarly define the knees
of the a-nullcline by ds/da = 0, i.e. 1/(1 − a) + ln(1/a −
1) = θ0/ka . For a varying between 0 and 1, 1/(1 − a) +
ln(1/a − 1) ≥ 2. From this, we obtain the following condi-
tion for bistability in the context of the s-model:

θ0 > 2ka .

For the model incorporating both slow processes,
but reduced when the two slow time constants are
equal (so θ � 1 − s), the equation of the a-nullcline be-
comes: s(a) = (1 + θ0 − ka · ln(1/a − 1))/(1 + w · a). At
the knees, ds/da = 0, implying that (1 + w · a) · ka/(a(1 −
a)) − w · (1 + θ0 − ka · ln(1/a − 1)) = 0. This can be
rewritten as 1 + θ0 = (ka/w) · 1/(a(1 − a)) + ka · (1/(1 −
a) + ln(1/a − 1)). Since a varies between 0 and 1, 1/a(1 −
a) ≥ 4 and 1/(1 − a) + ln(1/a − 1) ≥ 2. Thus, θ0 and w

must satisfy:

1 + θ0 ≥ wc/w + θc

where wc = 4ka and θc = 2ka .

C. Comparison of the ranges of variation of the two
variables

We now consider the model with both slow processes (θ -s-
model). We sum the equations describing the variations of
the two slow variables (Eqs. (2) and (3)), noting as in Results
that s∞(a) + θ∞(a) � 1. We get τs ṡ + τθ θ̇ � −s − θ + 1.
We then integrate this relationship over, say, the silent phase.
We get: τs �s − τθ �θ � (−<s + θ>S P + 1) · TSP, where
the notation <>S P indicates average over the silent phase

and �x represents the size of the range of variation of the
slow variable x. Because the variations of s and θ follow a
similar (mirror image) time course, the relationship obtained
in Results <s + θ> � 1 also holds for each phase of the
activity. Thus, we obtain the following relationship between
the ranges of variation of the slow variables:

�s/�θ � τθ/τs .

If s is twice as fast as θ , it will cover a range twice as large
during each phase of the activity.

D. Duration of active and silent phase

Consider the θ -model. For a given w and θ0, we can cal-
culate alk/hk(w) and the values of θ at the knees: θlk/hk =
θ̃lk/hk(w) − θ0 from Eq. (8). From these values of θ at the
knees, we can derive an approximate formula for the duration
of the active and silent phases, using Eq. (3) that describes
the variations of θ : τθ θ̇ = θ∞(a) − θ . We chose the dynam-
ics of θ such that θ∞(a) � 1 during an episode (a � 1) and
θ∞(a) � 0 during the silent phase (a � 0).

Thus, during the silent phase, Eq (3) becomes τθ · θ �
−θ . We can integrate over the silent phase and obtain TSP

= τθ · ln(θhk/θlk). Similarly, we find TAP = τθ · ln((θlk −
1)/(θhk − 1)). We used these expressions to calculate %AP
= TAP/(TAP + TSP) as a function of s in Fig. 8.

E. Formal analogy between network and cellular models

The activity formulation of network models with emergent
oscillations used here is similar to the formulation for some
cellular oscillators. We start from the equation τa ȧ = a∞(w ·
a − θ0) − a. Instead of considering the firing rate, a, which is
a measure of the network activity (the mean firing frequency
averaged over a timescale of a few spikes), we could use a
measure of the (post-)synaptic drive that causes the neurons
to fire, V = w · a − θ0 (Pinto et al., 1996). The equation
giving the variations of activity with time becomes τa V̇ =
−V + w · a∞(V ) − θ0. Here, V is the (short-time averaged)
mean voltage of cells.

We note that this equation has the same form as a cellu-
lar current balance equation: τm V̇ = −V + ḡin · m∞(V ) +
Iapp, where τm is the membrane time constant, ḡin is the
maximal conductance of an inward current (normalized by
the leakage conductance), m∞ is the voltage-dependent acti-
vation function of this inward current and Iapp is the current
applied to the neuron (divided by the leakage conductance).
Note, the driving forces have been omitted, so it is in fact
current based, not conductance based as our notation sug-
gests. So, the analog of network connectivity w is ḡin and
the analog of the average cellular excitability of our network
model is −Iapp. As for the network model, the cellular model
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can be bistable, and activity can be switched from the high
and low states by two modulation variables: h, inactivation
of the inward current, which is the analog of s, fraction of
non-depressed synapses, in the network model; and n, acti-
vation of an outward current, which is the analog of θ in the
network model. A cellular model with both inward current
inactivation and activation of an outward current, by anal-
ogy to our network model with both synaptic depression and
cellular adaptation (Eq. (1sθ )), would be:

τm V̇ = −V + ḡin · h · m∞(V ) + ḡout · n + Iapp.

Given the analogous formulation, the results presented
here for excitatory networks are applicable to relaxation
models of cellular pacemakers (h and n are slow compared to
V). Note that we have not considered variations of the analog
of the parameter ḡout in this work.
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