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Abstract Recent recordings from spinal neurons in hatch-
ling frog tadpoles allow their type-specific properties to be
defined. Seven main types of neuron involved in the control
of swimming have been characterized. To investigate the sig-
nificance of type-specific properties, we build models of each
neuron type and assemble them into a network using known
connectivity between: sensory neurons, sensory pathway in-
terneurons, central pattern generator (CPG) interneurons and
motoneurons. A single stimulus to a sensory neuron initiates
swimming where modelled neuronal and network activity
parallels physiological activity. Substitution of firing prop-
erties between neuron types shows that those of excitatory
CPG interneurons are critical for stable swimming. We sug-
gest that type-specific neuronal properties can reflect the
requirements for involvement in one particular network re-
sponse (like swimming), but may also reflect the need to
participate in more than one response (like swimming and
slower struggling).
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1 Introduction

In many neuronal circuits, in both invertebrates and ver-
tebrates, different neurons have rather different properties.
We would like to understand the significance of these type-
specific differences. However, particularly in the complex
vertebrate central nervous system, the normal activity of
neurons during behaviour is difficult to study. To investigate
the significance of different neuronal properties we need to
investigate a region with different types of neuron where
the normal activity of the neurons and the region are known.
The spinal cord of vertebrates has a range of different neuron
types with different properties. In some simpler cases like
the lamprey (Parker, 2001; Grillner and Wallen, 2002), and
the early developmental stages of the zebrafish (Higashijima
et al.,, 2004a, b) and frog Xenopus (Roberts, 2000), there
is information on the neuron types and their activity dur-
ing swimming. In lamprey and Xenopus this has allowed
modelling of the spinal networks underlying the generation
of swimming activity and the testing of hypotheses on the
neurons and cellular mechanisms responsible (e.g. Kotaleski
et al., 1999; Tunstall et al., 2002). So far, while some mod-
elling has introduced stochasticity (Hellgren et al., 1992), it
has not addressed the significance of the different properties
of the component neuron types, in part because detailed data
were not available.

The newly hatched Xenopus tadpole, with only a couple
of thousand neurons in the spinal cord, provides a suitable
system to study the significance of type-specific differences
between neurons. These neurons can be divided into 8 dis-
tinct classes on the basis of clear anatomical differences (in
dorso-ventral soma position, dendrite distribution and axonal
projections; Roberts, 2000; Li et al., 2001). Nothing is known
about the function of one class of possible neural canal re-
ceptor neuron (Dale et al., 1987). For the remaining neuron
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classes, using single-cell recordings (including a new whole-
cell patch recording method (Li et al., 2004c), in the spinal
cord of immobilized tadpoles, we have defined the type-
specific properties of individual neurons whose anatomical
features were revealed by neurobiotin injection. These in-
clude: their passive and active responses to current injection,
the transmitter pharmacology of synapses they make and re-
ceive (where some synaptic conductances have been studied
in voltage-clamp recordings), and their activity during re-
sponses to sensory stimuli. Such detailed information has
shown that 7 of the anatomical classes correspond to distinct
functional classes: 1 type of sensory neuron innervating the
skin (Clarke et al., 1984; Li et al., 2003); 2 types of sensory
pathway neuron that have a role in the initiation of swim-
ming (Li et al., 2003, 2004b); 3 types of premotor neuron
that are active during swimming and may be components of
the swimming central pattern generator (Dale, 1985; Liet al.,
2002, 2004d, 2006); and motoneurons (Soffe and Roberts,
1982; Roberts et al., 1999). These detailed studies have re-
cently provided evidence of functional sub-types within two
anatomical classes (Li et al., unpublished). We should em-
phasize that, apart from the primary sensory neurons (Ribera
and Nguyen, 1993), there is presently no evidence on the
ionic channels that different specific types of Xenopus spinal
neurons possess.

Like the different locomotor gaits shown by mammals, the
neuronal network in the young tadpole spinal cord is able to
generate two rather different patterns of motor output. In re-
sponse to brief touch to the skin, the tadpole swims using
alternating lateral bends in the trunk that move in a wave
from head to tail at frequencies from 10 to 25 Hz (Kahn
et al., 1982). On the other hand, when tadpoles are held
and the skin stimulated continuously, they struggle, making
stronger, slower bends at 2 to 5 Hz that move from the tail to
the head (Kahn and Roberts, 1982). In immobilized tadpoles,
very different patterns of activity in spinal interneurons and
motoneurons can be recorded during these two responses.
During swimming spinal neurons fire a single action po-
tential on each cycle but during struggling they fire high
frequency bursts lasting nearly half a cycle (Soffe, 1993).

Our aim is to investigate the significance of type-specific
properties of neurons in the operation of neuronal networks,
using the spinal neurons and networks responsible for gener-
ating swimming activity in young tadpoles. Previous models
of the hatchling Xenopus tadpole spinal swimming circuits
have assumed that all CPG neurons have the same prop-
erties (Roberts and Tunstall, 1990; Dale, 1995b; Tunstall
et al., 2002; Dale, 2003). Data from recent recordings show
that this assumption is wrong: different neuron types show
clearly distinct properties. This puts us in a nearly unique
position for a vertebrate where we can make models of each
individual type of neuron and their synapses on the basis of
available physiological data. We then use these individual
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neuron models to construct a sensory network coupled to
a motor pattern generating network. In response to a brief
“sensory” stimulus, this network reliably produces the swim-
ming behaviour typical for the young Xenopus tadpole. By
using neurons with clearly distinct properties based on phys-
iology, we were able to use realistic conductance strengths
for the different synaptic connections in this network. By
changing the properties of neurons in the network, we inves-
tigate the significance of the type-specific properties of the
neurons in the generation of swimming activity. The simple
networks used here are a first step towards more complex
population models that can also generate the tadpole’s strug-
gling activity (Li et al., in prep).

2 Methods
2.1 Physiological measurements

Methods for recording neuron activity and responses have
been described recently (Li et al., 2006). Briefly, Xenopus
tadpoles at stage 37/38 (Nieuwkoop and Faber, 1956) were
anaesthetised and then immobilized in «-bungarotoxin. Af-
ter this tadpoles were dissected to reveal neuron cell bodies
while pinned onto a rotatable rubber platform in a bath of
saline (concentrations in mM: NaCl 115, KC1 3, CaCl, 2,
NaHCO; 2.4, MgCl, 1, HEPES 10, adjusted with S M NaOH
to pH 7.4). Whole-cell patch electrodes contained 0.1% neu-
robiotin in an intracellular solution (concentrations in mM:
K-gluconate 100, MgCl, 2, EGTA 10, HEPES 10, Na, ATP
3, NaGTP 0.5 adjusted to pH 7.3 with KOH). Recordings
from individual neurons were made under visual control us-
ing a x40 water immersion lens on an upright compound
microscope. The methods for fixation, neurobiotin staining
and recording of neuron anatomy have been described pre-
viously (Li et al., 2002). All experiments comply with UK
Home Office regulations and have been approved following
local ethical review.

2.2 Modelling
2.2.1 Individual neurons

To begin the modelling of individual neurons, we started
from previous models built specifically for Xenopus spinal
neurons (Roberts and Tunstall, 1990; Dale, 1995a, b). We
used a single compartment model since these small neu-
rons have very short dendrites and, if the axon is ignored,
are electrically compact (Dale, 1995b; Wolf et al., 1998).
Some parameters were taken directly from experimental data
on individual neuron types (e.g. leak conductance and re-
versal potential). However, since membrane currents have
not yet been characterized for the different neurons types,
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Table 1 Measured properties for the different neuron types based on whole-cell recordings (medians, based on 5-20 neurons of each type)
alN MN dIN RB dlc dla cIN

Input resistance (MS2) 740 405 272 230 428 1436 206
Resting potential (mV) —54 —61 —51 —70 —66 —63 —60
Current threshold for firing (pA) 28 109 85 95 53 198
Action potential (AP) threshold (mV) —-29 —-26 —28 -25 —-35 —-32 -25
AP peak (mV) 27 26 29 40 28 37 32
AP width (ms) 1.8 0.9 1.9 1.5 0.5 0.75 0.8
Max. AP rise rate (mV/ms) 121 105 85 127 130 124
Max. AP fall rate (mV/ms) 97 77 76 137 100 101
Initial firing frequency (Hz) 24 41 97 29 71
Slope of frequency-current relationship (Hz/pA) 53 67 84
Afterhyperpolarization (AHP) trough (mV) —47 —42 —43 —44 —57 —43
AHP delay (ms) 1.8 2.3 6.9 1.3 2.1 1.5
Response to injected current RF* RF* S* S* AF* AF* DF*
Initial gap before delayed burst (ms) 167
Slope of gap-current relationship (ms/pA) —200

*RF = Repetitive Firing, S = Single spike, AF = Adapting Firing, DF = Delayed Firing.

in most cases we used “emerging” parameters obtained by
matching outputs of the model to physiological properties
measured for each neuron type. Information was available
from experiments on a wide range of these properties: neu-
ronal input resistance, resting potential, firing threshold, cur-
rent threshold for firing, action potential (AP) height and
width, maximum rise and fall rates of the action potential,
after-hyperpolarisation amplitude and delay, initial firing fre-
quency to long, constant-current input, and the effect of in-
creasing current on this frequency (see Table 1; Li et al.,
2002, 2004b, d, 2006).

The general equations are based on Hodgkin and Huxley
(1952). The differential equation for the voltage is:

av

CE = Ijyj + Iy, — Currents (D
C represents the cell’s membrane capacitance, I;,; repre-
sents experimentally injected current and Iy, the synap-
tic currents. Currents is the combination of all modelled
ion channel currents. The number of these depends on
the cell type, but all neurons have at least the following
currents:

Currents = gleak(v - Vleak) + gNahNam?\la(V - VNa)
+ gKfastanast(V - VKfast)
+ nglownKslow(V - VKslow) (2)

The currents include one leak current, one Na-current and
two K-currents, one fast and one slow. The Na-current has
both an activation and an inactivation component, while the
K-currents only have the activating part (so for present pur-
poses are assumed to be non-inactivating; cf Dale (1995b)).

The leak conductance (g.q) is the inverse of the measured
input resistance (rescaled to nS), and the leak reversal poten-
tial (Vjeqr) 1s given by the resting potential (clearly a mixed
current, since in all neurons it was less negative than the re-
versal potential for potassium). The maximum conductances
for sodium and potassium are based on Dale (Dale, 1995a, b),
and matching to experimental results. In the absence of de-
tailed measures, the neuronal input capacitance was assumed
to be the same for all neurons and was set to 4 pF. A, my,,
Nkfase and ngg,, are gate variables defining the rate of opening
and closing of specific membrane channels. Their behaviour
is defined by the equation:

d gate
dt

1
= t—(mx, — gate) 3)

Here gate is any of the above four variables, ¢ is time, 7_is
the time constant of the particular type of channel, and mx_
is the maximum conductance of this type of channel. 7_ and
mx_ are also defined by equations:

1
oatp 4)

o_

mx.= ———
o+ B-

where

Al+B1V
0= —
Cl+ exp(—DHV)
@)
A2+ B2V

T C2+exp(DgV)
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Here V is again the membrane potential; Ai, Bi, Ci, Di and Ei
are parameters to be set for each type of neuron and channel.

2.2.2 Synapses

The time evolution of each type of synapse is implemented
as the subtraction of 2 exponential functions, the opening
function o and the closing function c. These functions are
increased stepwise: every time a presynaptic spike is fired
(zero crossing), the synaptic functions are increased with the
fixed value of 10. Then the functions decay exponentially.

In Eq. (1), Iy, stands for the synaptic input. This is, for
neurons i and j, defined as:

Iyn(i, ) = Gmx (¢ — 0) (Er — V) CS (i j) (©6)

where Gmx and Er are the maximum conductance and the
reversal potential of that type of synapse respectively, V;
is the membrane potential of post-synaptic neuron, o and ¢
are the opening and closing functions of the synapse, and
CS(i, j) is the connection strength of this particular synapse.
The decay of the opening and closing function is described
by the equations

dc 1
¢
dt T,
@)
do 1
—_— = ——0
dt 7,

where the 7, and 7, are parameters for each type of synapse.

3 Results
3.1 Single neuron models

Our first objective was to build models of each of the known
spinal neuron types (Roberts, 2000). Spinal and caudal hind-
brain neurons that are active during swimming have been
classified into seven types. The sensory initiation pathway
consists of sensory RB neurons that innervate the skin and
excite two types of sensory pathway interneuron: dlc (dorso-
lateral commissural) INs cross to excite CPG neurons on the
opposite side and dla (dorso-lateral ascending) INs excite
CPG neurons on the same side. The CPG consists of exci-
tatory interneurons (dINs or descending INs; Li et al., 2006;
note that we have not separated these neurons into 2 classes
as was done by Li et al.), interneurons producing recurrent
inhibition (aINs or ascending INs) and reciprocal inhibition
(cINs or commissural INs), and finally motoneurons
(MNgs).

We have divided these neurons into four groups based on
their very clearly different and characteristic firing responses
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to injected current. We then set parameter values in order to
match each model to the physiological properties of each
individual neuron type. In life, the properties of individual
neurons within each type vary and without using population
models we cannot model this variability. Our aim was to
produce model neurons whose properties encapsulated the
main physiological features of each neuron type. This would
allow us to explore the significance of the different proper-
ties in the behaviour of the swimming circuit. Unless stated
otherwise, we used the generic equations above, and param-
eters based on Dale (1995b), but for simplicity we have not
used any calcium currents. All neurons have fast and slow
K channels. Where Dale used two discontinuous functions
to represent the potassium currents, we use two continuous
functions instead.

For all types of neurons, the measured parameters are
listed in Table 1 and the model neuron parameters are listed
in Tables 2 and 3. Input resistance and resting potential were
matched by setting the leak conductance and leak reversal
potential. To set the firing threshold, the D-parameters of
all currents, and some of the A-parameters, needed to be
changed from those of Dale. One method to adjust the firing
threshold (Roberts and Tunstall, 1990) involves decreasing
the spiking threshold by an amount X for all currents, as
follows:

A =A+X=*B

, ®)
D'=D+X
Then A" and D’ are the new values. In several model neurons,
we had to modify the maximum conductances of the ion-
channels to match recorded responses.

A detailed explanation of how all parameter settings were
obtained, is given in the Appendix. Here we restrict ourselves
to a short description of the neurons and example outputs
from model and physiology.

3.1.1 Repetitively firing neurons

aINs and MNs are most like Dale’s original modelled neurons
(1995b). They fire repetitively to sustained injected current
(Fig. 1), but there are differences, for example in input resis-
tance and firing frequency during current injection (Li et al.,
2002).

3.1.2 Single-spiking neurons

dINs and RBs fire a single, long-duration action potential at
the start of current injections and only rarely give any further
response (Fig. 2; Li et al., 2003, 2006). A unique property of
dINs is that they never fire repetitively to sustained current,
no matter how strong it is.
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Table 2 Parameters for all
modelled neurons: capacitance alN MN dIN RB dlc dla cIN
(in pE), the conductances (innS) 4.00 4.00 4.00 4.00 4.00 4.00 4.00
and reversal potentials (in mV)
of their currents g_Leak 1.3514 2.4691 3.6765 4.3573 2.3364 0.6964 4.8544
V_Leak —54.00 —61.00 —51.00 —70.00 —66.00 —63.00 —60.00
g_-Na 150.00 110.00 210.00 120.00 420.00 150.00 500.00
V_Na 50.00 50.00 50.00 50.00 50.00 50.00 50.00
g_Kfast 15.00 8.00 0.50 1.50 70.00 70.00 30.00
V _Kfast —80.00 —80.00 —80.00 —80.00 —80.00 —80.00 —80.00
g_Kslow 2.50 1.00 3.00 8.00 10.00 5.00 20.00
V _Kslow —80.00 —80.00 —80.00 —80.00 —80.00 —80.00 —80.00
g-A 30.00
V_A —80.00
Table 3 Detailed parameters for the currents in the modelled neurons
A B C D E
aIN/MN
alpha m_Na 8.67/13.26 (8.67) 0(0) 0.5 (1) —13.01/5.01 (—1.01) — 18.56/~12.56 (— 12.56)
beta m_Na 5.73 (3.82) 0(0) 1(1) —2.99/5.01 (9.01) 9.69 (9.69)
alpha h_Na 0.04 (0.08) 0(0) 0(0) 15.8/28.8 (38.88) 26 (26)
beta h_Na 4.08/2.04 (4.08) 0(0) 0.001 (1) —19.09/9.09 (- 5.09) —10.21 ~10.21)
alpha N_Kfast 3.1(3.1) 0(0) 1(1) —35.5~27.5=29.5) —9.3(=233)
beta N_Kfast 1.1/0.44 (0.44) 0(0) 1(1) 0.98/8.98 (6.98) 16.19 (16.19)
alpha N_Kslow 0.2 (0.16) 0(0) 1(1) —10.96/-2.96 (— 4.69) —7.74 =1.74)
beta N_Kslow 0.05 (0.04) 0(0) 1(1) —22.07/—14.07 (— 16.07) 6.1 (6.1)
dIN/RB
alpha m_Na 13.01 0 4/1 —1.01/—4.01 —12.56
beta m_Na 5.73 0 1 9.01/6.01 9.69
alpha h_Na 0.06/0.04 0 0 30.88/29.88 26
beta h_Na 3.06/2.04 0 1 —7.09/—8.09 —10.21
alpha N_Kfast 3.1 0 1 —31.5/-325 —-93
beta N_Kfast 0.44 0 1 4.98/3.98 16.19
alpha N_Kslow 0.2 0 1 —6.96/—7.96 —7.74
beta N_Kslow 0.05 0 2 —18.07/—19.07 6.1
dlc/dla
alpha m_Na 13.26 0 3/1.2 —3.01/-9.01 —12.56
beta m_Na 5.73 0 1 6.01/1.01 9.69
alpha h_Na 0.06/0.04 0 0 19.88/14.88 26
beta h_Na 4.08/2.04 0 0.001 —8.09/-13.09 —10.21
alpha N_K 3.1 0 1 —32.5/-37.5 —-93
beta N_Kfast 1.1 0 2/0.6 3.98/—1.02 16.19
alpha N_Kslow 4 0 1 —53/-58 —7.74
beta N_Kslow 0.01 0 1 47/42 6.1
cIN
alpha m_Na 13.26 0 0.1 —10.01 —12.56
beta m_Na 5.73 0 1 0.01 9.69
alpha h_Na 0.06 0 0 23.8 26
beta h_Na 3.06 0 0.001 —14.09 —10.21
alpha N_Kfast 3.1 0 1 —325 —-93
beta N_Kfast 1.1 0 1 3.98 16.19
alpha N_Kslow 0.2 0 1 —7.96 —7.74
beta N_Kslow 0.05 0 0.5 —19.07 6.1
alpha m_A 12.025 0 0.5 —10.01 —12.56
beta m_A 14.325 0 1 —8.01 9.69
alpha h_A 0.0001 0 1 15.88 26
beta h_A 10 0 500 —22.09 —10.21

Note: The original parameters from Dale (1995b) are added between brackets in the top table (with aIN parameters).
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Fig.1 Responses of repetitively firing neuron model. (A) Output of model MN firing in response to injected current. (B) Physiological measurement
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Fig. 2 Responses of single-spiking neuron models to injected current. (A) RB. (B) dIN. (C) Wide dIN spike (thick dashed line) superimposed on
thin dlc spike (thin solid line). (D) Physiological measurement from single-spiking neuron (dIN)

A property of dINs, which turns out to be crucial in net-
work behaviour, is that they do not fire on rebound when
negative current pulses are given at rest but have the ability
to fire on rebound if a negative current pulse of sufficient
amplitude is given during depolarisation (see Fig. 4(E) in Li
et al., 2006). This property is also present in our dIN model
(Fig. 3). It is not known if this property is exclusive to dINs.
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3.1.3 Repetitively firing neurons with adaptation

When current is injected into sensory pathway neurons (dlcs
and dlas), they fire repetitively, but the frequency drops
and firing stops quickly (Fig. 4); (Sillar and Roberts, 1990;
Li et al., 2004b). To model this, the slow K-current was
modified.
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Fig. 3 Rebound firing in dINs. (A) dINs do not fire rebound spikes when negative current is given at resting potential. (B, C) They do fire on
rebound after a negative current pulse during depolarisation, if the pulse is of sufficient amplitude
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Fig. 4 Responses of repetitively firing neuron model with adaptation. (A) Output of model dlc firing in response to injected current. (B)
Physiological measurement of repetitively firing neuron with adaptation (dlc)

3.1.4 Delayed bursting neurons

Neurons of one type (cINs) exhibit a delayed burst in re-
sponse to constant input current (Aiken et al., 2003); see
Fig. 4(B) in Li et al. (2004c¢). Typically, this burst follows a
delay which is preceded by a single, initial spike (Fig. 5). To
model this property, a further K-current was used, that has
both an activation and an inactivation component (Gerstner
and Kistler, 2002). A current of this type has previously been
described for Xenopus neurons developing in culture (Ribera
and Spitzer, 1990).
This current results in an extra term added to Eq. (2).

Currents = gieat(V — Vieat) + gnalnamingV — Via)
+ 8xfastNkfast(V — Vigust) + &KstowNKsiow
X (V = Visiow) + gahamy(V = V)
€)

3.2 Synapse models

In our network, we use 3 different types of chemical
synapses: glutamatergic AMPAR, and NMDAR mediated
excitatory synapses, and glycinergic inhibitory synapses.
The NMDAR mediated excitation is voltage dependent
(Soffe and Roberts, 1989; Roberts and Tunstall, 1990; Dale,
1995b). Although dINs are known to corelease acetylcholine
and glutamate we have not included a separate acetylcholine
component. The time course of the acetylcholine current is
similar to the AMPA component so we have combined the
two as a single “fast” component (Li et al., 2004a).

3.2.1 Synapse parameters
Table 4 lists the parameters used in the synaptic equations
described in Section 2.2.2. Some modifications in the values

for 7, and 7, were made to fit the experimental data, with the
results shown in Figs. 6 and 7. All inhibitory synapses are
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Table 4 Parameters used for

chemical synapses Inhibitory AMPA NMDA References
Gmx (nS) 0435 0.593 0.29 Galarreta and Hestrin (1997), Gotz et al.
The parameters were based on (1997), Chapman et al. (2003)
the references listed, but some 7, (ms) 1.5 0.2 5 Dale (1995b)
were modified slightly to fit the 7. (ms) 4 3 80 Dale (1995b)
experimental data. The Er (mV) —52(IN —64) 0 0 Roberts and Tunstall (1990), unpublished
unchanged parameters are in measurements
italics.
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Fig. 5 Responses of delayed firing neuron model. (A) Output of model cIN firing in response to injected current. (B) Physiological measurement

of delayed firing neuron (cIN)
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Fig. 6 Post-synaptic potentials at synapses. Lighter straight line = re-
sponse of a leak-only neuron model (no ionic currents involved),
Darker jittery line = physiological measurements. (A) Inhibitory post-
synaptic potential. (B) Fast excitatory post-synaptic potential with 50%

the same but in excitatory synapses the ratios of AMPA to
NMDA conductances varied (Fig. 6(B) and (C); see Section
3.4.2).

3.2.2 NMDA voltage dependence

Voltage dependence of the NMDA synapses is mediated by
Mg”* ions outside the neuron which at resting membrane
potential block the NMDA receptor channels, until the post-
synaptic neuron is sufficiently depolarized to eject the Mg>*
ions (Nowak et al., 1984). The voltage-dependent NMDA
synaptic current is defined by:

) Springer

Time (ms)

60 80 100 -600 Sb 160 1%0 200

Time (ms)
AMPA and 50% NMDA. This ratio is comparable to e.g. the RB to dlc

synapse. (C) Slow excitatory post-synaptic potential with 35% AMPA
and 65% NMDA. This ratio is comparable to the dIN feedback synapse

Iyui. j) = Gma(c — o)(Er — V))CSGi, )X (10)
X is the voltage dependence factor, defined as:
X =(1+0.1{Mg} exp(—O.O8Vj))_1 1n

This implementation is based on Lisman et al. (1998).
{Mg} is the extracellular Mg?* concentration, which is ap-
proximated by the constant 0.5 mM. The voltage dependency
of the NMDA current is shown in Fig. 7 (c.f. Soffe and
Roberts, 1989).
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synaptic current plotted against the membrane potential of a postsy-
naptic cell modelled with only leak conductances. This plot shows the
progressive reduction in synaptic current below ~ — 35 mV reflecting
the “negative slope conductance” produced by widely reported Mg?*
block of the NMDA channel
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Fig. 8 Post-inhibitory rebound in dINs. Top left: diagrams showing
small networks used to create plots A, B and C. (A) dIN response to fast
excitatory input (main component is AMPA from neuron e), followed
by inhibitory input from a cIN. (B) dIN response to fast excitatory in-

3.3 dIN rebound properties in small networks

Experimental work has given direct evidence that the exci-
tatory dINs play a key role in driving the other neurons that
are active during the swimming rhythm (Li et al., 2006).
However, since these neurons fire only a single spike when
depolarised, it is important to consider how they can be made
to fire further spikes before exploring the operation of the
whole swimming circuit.

As mentioned above, dINs can fire spikes on rebound
following negative current injection, provided they are de-
polarised (Li et al., 2006), and it has been proposed that this
property may have a key role in rhythm generation. Neurons
depolarized by synaptic excitation could fire on rebound af-
ter reciprocal inhibition from neurons on the opposite side
of the spinal cord (Roberts and Tunstall, 1990). We there-
fore tested if the model dIN would fire on rebound following
synaptic inhibition. Consider a dIN receiving a fast excita-
tory synaptic input, followed by an inhibitory one. If the IPSP
occurs near resting potential it will not cause any rebound

dIM - model

Voltage (mV)

S0k

0 20 40 80 80 100
Time (ms)

diN - model

Voltage (mV)

0 20 40 80 80 100
Time (ms)

put, followed by slow feedback excitation (main component is NMDA).
(C) dIN response to fast excitatory input, followed by slow feedback
excitation and then inhibition, causing a rebound spike
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spike (Fig. 8(A)). However, when slow feedback excitation
depolarizes the dIN, it will still only fire a single spike after
the fast excitatory synaptic input (Fig. 8(B)), but it will fire
a rebound spike after the IPSP (Fig. 8(C)).

3.4 Swimming network
3.4.1 Activity of spinal neurons—network diagram

In our model of the circuitry for swimming and its sensory
initiation, single neurons of each type are used to represent
what in the real animal are populations of similar neurons.
The network architecture is based on the anatomical evi-
dence on axonal projections and the synaptic connections are
based on results from paired recordings. The RB neurons are
touch sensory neurons innervating the skin. Thus, when the
Xenopus skin is touched, the RB neurons fire (Clarke et al.,
1984). The RB neurons excite sensory interneurons (dlc and
dla), which relay the signals through excitatory synapses to
the contralateral and ipsilateral side, respectively (Li et al.,
2003, b). Here they synapse onto all CPG neurons, including
dINs (Lietal.,2003). The dINs in turn excite all CPG neurons
on their own side (Li et al., 2006). The other CPG neurons
are alNs, which provide ipsilateral, recurrent inhibition (Li
et al., 2004d), cINs, which provide contralateral, reciprocal
inhibition (Dale, 1985; Soffe et al., 2001) and MNs, which
connect to the muscles and cause the swimming movements
(Soffe and Roberts, 1982).

The model network (Fig. 9) has a left and right side but
no length and represents the neurons and connections found
in the caudal hindbrain and rostral spinal cord. All ipsilateral
synapses were assumed to have a combined axonal-synaptic

Glutamate 4

Fig. 9 Diagram of the neuronal network which generates swimming.
Larger circles represent each type of neuron, small triangles stand for
excitatory synapses and small circles for inhibitory synapses. A synapse
to a ‘box’ means the connection is made to all neurons inside the box

Glycine @
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delay of 1 ms, all commissural synapses were given a delay
of 2 ms as they are made from axons which have crossed
from the other side of the spinal cord.

3.4.2 Synaptic conductances

During swimming, some of the maximum conductances
were measured directly in physiological experiments
(Table 5, on the left). Of those that were not (or could not

Table 5 Physiological maximum conductances (in nS) for synaptic
connections based on direct voltage clamp measurements and estimates
(see notes)

Measured Model

Source Target AMPA NMDA A:Nratio AMPA NMDA
RB dlc 5.2! 0.17% 30.0° 6.77 0.16

dla 52! 0.17* 30.0* 3.38 0.16
dlc CPG 1.3 0.9% 1.56 2.92 0.96
dla CPG 1.37 0.97 1.57 2.55 1.08
dIN alN 1.6% 0.5° 3.34 1.46 0.54

cIN 3.6 1.1° 3.34 8.51 1.05

dIN 4.28 429 1.04 4.38 6.86

MN 5.18 1.5° 3.34 3.89 1.47

Inhibition Model

cIN alN 2.98 2.86

cIN 2.98 2.86

dIN 8.18 9.53

MN 3.98 3.81
alN cIN 1.0¢ 111

dIN 2.7¢ 2.70

MN 1.3¢ 1.27

dlc 5.08 6.36

dla 5.08 6.36

!'Calculated from peak current in response to skin stimulation and as-
suming a reversal potential of 0 mV.

2Calculated using AMPA conductance and published AMPA/NMDA
ratio (Li et al., 2003).

3From Li et al. (2003).

4Calculated from measured AMPA conductance, assuming the same
AMPA/NMDA ratio as for RB-dlc.

SCalculated from published peak current (Li et al., 2003) in response
to contralateral skin stimulation.

Calculated from measured AMPA conductance and published
AMPA/NMDA ratio (Li et al., 2003).

7 Assumed to be the same as dlc-CPG but unconfirmed.

8Peak AMPA currents measured during swimming; conductance cal-
culated assuming a reversal potential of 0 mV. For these connections,
AMPA is actually total “fast” excitation (AMPA + nACh corelease;
Liet al., 2004).

Calculated from measured AMPA conductance and published
AMPA/NMDA ratio (Li et al., 2004).

ARecalculated from data used in Li et al. (2004).

BCalculated from maximum peak currents and reversal potentials mea-
sured at mid-cycle during swimming.

CEstimated using cIN values and assuming a cIN/aIN ratio of 3.
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Fig.10 Swimming activity (A) Voltage traces of all neurons in the net-
work during sustained swimming, produced using the parameter values
in Tables 2-5. (B) Comparison of model output (sequences expanded
from A) to physiologically recorded swimming activity of different

be) directly measured, estimates were made (for example,
using AMPA:NMDA ratios measured from unitary synaptic
potentials). The synaptic strengths in the model swimming
network were set initially to produce conductances whose
peak values during swimming (Table 5, on the right) ap-
proximate the measured (or estimated) values. These values
measured (or estimated) for a particular type of synaptic con-
nection were actually the sum of synchronous inputs from
a population of neurons of the same type. Since popula-
tions of neurons are represented as individual neurons in
the model, each connection type was represented as a sin-
gle synapse whose conductance, as in a real neuron, was
equivalent to that produced by input from a population of
neurons.

CPG neuron types. (C) dIN firing leads cIN and MN firing on each
swimming cycle and alN firing is relatively late. Data expanded from B
(grey bars). (D) With the strength of dIN feedback excitation reduced,
swimming is sustained for only 4-5 cycles

3.4.3 Swimming result

Unlike previous models of the spinal cord, which lacked sen-
sory pathway neurons, a single “stimulus” to one RB neuron
(on the right side), leading to a single RB action potential,
makes the network enter a swimming state, where left and
right sides fire alternating spikes. Exactly as in physiological
experiments, the side opposite the stimulus (left) is active first
and the firing rate is about 20 Hz (Fig. 10(A)). As well as pro-
ducing a clear swimming rhythm, the activity patterns of dif-
ferent neuron types resemble those seen physiologically, in a
number of important respects (as shown in Fig. 10(B)). Ac-
tivity in the dINs is clearly different to that in the other CPG
neurons, with a stronger background (tonic) depolarisation
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Fig. 11 Surface plot of network swimming frequency, for different
maximum conductance values of dIN feedback NMDA excitation and
cIN-dIN inhibition. The gray area (both lighter and darker) has reliable
swimming at a realistic frequency (15 to 25 Hz)

and more prominent reciprocal, mid-cycle IPSPs, followed
on each cycle by rebound firing (Li et al., 2006). In contrast:
the background depolarisation in the cINs, alNs and MNss is
much smaller, and the mid cycle inhibition is hardly visible
as the membrane potential is close to the inhibitory reversal
potential (Li et al., 2002, 2006). In these neurons the de-
polarisation is not sufficient for any to fire repetitively (as
they are capable of doing to sustained current), or to fire on
rebound. Instead, it is the relatively prominent fast excitation
from the dINs that drives their single spike on each cycle. As
a result, firing in the dINs leads firing in the other neurons
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Fig. 12 Influence of dIN feedback NMDA excitation and cIN-dIN
inhibition on swimming. (A) Surface plot of swimming frequency, for
different maximum conductance values of dIN feedback NMDA and
AMPA excitation. (B) Surface plot of swimming frequency, for differ-
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on the same side (Fig. 10(C)). The relatively weak excitation
of alNs means that they fire relatively late on each cycle, as
described experimentally (Li et al., 2002).

If the level of excitation from dINs was reduced, similar
swimming activity was seen but, as in “spinalised” animals
where excitation is similarly thought to be reduced (Roberts
et al., 1985), activity fails after a few cycles (Fig. 10(D)).

To test the stability of the network, we varied the ampli-
tude of the NMDA-component of the dIN feedback connec-
tion and of the cIN-dIN inhibition independently to establish
the range over which swimming occurs (Fig. 11). These
synapses were chosen because they together control the re-
bound firing which drives the swimming network. In the gray
area (both lighter and darker), there is stable swimming: the
MNs give alternating output in the normal frequency range
for swimming (15 to 25 Hz). Broadly: as the strength of dIN
feedback excitation is increased from its lowest value, the
frequency and number of swimming cycles increases until it
becomes self sustaining; increasing the cIN-dIN inhibition
decreases the frequency.

The strengths of other synapses can also play important
roles in the network, but these are not as crucial to the pro-
duction of alternating firing as the rebound firing mechanism.
For example in Fig. 12(A), a frequency plot is shown for the
swimming network, when varying the AMPA and NMDA
components of dIN feedback excitation. While variation in
the NMDA strength clearly influences swimming frequency,
variation of the AMPA strength has much less effect. Figure
12(B), similarly shows that varying cIN-dIN inhibitory con-
ductance results in significant changes in swimming output,
whereas varying cIN-cIN inhibition doesn’t have any effect
on swimming frequency.
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Fig.13 Frequency plot where dINs have the repetitive firing properties
of aINs. The gray area (both lighter and darker) has realistic swimming
output (15 to 25 Hz) and the black area has high frequency output, with
synchrony between the two sides

3.5 Testing the importance of type-specific neuron models
3.5.1 Importance of single-spiking property of dINs

To investigate the importance of type-specific individual neu-
ron models, we have focussed on the dINs. They provide ex-
citation to drive the firing of the other active neurons on the
same side, provide feedback excitation within each side, and
receive reciprocal inhibition from contralateral cINs. These
connections are crucial to allow the dINs to fire on rebound
and therefore to drive swimming. Having established the sta-
ble area of swimming with dINs in the network (Fig. 11), we
changed the firing properties of the dINs.

We first gave them the repetitive firing properties of aINs.
This led to unstable activity. The frequency plot (Fig. 13)
shows that the area of stable swimming (2 levels of gray) is
partly enclosed by an area of high frequency with synchrony
between the two sides (black). Comparing this to Fig. 11,
shows that replacing the dINs by aINs reduces the area of
stable swimming, and causes a large area of synchronous
firing on both sides of the body which would not lead to
meaningful behaviour (see Fig. 15).

When dINs were given the properties of cINs they were
unable to fire on rebound unless unrealistically high con-
ductances were used, and in those cases, only synchrony
or unstable firing patterns were produced. Substituting the
properties of dINs suggests that their type-specific “single-
spiking” properties are important for the generation of stable
swimming in this network model.
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Fig. 14 Surface plot of swimming frequency with all neurons hav-
ing dIN properties. The gray area (both lighter and darker) has stable
swimming at a realistic frequency (15 to 25 Hz)
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Fig. 15 Example network output when alNs are removed. The net-

work exhibits synchronous firing on both sides of the body, instead of
alternating spikes

3.5.2 Importance of different neuron types

Since previous model networks have used a single generic
neuron model (Roberts and Tunstall, 1990; Dale, 2003; Li
et al., 2006), we made a network where all neurons had
the same properties. In this case, our generic neuron model
had the single-spiking property of dINs, rather than show-
ing repetitive firing (as in Dale, 1995b), since our modelling
already suggested this was a key feature. Figure 14 shows a
reliability surface for this network. There is swimming ac-
tivity in about the same parameter region as in the regular
swimming network (Fig. 11). This is perhaps not surprising,
given that all CPG neurons typically fire only once per cycle
during swimming. However, it does raise the question of why
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most of the CPG neurons can fire repetitively (see Discus-
sion).

3.5.3 Importance of alNs in the swimming network

The key neurons in the swimming network appear to be the
dINs providing excitation and the cINs providing reciprocal
inhibition. We know that, in addition, aINs provide recur-
rent inhibition to CPG neurons (Li et al., 2004d), and this
inhibition is particularly prominent as swimming is initiated.

When alNs are removed from the model network by set-
ting their synaptic conductances to zero, the initiation of
swimming always fails, leading only to high-frequency syn-
chronous firing of MNs on both sides of the body. An ex-
ample output is shown in Fig. 15. This is the case even after
varying several other synaptic conductances: the dlc/dla-dIN
AMPA connection, dIN-dIN NMDA connection and cIN-
dIN inhibitory connection were all varied over wide ranges,
without producing good swimming behaviour. We can ex-
plain this role of aINs as follows. Following stimulation of
the right sensory RB neuron in our model, the right dla and
dIN both excite the right aIN which fires quite quickly, and
prevents the right cIN and MN from firing. Thus only the
left cIN and MN fire, leading to rebound spiking in the right
dIN, and swimming is started. When the aINs are removed,
this process, that ensures swimming starts on only one side,
is lost.

By increasing the dIN-aIN synaptic connection strength
significantly (by a factor of 4), one can stop the network
swimming: both aINs fire much sooner in the cycle, before
the cINs do, and suppress the cIN spike. Thus any reciprocal
inhibition is stopped, and the opposite dIN will receive no
inhibition from which to fire on rebound. A similar effect is
seen when the strength of aIN-CPG inhibition is increased
sufficiently.

3.6 Role of alNs in the sensory pathway

In addition to their connections to other pattern generator
neurons, aINs play a role in controlling sensory pathways.
During swimming, sensory input from the skin via RB neu-
rons is inhibited at certain phases of the swim cycle so that it
does not lead to responses that are in conflict with swimming
(Sillar and Roberts, 1988). We now know that this gating in-
hibition of dlc and dla interneurons comes from alNs (Li
et al., 2002). Since these connections are a part of our model
network, sensory gating can operate. If the RB neuron gets an
extra stimulus during swimming, the timing of the stimulus
in the swimming cycle determines whether the dlas and dlcs
will fire (Fig. 16). Only if they fire will their excitation reach
the CPG and lead to an increase in swimming frequency
(Fig. 17).
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Fig. 16 Gating of sensory transmission from RB to dlc. Experiments
done in the complete network model, but only the output of the three
most important neurons is shown. (A) aIN spike near the start of a cycle
of swimming (phase 0). (B) Series of spikes in RB from separate stimuli
given at different times relative to the aIN spike. (C) depending on the
relative timing of aIN and RB spikes, dlc firing can be suppressed by
the aIN inhibition

4 Discussion

In detailed modelling, based on the physiology of neuronal
networks, the goal is to match a real-life system as closely
as possible, to investigate how it works. Choices always
have to be made on the level of detail, and recently it has
become clear that even in larger neuronal model-networks,
the properties of individual neurons can play an important
role (Bem et al., 2005; Jezzini et al., 2004). Our aim was to
use neuron and neuronal network modelling to investigate
the significance of the type-specific differences in properties
of spinal neurons in the swimming network of the young
Xenopus tadpole.

We have based our neuron modelling on data from Dale
(1995a) who made whole-cell patch recordings from iso-
lated Xenopus spinal neurons and defined the characteristics
of their voltage-gated currents. On the basis of this data and
the assumption that spinal neurons all had similar proper-
ties, Dale built a generic CPG-neuron (Dale, 1995b) which
was then used to model different neuron types in the spinal
CPG network by giving them different output synapses. His
generic neuron model fires repetitively in response to near
threshold injected current at frequencies just higher than
swimming frequencies. As a result, when these neurons are
connected into a reciprocal inhibitory half-centre model of
the spinal CPG, it can generate alternating swimming activity
in the normal frequency range (Dale, 2003).

More recent, in situ whole-cell recordings show that dif-
ferent spinal neuron types have type-specific properties that
include different spike firing properties (Aiken et al., 2003;
Li et al., 2002, 2003, 2004b, d). There is broad agreement
about the spike firing characteristics of RB sensory neurons,
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Fig. 17 Effects of sensory gating during swimming. Two examples
of swimming runs, in which the RB gets a second stimulus during
swimming (). (A) The second RB spike causes the dlc and dla to
fire, influencing the behaviour of the whole network (cINs and MNs

sensory pathway interneurons and reciprocal inhibitory cIN
interneurons. However, Aiken et al. (2003) suggest that ex-
citatory CPG dINs fire repetitively on the basis of recordings
from 5 neurons identified by activity during swimming and
possession of a descending axon. In contrast, our evidence
shows that dINs fire a single characteristically long-duration
spike to current (Li et al., 2006). It is based on 103 paired
recordings from dINs with anatomy and the direct physio-
logical demonstration that these neurons excited more caudal
spinal CPG neurons.

Using our physiological evidence on the properties of both
neurons and their synapses, we have built detailed models for
each individual type of neuron in the Xenopus tadpole spinal
cord. We have modelled 7 types of neurons, which exhibit
4 very distinct types of firing response to injected current,
but which all differ further for example in resting poten-
tial, input resistance and spike shape. We have also used
realistic models for synaptic connections, incorporating dif-
ferent channel opening and closing rates, and the voltage
dependence in NMDA receptor channels. Using these neu-
rons and synapses and their known patterns of connectivity,
we have made a point model of the rostral spinal network
of the young Xenopus tadpole with left and right sides but
no length. When the measured physiological conductances
were closely matched, single stimuli to the sensory neuron in
this network were able to initiate swimming activity. Despite
what may seem fairly radical simplifications, our model neu-
rons generate voltage records that are a remarkably good fit
to real recordings from the different types of neuron during
swimming (see Fig. 10). Also, we know from lesion studies
that a very short region of the CNS can generate prolonged
swimming (Li et al., 2006). In such short regions spike ac-
tivity within each neuron class is nearly synchronous, so

150 200 250
Time {(ms)

0 50 100 300

omitted for clarity): the frequency of the following two cycles is in-
creased. (B) The RB spike now coincides with inhibition of the dlc and
dla by the ipsilateral aIN. As a result, their firing is suppressed, sensory
transmission is gated out and network behaviour is unaffected

representing a small population of 30 or so neurons by a
single neuron seems not unreasonable.

The model network has other features that make it much
more like the real network than previous models (Dale,
1995b; Tunstall et al., 2002). For example, it incorporates
sensory and sensory pathway neurons so it can be activated
by a brief “natural” stimulus. This contrasts with earlier
models that required delayed stimuli to both sides. As in the
spinal tadpole, the first activity in swimming is on the side
opposite that stimulated (Zhao et al., 1998). In the model net-
work this results from stronger contralateral synapses (right
dlc to left CPG) than ipsilateral (right dla to right CPG; see
Fig. 9). Also the aINs play an important role in this pro-
cess, by firing early and suppressing the firing of the right
cINs and MNs. Thus the left side starts firing, inhibiting the
right side, which leads to rebound spikes and the process
of swimming is started. An important feature that emerges
in the model network from the connections of inhibitory
aINs onto sensory pathway dlc and dla interneurons is sen-
sory gating (Sillar and Roberts, 1988) where extra sensory
stimuli during swimming can either affect the network or
not, depending on the precise timing of the stimulus in the
swimming cycle (Figs. 16 and 17).

Once we had established that the model neuron and net-
work responses were very close to those recorded in the
young tadpole, we were able to test whether the type-specific
properties of spinal neurons were actually important for net-
work function during swimming. We focussed on dINs which
excite all CPG neurons on their own side. Replacing single-
spike firing dINs with neurons that fire repetitively leads to
instability of the swimming behaviour and the production
of synchronous motor output on both sides. Replacing them
with delayed firing cINs leads to a complete breakdown in
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swimming activity. This shows that differences in properties
between neurons can be significant for the operation of a
network and that, in this case, the type-specific properties of
dINs are important for swimming. These properties provide
one mechanism for rhythm generation in swimming (see also
Roberts and Tunstall, 1990) because they will fire again dur-
ing depolarisation when they receive mid-cycle inhibition
which hyperpolarises the membrane and leads to delayed
firing on rebound. The model dINs have this property and
there is now direct physiological evidence for it from dIN
recordings (Li et al., 2006). Furthermore, if all neurons in the
network are given the properties of dINs, swimming is nearly
as stable as the control network over a range of strengths of
synaptic excitation and inhibition (Fig. 14).

If firing a single spike to current and showing post-
inhibitory rebound is central to the generation of swim-
ming, why are many of the spinal neurons able to fire repet-
itively when modelling suggests that giving them the ability
to fire only once has almost no impact on the swimming
rhythm? A possible explanation is that the spinal network
must also generate the struggling pattern of motor output
where neurons fire a high frequency burst on each cycle of
a slower rhythm. Recordings have shown that motoneurons
and some inhibitory interneurons are active during both ac-
tivities (Soffe, 1993). During swimming, if driven by brief
excitation from dINs, these neurons will only fire single
spikes, but during struggling, with slower, more sustained
excitation, they have the capacity to fire fast and repetitively
in bursts. Other repetitively firing interneurons, the inhibitory
aINs, usually fire a single spike on each swimming cycle but
can sometimes fire twice and are vigorously active during
struggling (Li et al., 2002). Finally, some repetitively firing
interneurons that are not active during swimming become
active and fire bursts during repetitive skin stimulation that
leads to struggling. The role of repetitively firing neurons in
the struggling network is the subject of current physiological
and modelling studies (Li et al., in prep.). The differences
in firing properties may partly be a consequence of the need
to switch rapidly between struggling and swimming, which
may not make modulation of firing properties a practical
alternative (Green and Soffe, 1996).

These observations, based on the young tadpole spinal
cord, show how type-specific neuronal properties can be sig-
nificant in network operation. They also indicate how this
significance may not be fully apparent unless the whole
range of potential network activity is taken into account;
in the case of the tadpole, the requirement to struggle as
well as swim. The properties of excitatory dINs appear to
be specialized for swimming, showing only a single spike to
current and post-inhibitory rebound. Other neurons cannot
be substituted for dINs in the swimming CPG network. The
specialised properties of dINs contribute to a rhythm genera-
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tion process for swimming based on feedback excitation and
post-inhibitory rebound (Li et al., 2006), but we know that
this is not the whole story. There must be other rhythm gen-
erating processes operating in the tadpole CNS as a single
side can generate rhythm (Soffe, 1989) as has recently also
been shown in the lamprey (Cangiano and Grillner, 2005).
The idea that recurrent inhibition within a single side (from
aINs) could play a role in such rhythmic activity has al-
ready been tested (Roberts and Tunstall, 1990). Finally, the
significance of the other firing patterns shown by tadpole
spinal neurons is not yet clear, but it is striking that the fir-
ing patterns of small mammal dorsal horn interneurons can
be grouped into four very similar categories (Prescott and
De Koninck, 2002). Do these firing patterns provide a basic
palette of neuron types that can be specified in building spinal
circuits?

Appendix: The individual neuron parameters

Input resistance and resting potential in all neuron types were
matched by setting the leak conductance and leak reversal
potential of their models. In all model neurons, we had to
modify the maximum conductances of the ion-channels to
match recorded responses.

alN

Starting from Dale’s parameters (Dale, 1995b), several
changes were needed to fit our measurements. The D-
parameters to all currents were decreased, to increase the
action potential voltage threshold. To increase the spike fre-
quency to depolarizing current, the time constants t for the
Na-activation and -inactivation were changed: 7 for the acti-
vation (my,) was decreased by increasing the A-parameter of
its B rate constant, and even more at high voltages by decreas-
ing the C-parameter of the « rate constant; 7 for the inacti-
vation (hy,) was increased by decreasing the A-parameter of
its o rate constant, but restored at high voltages by decreas-
ing the C-parameter of its B rate constant. The D-parameters
of the Na-current were decreased more than those of the
K-currents, to lower the threshold current and time constant
further. To lower the time constant of Na-activation around
threshold and zero voltage (i.e. to get shorter spikes), its E-
parameter was decreased, and to increase the time constant
of the fast K-activation in that range, its E-parameter was
increased. The maximum activation of the fast K-channels
was increased, and its time constant decreased, by increas-
ing the A-parameter of its B rate constant. The time constant
of the slow K-current was decreased, but it plays a less
important role, as its maximum conductance is relatively
low.



J Comput Neurosci (2007) 23:59-77

75

MN

These neurons are very similar to aINs. To match the thresh-
old behaviour (with the changed resting potential), the D-
parameters of all currents were changed, and the activation
was sped up by increasing the A-parameter of the o rate
constant of the Na-activation. All maximum conductances
were decreased, to match threshold current and voltage. The
E-parameter of the o rate constant was increased again to
the value used by Dale (1995b). The A-parameter of the
rate constant of Ky, was decreased to get a deeper AHP and
the A-parameter of the f rate constant of the Na-inactivation
was increased. To reduce spike width, the D-parameters of
the Na-inactivation were increased more than others, which
results in a lower time constant.

dIN

A unique property of dINs is that they never fire repetitively
to sustained current, no matter how strong it is. To match
this, starting from the aIN parameters, we increased the C-
parameters of the « rate constant of Na-activation (my,; from
1to 4), of the B rate constants of Na-inactivation (hy,), and of
the slow K-current. In addition, the maximum conductance
of slow K was increased, and that of fast K was decreased.
To match the change in firing threshold, and to compensate
for the big difference in input resistance (compared to aINs),
all D-parameters were increased. To match the threshold, the
D-parameters of the Na-currents were changed more than the
other D-parameters. The parameters for the 8 rate constant of
the (less important) fast K-current were set to Dale’s values.
To match spike width and AHP, the A-parameters of the
Na-inactivation were changed, which causes a larger time
constant and a higher maximum value (i.e. wider spikes and
larger impact).

RB

RB neurons have a rather negative resting potential. Starting
from the dIN current parameters, most of the D-parameters
were changed (except for the Na-activation) to get the
right threshold voltage and current. The time constant of
the sodium inactivation (hy,) was reduced, to reduce spike
width, by decreasing its A-parameters. The maximum con-
ductance of the slow K-current could be increased to sup-
press repetitive firing, and that of the Na-current decreased,
which allowed the C-parameters of the « rate constant of
Na-activation (myy,) to be reduced to 1, as in Dale’s model.

dlc

To get the adapting behaviour, we wanted the slow K-current
to increase at each spike fired, and remain sufficiently ac-

tivated that the neuron would not start to fire again after
a while. To obtain this, the D-parameters of the slow K-
current were decreased for the « rate constant and increased
for the B rate constant. The A-parameters of these rate con-
stants were increased and decreased respectively. The other
D-parameters were decreased (compared to aIN) to match the
threshold voltage and current. By increasing the C-parameter
of the « rate constant of my;,, the threshold for repetitive fir-
ing was raised. In this way, once repetitive firing starts, the
frequency is higher. And it is specifically this high initial fre-
quency that was needed. To the same effect, the D-parameters
of the fast K-current were decreased (more than the other cur-
rent’s D-parameters), and the maximum conductances of Na-
and fast K-currents were increased.

dla

To compensate for the much higher input resistance and
lower threshold current, the conductances of all currents
were decreased (starting from dlc parameter values). To then
match the threshold voltage and current, all D-parameters
were decreased slightly, and the one for the o rate constant
of the Na-activation more than the others. To increase spike
width, the A-parameters for Na-activation were decreased,
and to get a low initial firing frequency, the C-parameters
of the « rate constant of the Na-activation and of the 8 rate
constant of the fast K-current were decreased.

cIN:

The characteristic firing properties of cINs are repetitive fir-
ing following with a delay after an initial single spike. The
maximum conductance for the Na-current was increased sig-
nificantly (relative to the other currents) to overcome the
higher leak conductance and get a high firing frequency. All
current parameters (A, B, C, D and E) were kept similar
to those for aINs. The maximum conductances of all cur-
rents were altered, to obtain the right firing threshold. The
C-parameter for the « rate constant of the Na-activation was
decreased, which lowers the time constant for high volt-
age, resulting in narrow spikes and fast repetitive firing. To
match spike width further, small changes were made to the
A-parameters of the Na-inactivation. To increase the time
constant of the fast K-current, the C-parameter of its 8 rate
constant was decreased.

The new K-current added to produce the delay in repetitive
firing was initially given the same parameters as the Na-
current, which also shows both activation and inactivation.
The D-parameters were then decreased to match threshold
and spiking behaviour, but the « rate constant for activation
of the current (ma) was unaltered to maintain the pre-burst
delay. The C-parameter for the inactivation rate constant j
was increased to 500: the higher this value, the longer the
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delay. The inactivation of the new current should hardly
change when there is no injected current. To obtain this, the
C-parameter of its « rate constant is set to 1, and the A-
parameter very low. The A-parameter of its 8 rate constant
is set to 10, to decrease the maximum opening rate. The A-
parameters of the activation of the new current are high, so
that it is fast enough to suppress immediate repetitive firing
after the initial spike in response to sustained current. The
slow inactivation of the new current will allow repetitive
firing after a delay.
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