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Abstract The human visual system uses texture informa-
tion to automatically, or pre-attentively, segregate parts of
the visual scene. We investigate the neural substrate under-
lying human texture processing using a computational model
that consists of a hierarchy of bi-directionally linked model
areas. The model builds upon two key hypotheses, namely
that (i) texture segregation is based on boundary detection—
rather than clustering of homogeneous items—and (ii) tex-
ture boundaries are detected mainly on the basis of a large
scenic context that is analyzed by higher cortical areas within
the ventral visual pathway, such as area V4. Here, we focus
on the interpretation of key results from psychophysical stud-
ies on human texture segmentation. In psychophysical stud-
ies, texture patterns were varied along several feature dimen-
sions to systematically characterize human performance. We
use simulations to demonstrate that the activation patterns of
our model directly correlate with the psychophysical results.
This allows us to identify the putative neural mechanisms
and cortical key areas which underlie human behavior. In
particular, we investigate (i) the effects of varying texture
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density on target saliency, and the impact of (ii) element
alignment and (iii) orientation noise on the detectability of
a pop-out bar. As a result, we demonstrate that the depen-
dency of target saliency on texture density is linked to a
putative receptive field organization of orientation-selective
neurons in V4. The effect of texture element alignment
is related to grouping mechanisms in early visual areas.
Finally, the modulation of cell activity by feedback activa-
tion from higher model areas, interacting with mechanisms
of intra-areal center-surround competition, is shown to result
in the specific suppression of noise-related cell activities and
to improve the overall model capabilities in texture segmen-
tation. In particular, feedback interaction is crucial to raise
the model performance to the level of human observers.

Keywords Texture processing - Psychophysics - Visual
search - Neural model - Context modulation

1 Introduction

Robust segmentation and grouping of the initial visual stimu-
lus into distinct items is crucial for the reliable detection and
identification of objects, in particular when being embedded
in complex and cluttered environments. It has been proposed
that the visual processes underlying segmentation start from
the identification of salient discontinuities representing bor-
ders between adjacent object surfaces, rather than from the
immediate detection of the surfaces per-se (e.g., Grossberg,
1980; Grossberg and Mingolla, 1985). For example, in reti-
nal stabilization studies an object seems to disappear and is
no longer perceived when its retinal position is held fixed
(Krauskopf, 1963; Yarbus, 1967; Safran and Landis, 1998;
Martinez-Conde et al., 2004). Instead, the human visual sys-
tem substitutes the object color by the background color,
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indicating that the representation of the object borders gets
lost due to neural adaptation processes. The physiological
basis which underlies the detection of luminance contrasts
signaling putative object borders is well understood. Hubel
and Wiesel (1959) demonstrated that simple and complex
cells in the primary visual cortex signal the position and ori-
entation of bars (i.e. luminance gradients) in the stimulus
and more recent research revealed the existence of contour
neurons in V2, capable of completing fragmented contour el-
ements and responding to illusory contours (v.d. Heydt et al.,
1984, 1993; Peterhans, 1997). However, the visual system
does not utilize luminance contrast alone, but a variety of fea-
tures for segmentation, such as color, motion, stereoscopic
depth and texture. Here, we focus on texture segregation
which is demanding as, e.g. natural textures hardly ever stay
constant across a surface. Consequently, a comparison of
texture elements over wide areas of the visual field is nec-
essary to robustly determine surfaces and surface bound-
aries. The precise cortical mechanisms underlying texture
segmentation still remain largely unknown and, compared to
the processing of luminance contrasts, more complex neural
mechanisms need to get involved.

A significant amount of our knowledge on human texture
segmentation stems from psychophysical studies. In partic-
ular, Nothdurft (1991, 1992, 2000c) conducted a compre-
hensive series of studies in which he characterized (among
others) the effects of varying texture density, of element
alignment as well as of increasing orientation noise on the
detectability of pop-out lines and regions. Tracing back these
psychophysical results to their neural origins is a challenging
problem. To our knowledge, up to now only Li’s modeling
studies (2000) have given a putative explanation of some
of the observed effects. Her model focuses exclusively on
V1 processing and utilizes structural patterns of locally ori-
ented and anisotropic connectivity patterns of excitatory and
inhibitory cell interaction. Here, we use a previously devel-
oped computational model (Thielscher and Neumann, 2003)
to directly link the human behavioral curves characterized
by Nothdurft with the model activation patterns. Our model
represents a common theoretical framework for a variety
of experimental findings on texture processing obtained by
electrophysiological, functional imaging and psychophysical
methods. The previous study introduced the general model
architecture and discussed in detail the specific function-
alities of the single components of the model (Thielscher
and Neumann, 2003). Now, we focus on key results from
Nothdurft’s studies and demonstrate through simulations that
our model can account for his findings not only qualita-
tively, but in a quantitative way. Unlike the previous study
(Thielscher and Neumann, 2003) in which the model be-
havior was demonstrated using a few exemplary stimuli (e.g.
perfectly homogeneous vs. highly noisy textures), it is shown
here that smooth and continuous variations of properties like
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texture noise, density or element alignment result in model
cell activations which directly correlate with the human psy-
chophysical curves. This enables us to identify the cortical
areas and key processing principles which underlie the hu-
man behavioral curves in texture segmentation as observed
by Nothdurft.

There is now increasing evidence from psychophysical
and physiological studies that texture based segmentation
starts from the detection of boundaries between otherwise
homogeneous regions, comparable to the segmentation based
on luminance contrasts. For example, single- and multi-unit
recordings in monkey primary visual cortex reveal an en-
hanced activity of orientation selective cells when texture
borders defined by an orientation contrast between neigh-
boring line elements fall on their receptive fields (Gallant
et al., 1995; Lamme et al., 1998, 1999; Nothdurft et al.,
1999, 2000). Furthermore, psychophysical studies demon-
strate that texture segmentation depends on the detection
of local first-order feature dissimilarities at region bor-
ders (Nothdurft, 1985; Landy and Bergen, 1991). Nothdurft
(1985, 1991) used patterns composed of oriented texture
items to study segmentation based on feature differences in
detail. In the stimuli he used, a central pop-out region is
embedded in a background composed of texture line ele-
ments forming continuous flow patterns (see Fig. 3(A)). Pre-
attentive segmentation based on the differences between the
line elements of the fore- and background occurs although
both regions may contain lines of the same orientation or
statistics of oriented items. Critically, successful segmenta-
tion depends on the orientation contrast between the texture
elements along the border, i.e. on the slope in the gradi-
ent of texture orientation. These findings argue in favor of
texture processing being based on boundary-finding mecha-
nisms and not on grouping mechanisms which would define
surfaces using some criterion for element similarity.

Physiological and neuroimaging studies show that higher
visual areas such as V4 play a key role in texture segmenta-
tion. For example, lesion studies in monkeys demonstrated
that the detection of illusory contours and texture borders
as well as the discrimination of texture-defined shapes is
severely impaired after ablation of V4 (de Weerd et al.,
1996; Merigan, 1996, 2000). Furthermore, using fMRI,
it was shown that areas V4 and TEO are significantly
stronger activated by texture borders than lower visual areas
(Kastner et al., 2000). Higher visual areas are able to inte-
grate information over extended areas of the retinal image
(Smith et al., 2001). This capability is crucial for the segmen-
tation of texture stimuli embedded in background orientation
noise in order to selectively identify meaningful orientation
contrasts which signal the stimuli borders.

In Thielscher and Neumann (2003) we proposed a neu-
ral model of pre-attentive segmentation of oriented tex-
tures that builds upon the key properties of human texture
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processing highlighted above: (i) Texture segmentation is
based on boundary detection, and (ii) texture border detec-
tion is mainly achieved by the interaction of cells in higher
model areas. The model implements texture boundary pro-
cessing as a distributed task within the hierarchy of ventral
visual areas V1, V2 and V4. The model mechanisms were
motivated by models of V1-V2 interaction for contour com-
pletion and illusory contour formation (Neumann and Sepp,
1999; Grossberg and Raizada, 2000; Ross et al., 2000). The
computational capabilities of these approaches are incorpo-
rated and preserved by our model, thereby integrating the
processing of luminance and texture information for surface
boundary finding into a common computational framework.

We focus on the psychophysical studies of Nothdurft
(1991, 1992, 2000c) to investigate human performance in
the segmentation of oriented textures quantitatively. Noth-
durft examined the salience and detectability of embedded
target lines and regions while systematically varying (i) the
density and (ii) the alignment of the elements, and (iii) the
amount of orientation noise in the stimulus. In this simulation
study, we replicate these stimulus variations to directly link
the model behavior with the psychophysical curves. This, in
turn, allows to identify the putative cortical origins underly-
ing human behavioral performance and highlights the key ar-
eas and mechanisms involved. In particular, we demonstrate
the importance of recurrent feedback interaction in combi-
nation with center-surround competition to enable the model
to successfully generate texture boundaries even in presence
of significant orientation noise, resulting in a model perfor-
mance comparable to that of human observers. Furthermore,
the psychophysical results of the effects of texture density
on the saliency of a target line are traced back to a putative
receptive field organization of orientation-selective neurons
in V4 as well as their mutual interactions. Finally, effects of
texture element alignment on the detectability of a pop-out
bar are directly linked to grouping mechanisms incorporated
in early visual areas.

The paper is organized as follows. In the next chapter our
neural computational model is introduced together with its
components and dynamics. Furthermore, the general model
behavior is demonstrated considering the model response
patterns to two selected stimuli. In chapter 3 the effects of
varying texture density on model activation patterns are sys-
tematically investigated and a brief discussion outlines the
relation of the obtained simulation results to psychophysics.
Chapters 4 and 5 demonstrate the effects of texture element
alignment and orientation noise, respectively, on the model
responses to a pop-out bar, each chapter concluding with a
short discussion to demonstrate the link between our results
and those of the corresponding psychophysical studies. Fi-
nally, a general discussion (chapter 6) summarizes the key
results and model features and links the results of a variety
of psychophysical, physiological and neuroimaging studies
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Fig. 1 Outline of the hierarchy of model areas and model cells. Re-
ceptive field kernels are sketched in the left column (white: excitatory
subfields; black: inhibitory subfields). The field sizes are not drawn to
scale

to our model architecture, allowing to integrate them into a
common theoretical framework. We conclude with a brief
summary.

2 Model description
2.1 General model architecture

A model of recurrent texture boundary processing in the
ventral visual stream of static form processing is outlined.
According to the known anatomical data, it consists of a hi-
erarchy of bi-directionally linked model areas V1, V2 and
V4 (Felleman and van Essen, 1991; Ungerleider and Haxby,
1994; Fig. 1). Each area contains a retinotopically orga-
nized map (Sereno et al., 1995) of model cells with gradual
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activation dynamics representing the average response
(firing-rate) of groups of cortical neurons having similar se-
lectivities. The model cells are orientation selective (Zilles
and Clarke, 1997) and their receptive field sizes increase
monotonically within the hierarchy of model areas (Smith
et al., 2001). Their relative sizes have been parameterized in
aratio V1:V2:V4 = 1:2.5:8. The response selectivity of a
model cell is determined by the spatial layout and organiza-
tion of its receptive field pooling the bottom-up cell activities
of the previous model area. Model cells belonging to a par-
ticular area exhibit stereotyped receptive field organizations
and response selectivities. However, receptive field organi-
zation differs between the model areas, thereby determining
the specific functional role of an area in texture boundary
processing.

Feedback connections between model areas enable a re-
current flow of activity and result in a dynamic development
of the overall model activation pattern in response to a static
stimulus. At each point in time, the activity level of a model
cell is determined in three successive computational stages
(Fig. 2): First, the bottom-up activity pooled within the re-
ceptive field of a cell determines its initial activation. Second,
this initial activation level is modulated by excitatory feed-
back from a model area higher up in the anatomical hierarchy.
Feedback is specific to topographical position and orienta-
tion, enhancing those cell activities in the lower model area
which fit to the activation pattern in the higher area. At the
third computational stage, the top-down modulated cell ac-
tivities undergo intra-areal center-surround competition for
contrast enhancement and normalization of activation lev-
els. After onset of stimulus presentation, the three-stage cell
dynamics is used to successively update the cell activation
levels in all model areas until the overall model reaches its
stable final activation pattern.

In the following, the model areas and receptive field or-
ganizations are briefly described. Subsequently, the model
equations that describe the three-stage cell dynamics are
outlined and the general model behavior is demonstrated by
probing the network with two selected texture stimuli.

2.2 Model areas and receptive field organization

The model consists of a feed-forward preprocessing stage
followed by the recurrent stage of texture border processing
(Fig. 1). The preprocessing stage is constituted by model
LGN and V1 simple cells. Results of sequential LGN and
V1 simple cell processing are fed forward to generate V1
complex cell activity by combining simple cells with op-
posite polarity selectivity. Complex cells signal the spatial
position and local orientation of luminance discontinuities
in the input image. This activity is passed on to the recurrent
stage of texture border processing which is implemented by
bi-directionally linked model areas V1, V2 and V4.
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Fig. 2 Three-stage dynamics used to determine the activation level
of a cell. (1) The bottom-up input is pooled by the cell’s receptive
field to generate its initial activation. (2) Multiplicative feedback in-
teraction from higher model areas modulates the initial activation. (3)
The top-down modulated activity finally undergoes a stage of shunt-
ing ON-center/OFF-surround competition in a spatial and orientational
neighborhood

® Model LGN cells and model V1 simple cells constitute the
first two stages used to initially filter the luminance distri-
bution of the input image in a feed-forward process. Model
LGN ON and OFF cells detect local luminance transitions
using concentric center-surround receptive fields, which
are modeled by a subtractive and half-wave rectified inter-
action between Gaussian weighted input intensities:

x=1% (ACenter - ASur'round)

X = [—x]t (1)

The symbols Acenser/surrouna denote isotropic 2D Gaus-
sian kernels (standard deviations o cener = 0.8 and
O Surround = 30 Center define their sizes in pixels) and [x]*
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and * denote half-wave rectification and the convolution
operator, respectively. Model V1 simple cells exist for two
polarities (dark-light, dl; light-dark, Id) and eight orienta-
tions. They have elongated ON and OFF subfields to pool
the input delivered by appropriately aligned LGN ON or
OFF cells:

p;n/oﬁ‘Jeft — yon/off 4 Aghg‘,,o,_fyﬂ @)

on/off _right g
Dy = XMl % Ao,.0,.0.7,.0

The subfields are modeled by anisotropic 2D Gaussian
weighting functions A, 4,.0+/-7,.¢- Their size in y- and
x-direction is defined by the standard-deviations o, = 0.8
and o, = 3.50,. They are shifted perpendicular to their
main axis by +/—1, (r, = 0.80,) and then rotated
by 6 (ny4eny = 8 different orientations are used with
0 = O’ n/noriem R (norient - 1)”/”0}'1’611[)- The aCtiVity
of the subfields is subsequently fed into a soft-AND-circuit
which combines additive and multiplicative interactions
between the subfield activities to determine the response
s of the simple cell and results in a more localized simple
cell activation at luminance borders compared to the pure
summation of subfield responses (please refer to Neumann
et al., 1999 for details). For example, the activation sfg of
a V1 simple cell sensitive for light-dark polarity is given
by:

As( ?;Jeﬁ + p?g’J'ight) + 2Bsplggt,leﬂ It')g“,righr

Ast + E‘Y(pl%nJeft + p;)gfjight)

d _
Sig =

3

Spatial locations in the topographical maps are expressed
by the index i. The first term in the numerator denotes the
additive excitatory interaction between the ON and OFF
subfields, while the second term defines the amount of ac-
tivation resulting from their multiplicative interaction (pa-
rameters A; = 1.0 and By = 10000.0 control the impact
of the additive and multiplicative terms). The denominator
normalizes the response by the total sum of subfield re-
sponses (the relative strength of the divisive component is
controlled by D; = 0.05 and E; = 100.0). Taken together,
the first two model stages emulate roughly the functional-
ity seen in the parvocellular layer of LGN and simple cells
in V1 (Hubel and Wiesel, 1959, 1962).

Model VI complex cells form the lowest level of recurrent
texture border processing in our model. Model complex
cells pool the activity of two simple cells of opposite po-
larity at each position using half-wave rectified differences
between simple cells of opposite polarities:

el = Ac([sld — s8] + [ — 51477

A =0.1 “)

In combination, the hierarchical computation performed
in sequence by model LGN and simple cells finally result
in complex cell activity which is sensitive to orientation
but insensitive to the direction of contrast. The output of
the model V1 complex cells thus resembles that of real
cortical complex cells (Hubel and Wiesel, 1962). This
output activation is subsequently modulated by excitatory
top-down feedback from model area V2 and intra-areal
center-surround competition, according to the three-stage
model cell dynamics motivated above (please refer also
to chapter 2.3). The resulting output activation of the V1
complex cells is denoted by Zi,zl) .

® Model V2 bipole cells use two prolated subfields K'//"isht

aligned along the axis of the cell’s orientation preference
to pool the input delivered by appropriately aligned V1
complex cells. V1 complex cell activity li,zl) (represented
by a 3D matrix: 2D—space, 1D—orientation) is blurred
in the orientation domain (through a convolution using a
1D isotropic Gaussian kernel /¢ with 0'¢_yjens = 0.3) and
convolved with the 2D spatial weighting functions K'¢//"i/t
to determine the subfield activities f /7

f’eﬁ:l%)*lllf*l(kﬁ 5
frighr — l$/2; % \I/f « K right o)
In other words, the convolved orientational and spatial
weighting functions W, % K'¢///7ish" define two 3D ker-
nels which determine the bottom-up connectivity pattern
from the V1 complex cells to the V2 bipole cells. The sub-
field activities f/¢"/"i"" are determined by convolution of
V1 complex cell activity 12,21) with these 3D kernels. The
weighting functions K “/'/"8"" determining the spatial lay-
out of the subfields are modeled as anisotropic Gaussians,
which are cut off in the central part of the cell by means of a
sigmoid function (for details please refer to Appendix A).
The subfield activations are combined using a soft-AND-
gate, in turn only generating significant initial V2 cell
responses when both subfields are excited simultaneously:

1 righ 1 righ
va _ A"+ 1) + 2B

Cig = oft rig (6)
AD+ E(fg + ™)

The parameters are A, = 2.3; B, = 2600.0; D, = 0.15;
E; = 100.0. In accordance to the three-stage model cell
dynamics, the initial V2 cell activities subsequently un-
dergo feedback modulation by V4 activity and intra-areal
center-surround competition. As the V2 bipole cells pool
the activity delivered by several appropriately aligned V1
complex cells, they are also responsive to luminance con-
trasts, but have larger receptive fields. Furthermore, their
elongated subfields enable them to bridge missing contour
information and to recreate a complete shape outline from
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fragmented contour parts. The same mechanisms also re-
sults in the induction of illusory contours, thus resembling
the functional properties of contour neurons in V2 (v.d.
Heydtet al., 1984, 1993; Peterhans, 1997). The processing
principles implemented by the model bipole cells are moti-
vated by previous models of recurrent V1-V2 interaction
for robust contour formation in early vision (Grossberg
and Mingolla, 1985; Neumann and Sepp, 1999; Ross et al.,
2000; see Neumann and Mingolla, 2001 for an overview
of models). The computational capabilities of these ap-
proaches are incorporated and enhanced in our model.

® Model V4 cells represent the highest level in our model
of texture border processing. The orientation of texture
elements changes abruptly at region borders, causing ac-
tivity transitions at corresponding topographical positions
in the 2D maps of orientation selective model V1 and V2
cells. Model V4 cells measure the differences between
the V2 bipole cell activities l%) pooled by an excitatory
center field ¢“"" and left and right inhibitory subfields
q"/"ig" (modeled as anisotropic Gaussian kernels). Con-
sequently, they respond to gradients of orientation activ-
ity at borders while being insensitive to homogeneous re-
gions of same oriented items. Discontinuities in the ac-
tivity distribution can occur in each input orientation field
(depending on the orientation of the elements that define
the texture stimulus) and can themselves have different
orientations (depending on the orientation of the texture
boundaries). Accordingly, a range of model V4 cells with
differently oriented receptive fields was defined for each
input orientation: For each of the eight V1 complex and
V2 bipole cell orientations (denoted by the angle 6), V4
cells in eight orientations exist (denoted by the angle ¢;
Norient = 8; ¢ = 07 n/nnriema s (noriem‘ - 1)n/noriem)-
This results in a matrix of 8 x 8 = 64 V4 cells in to-
tal. Model V4 cells are selective to the orientation of the
line elements and to the orientation of the texture bor-
der. Texture border orientation is signaled by the V4 ac-
tivity distribution along the orientation axis denoted by
angle ¢.
The initial activation of a V4 cell is given by the differences
between the V2 bipole cell activities li,zz) pooled by the
center field and the left and right inhibitory subfields. The
sum of the two half-wave rectified differences is the initial
activation of the cell:

- left 1+ : right1+
cipt = lagme — Caigy ] + [afsn — Calg'] (7)

with:

center __ (2)
q =y * Vg * Ao, 0, 00

lefi @)

‘n h_ ZV((%)) * W, Ao, 0y .0.~7_y.0 (8)
right __

qy - ZV(2) * lIJq * A"qd"’qf)wo*qu,v"ﬁ
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All subfields are rotated by ¢ and the lateral in-
hibitory fields are shifted perpendicularly to their main
axis by +/ — 7,_y (0, =22.0;0,_y, = 8.0; 7,_, = 16.0;
C = 1.25). The bottom-up activity is blurred in the ori-
entation domain (using an isotropic Gaussian v, with
Oy _orient_o = 0.4). As V4 constitutes the highest model
area, the initial activation cive‘; is not modulated via feed-
back, but is directly fed into the center-surround competi-
tion denoted by Eq. (11). In this competition, all V4 cells
sensitive to the same V1 orientation interact in a spatial and
orientational (denoted by ¢) neighborhood. This results in
a normalization of the cell activities and the strengthening
of those V4 cells which signal the most likely orienta-
tion of the texture border. No interaction between different
orientation channels exists in model area V4. The final
responses 1824)0f all V4 cells sensitive to the same V1 ori-
entation are summed up after center-surround competition
and fed back to V2:

Norient

@  _ 2
IVaip = § lV4i0(k—1>*n/nu,,,-l,,,, €))
k=1

2.3 Model cell dynamics

The activation of a model cell in response to an input stimula-
tion is determined in three successive computational stages
(Fig. 2), namely (i) the pooling of bottom-up activity fol-
lowed by (ii) activity modulation via feedback interaction
and (iii) intra-areal center-surround competition. The pool-
ing of bottom-up activity is implemented as a feed-forward
process that is determined by the receptive field organization
of acell, as described in the previous section. The second and
third stages of the cell dynamics are denoted by first-order
differential equations, which are outlined in the following.
In particular, the functional impact of the feedback connec-
tions as well as the physiological and theoretical foundations
of the proposed scheme of cell dynamics are discussed. For
purposes of comprehensibility, the presentation is restricted
to the equilibrated responses (%l =0).

® The modulatory top-down interaction of the second stage
in model areas V1 and V2 is denoted by the equation

i 1 Ch,
- Bicio[1 + Chigl (10)
ai + yicigll + Chjgl

The input ¢y is given by the bottom-up activity weighted
by the receptive field kernel (first processing stage). It is
sensitive to spatial location i and to orientation 6. Excita-
tory feedback activity h; delivered by descending corti-
cal pathways modulates the initial input activation. Feed-
back is sensitive to spatial location and orientation and its
strength is controlled by gain factor C. This modulatory
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feedback mechanism generalizes the approach of lateral
feature linking proposed by Eckhorn et al. (1990) for the
synchronization of distributed neural assemblies in cor-
tex. In our model, feedback activity h; multiplicatively
enhances the initial activation c;jy and is only effective at
positions with non-zero initial activation. This prevents
unspecific activity to spread unintentionally within the to-
pographical map. The denominator term y;cig[1 + Ch;g]
is included in order to account for an upper saturation level
of activity '}, which is given by the ratio f1/y,. a; de-
termines the rate of activity decay. The numerical values
of the constants as used in the simulations are given in
Table A.1.

® The third computational stage exerts a scheme of shunt-
ing ON-center/OFF-surround competition, using the top-
down modulated activity 'V of the second stage as input
to determine the final cell activation level /®):
o _ Bo{lV s W s At} — &IV« WA}
o Otz—i—fz{l(l)*q/_*l\_}m

Y

This equation is based on a “Mexican Hat” shape for spatial
as well as orientational information. Lateral interaction of
neighboring cells is mimicked by convolution of the top-
down modulated activity /'’ with the Gaussian weighting
functions AT, ¥+, A~ and ¥ ~. The convolutions of the
kernels {¥/* % AT} and {/~ * A~}, respectively, deter-
mine the excitatory and inhibitory 3D connectivity patterns
between neighboring bipole cells. The letters AT and v+
denote excitatory weighting functions which pool activity
of those cells in a close spatial neighborhood (A*) which
have a similar orientation preference (). The inhibitory
kernels A~ and ¥~ pool activity in a wider spatial and ori-
entational neighborhood. Convolution of activity /(') with
the Gaussian weighting functions results in two 3D blocks
{}is in which the excitatory and inhibitory surround ac-
tivity for a cell at spatial position i and orientation 6 is
represented at the corresponding 3D position.

The constant §, controls the strength of subtractive in-
hibition by surround activity given by the term 8,{/)
W~ % A™};p. In addition, shunting interaction is employed
to incorporate divisive inhibition by the term & {/(V) x
W~ % A7 };p. Shunting interaction achieves a contrast-
enhancement and normalization of the initial top-down
modulated activities, resulting in an activity dependent
tuning of the cells’ responsiveness.

In all, the three stages of computation realize a context-
selective gain enhancement or soft-gating mechanism: Ini-
tial cell activities, which match the activation pattern in the
next model area, are enhanced via excitatory feedback con-
nections and in turn inhibit cells in their neighborhood via

center-surround competition. This results in a facilitation of
bottom-up activity matching the “expectation” of the cells in
the higher model area (Grossberg, 1980; Mumford, 1994).
As cells in higher areas integrate information over wide parts
of the input image, the overall process of recurrent activity in-
teraction enables a context-selective enhancement of salient
texture arrangements, while at the same time spurious and
perceptually irrelevant activities are suppressed. The com-
putational behavior essentially realizes a biased competition
mechanism such as suggested in the context of attentional se-
lection (Reynolds et al., 2000). Reynolds demonstrated that
spatial attention shifts a cell’s overall response profile to in-
crease its sensitivity to stimuli of low saliency. In our model
cell dynamics, feedback has the same effect on the cells’
input-output functions. Our recursive scheme of cell inter-
action draws upon basic ideas of the architecture proposed
by Finkel and Edelman (1989) using “reentry” connections.
In their model excitatory feedback is utilized to enhance but
also to induce new activity in the lower areas. Furthermore,
it utilizes a mixture of excitatory and inhibitory feedback
connections. In contrast, our model employs a stereotyped
pattern of (weak) excitatory feedback modulating the activity
in lower areas, followed by shunting inhibition. Using mod-
ulatory instead of driving feedback connections enhances
the stability of the overall network and prevents “hallucina-
tions” in the model activation patterns. Accordingly, Crick
and Koch (1998) suggested in their “no-strong-loops hy-
pothesis” that a directed loop between two cortical areas
will not consist of two driving connections, but will use one
driving and one modulatory connection in order to avoid un-
controlled oscillations of the overall system and to limit the
amount of inhibition necessary to achieve a stable network
behavior. Indeed, several physiological studies indicate that
feedback from higher visual areas is not capable of driving
cells in lower areas, but modulates their activity (Sandell and
Schiller, 1982; Mignard and Malpeli, 1991; Salin and Bullier,
1995; Hupé et al., 1998; Przybyszewski et al., 2000). For ex-
ample, feedback activation alone is not sufficient to drive V1
neurons if they are not stimulated by a visual feeding input
(Sandell and Schiller, 1982). Likewise, projections from the
striate cortex to the LGN multiplicatively enhance responses
of parvocellular neurons to grating stimuli (Przybyszewski
et al., 2000). Hupé et al. (1998) demonstrated that feedback
from area V5 (or MT) to areas V1, V2 and V3 amplifies
and facilitates neural responses in these areas. In particular,
in their study, feedback from V5 had the highest impact on
cell firing rates in V3 for low saliency stimuli, but had a
markedly weaker effect for high saliency stimuli. Our model
dynamics mimics this behavior by the saturation properties
of the employed cell dynamics. Given a strong bottom-up
input the output of a model cell is driven to almost saturate.
Consequently, feedback activity is hardly effective in further
modulating the cell activity to get further enhancement. For
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weak bottom-up input, on the other hand, feedback activ-
ity can substantially amplify the activation strength of the
corresponding model cell.

The sequence of activity enhancement via feedback fol-
lowed by center-surround competition has some advantages
compared to a model utilizing stages in reversed order (i.e.,
first center-surround competition followed by feedback in-
teraction). In a hierarchy of feed-forward connected corti-
cal areas, it is commonly proposed that lateral inhibition is
necessary to keep the activity in higher areas focused and
narrow despite the larger receptive field sizes in these areas
(Kastner et al., 2001). We suggest that the same holds for
the integration of feedback activity from higher areas that is
delivered to lower areas. Consider, for example, the case that
the activity distribution in a higher model area is somewhat
“blurred” or broadened due to the larger receptive field sizes
of the cells in that area. In a first step, feedback from this area
will enhance the cell activity in a lower area at topographical
positions corresponding to the same blurred region. Without
center-surround competition following the feedback interac-
tion, this in turn will lead to an activity pattern in the higher
area, which tends to be even more unfocused. However, that
effect is prevented by center-surround competition in the
lower area narrowing the zone of activity enhancement via
feedback and, in consequence, helping to spatially focus the
responses to an input pattern in both the lower and the higher
model area.

Prior to the actual simulations, the constants of the equa-
tions defining the model cell dynamics were empirically de-
termined in such a way that the whole network could reach a
stable activation pattern quickly after onset of input pattern
presentation. In order to speed up processing, the differential
equations were solved at equilibrium in response to a con-
stant input. Initially, the activities of all model layers were
set to zero. The input image was clamped and the activities
of the model areas were sequentially updated. Starting with
model area V1 the activities of the model stages were succes-
sively determined one after the other each time applying the
three-stage cell-dynamics outlined above (Fig. 2). This was
repeated several times until the overall model reached a final,
stable final activation pattern which was typically the case af-
ter 4-5 iterative cycles. Each simulation was continued until
iteration 9 in order to visually demonstrate the stability of the
solution. A comparison with results obtained by numerical
integration of the model equations (using Euler’s method)
revealed that the use of equilibrium responses did not af-
fect the results of the final activation patterns. The values
for the constants and the standard deviations of the Gaus-
sian kernels used in the simulations are given in Table A.1.
They were kept constant through all numerical experiments
and are identical to those used in Thielscher and Neumann
(2003). In order to circumvent numerical boundary artifacts
and to guarantee well-defined convolution results at image
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boundaries, white pixels were padded to each side of the in-
putimage prior to stimulus presentation. The number of rows
and columns padded was three times the standard deviation
of the widest Gaussian used. This is equivalent to presenting
the stimulus on a uniform white background.

2.4 General model behavior

In the following, the general model behavior is exemplar-
ily demonstrated using the final equilibrated model activa-
tion patterns in response to two selected texture stimuli, as
shown in Fig. 3. For purposes of visualization, the activa-
tion patterns were summed up over all orientations 6 (and ¢
in case of area V4) at each spatial position and the result-
ing two-dimensional activity distributions were illustrated as
gray-scale images, with the maximal activity of each model
area coded as white and no activity coded as black.

The stimulus of Fig. 3(A) consists of a texture array com-
posed of oriented line items in which a central vertical bar
pops out, caused by an orientation contrast (OC) of 50° be-
tween the line elements of the bar and the texture background
(image size 270 x 270 pixels). Additionally, a constant ori-
entation shift of 10° between neighboring lines (background
noise, BN) leads to apparent “flow patterns” and introduces
orientation noise. Model V1 complex cells signal the out-
lines and orientations of the line elements of the stimulus
arrangement. This V1 activity pattern serves as bottom-up
input to model V2 bipole cells, which group it to form con-
tinuous smooth curves. The resulting V2 activation pattern
corresponds well with the subjective impression of apparent
“flow patterns” visible in the stimuli. Finally, the borders of
the bar and the entire texture field are detected by model V4
cells, which respond to orientation discontinuities in the in-
put delivered by model area V2. In the fully recurrent model
(Fig. 3(A) bottom row), the responses of model V2 cells at
the borders are enhanced via modulatory feedback interac-
tion from V4. This enhancement in turn results in stabilized
and increased V4 cell activities signaling the outline of the
pop-out bar, as can be seen when comparing the response
patterns of the recurrent and the feed-forward model. In the
recurrent model, the enhancement of V2 cell activity via
feedback from V4 leads to an indirect and weaker modula-
tion of model V1 cells in the range of 10-20% of their mean
firing rate (this weak influence is hardly visible in the gray
scale pictures; please refer to Thielscher and Neumann, 2003
for quantitative results).

The stimulus of Fig. 3(B) consists of a field of regularly
spaced vertical lines, superimposed by two oblique line ele-
ments representing an X (image size 270 x 270 pixels). The
model V4 cells signal the borders of the field of vertical lines,
but are insensitive to its homogeneous inner region. Addi-
tionally, they react to the orientation discontinuity caused
by the X pattern. The functional impact of feedback from



J Comput Neurosci (2007) 22:255-282

263

Stimulus: OC =50°; BN = 10°

A

i i N A N B A S B I |
LI LA A A B I A I B U} >
cer sy 1L e
EAr A A B BT N T U Y @©
PRV AR B B i T g
L A B B B R e =
PV 2 28N s s~ @
T VAN NSNS~ = =
FVAANSN T NS ~=— 2
LR O a
VAN NSNS S = - —
VAN S AN am e

pure fully »
feedforward recurrent =
V4 V4 o

=

z Ay 3
v2 v2 3]
A Ay >
Vi Vi 2
—»

B Stimulus

N L/ =
\\ . g
N | W1 5

o

X g

/ —

A1 TN e

% N 3

1 N »

F
i |

ifully recurrenti

Fig.3 Equilibrated cell activation patterns in response to two selected
stimuli, summed over all orientations for purposes of visualization. (A)
The borders of the texture region and the pop-out bar are detected by
model V4 cells. In the fully recurrent model (bottom row), feedback
from V4 results in enhanced model V2 cell responses at topographical
positions of high V4 activity. Compared to the pure feed-forward model
(top row), this enhancement helps to stabilize and increase V4 cell ac-
tivities signaling the outline of the pop-out bar. The maximal activation
strength (in arbitrary units) are max{V1, V2, V4} = {0.048, 0.029,

V4 is revealed by comparison of the activation patterns of
the recurrent and feed-forward model variants: Model V2
cell activities which signal the presence of the X pattern are
enhanced, helping to segregate them from the V2 activities
due to regular vertical lines. The enhanced V2 activities, in

[

\!

& B

0.049} for the feedforward and {0.122, 0.105, 0.121} for the recurrent
model. (B) The borders of the field of vertical lines as well as the two
oblique lines resembling an X are detected by model area V4. In the
recurrent model (bottom row), feedback interaction helps to segregate
the model V2 activities signaling the X from the activities due to the
field of vertical lines. This in turn results in increased V4 responses
to the X. Maximal activation strength: max{V1, V2, V4} = {0.043,
0.053, 0.070} (feedforward) and {0.115, 0.118, 0.123} (recurrent)

turn, result in markedly increased V4 activities to signal the
X pattern.

The model responses to the two selected stimuli examplar-
ily demonstrate the main impact of feedback connections that
enable a recurrent flow of activity: They help to focus the
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processing of the overall model on salient discontinuities,
thereby enhancing and stabilizing the corresponding V4 ac-
tivation patterns. A systematic investigation of the impact of
feedback on model performance is subject of chapter 5.

3 Variation of texture density

In this chapter, the effect of variation of texture density (as
studied by Nothdurft, 2000c) on model activation patterns is
determined by comparing the simulation results in response
to homogenous texture fields of varying density, with a cen-
tral target line being either present or absent.

3.1 Stimuli & analysis of the model activation pattern

Gray scale images of sizes 300 x 300 pixels were used as
stimuli containing texture arrays composed of oblique black
lines (45°) on a white background. The line length was fixed
at 8 pixels and the elements’ center-to-center distances were
systematically varied using spacings of {14, 17, 20, 23, 28,
35,47,71} pixels (see Fig. 4(A). Line positions were slightly
varied to avoid alignment effects. Two sets of simulations
were performed, one with and one without a central target
element defined by an orientation contrast (OC) of 90°. The
mean inner V4 activity (Fig. 4(B) and (C): region defined by
the dashed white lines) was determined and plotted against
element distance for both sets of simulations.

3.2 Results

o Simulations with target element: For very high texture den-
sities, the intra-areal center-surround competition between
cells in the lower model areas results in attenuated V1 and
V2 cell responses to all line elements, except to those at
the outer texture borders. This effect also diminishes the
V1 and V2 responses to the target line element. In conse-
quence, for high texture densities, model area V4 receives
only weak bottom-up activity signaling the presence of a
target, in turn resulting in a low mean inner V4 activity
(see element distance 17 in Fig. 4(B)). The influence of
center-surround competition in model areas V1 and V2
diminishes with increasing element distance, leading to a
clear detection of the target line by model V4 cells. Fur-
thermore, model V4 cells also respond to the background
lines surrounding the target. This effect is caused by a par-
tial loss of lateral inhibition by an iso-oriented line at the
position of the target line. The combination of both effects
results in a high mean inner V4 activity for medium tex-
ture densities (element distance 35 in Fig. 4(B)). For low
texture densities, only the V4 activity caused by the target
line remains within the inner V4 region defined by the
dotted lines, resulting in a decay of mean inner V4 activ-
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ity (element distance 71 in Fig. 4(B)). Taken together, the
mean inner V4 activity exhibits an approximate inverted
U-shaped dependency of response on element distance in
presence of a target line (Fig. 4(D) left). In our simulations,
the size and shape of the inner V4 region was determined
somewhat arbitrarily. Altering the region will rescale the
curve and shift the point of the maximum. However, the
general shape of the curve will remain inversely U-shaped
with its maximum at medium texture densities. For com-
parison, the results of the feedforward model are depicted
in Fig. 4(D) (left). Unlike the stimuli in Fig. 3, the tex-
ture density stimuli do not contain orientation noise or
crossing lines and, consequently, the impact of a recurrent
flow of activity on model V4 activation strength is only
modest.

® Missing target element: In case of the target line be-
ing absent, the mean inner V4 activity monotonically in-
creases with increasing element distance (Fig. 4(C) and
(D) right). This effect is caused by the limited spatial
extent of the model V4 receptive fields, particularly of
the lateral inhibitory subfields that pool the iso-oriented
surround. Moreover, the impact of V4 intra-areal center-
surround competition decreases with increasing element
distance.

e The specific effect of a pop-out target on V4 cell activa-
tion is determined by taking the difference between the
mean inner V4 activities with and without a target line and
plotting the resulting values against element distance (Fig.
4(E)). The resulting curve has a clear peak for medium
texture densities.

Fig. 4 Effects of varying texture density on model V4 activation

patterns. (A) Example stimuli of varying texture density containing a
central pop-out line element. (B) Equilibrated V4 activation patterns
in response to the example stimuli. In case of very high texture densi-
ties (element distance 17), the central pop-out line evokes low model
V4 activity in the region defined by the dashed line. Medium texture
densities (element distance 35) result in high V4 activity in this region
and low texture densities (element distance 71) lead to slightly lower,
but still clear-cut activities. However, for low texture densities, the line
elements composing the texture background also evoke V4 activity
blobs. Maximal activation strength in V4: {0.121, 0.137, 0.160} for
line distances {12, 35, 71}. (C) Equilibrated V4 activation patterns in
response to stimuli equivalent to those depicted in (A), but with the cen-
tral pop-out target line being replaced by an iso-oriented background
line. The mean inner V4 activity in the region defined by the dashed
line increases monotonically with decreasing texture density. Maximal
activation strength in V4: {0.120, 0.141, 0.159} for line distances {12,
35, 71}. (D) Mean inner V4 activity in response to a target line (left)
or to an iso-oriented background line (right), plotted in dependence
on texture density. For comparison, the mean inner V4 activity of a
pure feedforward model is plotted as dashed lines. (E) The difference
between the mean inner V4 activities of the target and non-target tri-
als reveals the amount of V4 activity which stems specifically from
the orientation contrast of the pop-out line. The recurrent and feedfor-
ward models exhibit the same qualitative behavior with the maximal
difference between target and no target being higher for the recurrent
model
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3.3 Discussion

The effect of variations of texture density on the saliency of
a pop-out target has been investigated in a psychophysical
study (Nothdurft, 2000c). In that experiment, subjects had
to rate the saliency of a target defined by an OC of 90°
while systematically varying texture density. The key results
were:

¢ The saliency of the pop-out target was low for high densi-
ties, it increased to a maximal value for medium densities
and decreased again for low density values. In our model,
the mean V4 activity in the topographical region surround-
ing the target element exhibits the same dependency on
texture density (Fig. 4(D) left).

® When no pop-out target was present, the iso-oriented tex-
ture elements themselves were rated psychophysically as
increasingly salient at low texture densities. Likewise, in
our model, the inhibitory effect of the iso-oriented sur-
round on the mean inner V4 activity vanishes for low
texture densities (Fig. 4(D) right).

® In order to isolate the saliency caused by the orienta-
tion contrast, the difference between the saliency rat-
ings of the target and non-target trials was determined
and plotted against texture density. The resulting curve
increases from low to medium element distances and
decreases afterwards to approach zero at high distance
values. In our simulations, the curve depicting the dif-
ference between the mean inner model V4 activities
in response to the target and non-target stimuli exhib-
ited the same general dependency on texture density
(Fig. 4(E)).

Using the results of our simulations, the psychophysical data
on the effects of texture density (Nothdurft, 2000c) may be
interpreted as follows: Let us assume that the V4 activa-
tion pattern is “read out” by a decision stage using spatial
receptive fields with some kind of center-surround organiza-
tion. Then the mean inner V4 activity is a gradual measure,
or signature, of the “saliency” of the topographical region
corresponding to the pop-out target: The higher the mean
activity in this region, the higher the probability that the de-
cision stage rates the underlying input image as containing a
“salient” element.

As shown in Fig. 4(D) and (E), the feedforward model ex-
hibits the same qualitative behavior as the recurrent model,
with the effect of feedback being limited to an increase
of the model activation strength in response to the pop-
out target. The impact of feedback is only minor in this
task which uses homogenously oriented background lines
and a target line exhibiting a high OC. In contrast, in-
tact feedback connections are crucial in case of stimuli
containing orientation noise as will be demonstrated in
Section 5.
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4 Alignment effects

In the following set of simulations, the alignment of texture
line elements relative to the border of a pop-out bar was
systematically varied in order to quantify the resulting effect
on model V4 activation patterns.

4.1 Stimuli & analysis of model activation patterns

Stimuli were adapted from psychophysical studies
(Nothdurft, 1991, 1992) in order to be able to directly com-
pare activation patterns of our model with human perfor-
mance in texture segmentation. Gray scale images of sizes
270 x 270 pixels containing texture arrays of 12 x 12 black
line elements on a white background were utilized (line
length 12 pixels). In the central region a bar pops out, caused
by a certain OC between the neighboring lines at the re-
gion border. Line positions were slightly varied to avoid
alignment effects. An additional constant orientation shift
between neighboring line elements leads to apparent “flow
patterns” and thus introduces orientation noise (Fig. 5(A)).
The difficulty to detect the central pop-out bar can be con-
trolled by means of the orientation contrast at the border and
the background orientation noise (BN), allowing a system-
atic parametric examination of the activation pattern of the
model network.

In the current simulations, quantitative values of mean
cell activation levels in model area V4 were obtained. The
background orientation noise was fixed at 10°, and the border
OC was systematically varied between 10° and 60° in steps
of 10°. Two sets of simulations were performed, namely
one using texture patterns containing line elements which
were maximally aligned with the long border of the pop-out
bar, and one with texture arrays consisting of elements which
were maximally non-aligned with the border. Alignment was
controlled by the orientation of the line element in the gray
dotted circle depicted in Fig. 5(A), which was either vertical
or horizontal. For each value of OC, the mean cell activation
strengths in the model V4 region corresponding to the inner
pop-out bar (light gray region of model area V4 depicted in
the legend of Fig. 5(B) as well as the region corresponding to
the surround (dark gray region) were determined. The ratios
between these two values were plotted as a function of OC
for both sets of simulations.

4.2 Results

In general, the ratio between the inner and surround V4
activity exhibits a monotonically increasing dependency on
OC (Fig. 5(B)). We can assume here that the pop-out bar is
detected, when this ratio exceeds a given threshold which is
significantly higher than 1 in order to gain noise robustness.
For both the aligned and non-aligned condition, this is the
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case for OC-values greater than 30°. However, higher OC-
values are necessary for non-aligned stimuli compared to
aligned stimuli in order to reach the same inner-to-surround
ratio. For example, approximately the same value is achieved
for aligned stimuli with an OC of 40° and for non-aligned
stimuli with an OC of 50°.

We have demonstrated that long-range groupings medi-
ated by model V2 bipole cells constitute the neural origin
of the observed alignment effect (Thielscher and Neumann,
2003). Model V2 cells tend to align the elements of the back-
ground and the pop-out bar to continuous activation patterns
and thus reduce the initial OC at the border of the bar. As
a consequence, the cell activity in the inner V4 region is
reduced. In the non-aligned condition, the line elements are
oriented approximately perpendicular to the long borders
of the bar, enabling the V2 bipole cells to act across these
long borders and resulting in an attenuation of inner V4 ac-
tivity. In contrast, in the aligned condition V2 bipole cells

2
3
E
@
=
3
=
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group line elements only across the short borders of the pop-
out bar, which has a markedly weaker effect on model V4
activity.

4.3 Discussion

Nothdurft (1992) investigated the effect of element align-
ment on the detectability of a pop-out bar. Subjects had
to identify pop-out bars embedded either in aligned or in
non-aligned stimuli. While keeping the BN fixed at 10°, de-
tectability

® monotonically increased with increasing OC.

® was always higher in the aligned compared to the non-
aligned condition for OC-values exceeding 20°.

¢ differed maximally between aligned and non-aligned stim-
uli for intermediate OC-values of 30° and 40° (weak visi-
bility of the pop-out bar).
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Nothdurft concluded that “the ability of the visual sys-
tem to detect line continuations may add to border extrac-
tion from local contrast” (Nothdurft, 1992, p. 361). In our
model, alignment effects lead to spatial long-range group-
ings by V2 bipole cells which in turn reduce the V4 activity
at region borders in the case of a common alignment of the
lines across these borders. This results in a ratio between
inner and surround V4 activity exhibiting the same depen-
dency on OC and on element alignment as the detectabil-
ity measure in the psychophysical experiment. However,
in our model, the ratio (i.e. the detectability) is decreased
in the non-aligned condition rather than increased in the
aligned condition. This indicates that the main effect of the
ability of the visual system to detect line continuations is
more likely to disturb (rather than to support) the border ex-
traction from local contrast. To conclude, the experimental
findings of alignment effects that influence the detectability
of a central pop-out bar can be traced back to the activ-
ity of model V2 bipole cells as the most probable neural
origin.

5 Effects of orientation noise

The effect of orientation noise on model performance in tex-
ture boundary processing was investigated by systematically
varying the orientation contrast at the border of a pop-out
bar as well as the overall background orientation noise in the
stimulus.

5.1 Stimuli & analysis of model activation patterns

As in the previous experiment, stimuli adopted from psy-
chophysical studies (Nothdurft, 1991, 1992) were used in
order to be able to directly compare activation patterns of
our model with human performance in texture segmentation.
The gray scale images had a size of 250 x 250 pixels and
contained texture arrays of 12 x 12 line elements. The diffi-
culty to detect the central pop-out bar is controlled by means
of the OC at the border and the background orientation noise
(BN). The BN was added as additional constant orientation
shift between neighboring line elements, leading to apparent
“flow patterns”.

In the current set of simulations, BN was systemati-
cally varied between 0° and 30° in steps of 5° (example
stimuli are depicted in Fig. 6(A)). For each value of BN,
input-output curves of the model behavior in dependence
on the border orientation contrast were measured. The min-
imal OC tested was determined by the BN (i.e., in case of
BN = 15° the minimal OC was 15°), and the maximal
OC was 90°. A stepping of OC of 10° was used, except for
BN values of 5°, 15° and 25°, for which the initial stepping
was 5°.
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As demonstrated in the previous section, model V4 ac-
tivation strength is influenced by the alignment of the line
elements with the contour of the pop-out bar. This effect ne-
cessitates a control of the orientation of the line elements in
the current set of simulations. For each combination of BN
and OC, three different texture patterns with varying orienta-
tions of the line elements of the pop-out bar were tested: One
texture pattern had elements which were maximally aligned
with the long border of the pop-out bar, the other pattern
consisted of elements which were maximally non-aligned
with the border and the third pattern had elements with an
in-between arrangement (see Fig. 5(A) & Nothdurft, 1992,
Fig. 2). For further analysis of the model V4 activation pat-
tern, the mean activation level in response to the three stimuli
was calculated at each topographical position.

For each combination of BN and OC, the mean cell ac-
tivation strengths in the V4 region were determined corre-
sponding to the inner pop-out bar (red region of model area
V4 depicted in the legend of Fig. 6) as well as the region
corresponding to the surround (blue region). These two val-
ues were plotted depending on OC for each value of BN.
Additionally, the ratio between these two values was calcu-
lated and in turn plotted as a function of OC for each value
of BN. In order to suppress high ratios resulting from very
low mean surround activity levels, a constant o was added
(as tonic activation) to the mean activation of the surround
region (¢ = 0.0154 and 0.0022 for the recurrent and feed-
forward model).

Two model variants were considered, namely a fully re-
current and a pure feed-forward model (see Fig. 3(A)). The
comparison of their activation patterns allowed to explore
the functional role of the feedback connections in texture
boundary processing.

5.2 Results
5.2.1 Recurrent model

The input-output curves of the recurrent model in depen-
dence on OC are depicted in Fig. 6(B)—(E). For a BN of 0°,
the mean inner V4 activity exhibits a sigmoidal dependency
on OC (Fig. 6(B): purple line with circles) with its steepest
increase for OC-values from 10° to 30°. Higher values of
BN result in increasingly flatter input-output curves of the
inner V4 activity, indicating that the orientation noise tends
to disturb the formation of model V4 activity that signals
the border of the pop-out bar. In contrast to the sigmoidal
curve of BN = 0°, the curve of, e.g. the highest BN value
of 30° increases approximately linearly from 0.024 to 0.028
(Fig. 6(B): green line with triangles).

In Fig. 6(C) the dependencies of the mean V4 surround
activity on OC are depicted. For a specific value of BN, the
surround activity remains at a more or less constant level
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Fig. 6 Effects of a systematic variation of BN on model V4 activation
patterns. (A) Example stimuli consisting of a pop-out bar defined by
an OC of 50° embedded in various levels of orientation noise. The
bar is visible for BN values up to 20°, but can hardly be detected for
BN = 30°. (B) Mean model cell activity in the inner V4 region (marked
as red rectangle), plotted in dependence of OC for various levels of BN.
The mean inner V4 activity exhibits a sigmoidal dependency on OC for
low levels of BN. However, the curves are markedly flatter for higher
BN values. (C) Mean surround V4 activity (in the blue region), plotted
in dependence on OC for various levels of BN. The level of surround
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activity is almost independent from OC, but increases monotonically
with increasing BN. (D) Ratio between mean inner and surround V4
activity. The curves are sigmoidal for low BN values, but get flatter
with increasing BN. The OC necessary to reach the reference ratio S
increases with increasing BN. (E) Threshold OC necessary for refer-
ence ratio B in dependence on BN. The curve is almost linear for BN
values up to 25°. However, a very high OC is necessary for BN = 30°,
indicating that the model’s ability to detect the bar gradually breaks
down for orientation noise exceeding this level
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independent of OC. This level exhibits a monotonic increase
with increasing BN. In particular, for a BN of 30°, the mean
inner V4 activity is only moderately enhanced above the
surround activity level even for high values of OC (green
lines with triangles in Fig. 6(B) and (C)). Consequently,
strong background orientation noise results in an unspecific
activation of the model V4 cells, which in turn prevents the
formation of V4 activity to signal the border of the pop-out
bar.

The ratios between the mean inner and surround V4 ac-
tivities are plotted in Fig. 6(D). One can assume here that
the texture border is detected by the model, when the ra-
tio between inner and surround V4 activity exceeds a given
threshold value 8. Additionally, a constant (or tonic activa-
tion) « is added to the surround activity level. This prevents
unspecific noise-related V4 activations in the inner region
from causing high ratios in the case of low surround ac-
tivity levels. For vanishing background orientation noise,
the mean inner V4 activity significantly exceeds zero for
OC values greater than 20°. In consequence, the ratio for
BN =0° and OC=20° was taken as reference thresh-
old value B (indicated as horizontal dashed line), and
a = 0.0154 was determined empirically so that the range
of all curves was approximately centered on this value. For
all values of BN a ratio larger than S, thus, indicates that the
mean center activation exceeds the mean surround activation
by a significantly amount. This is interpreted as an indicator
that the model “detected” the pop-out bar.

The OC values for which the input-output curves reach
the reference value B8 are monotonically shifted to the right
with increasing BN. These threshold OC values are plotted
against BN in Fig. 6(E). For BN up to 25°, the values increase
approximately linearly. However, in case of BN = 30°, very
high OC value are necessary to reach the reference threshold
B (see green line with triangles in Fig. 6(D).

Taken together, in our model border orientation contrast
in the input image results in V4 activity signaling the outline
of the pop-out bar. The strength of this V4 activity exhibits a
sigmoidal dependency on the OC in the input image. Back-
ground orientation noise, however, evokes unspecific V4 cell
activations which in turn disturb the formation of V4 activity
at the border of the pop-out bar. As a consequence, higher ori-
entation contrasts are necessary to recover the models ability
to detect the pop-out bar. For orientation noise exceeding
approx. 30°, this ability gets gradually lost.

5.2.2 Feed-forward model

In a model without feedback connections, V4 cells loose
their ability to modulate cell activity in the lower model ar-
eas V1 and V2. In the following, the impact of this limitation
on the model performance in texture border processing was
systematically tested by repeating the above depicted simu-
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lations using a pure feed-forward model. The dependency of
the mean inner V4 activity of the feed-forward model on the
border orientation contrast is depicted in Fig. 7(A). As in the
recurrent model, the input-output curves exhibit sigmoidal
slopes for low values of BN. However, the initial rising flanks
of these curves are less steep compared to the input-output
curves of the recurrent model. Moreover, the flattening of
the input-output curves with increasing BN is notedly more
pronounced than observed in the recurrent model. For BN
values of 25° and 30°, the mean inner V4 activities do not
increase at all with increasing OC (Fig. 7(A): lines with
triangles pointing upward and to the left).

In Fig. 7(B) the mean V4 surround activity of the feed-
forward model is depicted. Comparable to the fully recurrent
model, the surround activity is more or less independent from
OC for a specific value of BN and increases monotonically
with increasing BN. However, for BN = 25° and 30°, the
difference between the mean inner and surround activity is
almost independent of the border OC (Fig. 7(A) and (B):
lines with triangles pointing upward and to the left). Clearly,
the feed-forward model was unable to detect the orientation
contrast at the border of the pop-out bar in these cases even
for high values of OC. Consequently, the curves depicting
the ratios between inner and surround activity (Fig. 7(C))
remain approximately flat for BN values above 15°. Again,
the ratio for BN = 0° and OC = 20° was taken as reference
threshold value 8 (¢ = 0.0022). When introducing back-
ground orientation noise, this reference value was reached
by the feed-forward model only for BN values up to 15° (see
Fig. 7(D).

Taken together, the behavior of the feed-forward model
was comparable to that of the recurrent model for low values
of BN. However, the model’s ability to suppress unspecific
activations evoked by orientation noise crucially depends
on the modulation of cell activity in lower model areas via
feedback from V4. Consequently, the feed-forward model’s
performance in detecting the border of the pop-out bar breaks
down for BN values above 15°. This in turn demonstrates
that modulatory feedback enables the model visual system
to achieve robustness of target detection over a wide range
of stimulus conditions.

5.3 Discussion

The model replicates some of the key findings obtained in
the psychophysical experiments of Nothdurft (1991, 1992).
In his experiments subjects had to indicate the presence or
absence of a pop-out bar while OC and BN were system-
atically varied. Correct response rates ranged between 50%
(chance level) and 100%. His key observations were:

e For a BN of 0°, the curves indicating the number of cor-
rect responses (in%) exhibit a sigmoidal dependence on
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Fig. 7 Effects of background orientation noise on V4 activation pat-
terns of a pure feed-forward model. (A) Dependency of mean inner V4
activity (light gray region) on OC for varying levels of BN. Compared
to the fully recurrent model (Fig. 6), the curves get flat at lower values
of BN. (B) Mean surround V4 activity (dark gray region) plotted in
dependence on OC. It is almost independent from OC, but increases
monotonically with increasing BN. For BN = 25° and BN = 30°,
the surround activity is stronger than the inner V4 activity even for
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activity. Compared to the fully recurrent model, the curves get flat at
lower values of BN. Consequently, for BN values exceeding 20°, the
reference ratio f is not reached even for the maximal OC of 90°. (D)
Threshold OC necessary to reach reference ratio 8 in dependence on
BN. The model’s ability to detect the texture bar breaks down already
for BN values exceeding 15°
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OC and approach 100% correct responses at OC = 30°.
Likewise, in our model, the ratio between inner and sur-
round V4 activity shows a sigmoidal dependence on OC
with its steepest increase for OC values up to 30°.

¢ In the psychophysical experiments, the correct responses
rates in dependence on OC are flattened with increasing
BN. This is replicated by our model which has flatter ratios
between the inner and surround V4 activity for higher
values of BN.

¢ Nothdurft plotted the minimal OC necessary for a detec-
tion rate of 75% against BN. This curve increases almost
linearly with increasing BN for values up to 20°-25°. In
our model, the minimal OC necessary to reach the refer-
ence ratio 8 exhibits an approximately linear dependence
on BN for BN values up to 25°.

® Above a BN of 30°, subjects usually did not reach the 75%
correct response level. Likewise, for BN = 30°, the inner
V4 activity level of our model is only marginally increased
above the surround activity level even for high values of
OC. This indicates that the models ability to detect the
orientation contrast at the border of the pop-out bar breaks
down for BN values exceeding 30°.

Taken together, the V4 activation patterns of the full recurrent
model exhibit exactly the same dependency on OC and BN as
the detection performance of human observers. This allows
tracing back the psychophysical results to a putative neural
architecture. Furthermore, based on our simulation results,
we propose that suppression of orientation noise crucially
depends on the feedback connections between visual areas
V1, V2 and V4.

6 General discussion
6.1 The proposed model and its key features

In this contribution we have proposed a recurrent model of
texture boundary processing that builds upon recent knowl-
edge of the structure and function of cortical architecture
along the ventral pathway in primate vision. In particular,
the model is mainly furnished to explain the contribution
of different cortical areas that utilize simplified core mech-
anisms of spatial feedforward activity integration, lateral
spatial excitatory and inhibitory interaction and modulatory
feedback to re-enter activations from higher stages at early
stages of spatially localized feature processing. Unlike pre-
vious modeling approaches that have favored more localized
lateral long-range interactions based on intra-cortical pro-
cesses, we have focused on mechanisms of inter-cortical
processing that involves multiple cortical areas. Thus, the
study provides computational evidence for the contributions
of spatially distributed processing to implement robust sur-
face boundary extraction under noisy conditions to reveal
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camouflaged objects from backgrounds that have statisti-
cally similar properties. In particular, spatial density effects
extensively studied parametrically in psychophysical exper-
iments were explained quantitatively by the proposed model
architecture. In that sense, the proposed model has previ-
ously been described to explain the detection properties of
targets that were defined by oriented texture items. It was
clarified how feature contrast effects contribute to the detec-
tion properties rather than the absolute detection of feature
items. The computational processing properties have now
been generalized showing how multiple feature dimensions,
orientation and density, jointly contribute to object detection
in cluttered scenes.

In our model, the positions of texture boundaries as well
as pop-out target lines are detected via recurrent processing
within a hierarchy of bi-directionally linked topographical
areas. Model V4 cells use anisotropic receptive fields con-
sisting of an excitatory center surrounded by two lateral in-
hibitory subfields to compare the orientation-selective input
delivered by area V2. A line element evokes high V4 activ-
ity when it is not surrounded by approximately iso-oriented
lines, independent whether it is a single target line embed-
ded in a field of distractors or a line element belonging to the
(continuous) border of a texture region. Consequently, model
V4 cells gradually signal local discontinuities in element ori-
entation and/or element density. The pooling of bottom-up
input is followed by a process of intra-areal center-surround
competition to sharpen the initial activation patterns and to
normalize cell activities in a local neighborhood. The spatial
distance at which neighboring line elements exert suppres-
sive influence on each other is restricted by the V4 recep-
tive field sizes and the range of center-surround competition,
which both act in spatial regions of approximately equal size.

The resulting model V4 activity is finally fed back to mod-
ulate the initial model V2 activation pattern, enabling a re-
current flow of activity. Both the intra-areal center-surround
competition and the process of feedback modulation help to
enhance V4 activations due to salient pattern arrangements
while at the same time suppressing ambiguous cell activities.
This results in a context-dependent retuning of a cell’s sen-
sitivity to orientation discontinuities. Center-surround com-
petition in model areas V1 and V2 acts in a spatial and
orientational neighborhood. As a consequence, a stimulus
that contains only minor background orientation noise will
activate only specific orientation channels. In turn, this re-
sults in a weaker impact of center-surround competition on
model V1 and V2 cell activation strength and in an increased
sensitivity of model V4 cells to low orientation contrasts. In
contrast, noisy stimuli activate a broad range of orientation
channels, which compete with each other to attenuate the
V2 bottom-up input to model area V4. In this case, higher
orientation contrasts are necessary to evoke model V4 ac-
tivity. Excitatory feedback from model area V4 results in an



J Comput Neurosci (2007) 22:255-282

273

Stimulus

U\f u“,t' {‘,

‘m r
1! IIH

l.*n: “’ﬁ'

ipu re feedfonmardl

l fully recurrent l

Fig. 8 Example of the model responses to four neighboring patches
of oriented real-world structures (Brodatz, 1999: D15 Straw, D37 Wa-
ter, D65 Handwoven Oriental rattan, D68 Wood grain; input image
size 450 x 450). As the model V1 cells all work on the same fixed
spatial scale, they do not succeed in capturing all details of the input
patterns. However, the output of model area V1 is sufficient for area V4

orientationally and spatially specific enhancement of model
V2 activity, in turn giving those V2 cells an advantage in
the process of center-surround competition which signal pu-
tative “salient” element configurations. As demonstrated in
chapter 5, this effect focuses the processing of the over-
all model on important image regions, increases the V4
cells’ sensitivity to salient orientation discontinuities and
suppresses noise-related cell activities.

In Fig. 8 it is shown that the mechanisms outlined above
also help to successfully segregate neighboring regions
containing more complex real-world like oriented textures
(Brodatz, 1999). In our model, the V1 simple and complex
cells all work on the same fixed spatial scale. As a result,
model V1 misses to represent some properties that appear at
larger scales of the input texture patterns. However, as the
model V4 cells integrate information over extended regions
of the V1 output, area V4 is able to robustly signal the bound-
aries outlining the texture patches. Further examples for the
successful interaction between V4 and the lower model ar-
eas in segregating more complex textures are demonstrated in
Fig. 9. In Fig. 9(A) two inhomogeneous texture regions con-
sisting of upright and tilted crosses are shown. The inhomo-
geneity is caused by randomly deleting 20% of the crosses
and it is clearly signaled by the model V1 activation pattern.
However, as model V4 cells integrate texture information
over extended areas in the input image, they succeed in re-
covering the border between the two regions. In Fig. 9(B), the
two texture regions both contain oblique lines of the same ori-

to process the boundaries between the texture patches. As the orien-
tation contrast between the patches is high, the V4 activation patterns
of the feedforward and the recurrent model are quite similar. Maximal
activation strength: max{V1, V2, V4} = {0.043, 0.03, 0.057} for the
feedforward and {0.109, 0.098, 0.141} for the recurrent model

entation. As salient discontinuities are detected by the model
V4 cells for each orientation channel separately, the overall
model V4 stage is capable of clearly signaling the border
between the two regions. In Fig. 9(C), both regions consist
of left- and rightward tilted lines and differ only in the way
the lines are arranged. The border between the two regions
is recovered by a combination of model V2 and V4 mecha-
nisms: At the border, several pairs of leftward tilted lines are
grouped together by the model V2 long-range mechanisms.
This results in a slightly enhanced V2 activation strength
at these positions, which is detected by model area V4 and
further enhanced by the recurrent flow of activity from V4
to V2. The model V4 activity signaling the border remains
comparatively weak, which agrees well with the subjective
impression of a somewhat fuzzy transition from one region
to the other. In Fig. 9(D), the grouping of pairs of lines at the
border between the two regions again results in an enhanced
V2 activity which is further stabilized by recurrent V4-V2
interaction. In particular, Fig. 9(C) and (D) demonstrate how
V2 grouping mechanisms and V4 mechanisms which signal
salient activity transitions can interact in order to robustly
process boundaries between texture regions.

6.2 Relation to psychophysics
The computational experiments presented in this paper al-

low to link several key results of the psychophysical stud-
ies of Nothdurft (1991, 1992, 2000c) on human texture
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Fig. 9 Model responses to texture regions containing more complex
artificial patterns (adopted from Li, 2000, Fig. 7). (A) Both texture pat-
terns are inhomogeneous. Maximal activation strength of simulation:
max{V1, V2, V4} = {0.035,0.028, 0.036} (feedforward) and {0.098,
0.082, 0.091} (recurrent). (B) Half of the line elements in both re-
gions have the same orientation (rightward tilted). Maximal activation
strength: max{V1, V2, V4} = {0.041, 0.026, 0.044} (feedforward)
and {0.109, 0.084, 0.092} (recurrent). (C) Both regions consist to iden-
tical proportions of left- and rightward tilted lines, which are arranged
in two distinct patterns. Maximal activation strength: max{V1, V2,
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V4} = {0.046,0.019,0.043} (feedforward) and {0.085, 0.051,0.082}
(recurrent). (D) The complete texture consists of rightward tilted lines
which are offset along the y-axis at the border between the two regions.
Maximal activation strength: max{V1, V2, V4} = {0.048, 0.024,
0.036} (feedforward) and {0.097, 0.066, 0.070} (recurrent). (C) and
(D): In order to better visualize the rather weak activation patterns in the
central part of area V4 (indicated by the dotted lines), the mean response
strength was calculated in that region and overlaid to the original V4
activation pattern (scaling in % of the maximal V4 activation strength)
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processing with activation patterns in area V4 of our model.
We demonstrated that reading out model V4 activation pat-
terns using simple center-surround mechanisms is sufficient
to reproduce Nothdurfts findings on (i) effects of varying
texture density, (ii) alignment effects and (iii) effects of back-
ground orientation noise. This enables us to trace back his
results to the putative underlying neural mechanisms and
to the relevant target areas. First, we demonstrated that the
effects of texture density on the saliency of a pop-out tar-
get most likely depends on V4 receptive field sizes, the
range of V4 intra-areal center-surround competition and a
V4 receptive field organization of orientation selective cells
having an excitatory center and lateral inhibitory surrounds
(chapter 3). The increased saliency ratings of both pop-out
and non-pop-out lines at low texture densities can be traced
back to the limited receptive field sizes and range of center-
surround competition. The peak saliency ratings of pop-out
lines at medium texture densities depend on the receptive
field organization. As previously discussed (Thielscher and
Neumann, 2003), it is unlikely that, e.g. the anisotropic hor-
izontal connections in V1 can account for these findings, as
their integration range is limited and substantially smaller
than the receptive fields in V4. This view is also supported
by the findings of Nothdurft that the observed density ef-
fects substantially differ with feature modality (luminance
vs. orientation vs. motion; Nothdurft, 2000c). In particular,
the difference between the saliency curves of orientation- and
motion-defined pop-out bars led him to suggest that “orien-
tation and motion are processed in different subsequent areas
(for example, in V4 and MT)”, i.e. not commonly in V1 but
in different, higher visual areas.

In our simulation study, the V4 receptive field sizes are
constant in order to reduce the complexity of the model.
However, in the human visual maps the receptive fields
monotonically increase in size from the representation of
the fovea to the periphery. Consequently, the activation pat-
terns of human V4 should exhibit a similar effect as observed
above when a fixed density input is presented in the fovea
and gradually moved to the periphery.

Second, we have demonstrated that the detectability of a pop-
out bar (Nothdurft, 1992, p. 360) is influenced by the align-
ment of line items that compose the texture field. We suggest
that this effect is most likely caused by the contributions of
anisotropic mechanisms for contour integration and comple-
tion, as observed for V2 neurons (v.d. Heydt et al., 1984). In
our model, the common grouping of both line elements that
belong to the pop-out bar and those of the background to
continuous “flow patterns” by model V2 bipole cells tends
to reduce the orientation contrast “seen” by model V4 cells
(chapter 4). In particular, model V4 activity is notably re-
duced when V2 bipole cells are able to group line elements
across the long border of the pop-out bar, resulting in a less
robust “detection” of the bar by our model. In addition, long-

range mechanisms for contour integration in V1 (mediated
by anisotropic horizontal projections) might complement the
contour effects observed in V2, to further increase and stabi-
lize the alignment effect (Gilbert and Wiesel, 1989; Hirsch
and Gilbert, 1991; Kapadia et al., 1995, 2000; Li, 2002;
Hansen and Neumann, 2004). From a computational point
of view, such V1 mechanisms are mainly a replication of the
mechanisms implemented by our V2 bipole cells, merely
acting on a reduced spatial scale. Consequently, they are not
expected to change the overall model behavior, at least when
considering the stimuli used in our simulations. We therefore
decided not to integrate such V1 mechanisms in our model
in order to reduce its overall complexity.

Third, we demonstrated that the increase of orientation con-
trast necessary to detect a pop-out bar embedded in a back-
ground of increasing orientation noise can be accounted by
taking the ratio between inner model V4 activity (border
of the bar) and surrounding V4 activity (orientation noise).
The resulting quantitative measures were observed in psy-
chophysical experiments (Nothdurft, 1991, 1992). This ratio
has to reach a certain threshold in order to get a clear-cut
model V4 activity signaling the border of a pop-out bar and
in turn enabling its detection (chapter 5). In particular, the
OC necessary to reach the threshold ratio increases almost
linearly for BN values up to 25°. For higher values of BN, the
model’s ability to detect the border of the pop-out bar breaks
down even for a maximal OC of 90°, thereby resembling
the performance of human observers. As already outlined
above, this behavior can be explained by (i) the increasing
number of V1 and V2 orientation channels activated at in-
creasing levels of orientation noise and their tendency to
camouflage salient orientation discontinuities, and (ii) feed-
back from model area V4 in order to concentrate processing
on “salient” image regions, thereby counteracting the effects
of orientation noise for BN values up to 25° (see chapter 6.1
“Key model features”).

Taken together, our simulation study clearly supports
Nothdurft’s view that human texture processing is based on
the detection of salient feature discontinuities by demon-
strating that a biologically plausible implementation of this
principle is capable to replicate several of his key findings.
His results can be linked to the putative underlying neu-
ral mechanisms, target areas and key processing principles.
This includes, e.g. V4 receptive field sizes and organization
which determine the range of texture density effects. Further-
more, center-surround interactions and activity modulation
via feedback connections is demonstrated to be crucial for
the suppression of orientation noise.

Our simulation results on the effects of texture density
also allow to interpret the findings of a recent psychophysical
study (Meinecke and Donk, 2002) on visual search efficiency
in texture fields of varying homogeneity. Stimulus homo-
geneity was controlled by replacing an increasing number of
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the line elements of a homogeneous texture with blank gaps.
In that study, it was demonstrated that the detection of a per-
pendicular target line embedded in an inhomogeneous field
of iso-oriented distractors follows a U-shaped dependency
on the number of line elements: Detection performance is
high for stimuli containing only a few lines, decreases with
increasing element number and starts to increase again for
high element numbers. Based on our results, we suggest
that pre-attentive segmentation processes are inefficient for
low element numbers (i.e. low texture densities), resulting in
(separate) localized V4 activity blobs for each line element.
In this case, detection performance depends on the capability
of subsequent attentive processes and scales inversely with
the number of line elements. For high element numbers,
however, pre-attentive texture border processing achieves
segmentation of the stimulus and isolated V4 activity at the
position of the target line enables efficient search and fast
target detection (see also Thielscher et al., 2002). Our inter-
pretation is supported by ERP results (Schubd et al., 2001;
Schubd, 2002) which complement the psychophysical study
by Meinecke and Donk (2002): Differences in posterior N2
amplitude (a brain potential specific to pre-attentive process-
ing) between trials with and without a target line were only
observed for high element numbers. This indicates that pre-
attentive processing is only efficient when texture density is
sufficiently high.

6.3 Relation to physiological and neuroimaging data

Physiological and neuroimaging studies indicate that visual
area V4 is strongly involved in texture processing (de Weerd
et al., 1996; Merigan, 1996, 2000; Kastner et al., 2000). For
example, using fMRI, it was demonstrated that areas V4
and TEO are significantly stronger activated by texture bor-
ders than lower visual areas (Kastner et al., 2000). Likewise,
V4 lesioned monkeys were unable to identify the orienta-
tion of a pop-out bar composed of several line items (i.e.
they could not recover its outline defined by the texture bor-
der), although they still detected the presence of high OCs
in the stimulus (Merigan, 2000). In our model, we propose
a biologically plausible implementation of texture border
processing by V4 cells, which traces back the sensitivity to
salient orientation discontinuities to a putative underlying
V4 receptive field organization having an excitatory center
and two lateral inhibitory flanking regions. Key properties
of our model V4 cells are supported by a study of Pollen
et al. (2002) investigating the interaction of bar and grating
stimuli in single cell V4 responses. The key observations
in their study were that (i) individual neurons are predomi-
nantly selective to single input orientations and that (ii) RF
obey a spatial center-surround organization. This indicates
that V4 cells show stereotyped RF properties through selec-
tive integration of input activities from cells belonging to a
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single specific orientation channel. These findings support
the layout of our model V4 cells which (i) integrate input
activations from specific orientation fields generated at pre-
vious model stages, and (ii) use a spatial center-surround
organization of the RF to generate boundary activities at
texture discontinuities. The view that at least a portion of
V4 cells is selective to boundaries is also supported by a
electrophysiological study of Pasupathy and Connor (2001).
It was demonstrated that a significant amount of V4 cells
selectively responds to boundaries of complex shapes de-
fined by luminance transitions at specific positions in the
stimuli.

A recent electrophysiological study demonstrates that sac-
cades during a free viewing visual search task were directed
toward the topographic locations of high V4 activity (Mazer
and Gallant, 2003). For those cells being located around
the target location of the next saccade an increased activity
level was observed in approximately 50% of the recorded
neurons. This increase was apparently determined solely by
(bottom up) stimulus features. The activity of the other 50%
of the neurons was additionally modulated by task demands
and, thus, demonstrating the influence of feature-based at-
tentional modulation (compare Reynolds et al., 2000). The
authors concluded that “the spatial distribution of activity
in V4 encodes the retinotopic locations of salient features
throughout the visual field” (Mazer and Gallant, 2003, p.
1248). Restricted to the orientation domain, the V4 activa-
tion patterns of our model exactly replicate these findings:
Model V4 activity is a gradual signal of the saliency of the
underlying local orientation discontinuities in the input im-
age, either evoked by a single target line or due to region
borders. Although it was beyond the scope of the current
modeling investigations, our general model architecture and
dynamics allow to integrate task-dependent mechanisms, as
observed in the above mentioned electrophysiological study.
A feature-specific modulation of V4 cell activity could be
achieved by biasing model V4 center-surround competition
to, e.g. a specific orientation channel using modulatory feed-
back interactions from higher model areas which represent
visual areas involved in guiding attention (Itti et al., 1998).
Such an additional bias by top-down modulatory enhance-
ment provides receiving cells an advantage in the subsequent
competition of cell activity in space-orientation domain. To-
gether, modulatory feedback enhancement and divisive inhi-
bition resemble a biased-competition mechanism for feature
enhancement and selection (Reynolds et al., 2000; see Bay-
erl and Neumann, 2005 for a related mechanism based on
the proposed architecture employed for motion analysis).
Taken together, our modeling approach is able to link the
psychophysical results of Nothdurft (1991, 1992, 2000c) on
target salience and detectability, as discussed above, with
the electrophysiological results of Mazer and Gallant (2003)
by proposing a putative neural implementation of salience
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computations with the result being represented by model V4
activation patterns.

Several electrophysiological studies demonstrate that
cells in visual area V1 respond to texture borders by ex-
hibiting enhanced firing-rates (Gallant et al., 1995; Lamme
etal., 1998, 1999; Nothdurft et al., 1999, 2000). Based on our
modeling approach, we propose excitatory feedback from V4
cells vividly responding to the texture borders to be one of
the neural origins of these modulatory effects. Feedback from
V4 can act indirectly via area V2 to increase the V1 activ-
ity at corresponding topographical positions (Thielscher and
Neumann, 2003).! Interestingly, this local increase results in
a decrease of the mean V1 activity due to center-surround
competition. When comparing mean activation levels for
model variants with and without feedback connections (us-
ing, e.g. the texture density stimulus of line spacing 35, Fig.
4(A)), then the mean activity of model area V1 is reduced
by 20% for the recurrent model compared to a pure feed-
forward model. Likewise, mean V2 activity is reduced by
44%. This model behavior is in accordance with findings
by Murray et al. (2002) who used fMRI to demonstrate that
V1 activity is reduced in response to coherent compared to
random line drawings. This observation has been taken as ev-
idence against prevalent theories that feedback exclusively
enhances feedforward driven activities in resemblance to at-
tentional selection effects (Koch and Poggio, 1999). Instead,
a previous proposal that feedback may provide a signature
to compare with the input (as in predictive coding schemes)
to measure the discrepancy between higher-order cell ex-
pectancy and the stimulus responses at earlier stages (Rao
and Ballard, 1999) have now gained experimental support.
Murray et al. (2002) concluded that “higher areas may serve
to disambiguate activity patterns in lower areas, reducing ir-
relevant activity and enhancing activity appropriate for the
percept”. In our model, the net effect of feedback together
with activity normalization results in a suppression of ori-
entation noise and enhances those activities in areas V1 and
V2 located at topographically corresponding positions as the
predicting model V4 activity blobs. This mechanism of feed-
back integration allows to combine the coarse-grained de-
tection of salient texture discontinuities with high-resolution
localization properties at lower areas (see also Thielscher
and Neumann, 2003, Fig. 9).

! Thielscher and Neumann (2003) also investigated direct feedfor-
ward/feedback interactions between localized model V1 and coarse-
grained model V4 interaction in concert with and without the inte-
grated action of model V2 to study the computational consequences
of parametric variation of the relative strength of the V1-V4 cou-
pling in comparison to V2-V4 coupling. Here, we did not conduct
such an additional study for investigating the density effects since we
wanted to keep the modeling as simple as possible already demonstrat-
ing the desired density effects in the strictly hierarchical V1-V2-V4
model.

The horizontal long-range projections within area V1 are
proposed to provide a further, independent neural origin un-
derlying the observed border enhancement effect (Gilbert
and Wiesel, 1989; Hirsch and Gilbert, 1991; Li, 2002;
Hansen and Neumann, 2004). Apart from the processing
of luminance contrast V1 cell responses to texture patterns
and texture boundaries have been investigated in several re-
cent studies (Kapadia et al., 1995; Nothdurft et al., 2000).
The latter investigation, in particular, aims at finding out
whether a texture boundary defined by an orientation con-
trast in the arrangement of individual items is signaled by
V1 cells. The key finding was that a cell located at a texture
boundary that is defined by an abrupt change in bar orienta-
tion is enhanced in a modulatory fashion. In a similar vein,
Lamme and coworkers (Zipser et al., 1996; Lamme et al.,
1998, 1999) investigated the late response modulations of
V1 cells to texture patterns that define a figural pattern that
segregates against the background. Such response latencies
of V1 cell receptive field modulations from outer-surround
regions provide ample evidence for a processing mechanism
that affects, or evaluates, responses generated during the
feedforward sweep of initial stimulus response over several
stages of hierarchical processing (Lamme and Roelfsema,
2000). Such late responses may in principle have different
causes and the experiments mentioned do not address the
specific underlying interactions from the surround pattern
(Nothdurft et al., 2000). Lateral long-range interactions in
V1 spanning several cortical hypercolumns might generate
the observed response modulations. Localized patchy feed-
back connections that modulate the early cell responses may
also generate a similar net effect though effectively span-
ning a broader spatial range due to the larger receptive field
sizes of cells higher up in the processing hierarchy. Physio-
logical studies demonstrate that the spatial field of activity
integration in V1 is rather small in comparison with extra-
striate cell receptive fields even when considering horizontal
long-range connections. Cavanaugh et al. (2002a, b) calcu-
lated cortical magnification factors representing the recep-
tive field sizes of V1 cells in terms of cortical distances
in mm. The authors demonstrate that the majority of re-
ceptive field radii fell within a range of approximately 3
to 4 mm on the cortical map. Horizontal long-range con-
nections in V1 span up to distances of 8 mm (Gilbert and
Wiesel, 1989; Hirsch and Gilbert, 1991). In other words,
the diameter of the field of activity integration via long-
range connections is (roughly estimated) approximately 2 to
3 times the diameter of a cell’s receptive field. However, this
is about 3 to 4 times smaller than V4 receptive fields (Smith
etal., 2001).

The temporal evolution of the responses that reflect con-
textual effects might also help to gain further insights into the
contributions of feedback and lateral response interactions.
Girard et al. (2001) investigated the response latencies and
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conductance velocities of connections between V1 and V2
to see how fast cells in one area can drive recipient cells.
The authors found that the distributions of latencies were
comparable for feedforward and feedback connections, with
clear-cut peaks around 1.5 to 2 ms. Unlike this pattern, laten-
cies of lateral horizontal responses distribute much broader
with the majority of latencies ranging from 1.5 to 6 ms and
the maximal latencies being up to 10 ms. These findings
led the authors conclude that the main processing sweeps
(feedforward and feedback) act fast and on mainly the same
temporal scale. In particular, the impact of feedback modu-
lation on cell activity in V1 can be expected to be as fast or
even faster than the activity modulation by neighboring V1
cells mediated by the horizontal V1 long-range connections.
It is not unrealistic, therefore, to interpret these findings as
indication for a tight coupling of feedforward and feedback
processing to fuse localized feature measurements with con-
text information that utilizes feature integration in different
conjunctions and contrast measurements on a much broader
scale. The late responses observed by, e.g. Lamme’s inves-
tigations are then attributed to the polysynaptic stages of
feedforward processing and integration and the subsequently
initiated feedback projection from higher to lower stages of
processing.

Our model proposal draws upon these findings. Although
we do not rule out contributions from additional lateral in-
teractions based on intra-cortical long-range interactions,
our focus is on feedforward and feedback processing that
implement different modes of vision in feature-driven for-
ward and modulatory recurrent processing (Lamme and
Roelfsema, 2000). We primarily investigated and provided
computational evidence that individual oriented feature
items and their local orientation contrast is signaled dur-
ing the cortical feedforward sweep. Feedback that is gener-
ated at various stages higher up in the processing hierarchy
provides a reentry signal to spatially modulate the initial
responses and thus combine localized signals with coarse-
grained context patterns which encode salient contrast
patterns.

6.4 Other models

Our modeling approach is related to and shares properties of
(i) models of recurrent V1-V2 interaction and (ii) models of
human texture processing.

Models of recurrent V1-V2 interaction simulate pro-
cesses of robust contour formation observed in early vision
(Grossberg and Mingolla, 1985; Neumann and Sepp, 1999;
Mansson, 2000; Finkel and Edelman, 1989; Parent and
Zucker, 1989; Finkel and Sajda, 1992; Heitger et al., 1998).
They can reproduce the induction of illusory contours, as ob-
served in V2 contour neurons (v.d. Heydtet al., 1984), as well
as the spatial grouping of texture items and the high saliency

) Springer

of aligned bars. The computational capabilities of these mod-
els are preserved and incorporated by our approach, resulting
in a model being in accordance with a more general archi-
tecture of form processing in the ventral visual stream. In
particular, our model demonstrates how grouping of aligned
contour items by V1-V2 interaction influences the capabili-
ties of the overall model in texture boundary detection.

Many models trying to elucidate the neural mechanisms
which underlie human texture processing propose a two-
stage strategy (e.g., Malik and Perona, 1990; Bergen, 1991;
Landy and Bergen, 1991; Graham et al., 1993; Kehrer and
Meinecke, 2003): First, the input image is analysed using
a set of filters having different orientations and (in some
cases) different spatial frequencies. Subsequently, a second
processing stage detects activity changes in the output of the
first filter bank in order to establish borders between differ-
ent texture regions. These approaches resemble the scheme
of texture segregation of Beck (1982) who proposed a hier-
archy of several processing levels, namely feature detection,
linking, difference encoding and (threshold-based) decision
for segmentation. These strategies are comparable to the hi-
erarchy of computation implemented by our feed-forward
stream of model V1 cells (filtering the input image) fol-
lowed by model V4 cells (detecting changes in the V1 ac-
tivity patterns relayed via V2). However, unlike our model,
these approaches cannot explain the psychophysical find-
ings of Nothdurft, as demonstrated in this study. They do
not elucidate either the neural origins of alignment effects
or the putative role of feedback from higher model areas. As
demonstrated in this study, a pure feed-forward processing
hierarchy consisting of successively repeating stages of pool-
ing of bottom-up input followed by center-surround compe-
tition results in a less robust identification of texture borders
in the presence of orientation noise compared to a model
with additional modulatory feedback connections (chapter
5). Consequently, only the model with intact feedback can
account for the performance of human observers in the de-
tection of texture bars. A detailed discussion of the relation
of our approach to other models of texture processing can be
found in Thielscher and Neumann (2003).

A model of human texture boundary detection segrega-
tion has been proposed by Li (2000) suggesting that spatially
anisotropic cooperative/competitive interactions in area V1
alone can explain a variety of texture data and stimuli used
in visual search experiments (Li, 2002). The core element of
the model consists of utilizing spatially anisotropic kernels
which integrate input from similar oriented cells in spatially
separate sub-fields in the surround of a target cell. Here exci-
tatory input is sampled from regions in co-axial direction of
the target cell orientation, while inhibitory input is generated
from regions orthogonal to the target cell orientation, uti-
lizing weighting functions both displaying a figure-eight, or
bow-tie, shape. The excitatory kernel allows for long-range
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integration of those activities which are aligned along the
cell’s axis of orientation preference, similar to the model
of recurrent V1-V2 interaction proposed by Grossberg and
Mingolla (1985) or in the V1 processing stage of Grossberg
and Raizada (2000). A key difference appears in the defini-
tion of the inhibitory mechanism between those models and
the one proposed in Li (2000). In the latter, excitatory and
inhibitory inputs are defined such that in case of stimulation
with a field of equally oriented bars the central target cell re-
ceives stronger inhibition than excitation. As a consequence
the cell’s response to a bar that appears as part of a texture
arrangement is inhibited and, thus, its activation is lowered.
At the location of a region border, where the homogeneity in
the arrangement of the items is disrupted, a target cell now
receives only minor inhibitory input, which, in turn, causes
less reduction in cell activity in response to an item located
at the boundary. The relative difference between responses
at texture borders and within homogeneous textures leads
to an increase of saliency measure at boundaries. In sum,
the functionality of texture boundary detection is mainly in-
fluenced by the contribution of the inhibitory mechanism
in this model. In other models, like those of Grossberg and
coworkers, inhibition is crucial for enabling the competition
between neighboring cells to enhance those activations rep-
resenting salient items in the image. In our model, a similar
behavior is accomplished by utilizing shunting inhibition to
normalize the target activities (supported by collinear activ-
ities from the excitatory sub-field) against their surround.
This renders inhibition also of central importance to en-
hance activities at border locations that were receiving ex-
citatory input from coherently aligned and equally oriented
items.

One simulation study reported by Li (2000) investigates
effects of orientation noise, texture bar spacing and texture
element alignment generated by recurrent V1 interactions.
When probing her model with stimuli of different texture
densities, V1 activity correlates with human detection per-
formance (Nothdurft, 1985) up to bar spacing/bar length ratio
of 3, but quickly deteriorates for higher ratios (Li, 2000, Fig.
6(K)). In contrast, human detection performance and the per-
formance of our model which involves area V4 show a slower
and smoother decline with decreasing texture density. This
indicates that in case of texture patterns of low density the
spatial extent of long-range interaction within Li’s model of
V1 is limited compared to the range of spatial integration of
texture information by the human visual system. We suggest
that the observed behavior may arise from a combination of
cell responses in V1 with the reentry signal generated by cells
in higher visual areas that have larger receptive fields and can
thus provide a much broader contextual view of a scene. It is
the context information that we suggest is delivered robustly
by higher-order centers along the cortical processing path-
ways. We propose that V1 horizontal long-range projections

implement a powerful multi-purpose preprocessing mecha-
nism that enhances the signal-to-noise ratio (particularly for
low-contrast stimuli) and may enhance multi-dimensional
feature patterns such as corners and localized junctions (see
discussion in Hansen and Neumann, 2004).

The robust identification of texture borders crucially de-
pends on the reliable identification of meaningful orientation
discontinuities and may, therefore, be improved by more flex-
ible mechanisms such as provided by the feedforward and
reentry mechanisms proposed in our model. With our contri-
bution, we demonstrate that alignment effects mediated by
anisotropic connections in model area V2 (which have com-
parable layout to those used in Li’s model of V1 integration
cells) affect model V4 activity to an extent which is simi-
lar to the one observed in human behavior. We suggest that
the model proposed by Li (2000) cannot fully develop its
strength for certain item configurations. For example, con-
sider the stimulus configuration used in Fig. 5 of Li (2000).
Here two homogeneous regions of equally oriented bars are
spatially juxtaposed horizontally. Above threshold output at
the border where the two regions meet is generated for those
bars oriented parallel to the region boundary where cells
receive full excitatory input but only half inhibitory input.
For the region that consists of bars oriented orthogonal to
the region border boundary cells get an approximately 50%
reduction from both excitatory as well as inhibitory input.
Thus, no saliency is generated on this side of the contour. We
suggest that with the contribution of a contrast mechanism
as the one proposed in our model, the enhancement at such
boundaries is more balanced and, thus, stabilize the texture
boundary detection process.

Furthermore, when considering the stimulus variations
discussed above, the reliable formation of texture bound-
aries requires integration utilizing a larger neighborhood in
the space and orientation domain. Based on several empir-
ical findings, we have argued that the robust formation of
texture boundaries is likely a major function of the process-
ing in higher cortical areas. For example, the fMRI study of
Kastner et al. (2000) demonstrates that texture segrega-
tion tasks cause significant activation in areas V1, V2 and
V4 with an almost linear increase of hemodynamic activ-
ity along the feedforward hierarchy indicative for a sig-
nificant role of the anatomically higher areas. In addition,
response modulations that bridge large spatial ranges that
reach beyond V1 lateral integration ranges provide further
evidence for the role of feedback. In functional terms, feed-
back may provide a reentry signal (Finkel and Edelman,
1989) that modulates initially generated rough-and-ready
estimates along the feedforward processing cascade to eval-
uate and partially enhance those signal contributions that
match the more coarse-grained response generated at later
stages fusing multiple feature channels and their contrast
measures.
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6.5 Conclusion

The goal of this study was to trace back several key
results on human performance in texture processing, as
obtained in psychophysical studies (Nothdurft, 1991,
1992, 2000c; Meinecke and Donk, 2002) to their neural
origins. We systematically investigated the behavior of a
biologically plausible model of texture border processing,
which is based on a large database of physiological and
anatomical data, to tightly link its activation patterns with
the results of the psychophysical studies. This allowed
us to identify key processing principles as well as key
areas which putatively underlie human performance. In
particular, it was demonstrated that alignment effects in
human texture processing are likely to result from mecha-
nisms of contour groupings in area V2. Density effects in
texture processing probably reflect a specific V4 receptive
field organization and the range of V4 intra-areal center-
surround competition. Furthermore, we demonstrated that

Table A.1 Parameters of the three-stage cell dy-
namics and standard deviations o of the Gaussians
pooling the center and surround activity in the spatial

Appendix A Model V2 bipole cells: spatial subfields

The weighting functions K"/"i" determining the spatial
layout of the subfields are modeled as anisotropic Gaus-
sians, which are cut off in the central part of the cell by
means of a sigmoid function. The partial overlap of the sub-
fields in the center of the cell defines the classical receptive
field:

left = 1
Ky = Amﬁ\-,(rk,y,thOﬂ(xi) :

trew (—ai(C%0) -5

sin 6
right > 1
K,'()g = Amﬁ\,,akiv,rkﬁ\.o,(?(xi) :
trew (+a5(C0) -5
" Ysin

)

X; : Cartesian coordinates of point i
okx =22.0;0;_y =10, 73, =2.0; Ay = 0.8; B = 9.0

and orientational domains (see Eqgs. (10) and (11)).
The values were kept constant through all experi-
ments

Parameters for /(V

Parameters for /?

o of
ay B1 Y1 1 a B2 8 a Yt AT Y AT
Vi1 12.0 0.73 3.7 25 1.0 3.5 5.0 0.2 1.0 2.0 3.0
3.1 50.0 0.2 2.0 2.0 6.0

V2 120 085 42 20 1.0
v4 o - - - - 1.0

9.9 1000 0.2 8.0 2.0 24.0

noise suppression is probably the main functional role of the
dense feedback connections from V4 to V2 in the context of
texture processing. In particular, feedback from V4 was iden-
tified to be crucial in order to raise the model performance to
the level of human observers. In the model, orientation noise
activates adjacent orientation channels and thereby camou-
flages important orientation discontinuities signaling, e.g. a
region border. This effect is counteracted by mechanisms
of center-surround co petition in model areas V2 and V4
as well as feedback from V4 in order to suppress ambigu-
ous cell activities and to focus the processing of the overall
model on salient discontinuities. In behavioral terms, such
influences from recurrent cycles of processing help to detect
objects even when they are camouflaged. Therefore, these
objects were rendered visible when there is enough time for
detection (Lamme and Roelfsema, 2000). The gradual cell
activation dynamics implemented in our model enables area
V4 to act as salience map in the orientation domain, thereby
signaling the position of putative important image regions in
a graded manner.
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