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Abstract. We review and extend recent results on the instantaneous firing rate dynamics of simplified models of
spiking neurons in response to noisy current inputs. It has been shown recently that the response of the instantaneous
firing rate to small amplitude oscillations in the mean inputs depends in the large frequency limit f on the spike
initiation dynamics. A particular simplified model, the exponential integrate-and-fire (EIF) model, has a response
that decays as 1/ f in the large frequency limit and describes very well the response of conductance-based models
with a Hodgkin-Huxley type fast sodium current. Here, we show that the response of the EIF instantaneous firing
rate also decays as 1/ f in the case of an oscillation in the variance of the inputs for both white and colored noise.
We then compute the initial transient response of the firing rate of the EIF model to a step change in its mean
inputs and/or in the variance of its inputs. We show that in both cases the response speed is proportional to the
neuron stationary firing rate and inversely proportional to a ‘spike slope factor’ �T that controls the sharpness of
spike initiation: as 1/�T for a step change in mean inputs, and as 1/�2

T for a step change in the variance in the
inputs.
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1. Introduction

Cortical neurons in vivo receive a massive amount of
background synaptic activity, that induces large fluc-
tuations of the membrane potential (see e.g., Destexhe
and Paré, 1999; Anderson et al., 2000). This synap-
tic bombardment is often described by the sum of
a deterministic (average) current µ(t), plus a Gaus-
sian noise term with variance σ (t) and temporal cor-
relation τs . Given this stochastic environment, the
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neuronal output is typically characterized by the instan-
taneous firing rate (or firing probability) ν(t). The ques-
tion of how the instantaneous firing rate depends on
the statistics of neuronal inputs (both in stationary and
non-stationary conditions) in these conditions has been
a central question in theoretical neuroscience in re-
cent years. Three basic quantities of interest have been
considered:

• The stationary firing rate ν0 in response to stationary
input statistics (µ0, σ0);
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• The dynamical linear response (susceptibility, or
transmission function) of the firing rate to changes
of average input current at frequency f ;

• The dynamical linear response of the firing rate to
changes of the variance of the input current at fre-
quency f .

The leaky integrate-and-fire neuron (Lapicque,
1907; Knight, 1972; Tuckwell, 1988) has been the
model of choice for such investigations, due to its sim-
plicity. The main results obtained on this model are the
following:

• The stationary firing rate ν0 increases monotoni-
cally with both µ0 and σ0, and either decreases
monotonically with τs (in the subthreshold range)
or first decreases and then increases with τs (in
the suprathreshold range) (Brunel and Sergi, 1998;
Moreno and Parga, 2004).

• The behavior of the firing rate response to changes
in mean inputs depends markedly on both the am-
plitude of noise and temporal correlations present
in the noise (Knight, 1972; Gerstner, 2000; Brunel
et al., 2001; Lindner and Schimansky-Geier, 2001;
Fourcaud and Brunel, 2002). In the ‘suprathreshold’
(low noise and DC current above current threshold)
regime the dynamical response features resonances
at input frequencies which are integer multiple of
the neuron stationary firing rate. These resonances
disappear in the ‘subthreshold’ (high noise and/or
DC current below threshold) regime. The response
of the neurons to high frequency f oscillations in
mean input current decrease as 1/

√
f in the pres-

ence of white noise and is finite in the presence of
colored noise.

• The instantaneous firing rate is directly proportion-
nal to the input variance and consequently the firing
rate response to changes in variance has an instan-
taneous component (Silberberg et al., 2004; Lindner
and Schimansky-Geier, 2001).

More recent studies have shown however that the
high frequency properties of the linear response (and
therefore the short time behavior of the firing rate re-
sponse to dynamical stimuli) depend in a sensitive way
on the mechanism leading to spike emission (Fourcaud-
Trocmé et al., 2003). Hence, the LIF might not be the
appropriate model to investigate fast firing rate tran-
sients. Fourcaud-Trocme et al. (2003) have introduced
a new model, the exponential integrate-and-fire model,
that captures both qualitatively and quantitatively the

properties of the linear response of some Hodgkin-
Huxley type models.

Here, we first start by reviewing the properties of the
linear response of the firing rate of the EIF model in
response to change in mean inputs. Then, we describe
the properties of the response to changes in the vari-
ance of synaptic inputs, and compute the initial tran-
sient firing rate response to a step change in both mean
and variance of inputs. We then discuss under which
conditions neurons respond faster to step changes in
their mean inputs or changes in the variance. Finally,
in the discussion, we compare the results obtained in
the models with available experimental data.

2. Models and Methods

2.1. Models

Non-linear IF (NLIF) neuronal models are one variable
models that generalize the classic LIF model by includ-
ing an additional non-linear current ψ which leads to
a divergence of the potential toward infinity in a fi-
nite time (Ermentrout and Kopell, 1986; Ermentrout,
1996; Fourcaud-Trocmé et al., 2003). The action po-
tential time is defined as the time the potential reaches
infinity. The equation describing the dynamics of the
membrane potential of these models is:

C
dV

dt
= −gL (V − VL ) + ψ(V ) + I (t) (1)

where C and gL are the neuron capacitance and con-
ductance, ψ is the non-linear current leading to spike
generation and I is the external input current. When a
spike is emitted (i.e. at the time at which the voltage
reaches infinity), the voltage is reset at the potential Vr .

One classic example of such family of mod-
els is the quadratic integrate-and-fire model (QIF,
Ermentrout and Kopell, 1986; Ermentrout, 1996;
Hansel and Mato, 2003) defined by:

ψ(V ) = gL

2�T
(V − VT )2 + gL (V − VL ) (2)

The exponential integrate-and-fire model (Fourcaud-
Trocmé et al., 2003) is defined by:

ψ(V ) = gL�T exp

(
V − VT

�T

)
(3)

In both models, VT is the voltage threshold, i.e. the
largest steady voltage at which the neuron can be
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maintained by a constant input current, and �T is the
spike slope factor which measures the sharpness of
the spike (sharp initiation for small �T ). In the limit
�T → 0 in the EIF model, the standard LIF is recov-
ered (the ‘spike-generating’ current ψ becomes infinite
above the voltage threshold VT ).

The parameter �T is related to the time it takes for
the model to emit a spike from an initial voltage of VT :
in the limit �T → 0, we can show that for an input
current µ = I

gL
> VT − VL , the time from threshold to

spike emission is, for the EIF model:

T ∼ τm�T

(µ − VT + VL )
ln

(
µ − VT + VL + �T

�T

)

Hence the time from the threshold to spike emission
behaves as �T | log(�T )| when �T is small.

In this study we mostly focus on the EIF model which
captures the dynamical properties of neurons where the
activation variable of the current responsible for the
spike initiation (the fast sodium current) can be well
described by an exponential close to spike threshold, as
in the standard Hodgkin-Huxley model (see Fourcaud-
Trocmé et al., 2003). In particular, all the simulations
presented here were done using the EIF model, using
the numerical methods described in Fourcaud-Trocmé
et al. (2003). The model parameters are chosen to re-
produce accurately the dynamics of a type I model de-
scribed by Wang and Buzsáki (1996). These param-
eters are: τm = C/gL = 10 ms, VT = −59.9 mV,
�T = 3.48 mV, VL = −65 mV and Vr = −68 mV. This
gives a current threshold µT = IT /gL = 1.62 mV. We
also include a refractory period τref = 1.7 ms to take
into account the spike width.

Following standard practice, we use the diffusion
approximation to describe background synaptic inputs
(Ttuckwell, 1988). The input current is given by the
sum of a deterministic mean and a Gaussian noise term.
In the simplest case where the synapses are assumed
to be instantaneous (and therefore the temporal corre-
lations of the noise are neglected), we have:

I (t) = gLµ(t) + σ (t)
√

CgLη(t) (4)

where µ(t) and σ (t) (both in mV units) describe the
mean and the variance of the input current, and η(t)
is a Gaussian white noise of unitary variance. When
synapses have a finite decay time, η(t) is a colored
noise, i.e. a low-pass filtered white noise. Throughout
this paper, we consider for simplicity white noise, ex-
cept when specified otherwise.

2.2. Methods

From the Langevin Eq. (1) and (4), we can derive the
Fokker-Planck equation which describes the evolution
of the membrane potential probability density function
(p.d.f.) P(V, t),

τm
∂ P

∂t
= σ (t)2

2

∂2 P

∂V 2
− ∂

∂V

(
F(V ) + µ(t)

)
P (5)

where τm = C/gL is the membrane time constant and
F(V ) = −(V − VL ) + ψ(V )/gL . The firing rate of
the neuron is given by the probability flux at the spike
emission threshold, i.e. its limit when the voltage goes
to infinity for NLIF models:

ν(t) = lim
V →+∞

JV (V, t) (6)

where the probability flux JV is given by:

JV (V, t) = F(V ) + µ(t)

τm
P(V, t) − σ (t)2

2τm

d P

dV
(V, t).

The reset of the voltage to Vr after a spike emission is
taken into account by requiring that

JV (V +
r , t) = JV (V −

r , t) + ν(t). (7)

Another boundary condition is:

lim
V →−∞

JV (V, t) = 0 (8)

With constant inputs, the stationary solution of
Eq. (5) can be computed by setting its l.h.s to zero.
Finding the solution of Eq. (5) for time-varying inputs
is however a difficult problem in general. To overcome
this problem, we restrain ourselves to the analysis of
the firing rate response to small time-dependent per-
turbations of µ or σ . Neglecting non-linear terms in
the response, we can take advantage of Fourier analy-
sis, and fully characterize the dynamics of the system
by computing the response to sinusoidal inputs at all
frequencies. Thus, the inputs take the form:

µ(t) = µ0 + µ1 cos(ωt) (9)

σ (t) = σ0 + σ1 cos(ωt) (10)

where ω = 2π f . Throughout this paper, the subscript
0 always refers to the stationary component of any vari-
able, whereas the subscript 1 refers to the oscillatory
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part of the same variable. For all variables x , we assume
x1 � x0. Neglecting non-linear terms in the response
of the system, the p.d.f of the voltage and the firing rate
to oscillatory mean (resp. variance) are:

P(V, t) = P0(V ) + �[
Pµ,σ

1 (V, ω)eiωt
]

(11)

ν(t) = ν0 + �[
ν

µ,σ

1 (ω)eiωt
]

(12)

where �[·] denotes the real part of a complex variable.
The superscript µ (resp. σ ) refers to the case where the
input mean (resp. the variance) oscillates.

3. Results

This section contains both a review of results described
in Fourcaud-Trocmé et al. (2003) (stationary firing rate
and response to oscillatory mean input) together with
new results (response to oscillatory variance, response
to steps in both mean and variance).

3.1. Stationary Firing Rate

The stationary firing rate of the neuron (µ1 = σ1 = 0)
is obtained from Eq. (5) by setting ∂ P/∂t = 0, together
with the normalization condition

∫
P(V ) dV = 1

(Fourcaud-Trocmé et al., 2003). It yields:

ν0 =
{

τref + 2τm

σ 2
0

∫ +∞

−∞
dV

[ ∫ +∞

max(V,Vr )

× exp

(
− 2

σ 2
0

∫ u

V
(F(x) + µ0)dx

)
du

]}−1

(13)

The firing rate ν0 is plotted as a function of µ0 (f-I
curve) in the upper left panel of Fig. 1. It is plotted as a
function of σ0 (f-σ curve) in the upper right panel. In ab-
sence of noise, the f-I curve has the

√
µ0 − VT behav-

ior characteristic of type-I neurons close to threshold.
The firing rate is a monotonically increasing function
of σ0 for subthreshold mean inputs, while for suffi-
ciently suprathreshold inputs the firing rate decreases
with noise at low values of σ0, reaches a minimum, and
then increases with noise at high values of σ0. Equa-
tion (13) can be simplified to a single integral in the
particular case of the quadratic neuron (Lindner et al.,
2003; Brunel and Latham, 2003).
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Figure 1. EIF firing rate and low input frequency response as a
function of input mean (left column) and input variance (right col-
umn). Upper panels: stationary firing rate. Middle panels: derivative
with respect to the input current mean. Lower panels: derivative with
respect to the input current variance. In the right column, the in-
sets are an enlargement of the low noise region for the parameter
µ0 = 4 mV. It shows the negative derivative with respect to σ0 of
the firing rate in this region.

3.2. Linear Response for Low Input Frequencies

For inputs that vary on a slow enough time scale, the
firing rate response can be obtained directly from the
f-I curve, since the firing rate follows adiabatically
these slow changes. Hence,

ν
µ

1 (ω → 0) = µ1
∂ν0

∂µ0
, (14)

and

νσ
1 (ω → 0) = σ1

∂ν0

∂σ0
(15)

It can be shown from Eq. (13) that ∂ν0/∂µ0 is always
strictly positive. However, ∂ν0/∂σ0 can be either posi-
tive or negative depending on the shape of the function
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ψ . In the EIF model, we have seen that the rate de-
creases with σ0 when µ0 is sufficiently above the cur-
rent threshold and the noise level is low (see insets in
the right column of Fig. 1). The consequence is that
the firing rate response to a low frequency oscillation
in the input variance σ has a phase lag equal to π in
these conditions.

The four lower panels of Fig. 1 show the low fre-
quency responses as a function of both µ0 and σ0. Note
that the system is more susceptible to low-frequency
changes in its inputs (in both mean and variance) when
it is close to threshold, except when noise is very strong.
When the mean inputs are subthreshold, the suscepti-
bility (for both mean and variance) is maximal at a
non-zero value of the noise σ0. However, for
suprathreshold mean inputs, the susceptibility with re-
spect to low-frequency changes in the mean input de-
cays monotonically with σ0 while for oscillations in the
variance, there is still a maximal response at a non-zero
value of σ0.

3.3. High Input Frequency Limit

In the limit of high frequency inputs, we can determine
the firing rate susceptibility using an expansion in 1/ω.
Inserting Eq. (11) in the FP equation (Eq. (5)) gives at
first order in µ1, σ1:

iωτm P1 = σ 2
0

2

∂2 P1

∂V 2
− ∂

∂V
(F + µ0)P1 − µ1

∂ P0

∂V

+ σ1σ0
∂2 P0

∂V 2
(16)

Then, in the limit ω → ∞, it can be shown that

P1(V, ω) ∼ω→∞
1

iωτm

[
−µ1

∂ P0

∂V
+ σ1σ0

∂2 P0

∂V 2

]
(17)

Using the boundary condition (6) we obtain for the
firing rate

ν1(ω) = lim
V →+∞

[
F(V ) + µ0

τm
P1(V, ω)

− σ 2
0

2τm

∂ P1

∂V
(V, ω) + µ1

τm
P0(V )

+ σ0σ1

τm

∂ P0

∂V
(V )

]

= lim
V →+∞

[
F(V )

τm
P1(V, ω)

]
(18)

where in the last equality, we have used the fact that
F(V ) goes to infinity at large V .

Finally, we combine Eqs. (17) and (18) together with

P0(V ) ∼V →∞
ν0τm

F(V )
, (19)

to compute the high frequency response to a fluctuation
of the mean or the variance of the input current.

High Frequency Oscillation in Mean Inputs. The
first term in the expansion in 1/ω of ν1 in the case
µ1 > 0, σ1 = 0 gives:

ν
µ

1 (ω) ≈ µ1ν0

iωτm
lim

V →∞
F ′(V )

F(V )
= µ1ν0

iωτm
lim

V →∞
ψ ′(V )

ψ(V )
(20)

Fourcaud-Trocmé et al. (2003) showed that this result
holds for both white and colored noise inputs (corre-
sponding to non-instantaneous synapses), and for mul-
tiplicative noise (corresponding to conductance-based
synapses). Thus, the qualitative behavior of the high
frequency response to a fluctuation of the mean of the
input current for the NLIF models is independent of the
noise level or model, in contrast with the LIF model.
Rather, it is determined by the shape of the function
leading to the spike emission ψ(V ). Intuitively, the
reason is that the spike-generating current completely
dominates the dynamics for sufficiently large voltages,
and the dynamics becomes independent of the fluctua-
tions at such large voltages.

In particular, for the EIF model we find:

ν
µ

1 (ω) ≈ µ1ν0

iωτm�T
(21)

yielding a phase lag of π/2 at high frequency. Hence,
the response is inversely proportional to both τm and
�T . Intuitively, the faster a neuron can fire a spike, the
better it can respond to high frequency inputs.

Note that for the QIF model, as well as for any poly-
nomial spike-generating current ψ , the first order term
of the asymptotic expansion vanishes. Hence we need
to compute higher order terms. For the QIF model, we
obtain

ν
µ

1 (ω) ≈ − µ1ν0

(ωτm)2�T
(22)

yielding a phase lag of π at high frequency. Note the
qualitative difference between the behaviors of EIF
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(1/ f ) and QIF (1/ f 2) models. Hence, the functional
form of the voltage dependence of the activation vari-
able of fast sodium currents has strong effects on how
a neuron can follow fast frequency inputs.

High-Frequency Oscillation in Variance. Likewise,
we can compute the first order term of the expansion in
1/ω of NLIF models in response to a high frequency
oscillation of the variance of the input current (σ1 > 0,
µ1 = 0). We obtain:

νσ
1 (ω) ≈ σ0σ1ν0

iωτm
lim

V →∞
2ψ ′(V )2 − ψ ′′(V )ψ(V )

ψ(V )2
(23)

Once again, there is a striking difference with the sim-
ple LIF model where this high frequency response is
finite (Silberberg et al., 2004; Lindner and Schimansky-
Geier, 2001). In NLIF models, Eq. (23) shows that, as
for an oscillation of µ, the intrinsic current leading
to the spike generation ψ(V ) determines the high fre-
quency response.

In particular, we find for the EIF model:

νσ
1 ≈ σ0σ1ν0

iωτm�2
T

(24)

As in the case of a fluctuation of µ, we can obtain the
QIF response to fluctuations of σ by going to higher
orders (up to the third order here):

νσ
1 ≈ 2σ0σ1ν0

(iωτm)3�T
(25)

As for the case of the oscillation in the mean, the 1/ f
asymptotic behavior of the EIF model holds for both
white and colored noise inputs. However, the QIF high
frequency response to an input variance oscillation is
proportional to 1/ f 2 in the case of colored noise inputs
(Naundorf et al., 2003).

Comparison Between Responses to Mean and Vari-
ance High Frequency Oscillations. In the EIF
model, the high frequency behavior of both ν

µ

1 and
νσ

1 are qualitatively similar—they both decay as 1/ f at
high frequency. On the other hand, the QIF model is
more susceptible to very fast changes in µ (1/ f 2 attenu-
ation) than to very fast changes in σ (1/ f 3 attenuation),
contrary to the LIF neuron.

In the EIF model, the high frequency response to
oscillatory variance has an additional factor of σ0/�T

with respect to the response to oscillatory mean. Hence,

for �T � σ0 (very sharp spike initiation and/or large
background fluctuations), the system is more suscep-
tible to high-frequency variance fluctuations than to
high-frequency mean fluctuations. This �T → 0 limit
is consistent with known results on the LIF neuron
(Silberberg et al., 2004; Lindner and Schimansky-
Geier, 2001). In the opposite situation σ0 � �T , the
system is more susceptible to high-frequency fluctua-
tions in the mean than in the variance.

Intuitively, the dependence of the dynamics on �T

and σ0 can be understood from the following argu-
ments: at small noise levels, the EIF model spends
most of its time in the region close to the voltage
threshold VT around which the voltage dynamics is
well approximated by the QIF model, which we have
seen is more susceptible to rapid fluctuations in the
mean of the input. However, at high noise levels, the
EIF membrane potential visits a large voltage range
around VT and is less sensitive to the dynamics close
to threshold. Thus, at high noise levels, the model
has a LIF-type behavior, i.e. it responds better to fast
fluctuations in the variance than to those in the mean
input.

3.4. Full Frequency Range

To obtain the firing rate response of the EIF model at
intermediate input frequencies, we performed numer-
ical simulations. Results are shown in Fig. 2. These
simulations show that at low noise levels (Fig. 2, up-
per panels), the response to an oscillation of either µ

or σ displays resonances at frequencies multiple of the
neuron stationary firing rate ν0. This is because in this
regime the spike emission process is close to periodic
at frequency ν0 and hence it resonates with inputs at
frequency multiple of this intrinsic frequency. At high
frequency (above about 100 Hz in the upper panels of
Fig. 2) the response decays in both cases as 1/ f ac-
cording to Eqs. (21) and (24).

At high noise levels, the spike discharge becomes
strongly irregular and the response to an oscillation in
µ becomes that of a low pass filter (Fig. 2, lower-left
panel). On the other hand, the response to an oscil-
lation of σ is that of a band pass filter. The system
responds best to intermediate frequency inputs, while
both low and high frequency inputs are suppressed.
The low input frequency attenuation is similar to that
of the LIF neuron, while the high frequency attenu-
ation is induced by the spike-generating mechanism.
Note that for both filters we can deduce how the
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Figure 2. Numerical simulations of the EIF dynamical linear response module (�, phase in insets) over the full range of input frequency. The
dashed lines are the analytical results in the high frequency limit (Eqs. (21) and (24)). Left: response to a fluctuation of the input current mean
µ. Right: response to an oscillation of the input current variance σ . Upper panels: low noise regime (σ0 = 1 mV, µ0 = 6 mV, ν0 = 37 Hz).
Lower panels: high noise regime (σ0 = 8 mV, µ0 = 1.6 mV, ν0 = 22 Hz). In the lower panels the EIF response is compared to the response (◦)
of a type I conductance-based model described by Wang and Buzsáki (1996).

cut-off frequency depends on various parameters from
the high frequency behavior (Eqs. (21) and (24)). In
particular, for both filters one expects the cut-off fre-
quency to increase as �T becomes small. In the limit
�T → 0 the EIF model becomes equivalent to the LIF
model with a threshold equal to VT : the ‘active current’
is zero below VT and infinite above VT , leading to in-
stantaneous spike generation when the voltage reaches
VT . The linear response to an oscillation of the input
mean has a singular limit when �T → 0: it decays as
1/ f 0/0.5 for white/colored noise when �T = 0, while it
decays as 1/ f for any finite �T , with a proportionality
constant that goes to infinity as �T → 0. In practice,
for small �T , the response of the EIF neuron tends to
the one of the LIF neuron for frequencies f < f 
,
where f 
 goes to infinity in the �T → 0 limit, while
the response has a 1/ f behavior above f 
.

The behavior of the phase shift is also shown in
Fig. 2. While the firing rate always lags behind oscilla-
tory mean inputs, it typically displays a phase advance
with respect to an oscillatory variance at low frequen-
cies. In fact, the f → 0 limit of the phase can be either
0 or π , depending on the slope of the f-σ curve as de-
scribed above. Both filters have π/2 phase lag at high
frequency.

In the high noise regime (Fig. 2, lower panels), we
show how the EIF response compares with the response
of a type I Hodgkin-Huxley type model, the Wang and
Buzsáki (1996) model. The EIF model captures ac-
curately the amplitude of the response of the Wang-
Buzsáki model to an oscillation of the input mean, as
already shown by Fourcaud-Trocmé et al. (2003). It
also captures the response to an oscillation of the in-
put variance of the Wang-Buzsáki model, though the
agreement between the two models is slightly less good
in this case. The phase shifts of both models are very
close up to frequencies of the order of 200 Hz. Above
this frequency, an additional linear phase lag of the
conductance-based model becomes visible. This can
be explained by the finite rise time from spike onset to
the potential where the spike is counted in this model
(Fourcaud-Trocmé et al., 2003).

3.5. Response to a Step in the Input Mean
or Variance

We next investigate the initial transient firing rate re-
sponse of the EIF model to a step change of either mean
or variance of its input. This is done first analytically
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Figure 3. Instantaneous firing rate of the EIF model in response to
a step increase of its input mean (full line) or variance (dotted line)
of 2 mV at t = 0 ms. Each row corresponds to a different initial
state of the neuron (different noise level or stationary firing rate).
The dashed lines (resp. dotted-dashed lines) are the initial slopes
obtained from equations. (27 resp. 28). In the upper panel, the inset
is an enlargement of the beginning of the response.

for the short t limit (equivalent to the high f limit,
see below), and numerically for the full response (see
Fig. 3).

Using ν(t) = ν0 + (1/(2π ))
∫

dωH̃ (ω)ν1(ω) exp
(iωt) where H̃ is the Fourier transform of a step in-
crease of mean or variance at time t = 0, one can show
that the firing rate of the EIF model reacts to a step
change in both mean and variance by a discontinuity
in the temporal derivative of its firing rate. The initial
slope of the response is given by

dν

dt
(0+) = lim

ω→∞ iωνx
1 (ω) (26)

where x stands for µ or σ depending on which
parameter undergoes a step variation. The initial
time derivative of the response for the NLIF model
can then be simply derived from Eqs. (20) and
(23).

In particular, for the EIF model, using Eqs. (21) and
(24), we obtain the short time responses:

• for a step in the input mean:

ν(t) ≈ ν0

(
1 + µ1

�T

t

τm

)
(27)

• for a step in the input variance:

ν(t) ≈ ν0

(
1 + σ1σ0

�2
T

t

τm

)
(28)

Note that in both cases the initial response is pro-
portional to the neuron initial stationary firing rate.
The slope of the response then reflects the behavior
of the high frequency dynamical responses: the EIF
model responds faster to a step fluctuation of the input
mean at low noise levels and/or high spike slope factor
(σ0 < �T ) and to a step fluctuation of the input variance
at high noise level and/or small slope factor (σ0 > �T ).

The full response of the EIF model to a step change
in various conditions has been obtained using numer-
ical simulations. Results are shown in Fig. 3. At low
noise levels, the short time prediction is only accurate
in a very brief time interval of order 1ms (see inset in
the upper panel of Fig. 3). In this situation, the response
grows supralinearly at short times. The presence of res-
onances in the rate response then translates in a damped
oscillatory component of the response to a step before
reaching the steady state, which is related to the low
frequency response.

In the high noise regime the short-time estimate is
accurate for a longer interval (5–10 ms for parameters
of Fig. 3). In this case, the firing rate grows sublinearly
with time. The EIF response to a mean step fluctua-
tion is simply a low-pass filtered version of the input
step (see Fig. 3—lower left panels). On the other hand,
the response to a variance step change overshoots the
steady state during about the first 10 ms of the response
(depending on the model parameters). In that situation,
small changes in the variance can be easily detected
only in the initial part of the response (in the first 5 ms
or so), while changes in the mean can only be detected
later (after about 5 ms).

4. Discussion

4.1. Firing Rate Dynamics of the EIF Model

The exponential integrate-and-fire model provides a
way to interpolate between the standard LIF model
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and type I Hodgkin-Huxley type models. Spike gener-
ation in this model is described by a ‘spike-generating
current’ that depends exponentially on voltage. The
sharpness of spike initiation can be controlled by the
parameter �T : for �T = 0, the LIF is recovered
(see Section 2.1 and 3.4), while a value of �T ∼ 3
mV permits to fit very well the firing rate response
of conductance-based models whose sodium current is
as originally described by Hodgkin and Huxley. The
instantaneous firing rate response of the EIF model de-
cays as 1/ f at high frequency in response to oscillations
in both mean and variance of its inputs. Other types of
non-linearity of the spike-generating current lead to
qualitatively different behaviors at high frequency. For
example, the QIF neuron has a more pronounced atten-
uation at high frequency, in response to both mean and
variance changes. Results for these different models
are summarized in Table 1.

Then, we have considered separately the effects of
an oscillation in the mean inputs and in the variance
of the inputs. Temporal variations in the firing rate of
pre-synaptic neurons will in general provoke changes
in both mean and variance of synaptic inputs. The net
effect on the post-synaptic firing rate will then depend
on the balance between excitation and inhibition. If ex-
citatory pre-synaptic neurons increase their rates, there
will be an increase of the post-synaptic firing rate medi-
ated by both mean and variance of inputs. If inhibitory
pre-synaptic neurons increase their rates, there can be
an increase of the firing rate at short time scales me-
diated by the resulting change in variance, followed
by a decrease of the firing rate at longer times scales
mediated by the change in mean.

The EIF model combines advantages of both LIF
and HH-type neurons. The LIF model has two principal
advantages (1) its firing rate dynamics can be studied

Table 1. Firing rate dynamics of simplified neuronal models
at high input frequencies. In all models the firing rate response
decays as 1/ f α at high frequency. The table displays the expo-
nent α, in response to an oscillation of the mean or the variance
of the input. In all cases, the corresponding phase shift at high
frequency is απ/2.

α, oscillation in mean α, oscillation in variance
Model (white or colored noise) (white noise)

LIF 0 (colored noise) 0

0.5 (white noise)

EIF 1 1

QIF 2 3

analytically; (2) its simplicity permits large scale sim-
ulations. However, it lacks many dynamical features
exhibited by real neurons, such as a realistic spike gen-
eration mechanism. Hodgkin-Huxley models describe
the dynamics of real neurons much more accurately,
but no analytical treatment is possible, and such mod-
els are much more expensive for network simulations.
The EIF model provides advantages of both types of
model—to some degree analytically tractable, compu-
tationnally cheap, and providing an accurate descrip-
tion of the spike generation mechanism of HH-type
neurons.

In the EIF model, the filtering properties have been
computed in Fourcaud-Trocmé et al. (2003) and here
in both low and high frequency limit. Recently, Naun-
dorf et al. (2003) used a technique that allows to
compute the response of the theta neuron (equivalent
to the QIF neuron, (equivalent to the QUF neuron,
Gutkin and Ermentrout, 1988) and of generalizations
of this model at arbitrary frequencies, from a sparse
matrix representation of the Fokker-Planck operator. It
would be interesting to apply this technique to the EIF
model.

The high frequency behaviors obtained in this study
apply when spike emission is defined at V → ∞. Defin-
ing spike emission at a finite voltage changes the high
frequency limit. If resetting occurs at the same finite
voltage where spike time is defined, the behavior of
the resulting model is qualitatively similar to the LIF
neuron. If resetting occurs at infinite voltage, all result-
ing NLIF models show a 1/ f decay at high frequency
(regardless of the non-linearity), as shown by Naundorf
et al. (2004), because the probability flux at the volt-
age defining spike emission has a non vanishing first
order term in the large f expansion (see Eqs. (17) and
(18)). However, if the voltage at which spike emission
is defined is high, the frequency range affected by the
finiteness of the voltage defining spike will be located
at unrealistically high values of f . Hence, we expect
the scaling laws obtained here to apply in a large fre-
quency range, unless spike emission time is defined at
a value close to VT (relative to �T ).

4.2. Other Simplified Model Neurons

Other types of simplified neuron models have been pro-
posed in the literature in recent years. In particular, both
adaptation currents (Treves, 1993; Ermentrout, 1998;
Ermentrout et al., 2001; van Vreeswijk and Hansel,
2001; La Camera et al., 2004), and currents leading to
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subthreshold resonance (Izhikevich, 2001; Richardson
et al., 2003; Brunel et al., 2003) can be incorporated in
a LIF-type description, or in a NLIF-type description
(Izhikevich, 2003), leading to two-variable models that
can capture effectively the dynamics of many types of
real neurons. These currents do not modify the high fre-
quency filtering properties. However, they profoundly
shape the firing rate dynamics at low (compared to
the inverse of the relevant time constants) frequencies
(Fuhrmann et al., 2002; Richardson et al., 2003; Brunel
et al., 2003). The spike response formalism provides an
alternative way to describe most such models (Gerstner
and Kistler, 2002).

4.3. Simplified Model Neurons vs Real Neurons

We have seen that the EIF model can reproduce
accurately the firing rate dynamics of a particular
Hodgkin-Huxley type neuron. How do this model,
or other simplified models, compare with real neu-
rons? We now review the experimental data available
for all the quantities that we have computed in this
paper.

Stationary f-I Curve. Tateno et al. (2004) studied f-I
curves of cortical neurons (both pyramidal cells and
fast-spiking interneurons) in absence of noise. They
present clear evidence for the existence of both type
I (continuous f-I curve—pyramidal cells) and type
II (discontinuous f-I curve—interneurons) behaviors.
They showed in particular that type I neurons have a
firing rate that increases as a square root of the cur-
rent beyond threshold, consistent with theoretical type
I models. Rauch et al. (2003) studied f-I curves of cor-
tical pyramidal cells in the presence of noise. They
showed such curves can be fitted by a simple LIF model
with adaptation.

Firing Rate Response to Oscillatory Inputs. Until
recently, no published experimental study had to our
knowledge measured such a response beyond several
tens of Hz. Recently, Koendgen et al. (2004) showed in
rat somatosensory cortical neurons that the high fre-
quency linear response to a fluctuation of the input
mean decays as 1/ωα with α > 1, independently of
the noise correlation time constant, with a cutoff fre-
quency of the order of 200 Hz. This behavior is con-
sistent with a NLIF model with a very small �T (very
sharp spike), and a non-linearity which is intermediate
between exponential and quadratic.

Firing Rate Response to Steps. Silberberg et al.
(2004) studied the speed of the response to a step
change in the input mean or input variance in neocorti-
cal neurons. They found that neurons responded almost
instantaneously to a step change of σ and showed that
these results could be captured by the LIF model. This
is again consistent with a small value of �T in a NLIF
model.

The question of which model to use for single neu-
rons is a central question for theorists interested in net-
work modeling, and various paths have been explored
over the years. In the traditional Hodgkin-Huxley ap-
proach, one has to measure the characteristics of all
types of currents present in a neuron, which represents
difficult and time-consuming experiments, and leads
to complex models. At the other extreme, firing rate
models use approximate forms of the f-I curve of real
neurons, together with a simple Wilson-Cowan type
rate dynamics. The static response is then close to the
one of those real neurons, but there is no guarantee that
the dynamics will be captured. An intermediate and
potentially very fruitful approach to capture firing rate
dynamics of real neurons would be to obtain a model
that reproduces both f-I curve and linear rate response
to both oscillatory mean and variance. We believe that
the NLIF neuron models (or generalized versions of it
to capture low frequency dynamics) are suitable candi-
dates for such models. The partial data that exists about
the linear response properties of cortical neurons indi-
cate that apart from very specific situations (low noise,
very high frequencies) their firing rate dynamics seems
to be well described by LIF neurons. However, more
data is clearly needed to be able to discriminate in a
clear way between different models.
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