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Precise Linking of Multistable and Coherent Properties
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Abstract. Inhibitory networks are now recognized as being the controllers of several brain rhythms. However,
experimental work with inhibitory cells is technically difficult not only because of their smaller percentage of the
neuronal population, but also because of their diverse properties. As such, inhibitory network models with tight links
to the experimental data are needed to understand their contributions to population rhythms. However, mathematical
analyses of network models with more than two cells is challenging when the cellular models involve biophysical
details. We use bifurcation analyses and simulations to show that two-cell analyses can quantitatively predict N -cell
(N = 20, 50, 100) network dynamics for heterogeneous, inhibitory networks. Interestingly, multistable states in
the two-cell system are manifest as different and distinct coherent network patterns in the N -cell networks for the
same parameter sets.
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1. Introduction

Interneurons, or inhibitory GABAergic cells in the hip-
pocampus and cortex represent about 10–20% of the
total neuronal population. They express diversity in
their biochemical content, morphology, electrophysio-
logical characteristics and neuromodulator sensitivites
(McBain and Fisahn, 2001). However, much work on
interneurons in recent years is producing well-defined
characteristics of interneurons that are functionally sig-
nificant. In particular, parvalbumin-containing basket
cells of hippocampus seem to make up a relatively un-
modifiable inhibitory network population responsible
for generating gamma (20–80 Hz) and theta (8–12 Hz)
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rhythms (Freund, 2003). To understand the generation
and control of population rhythms such as those gener-
ated by basket cells, we need to understand how the var-
ious biophysical characteristics contribute to interneu-
ron coherence. One could envisage developing models
of individual hippocampal interneurons that encom-
pass the richness of their intrinsic properties. However,
this is a non-trivial undertaking and the experimental
data is usually lacking in several parameters. Further-
more, many parameters such as those involving the dis-
tribution of channel densities are technically difficult
to derive. However, if one then uses a simplified model,
one must determine how best to constrain the chosen
parameters which in turn depend on what the parame-
ters represent.

Heterogeneity of inputs to inhibitory networks
strongly affect their ability to synchronize (Golomb
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et al., 2001; Tiesinga and José, 2000; Wang and
Buzsáki, 1996; White et al., 1998). This heterogeneity
can be thought of as representing an intrinsic neuronal
variability and/or a variability in afferent drive. White
et al. (1998) considered mildly heterogeneous (<5%
difference in intrinsic frequencies) two-cell networks
and identified two different ways in which coherence
could be lost. This occurred in two different regimes,
termed phasic and tonic, as identified by different val-
ues of the ratio of time constant and network period.
Their work shed light on why optimal synchroniza-
tion at particular frequencies might be obtained in the
larger networks examined in the same paper and also in
Wang and Buzsáki (1996). That is, their two-cell net-
work studies helped understand the qualitative states
of N -cell circuits with N � 2.

In recent work (Skinner et al., 2004) we examined
the changing dynamics of two-cell inhibitory networks
in which the amount of input heterogeneity was varied.
We found that an optimal set of parameters could be
obtained for the given cellular model (with its various
biophysical characteristics) based on the ability of the
two-cell network to synchronize in the face of hetero-
geneity. In particular, for the Wang-Buzsáki model, we
found that near-synchronous behaviour occurred for a
>11% difference in intrinsic frequencies of the two
cells for specific parameter sets that are within experi-
mentally determined values. In addition, we found that
the two-cell coherence properties and bistable outputs
were maintained in ten-cell networks for the same pa-
rameter sets. Given that White and colleagues found
a qualitative correspondence in dynamics from two-
to ten- and 100-cell networks, this is not completely
surprising. However, it is far from clear whether there
should be any precise and quantitative correspondences
between two-cell and N (�2)-cell network dynamics.
Such quantification would be helpful in making tighter
links with biophysical, experimental data. In this paper,
we perform focused and detailed explorations with spe-
cific parameter sets using bifurcation analyses of two-
cell networks, and simulations of 20, 50 and 100-cell
networks. We find that the two-cell analyses predict
the dynamics of the larger network simulations quite
precisely.

2. Model and Methods

We use a single compartment model developed by
Wang and Buzsáki (WB) (1996) to represent the in-
trinsic properties of a hippocampal interneuron cell.

The equations for each cell are given by:

C
dV

dt
= Iapp − gNam3

∞h(V − VNa) − gKn4(V − VK)

− gL (V − VL ) (1)
dh

dt
= φ(αh(V )(1 − h) − βh(V )h) (2)

dn

dt
= φ(αn(V )(1 − n) − βn(V )n) (3)

where V is the cell membrane voltage in mV, h is the
inactivation of the sodium current, n is the activation
of the potassium current, and t is time in ms. m∞ is
the steady state activation of the sodium current and
is given by: m∞ = am/(am + βm), where am(V ) =
−0.1(V + 35)/(exp(−0.1(V + 35)) − 1), βm(V ) =
4 exp(−(V + 60)/18). ah(V ) = 0.07 exp(−(V +
58)/20), βh(V ) = 1/(exp(−0.1(V + 28)) + 1),
αn(V ) = −0.01 exp(−(V +34)/ exp(−0.1(V +34))−
1), βn(V ) = 0.125 exp(−(V + 44)/80), φ = 5. Maxi-
mal sodium, gNa, potassium, gK, and leak, gL , conduc-
tances are: 35, 9 and 0.1 mS/cm2 respectively. Reversal
potentials, VNa, VK, VL , are 55, −90 and −65 mV re-
spectively, and the capacitance, C , is 1 µF/cm2.

We consider neuronal networks formed due to cou-
pling via inhibitory synapses that are described by first
order kinetics. The inhibitory synaptic current, Isyn,

which would be added to the current balance equation
of the postsynaptic cell, is given by:

Isyn = gsyns(V − Vsyn) (4)

where

ds

dt
= αT (Vpre)(1 − s) − s/τsyn (5)

T (Vpre) = 1

1 + exp(−Vpre/2)
(6)

and Vpre is the voltage of the presynaptic cell, gsyn is the
maximal inhibitory synaptic conductance, Vsyn = −75
mV is the synaptic reversal potential, α = 6.25 ms−1 is
the rate constant of the synaptic activation taken from
Bartos et al. (2001), and τsyn is the synaptic decay time
constant. τsyn values as low as 1 ms were measured be-
tween hippocampal basket cells (Bartos et al., 2002),
and so we explore a τsyn range of 1 to 10 ms in our simu-
lations, with a 1 ms resolution. For the purposes of this
paper, we focus on a gsyn value of 0.25 mS/cm2, which is
within experimentally determined values (Bartos et al.,
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2001, 2002). Additional values have been considered
in our previous work (Skinner et al., 2004).

Iapp represents the applied or external drive to the
cell, and we use this parameter to introduce hetero-
geneity into the system. We consider two-cell networks
that are reciprocally coupled and 20, 50 and 100-cell
all-to-all coupled networks.

For the two-cell networks, the external drive to cell
1 or 2 is:

Iapp,1 = Iµ − ε or

Iapp,2 = Iµ + ε

respectively, so that their external drives differ by 2ε.
We define the percent heterogeneity, %Het, as:

%Het = (I.F. at Iapp,2) − (I.F. at Iapp,1)

I.F. at Iapp,2
× 100%

(7)

where I.F. is the intrinsic frequency of the isolated cell.
Iµ values of 1 and 3 µA/cm2 are explored. We fit a 4th
order polynomial to the I.F. versus Iapp curve to allow
consistent calculation of %Het values. The equation
describing this fit is given by:

I.F.(Iapp) = −0.112I 4
app + 1.88I 3

app − 13.1I 2
app

+ 70.5Iapp + 0.258 (8)

where I.F. is in units of Hz and Iapp is in units of
µA/cm2. This is illustrated in Fig. 1. We perform bi-
furcation analyses and numerical continuations of the
two-cell networks using AUTO (Doedel, 1981) in the
XPPAUT software package (Ermentrout, 2002).

For the 20, 50 and 100-cell networks, the Iapp’s are
randomly chosen in the interval [−%Het, +%Het]. In
the all-to-all coupled network simulations, gsyn values
are normalized so that each presynaptic cell “deliv-
ers” a maximal inhibition of gsyn/(N − 1). We per-
form network simulations using our in-house soft-
ware, NNET, which is described in Murray (2004) and
Skinner and Liu (2003). Integration of the system of
differential equations is done using either CVODE or
Runge-Kutta methods, and using a tolerance of 10−6 or
less and a stepsize of .01 ms. We consider two different
types of intial conditions (ICs) which can be thought of
as “hyperpolarized” or “depolarized” conditions. Hy-
perpolarized conditions: Vi = −100.0 + [0.0, 50.0],
hi = 0.99, ni = 0.01, si = 0.01; depolarized condi-
tions: Vi = −50.0 + [0.0, 50.0], hi = 0.01, ni = 0.99,
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Figure 1. Frequency versus Iapp for the Isolated Cell. Circles rep-
resent data points determined using AUTO for an individual model
neuron, and the curve is a 4th order polynomial fit given by Eq. (8)
in Methods. Iapp is in units of µA/cm2.

si = 0.99. The square brackets indicate the interval
from which a value is randomly obtained. At least 5,
10 and 20 different sets of ICs are used for the 100, 50
and 20-cell network simulations respectively, and for
several different %Het values, resulting in excess of
3000 sets of simulations. Although the choice of these
numbers is somewhat arbitrary, they were enough to
show the 2-cell to N -cell linkage features of this pa-
per. We use a coherence measure based on White et al.
(1998). This measure is essentially a cross correlation
that approximates the amount of overlap that exists be-
tween two spiking cells where the amount of overlap
used is 20% of the period of the faster firing cell. The
average between all pairs is calculated to give a mean
coherence measure. In addition, we visually inspect
several raster plots to gauge the mean coherence mea-
sures. This is necessarily a subjective measure but the
combined analysis of the coherence measure and visual
inspection of raster plots is enough to chracterize the
non-monotonic and multistable features described in
this work. Units for gsyn, τsyn and Iµ are always given
in mS/cm2, ms and µA/cm2 respectively.

3. Results

We know from previous work that several distinct
patterns can be produced by two-cell, heterogenous
inhibitory networks (Skinner et al., 2004; White et al.,
1998). These patterned states involve phase-locked
states (near-synchronous and near-antiphase), sup-
pressed states, harmonic locking, and asynchronous
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states. In general, one must turn to numerical simu-
lations to investigate the dynamics of N (� 2)-cell
networks of spiking neurons, as analytical work
becomes prohibitive. As such, it would be helpful if
one could translate two-cell network analyses to an
understanding of dynamic mechanisms underlying
N -cell network output. To consider how two-cell
dynamics might be linked to N -cell dynamics, we
take the following view: If one randomly distributes
inputs to N cells of an N -cell inhibitory (all-to-all
coupled) network in a range up to a maximal amount of
heterogeneity, say %Hetmax, then the possible patterns
that the N -cell networks express include the particular
patterns that the two-cell inhibitory networks express
with %Het ≤ %Hetmax. It is not obvious that this
view we propose should be the case for heterogeneous
networks, as additional dynamics could emerge in the
larger networks to nullify the effects of the specific dy-
namics observed in the two-cell networks. To examine
this view, we focus on two of our previous observations
(Skinner et al., 2004). First, there is a non-monotonic
dependence of robustness of network oscillations
on τsyn,where robustness is given by the maximal
%Het for which the two-cell network expresses near-
synchronous behaviour. Second, multistable patterns
in two-cell networks occur in larger networks for the
same parameter values. In this paper, we focus on a
fixed maximal synaptic conductance value, but explore
a range of τsyn values (1 − 10 ms) and two different Iµ
values. These values not only encompass the richness
of the dynamics, but also constitute physiologically
reasonable network frequencies, and gsyn and τsyn

values are within experimentally determined values
(Bartos et al., 2001, 2002).

3.1. Two-Cell Bifurcation Analyses

We first describe the results of bifurcation analyses and
numerical continuations of the two-cell heterogeneous
networks. We followed three different types of os-
cillatory solutions: near-synchronous solutions, near-
antiphase solutions and suppressed state solutions (ei-
ther cell 1 suppressing cell 2 or vice versa). In Fig. 2A,
we show an example bifurcation diagram with Iµ as
the bifurcation parameter. One can see that unstable
suppression oscillations emanate from two Hopf bifur-
cations whereas stable ones are created via saddle node
of limit cycle bifurcations. Near-synchronous oscilla-
tions are also created via saddle node of limit cycle
bifurcations.
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Figure 2. Example Bifurcation Diagrams. Each diagram shows the
maximum value of V1 (in mV) for each value of the bifurcation pa-
rameter. Stable/unstable equilibria are denoted by thin solid/dashed
lines; stable/unstable periodic solutions by thick solid/dashed lines.
Hopf bifurcations are indicated by an open box, period doubling by an
open circle. (A) Iµ (inµA/cm2) is the bifurcation parameter; other pa-
rameters are gsyn = 0.25 mS/cm2, ε = 0.05 µA/cm2, Note the region
of multistability between near-synchronous and both suppression os-
cillations. τsyn = 10 ms. (B) τsyn (in ms) is the bifurcation param-
eter; other parameters are gsyn = 0.25 mS/cm2, ε = 0.05 µA/cm2,
Iµ = 1 µA/cm2 (C) ε (in µA/cm2) is the bifurcation parameter; other
parameters are gsyn = 0.25 mS/cm2, Iµ, = 3 µA/cm2, τsyn = 1 ms.
Note the region of multistability between the near-synchronous and
anti-phase oscillations.
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By performing continuations using τsyn and ε as the
bifurcation parameter, we were able to determine %Het
bounds for which these different solutions occurred sta-
bly. Example bifurcation diagrams with τsyn and ε as
the bifurcation parameter are shown in Fig. 2B and 2C
respectively. From continuations performed in AUTO,
we obtain ε bounds for stable near-synchronous (Ta-
ble 1), near-antiphase (Table 2) and suppressed (Table
3) solutions. In particular, note the non-monotonic re-
lationship between the maximal ε and τsyn as shown
in Table 1. τsyn values between 4.25 and 5.75 produce

Table 1. ε Bifurcation parameter results
for near-synchronous solutions.

Parameters (Iµ, τsyn) Max ε %Het

(3,1) 0.134 5.87

(3,2) 0.190 8.23

(3,3) 0.231 9.92

(3,4) 0.254 10.86

(3,4.25) 0.258 11.02

(3,5) 0.267 11.38

(3,5.75) 0.273 11.63

(3,6) 0.218 9.39

(3,7) 0.184 7.98

(3,8) 0.164 7.14

(3,9) 0.149 6.51

(3,10) 0.136 5.95

(1,1) 0.0533 8.5

(1,1.5) 0.0706 11.12

(1,8) 0.0136 2.24

(1,9) 0.0134 2.21

(1,10) 0.0128 2.1

Table 2. ε Bifurcation parameter results
for near-antiphase solutions.

Parameters (Iµ, τsyn) Max ε %Het

(3,1) 0.0363 1.62

(3,1.1) 0.0287 1.29

(3,1.2) 0.0214 0.96

(1,1) 0.0264 4.3

(1,1.2) 0.0237 3.87

(1,1.4) 0.0199 3.26

(1,1.6) 0.0152 1.90

(1,2) 0.0052 0.86

Table 3. ε Bifurcation parameter results for suppressed solutions.

Parameters Min ε Max ε

(Iµτsyn) (1 suppressing 2) %Het (2 suppressing 1) %Het

(3,1) 2.04 69.97 <0 <0

(3,2) 1.48 53.04 <0 <0

(3,3) 1.07 40.14 <0 <0

(3,4) 0.775 30.28 <0 <0

(3,5) 0.543 22.01 <0 <0

(3,6) 0.358 15.00 <0 <0

(3,7) 0.205 8.85 <0 <0

(3,8) 0.0773 3.43 <0 <0

(3,9) <0 <0 0.0321 1.44

(3,10) <0 <0 0.0127 0.57

(1,1) 0.515 61.93 <0 <0

(1,2) 0.307 41.24 <0 <0

(1,3) 0.147 21.88 <0 <0

(1,4) 0.0234 3.82 <0 <0

(1,5) <0 <0 0.074 11.56

(1,6) <0 <0 0.151 22.42

(1,7) <0 <0 0.215 30.57

(1,8) <0 <0 0.268 36.85

(1,9) <0 <0 0.313 41.89

(1,10) <0 <0 0.351 45.97

Max%Het in excess of 11%. For the antiphase solu-
tions, it was not possible to perform continuations for
some of the τsyn values. For these cases, a phase reduc-
tion model was investigated (not shown). It indicated
that antiphase solutions are stable for τsyn = 1, 2 when
Iµ = 1, but only for τsyn = 1 when Iµ = 3. The
phase reduction model also indicated the presence of
stable near-synchronous solutions for τsyn = 1 − 10
for both Iµ = 1 and 3. This is consistent with our bi-
furcation analysis for Iµ = 3. For Iµ = 1 we were not
able to continue the near-synchronous solutions for all
values of τsyn. This was due to a loss of stability of
these solutions through a period doubling bifurcation,
resulting in a very small range of %Het values where
they were stable. This was supported by continuations
using τsyn as the bifurcation parameter (see Fig. 2B).
For the suppressed solutions, there are two to consider
(see Fig. 2A). Results shown in Table 3 indicate the
ε bounds; the upper bound (max ε) is for the solution
in which cell 2 suppresses cell 1, and the lower bound
is for the solution in which cell 1 suppresses cell 2.
Clearly, if the min ε bound is negative, suppressed so-
lutions are present for all %Het values.
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From these results, we can easily see where mul-
tistability occurs. For example, bistability between
(near) synchronous and antiphase solutions occurs for
τsyn = 1 up to 4.3%Het when Iµ = 1, but only up
to 1.6%Het when Iµ = 3. Also, bistability between
near-synchronous and suppression solutions exist for
all τsyn > 8 when Iµ = 1 or 3. Armed with these re-
sults, we now examine N -cell network simulations to
see whether and how our view of two-cell to N -cell
dynamics might be manifest.

3.2. N(�2)-Cell Simulations

Let us first focus on a parameter set that only exhibits
the near-synchronous solution (of the different solu-
tions followed) in the two-cell heterogeneous network
system. For τsyn = 6, Iµ = 3, the two-cell system
expresses stable, near-synchronous oscillations up to
9.39%Het, and stable near-antiphase and suppressed
state solutions do not exist for these parameter values.
Figure 3 shows 20, 50 and 100-cell raster plots for
these τsyn and Iµ parameter values and 8%Het. Since
this %Het is within the %Het value obtained from the
two-cell analyses, based on our view above, we would
predict the existence of coherent network states since
stable near-synchronous solutions are present up to
9.39%. In Fig. 3, we see that coherence clearly ex-
ists in the N -cell networks for these parameters, and
this was the case for 35 different sets of initial condi-
tions used. Therefore, the simple view described above
appears useful in the quantification we seek.

Next, we examined the network behaviour as the
%Het was increased. In Fig. 4, we plot the mean coher-
ence measure from 50-cell networks versus ε (equiv-
alent to %Het) for seven different %Het values with
τsyn = 3 or 5, and Iµ = 3. For these parameter val-
ues, we know from the two-cell network analyses, that
near-synchronous solutions exist up to approximately
10%Het and 11.4%Het for τsyn = 3 and 5 respectively.
From Fig. 4, it is clear that as %Het increases, coher-
ence decreases. This is not too surprising given that
as %Het increases, the spikes become less neatly lined
up to produce their coherent patterns, leading to a de-
creased mean coherence value. This decreasing coher-
ence with increasing %Het was also true for the 20-
cell and 100-cell networks. Visual inspection of several
raster plots with parameters as in Fig. 4 indicates that
any coherence is difficult to see beyond 11.4%Het. Al-
though subjective, this is suggestive of the notion that
the maximal ε values obtained from the two-cell analy-
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Figure 3. Coherence in N -cell Networks. Raster plots from 20-
cell, 50-cell and 100-cell network simulations. The x-axis shows
time in ms and the y-axis is the cell number. Each dot represents
the time where a spike is produced by the particular cell. Iµ =
3 µA/cm2, τsyn = 6 ms, and 8%Het. Coherent patterns are visually
unambiguous. Calculated mean coherence values for these example
raster plots are 0.54 (100-cell), 0.63 (50-cell) and 0.68 (20-cell).

ses is an indicator of the limits of possible heterogeneity
that support coherent behaviours in large networks.

Now let us focus on the first of our previous obser-
vations: there is a non-monotonic dependence of the
maximal %Het on τsyn. Since we observed (above) that
the maximal ε values obtained from two-cell analy-
ses indicate heterogeneity limits of coherent behaviour
in large networks, we examined the mean coherence
values in our networks for various %Het values, rea-
soning that the non-monotonic relationship could be
reflected in this way if it were present. We find that
the two-cell non-monotonic observation is preserved
in mean coherence versus τsyn relationships for 20, 50
or 100-cell network simulations. We illustrate this in
Fig. 5 for the 50-cell simulations and 9.0%Het. Figure
5 shows a plot of mean coherence values versus τsyn

for two different sets of initial conditions, as well as an
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Figure 4. Increasing Heterogeneity Decreases Coherence. Plot of
the mean coherence measure versus ε (in µA/cm2) for τsyn = 3
and 5 ms, for 7 different %Het values. Each point is the average
mean coherence measure from simulations with 10 different initial
conditions, and the error bars are ± standard deviation. Circles joined
with dashed lines refer to τsyn = 3, and squares joined with solid
lines refer to τsyn = 5. The ε values correspond to %Het values of
3.8%, 5.2%, 7.7%, 9.0%, 10.8%, 11.4% and 12.9%. Calculations are
for 50-cell networks, Iµ = 3 µA/cm2.
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Figure 5. Non-monotonic Coherence Dependence On τsyn. Plot of
the mean coherence measure versus τsyn (in ms) for 50-cell networks,
Iµ = 3 µA/cm2 and 9.0%Het. Open circles joined by solid lines
are the average mean coherence measure from simulations with 6
different sets of initial conditions (ICs) and the error bars are ±
standard deviation. Dashed and dashed-dotted lines joining x’s and
+’s respectively represent mean coherence measure values from 2
particular sets of ICs.

average, all showing a non-monotonic relationship. It
is important to note that the actual value for the mean
coherence by itself is not a sufficient characterization
of the network dynamics. That is, it is biased by the
bin size (we use 20% overlap of the faster firing cell),
network size being examined, particular network dy-
namics being expressed (e.g., bursting, spike-to-spike
synchrony, clustering), and so on. In particular, because

of the increase in network period with increasing τsyn

(not shown), the coherence measure could be biased up-
wards for larger τsyn values. Moreover, the presence of
multistable patterning (see Tables 1–3) could also bias
these measures. Better measures could be developed
for particular investigations, but for the work here, we
find that visual examination of the raster plots together
with the simple correlation measure (i.e., mean coher-
ence value) is enough to determine whether and how
two-cell to N -cell linkages might occur. Therefore, al-
though the error bars are large, it was clear that any
set of network simulations (20, 50 or 100 cells) gave
rise to a non-monotonic relationship for any particu-
lar random set of initial conditions, and for different
%Het’s.

Our second area of focus is on multistable patterns.
Consider three distinct cases. In the first case, consider
Iµ = 1, τsyn = 1, and 8%Het. Based on the two-cell
analyses, near-synchronous and near-antiphase solu-
tions bistably occur for %Het < 4.3%. Therefore, us-
ing 8%Het in N -cell simulations, our view expressed at
the beginning of the results would lead us to expect that
we might be able to obtain coherent patterns with net-
work frequencies that differ in frequency by two (one
network frequency being due to the near-synchronous
states, and the other being due to the near-antiphase
states). Figure 6A shows raster plots for three differ-
ent sets of initial conditions, and we see that this is
the case. The top raster plot has coherent patterns that
have a network period that is about double the period of
the middle raster plot. We also obtain network dynam-
ics with no obvious visual coherence, i.e., the bottom
raster plot shown in Fig. 6A. At this level of %Het,
i.e., 8%Het, and given the multistable patterns that can
exist, it is not surprising that non-coherent states also
occur in the larger networks. Of ten different initial con-
dition sets used, two produced coherent network pat-
terns that were influenced by near-synchronous states,
three produced coherent network patterns that were in-
fluenced by near-antiphase states and five produced
patterns with no obvious visual coherence. However,
if the %Het is made small enough, non-coherent states
would no longer be present (see above and Fig. 4). Us-
ing 4.8%Het and ten different initial condition sets in
N -cell simulations, we obtained six that were influ-
enced by near-synchronous states, three that were in-
fluenced by near-antiphase states and only one with no
obvious coherence. For the second distinct case, con-
sider Iµ = 3, τsyn = 1, and 3%Het. Based on the two-
cell analyses, near-synchronous and near-antiphase
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Figure 6. Bistable N -cell Network Patterns. Raster plots from 50-cell network simulations are shown for: (A) Iµ = 1 µA/cm2, τsyn = 1 ms,
and 8.0%Het; (B) Iµ = 3 µA/cm2, τsyn = 1 ms, and 3.2%Het; (C) Iµ = 1 µA/cm2, τsyn = 7 ms, and 4.0%Het. Three raster plots are shown for
(A) to illustrate the different patterns obtained for different initial conditions (ICs). They can be seen to be influenced by near-synchronous (top
raster) and near-antiphase (middle raster) solutions present in the two-cell analyses. We also obtain patterns with no visual coherence (bottom
raster). Two raster plots are shown for (B) reflecting near-synchronous (top) and near-antiphase (middle) solutions. Two raster plots are shown
for (C). The network patterns can be seen to be influenced by bistable near-synchronous (top) and suppressed (middle) solutions present in the
two-cell analyses. Mean coherence values are 0.83 (top), 0.32 (middle), 0.26 (bottom) for (A); 0.93 (top) and 0.46 (middle) for (B); 0.94 (top)
and 0.43 (middle) for (C).

solutions are bistable for %Het < 1.6%. As for the first
case, network patterns that are clearly influenced by
near-synchronous and near-antiphase states are present
to give rise to very different network frequencies de-
pending on the initial conditions. This is illustrated in
Fig. 6B.

The third distinct case regarding multistability that
we illustrate is with Iµ = 1, τsyn = 7, and 4%Het.
Based on the two-cell analyses, it is clear that be-
yond τsyn = 4, there are bistable near-synchronous
and suppressed state solutions. Large network simula-
tions that are influenced by suppressed state solutions
would be expected to have network periods that are less
than those that are influenced by the near-synchronous
states, but not as small as half the period, as would
be the case if the coherent network patterns were influ-
enced by near-antiphase states (e.g., see Fig. 6A and B).
Indeed, network patterns that are influenced by the sup-
pressed states would be expected to have periods that
are close to the periods of the isolated cells. In Fig. 6C,
we show raster plots for two different sets of initial
conditions that show this to be the case. Such bistable
network patterns were present for all other τsyn values
where bistable suppressed and near-synchronous solu-
tions occurred, as indicated by the two-cell analyses

(see Tables 1 and 3). These multistable patterns were
also present in other N( �=50)-cell networks. There was
no obvious difference in the ability to see multistable
patterns and N in our simulations.

Finally, we show that it is possible to separate by dif-
ferent initial conditions, the different networks patterns
that arise in the N -cell networks. For this, we focus
on Iµ = 1, τsyn = 1, and choose 4%Het which en-
compasses stable solutions of both near-synchronous
and near-antiphase solutions. Given that the hetero-
geneous inputs for the N -cell network simulations
are randomly chosen from a uniform distribution, the
choice of 4%Het means that there is not any large bias
toward near-synchronous or near-antiphase solutions,
as antiphase solutions are stable up to 4.3%Het. For
these parameters, all initial conditions from the “hy-
perpolarized” conditions gave rise to coherent network
patterns that were influenced by the near-antiphase
states, and all initial conditions from the “depolarized”
conditions gave rise to coherent network patterns that
were influenced by the near-synchronous states. Some
of the raster plots are shown in Fig. 7. Physiologi-
cally, this is interesting as it suggests that depending
on the “history” of inputs to the inhibitory network
(i.e., putting it in a “depolarized” or “hyperpolarized”



Two-Cell to N-Cell Network Dynamics 351

C
el

l N
um

be
r

40

0

0

50

50

50

0
0

20 40 0 20 
Time (ms) Time (ms)

"hyperpolarized" ICs"depolarized" ICs

Figure 7. Separation Of Bistable Patterns By Initial Conditions.
Raster plots of 50-cell network simulations showing two dis-
tinct coherent patterns (as influenced by near-antiphase and near-
synchronous bistable states). Iµ = 1 µA/cm2, τsyn = 1, and
4.0%Het. On the right are raster plots when three different “hyperpo-
larized” initial conditions (ICs) are used. On the left are raster plots
when three different “depolarized” initial conditions (ICs) are used.
Mean coherence values are 0.44, 0.43 and 0.44 (top to bottom) for
the right raster plots and 0.96 for all three raster plots on the left side.

state), it can be biased to produce network patterns that
have drastically different network frequencies. If we
increase the %Het to 5%Het so that there is now a po-
tential bias toward near-synchronous solutions based
on the two-cell analyses, we still get the different types
of network output (see Fig. 6A), but now the separation
of network patterns between “depolarized” and “hyper-
polarized” initial conditions is no longer there and there
are more network patterns that are influenced by the
near-synchronous state. Specifically, of five “hyperpo-
larized” initial conditions, one of them produces a net-
work output that is influenced by the near-synchronous
state, and one of them produces no visual coherence
(see Fig. 6A). This indicates the preciseness of the
N -cell network patterns produced based on the two-
cell analyses.

The multistable network patterns observed in the
N -cell networks are clearly influenced by near-
synchronous, near-antiphase and suppressed states.
This influence is made stronger by inspection of net-
work periods. For example, the network period is about
27 ms in Fig. 6C (top) which presumably reflects near-
synchronous solutions, whereas it is somewhat less

than 20 ms in Fig. 6C (middle), which presumably re-
flects suppressed state solutions. Given that synchro-
nized output from inhibitory networks have larger pe-
riods compared to the individual cell’s intrinsic period,
and that the isolated cells’ periods are 16.5 and 17.2 ms
(using Eq. (8) in Methods) for these particular parame-
ters, the linkage is clear. Similar calculations for other
bistable patterns also support this observed influence.

4. Discussion

The motivation for this work is to determine how best
to make quantitative links with the experimental data.
The challenges involved in experimental work involv-
ing interneurons with diverse properties demands that
tight quantitative links with the experimental data be
made. It is clear that detailed, biophysical differences
exist, but understanding the importance of these details
requires a context. Using the context of interneuron co-
herence is reasonable given their clear participation in
in vivo rhythms (Klausberger et al., 2003). Quantifying
the difference of the details in various cellular models
is needed to understand particular contributions even
though qualitative similarities may exist between dif-
ferent models. The results of this work show that quan-
titative linkages occur between two-cell and N -cell net-
work dynamics since coherent patterns in the N -cell
networks can be seen to be due to distinct two-cell pat-
terns for the same parameter sets. As such, the two-cell
analyses can be viewed as a quantitative predictor of N -
cell dynamics for heterogeneous, inhibitory networks.
In particular, (i) non-monotonic coherent relationships
versus τsyn are maintained in the larger networks for
the same parameter sets, and (ii) multistable patterns
in the two-cell system are manifest as different and dis-
tinct coherent network patterns in the larger networks
for the same parameter sets. Specifically, coherent net-
work patterns with two-fold different frequencies in the
N -cell networks occur as a result of near-synchronous
and near-antiphase bistable solutions in the two-cell
system.

The N -cell networks we model are all-to-all coupled.
The value of N that should be used in these investiga-
tions is unclear, but it is clearly an additional, impor-
tant consideration. Golomb et al. (2001) used phase
reduction techniques and simulations to show that for
massively connected networks, inhibitory networks are
more advantageous than excitatory ones in the produc-
tion of neuronal synchrony. In addition, they considered
network architecture in the form of sparse networks.
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The use of 20, 50 and 100 cells in our network sim-
ulations here seems reasonable since such sizes have
been used by several other investigators to understand
inhibitory network phenomena (Bartos et al., 2001;
Tiesinga and José, 2000; Wang and Buzsáki, 1996,
White et al., 1998). Besides network architecture, there
are several additional challenges to consider, such as
dendritic effects, electrical coupling by gap junctions
and appropriate synaptic background activities. Given
that one can determine the tissue size (i.e., number of
cells) needed to produce spontaneous population oscil-
lations dependent on interneuron coherence (Wu et al.,
2004), it will be interesting to investigate the effects
of N. Doing simulations with thousands of cells, so
as to approach biological numbers will be compelling
to perform if one could have some insight on critical
biophysical parameters and potential mechanisms from
two-cell analyses and experimental observations. It will
also be critical to develop more appropriate coherence
measures to analyze the network dynamics.
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