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Abstract
Nanomagnetic Logic (NML) is an emergent computation model based on the interactions between nanomagnets. However, 
there are several challenges and open problems in the NML design flow, where clocking schemes and routing play an essential 
role. We compare the tradeoffs between NML synchronized and unsynchronized routing strategies using the A* search in 
this work. Both algorithms outperform previous work execution times by orders of magnitude, scaling for circuits with more 
than 1500 logic gates. Furthermore, we compare the synchronized circuits generated by our algorithm with ToPoliNano. For 
different full adders sizes, we outperform their results in terms of number of nanomagnets, absolute area, and clock zones 
by up to 113 × , 88 × , and 1.7 × , respectively.
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1  Introduction

CMOS has been the standard technology for the manufactur-
ing of digital devices over the years. However, this technol-
ogy is close to its physical limits, while at the same time, 
reliability and power issues are rising at an alarming pace 
[12]. Several studies propose new technologies in recent 
years to overcome these problems and continue increas-
ing integration densities, such as Field Coupled Nanotech-
nologies (FCN) [1, 4]. One among these is Nanomagnetic 
Logic (NML), whose circuits are composed of arrays of 

nanomagnets placed on a plane interacting through the mag-
netostatic dipolar coupling. Also, NML is nonvolatile and 
operates with ultra-low energy dissipation [5, 15].

In NML circuits, the information from one or more input 
particles propagates in the circuit as antiferromagnetic and 
ferromagnetic coupling. Particle geometries and position 
define their coupling interaction. Therefore, it is possible to 
tailor the design of the particles in such a way that the shape 
anisotropy energy (which is magnetostatic) influences the 
final magnetization direction allowing only two stable states, 
which are associated with ‘0’ and ‘1’ binary logic states, 
enabling the implementation of Boolean logic operations.

Over the years, as the complexity of the CMOS inte-
grated circuits increases, Electronic Design Automation 
(EDA) teams develop tools capable of providing higher 
abstraction levels. These tools can perform the design and 
verification of complex integrated circuits and electronic 
systems. Since CMOS has been the leading technology to 
build digital electronic devices, the literature presents a well-
established set of EDA tools and techniques that address 
the problem of automatically generating a physical layout 
for CMOS circuits. Still, NML is not fully mature yet, so 
there is considerable room for research that aims to use this 
technology to overcome circuit designing challenges at the 
nanometric scale. Therefore, the development of tools and 
techniques that can assist the designer while abstracting low-
level details of the NML technology is central. Due to the 
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differences between CMOS and NML technologies and the 
latter’s several constraints, current tools and techniques are 
not entirely suitable to generate an efficient physical layout 
for the new technology.

Recent works presented the first NML circuit simulation 
tools, such as ToPoliNano [17] and NMLSim 2.0 [8, 9, 20]. 
These tools enable the increase in the abstraction levels and 
the development of EDA tools for NML. ToPoliNano also 
explores a series of optimizations to achieve an efficient 
design in terms of area and delay. Although this represents 
an important step toward the automatic design of NML cir-
cuits, researchers must further investigate and apply other 
tools from the EDA field to fully automate the designing 
process.

In this work, we focus on routing, one of the stages of the 
circuit design workflow. This step consists of finding routes 
to connect the logic elements previously placed in a given 
space while minimizing area and satisfying other design 
constraints. Despite previous works that propose algorithms 
for placement and routing of a predecessor FCN, Quantum 
Dots Cellular Automata (QCA) circuits [7, 22, 23], these do 
not fit perfectly with NML, primarily due to features such as 
wire crossing and information propagation.

We base our routing strategy in the A* search [10], a 
well-known algorithm applied in graph search. This work’s 
main contribution is proposing a new routing algorithm for 
NML circuits that scales more than the previous work by 
Silva et.al [19] that is also based on the A*. While Silva et al. 
can handle small circuits (less than 20 gates), the adaptation 
proposed in this work scales to more than 1,500 gates. More-
over, we improve the execution time by orders of magni-
tude, using the path-finding algorithm’s concurrent resource 
instances. We also compared our strategy with ToPoliNano, 
which provides a complete EDA tool for NML. Our results 
show that the new proposed algorithm is able to outperform 
ToPoliNano both in time and circuit area.

We organize this work as follows: Sect. 2 reviews the 
basics of the NML technology and routing process. Sec-
tion 3 presents an algorithm for automatic routing of NML 
circuits. In Sect. 4, we compare our approach to the previous 
works [17, 19], and we present novel circuit routing results 
for ISCAS’85 benchmarks [2]. Also, we analyze the perfor-
mance of our algorithm and the trade-off between circuit 
area and execution time. Finally, Sect. 5 concludes this work.

2 � Background

2.1 � Nanomagnetic logic

This section presents a brief overview of Nanomagnetic 
Logic (NML), explaining the basic concepts and devices of 
the technology.

The NML primary device is a bistable elongated nano-
magnet whose magnetization is likely to lie alongside its 
long axis (also known as easy axis) to minimize the shape 
energy. Figure 1a depicts the possible configurations for the 
magnetization of a nanomagnet. We arbitrarily define the 
logic values ‘0’ and ‘1’ to magnetization points ‘down’ and 
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‘up’, respectively. In contrast, the nanomagnet changes to 
the ‘null’ logic state (metastable) while applying an external 
magnetic field to the short axis of the particle [8].

Wires are the essential element to propagate informa-
tion through circuits. In NML, there are two configurations 
to arrange the nanomagnets to create wires: antiferromag-
netic and ferromagnetic. The former structure presents the 
antiparallel direction of the magnetization vectors (Fig. 1b), 
while the latter exhibits a parallel orientation (Fig. 1c).

It is possible to exploit the wire structure in NML circuits 
to create an inverter. Antiferromagnetic wires with an odd 
number of cells propagate the logic values through the wire. 
On the other hand, a wire with an even number of nanomag-
nets inverts the original input logic level, as shown in the 
example of Fig. 1b.

Another essential element in NML circuits is the majority 
gate (MG), which replicates on the output the logic level that 
is most present in the inputs. Figure 1d depicts a 3-input MG 
where one of them presents an antiferromagnetic coupling 
with the output. Thus, when implementing a logic function, 
we should consider the complement of this input. We can 
reduce the MG to AND or OR gates by fixing one of the 
inputs to 0 or 1, respectively. Therefore, by relying on the 
wires, MG, and inverter, it is possible to implement any 
logic function [11].

To build more complex NML devices, one should select 
the placement of NML nanomagnets carefully and synchro-
nize the information, avoiding a signal to reach a logic gate 
and propagate before the other inputs reach the gate. The 
utilization of an NML clock solves these issues, ensuring 
correct circuit operation. For simplicity, one can consider 
the clock as an external magnetic field that controls the par-
ticle’s magnetization. The clock is applied perpendicularly 
to the nanomagnet’s long axis to force it into a logic ’null’ 
state, as shown in Fig. 1a. When these particular nanoparti-
cles are horizontally oriented, they reach an unstable energy 
state. The nanomagnets get oriented vertically by removing 
the external magnetic field, assuming a minimum energy 
state corresponding to a ground state. Finally, the magneti-
zation of a given nanomagnet points up or down, depending 
on its neighbors’ polarization.

The clock in NML solves three main issues: it allows the 
adiabatic change of the magnetization, generates direction 
and synchronization of information, and avoids signal errors 
in long arrays of nanomagnets due to non-nearest neighbor 
coupling and thermal noise. Also, with the increase in inte-
gration levels of NML circuits, the design becomes a com-
plex process, being unfeasible to be performed manually.

As an example, Fig. 1e depicts a clocking system in NML 
composed of three clock zones. A periodic clock signal con-
trols each zone with three phases: Hold, Reset, and Switch. 
In the Hold phase, the magnetization of the nanomagnets 
remains unchanged. In the Reset phase, the clocking system 

applies an external magnetic field, inducing the nanomag-
nets into a null magnetization state. In the Switch phase, the 
clocking system gradually removes the external magnetic 
field, allowing the nanomagnets to polarize according to 
their neighbors. A four clock zones scheme is also allowed. 
In this case, as extra phase, called Relax, is included between 
phases Reset and Switch, keeping the nanomagnets in a null 
state.

When we split a circuit into clock zones, the magnetic 
fields act upon each zone independently, thus eliminating 
errors. A clock cycle in NML is the time a clock zone needs 
to pass through all the phases. A clock scheme is when one 
divides the nanomagnets in a circuit into very well organ-
ized, and distributed clock zones [7].

2.2 � NML routing

Routing is the procedure of adding wires and creating the 
interconnections among circuit components. The synchro-
nization is a substantial issue to build layouts that depicts 
the correct functionality. The synchronization of NML lay-
outs can be achieved by using clocking schemes and bal-
ancing the circuit path lengths. A circuit is synchronized if 
we can ensure that all the paths leading to the gate inputs 
pass through the same number of clock zones, arriving at 
all gate inputs simultaneously. This phenomenon is known 
as the layout-timing problem, inherent to the FCN paradigm 
[13, 16].

At the graph level, in which the vertices are elements such 
as buffers, wires, and gates, while edges represent connec-
tions between these elements, we can apply some changes to 
simplify the Routing step. In the circuit graph, we name two 
paths as reconvergent if they diverge from and then recon-
verge to the same logic element or block [7, 17]. Therefore, 
we must guarantee that all the reconvergent paths leading to 
the same element have the same length, which increases the 
Routing complexity.

Figure 2 depicts an example of Placement and Routing 
at both graph and layout levels. In Fig. 2a, there are two 
unbalanced reconvergent paths starting in buffer1 and buffer2 , 
and ending in And1 and And2 , respectively. We introduce 
wire nodes ( wire1,wire2 ) to balance the graph as shown in 
Fig. 2b.

At the layout level, first, we need to place the graph inside 
a regular grid. Figure 2c, d presents two circuit layouts 
where we perform the Routing on the balanced graph from 
Fig. 2b. Consider a special clock zone for these circuits, 
while traversing the circuit, following the wires, from the 
inputs to the outputs, each tile is assigned a zone (or a group 
of equivalent clock zones) according to its distance from the 
primary inputs, x1 and x2 . So, tiles at the same distance are 
assigned to the same clock zone.
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However, a balanced graph does not guarantee a synchro-
nized circuit. While the circuit in Fig. 2d is synchronized, 
Fig. 2c depicts that even if we deal with reconvergent paths 
at graph level, the Routing can generate an unsynchronized 
layout. In this case, the Routing path from I3 to A3 has a 
longer wire length in comparison to the path from I4 to A3 . 
A signal value from I4 arrives at A3 after the time ti, but the 
signal from I3 arrives after time ti+2. On the other hand, this 
does not occur for the circuit in Fig. 2d, since both signals 
I3 and I4 arrive at A3 at the same time.

The final area occupied by both layouts is the same, as 
one may notice the grids of Figs. 2c, d contains 7 × 7 tiles 
each. One tile represents the minimal layout unit, a logic 
element, or a wire with the same delay. All tiles have the 
same area, so we compute the total area of the layout by 
multiplying the number of tiles rows by the number of tiles 
columns, so the total area for the layouts depicted in Fig. 2c, 
d is 49 tiles each.

In summary, the definition of balanced or unbalanced 
relates to the graph level, and the term unsynchronized 
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or synchronized refers to the layout level. An unbalanced 
graph has not gone through Pre-Routing pre-processing 
steps, as we will discuss in Sect. 3. A balanced graph does 
not violate any of the restrictions imposed on the Pre-
Routing. After the Placement and Routing, we get to the 
circuit’s final layout, which can be either Unsynchronized 
or Synchronized. In a Synchronized layout, for each gate in 
the circuit, all of its inputs arrive at the same time, unlike 
the Unsynchronized one, which does not guarantee the 
simultaneous arrival of inputs at each gate.

It is essential to highlight that a balanced graph can 
have an unsynchronized layout. This situation occurs 
because an edge at graph level always has length 1. Its 
respective wire at layout level could cross several tiles, 
resulting in a length higher than one, as illustrated in 
Fig. 2c. The correct operation of unsynchronized circuits 
depends on modifying external clocking to guarantee that 
a signal arriving at a gate from a short path will wait for 
the signal arriving from a longer route, which results in 
lower throughput [18, 19].

3 � Methodology

In this section, we present our Routing methodology for 
NML circuits. Sect.  3.1 details pre-processing, which 
includes placement, and Sect.  3.2 provides important 
information about our routing approach. Figure 3 shows a 
summary of the whole process.

3.1 � Pre‑routing

Our algorithm executes on a Directed Acyclic Graph (DAG), 
manipulating the logic gates of the circuit, which we inter-
changeably refer to as a network. The DAG vertices can be 
gates, inputs, or outputs. The node can also represent buffers 
that the routing algorithm may create during the following 
steps to pre-process the circuit. The edge set E determines 
the connections between the logic elements. Thus, an edge 
from a vertex v to a vertex u means that v is an input of u.

The first step (1) is Fan-in and Fan-out Management, 
generating an equivalent network where all the gates have 
no more than two fan-ins and two fan-outs, this is similar to 
what has been done in Fontes et al. [7] and Riente et al. [17].

As detailed in Sect. 2.2, there is a relationship between 
circuit balancing and synchronization. Therefore, in the sec-
ond step (2), we use a balancing algorithm to topologically 
order the network, providing a level-by-level view of the 
graph. Then, our algorithm travels the edges of the graph 
adding new edges if a given path is unbalanced, similarly to 
the works by Fontes et al. [7] and Riente et al. [17].

The final step (3) of pre-routing is the Placement, which 
assigns positions for each vertex of the graph in the cir-
cuit layout. The paths found at the Routing are intrinsically 
dependent on the Placement since our algorithm exploits the 
previous topological order to allocate children nodes as close 
as possible to their respective parent nodes, thus reducing 
the wire length. However, this step does not guarantee the 
synchronization of the circuit.

3.2 � Routing

Our Routing algorithm applies the A* informed search 
algorithm [6] to build the connection between the verti-
ces after the placement phase is complete. From here, we 
treat the grid returned by the placement as an undirected 
graph, where we define three types of adjacent positions 
related to position (i, j): (i, j + 1) and (i, j − 1) are horizon-
tally adjacent; (i + 1, j) and (i − 1, j) are vertically adjacent; 
(i + 1, j + 1), (i + 1, j − 1), (i − 1, j + 1) , and (i − 1, j − 1) are 
diagonally adjacent. For the sake of understanding, we refer 
to the DAG representing the circuit as G1 and the layout 
representing the placement grid as G2.

The Placement step creates the layout G2 , where we exe-
cute our A* based approach to route the edges of G1 . Con-
sider an edge (V,U) from G1, both V and U were assigned 
positions (Vx,Vy) and (Ux,Uy) during the placement, respec-
tively. Therefore, in G2 we must find a route from (Vx,Vy) , 
the source, to (Ux,Uy) , the target. This is true for every edge 
of G1.

The A* algorithm builds the routes by relying on a heuristic 
function to estimate the total path cost from the source S, pass-
ing through a vertex N, to the destination D. We present the Fig. 3   NML placement and routing flow
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evaluation function in Eq. 1, where g(N) is the cost so far to 
move from S → N and h(N) is the estimated cost from N → D.

Our algorithm splits the vertices into two sets: open and 
closed. The open set contains the vertices yet not explored, 
i.e., those available for expansion. Once we take the vertex 
out of the open and add it to the closed set, we also add its 
neighbors to the open set, and we cannot explore this node 
again. We first expand the vertices with lower f(n) from the 
open set to guide the search. The algorithm stops when we 
fully expand the target, or the open set is empty. The lat-
ter case indicates that the target is not reachable from the 
source. Also, our A* takes into account routing constraints 
such as the maximum number of wires passing through a 
position.

For the H(n) estimated cost in the evaluation function, we 
assess four distance functions: Manhattan, Euclidean, Cheby-
shev, and Octile distance, described in Eqs. 2 to 5, respectively.

Next, we present the unsynchronized and synchronized vari-
ations of our NML routing algorithm.

3.2.1 � Unsynchronized routing

We present the unsynchronous routing in Algorithm 1. The 
placement creates a hash table P to store the vertices positions, 
and Table E stores the fan-ins and fan-outs of all vertices. 
The pre-processing phase creates a k-layered bipartite graph 
(KLBG) without intra-edge connections, then, instances of 
A* execute between lev(i) and lev(i+1). The model receives 
a predefined number of threads T to use simultaneously. The 
number of layers of the KLBG splits into containers with sizes 
equal to T, and each one has indices to adjacent levels. Each 
thread inserts the result on a data-structure with a mutex-lock. 
Thus, each thread waits for an unlocked state, locks the mutex, 
stores the result, and unlocks it for the next thread.

(1)f (N) = g(N) + h(N),

(2)h(N) = �x + �y.

(3)h(N) =
√
�x2 + �y2.

(4)h(N) = max(�x,�y).

(5)h(N) = 1.414 ∗ min(�x,�y) + |�x − �y|.

3.2.2 � Synchronized routing

When we relax the synchronization constraint, it is not diffi-
cult to rely only on the A* to find the connections. Neverthe-
less, an unsynchronized NML circuit has a lower throughput 
to guarantee valid outputs. We extended the A* to generate 
a synchronized circuit, where all the route paths between 
adjacent levels have the same length. For synchronized lay-
outs, the placement process already performs the first step 
generating a topological ordered graph. All vertices on the 
same topological level are on the same layout row. How-
ever, to generate a synchronized layout, we should organize 
the sequence of vertices (column ordering) in each row to 
mitigate the route paths, the wiring-cross between the lev-
els. Also, we should guarantee path balancing. We propose 
a novel approximation algorithm for column assignment 
inside each layout row. Figure 4a shows an example. First, 
we partition the graph into a forest, as shown in Fig. 4b, 
where we use colors to highlight the sub-graph partitions. 
The algorithm traverses the graph in a depth-first manner. 
We also add a queue to keep track of columns during the 
traversal. We use the sub-graph partition and the topologi-
cal order to create new columns. Figure 4c shows the final 
placement and routing.

In the worst case, the A* search time complexity is expo-
nential in the depth of the solution path, that is, O(bd ), where 
b is the branching factor, and d is the depth of the solution 
[21]. The branching factor represents the number of children 
each node of the search may have, 8 in this case, one for 
each neighbor in the matrix. However, the algorithm’s per-
formance strongly correlates with the heuristic choice. We 
are currently investigating the heuristics choice impact on 
the performance of the A* in the context of circuit routing.

Regarding the algorithm to generate the physical layout 
for NMLSim 2.0, the time complexity is O(V + E), where 
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V is the number of vertices and E is the number of edges of 
the graph returned by the routing algorithm.

4 � Experiments and results

This section presents the analysis and comparison of our 
NML Routing algorithms. The focus of this work is to depict 
an algorithm capable of generate a valid placement and rout-
ing for a NML layout for any given circuit described in Ver-
ilog HDL. Although we do have an algorithm capable of 

generate the circuit physical layout, it is out of the scope of 
this work to give more details about it. We choose to show 
only the physical layout depicted in Fig. 5a.

We have used the NMLSim 2.0 tool to simulate the cir-
cuits [8], and we set the number of clock zones to four. The 
nanomagnets geometries and the design rules are based on 
the work from Luz et al. [14]. To ensure that the generated 
layouts perform the desired logic functions, we have con-
ducted extensive simulations in NMLSim 2.0. But unfor-
tunately, we could only perform the simulation for all the 
possible combinations of inputs of small circuits since the 
simulation time is prohibitive for more complex circuits.

In Fig. 2c, d, the tiles that represent each clock zone (or a 
group of clock zones) all have the same size. However, the 
physical mapping uses tiles of different sizes to avoid errors 
and achieve a more robust layout. Therefore, for instance, 
two wires designated to the same clock zone (or group) may 
have a different number of nanomagnets.

When we remove the synchronization constraint, some 
paths on the circuit may take shorter routes. As depicted in 
Fig. 5a, we have two paths arriving at the same nanomag-
net at different moments. The shorter one takes 1.5 clock 
cycles, while the longer one takes 2.5 clock cycles, yielding 
an undesired output. These unbalanced paths are not present 
in the circuit of Fig. 5b because the two paths have the same 
delay, 2.25 clock cycles.

4.1 � Comparison with previous work

Here, we compare our results with previous works and dis-
cuss the advantages and drawbacks of our synchronized and 
unsynchronized algorithms in more complex benchmarks. 
We also used ToPolinano [17] to generate several circuits 
to compare. Although our focus rests mainly on the Routing 
phase and ToPolinano is a complete EDA tool, we see this as 
a relevant comparison since ToPolinano presents very solid 
results toward the automation of NML Routing.

We have implemented the algorithms in C++ and per-
formed the experiments on an Intel Core i5-7200U with 2.50 
GHz and 8 GB of RAM. Our implementation covers the four 
evaluation functions presented in Sect. 3. However, after 
preliminary experiments, we chose the Octile to generate 
the final results because this strategy outperforms the other 
evaluation functions in terms of execution time. We believe 
that the best performance of this algorithm is because it pri-
oritizes horizontal and vertical paths over diagonal ones.

Table 1 compares our approach with the previous work by 
Silva et. al [19], and circuits from [2, 24]. In terms of area, 
for most benchmarks, our algorithm does not outperform 
the previous results. The difference is high for all circuits 
when using our unsynchronized algorithm. The main reason 
for this difference is that our new algorithm performs graph 

Fig. 4   a An example circuit graph. b The columns set by the algo-
rithm. c The P&R approximation
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balancing, which increases the area, while the previous work 
takes another approach, ignoring the graph balancing.

The balancing considered now helps in the routing of 
larger circuits. When we consider the synchronized algo-
rithm, the previous work outperforms the algorithm pre-
sented here for small circuits ( B1_r2 , FA_AOIG , C17, t, 
and newtag). Nevertheless, for the more complex circuits, 
especially with reconvergent paths, our algorithm presents 
very close or even better area results, as can be seen in the 
cases xor5_r and xor5_r1.

One of the main advantages of our algorithm is that it is 
much faster than the previous one. For the unsynchronized 
case we achieved speedups ranging from 65.21× (newtag) 
up to 9,600× (b1). For the synchronized case we achieved 
speedups ranging from 52,02× (newtag) up to 8,478× 
(b1). These significant speedups occur because our cur-
rent approach simplifies the search and exploits parallel-
ism during the A* path routing. Furthermore, our approach 
scales efficiently with the number of logic gates, while the 
previous work [19] was limited to a few logic gates ( < 15 , 
see Table 1). With this in mind, we can now apply our 
routing algorithm in larger circuits, as we describe later.

In Table 2, we present a comparison with ToPolinano 
using the same circuits of Table 1. In this case, we compare 
just synchronized circuits since ToPoliNano only works 
on this kind of circuit. Besides the speedup, Table 1 also 
presents the bounding box area, which is the area of the 
minimum rectangle that bounds the layout. To measure it, 
we consider tiles with size 4x4, the default value for ToPo-
liNano. The column Runtime for ToPoliNano considers 

more than the Routing, since the tool does not provide a 
way to measure the time spent only on the Routing.

One may notice that the speed up reached ranges from 
1.52× to 50× in comparison with ToPoliNano. Even when 
considering that the ToPoliNano runtime encompasses the 
whole process of a CAD tool, this is a significant improve-
ment and depicts that our algorithm is very suitable for the 
Routing of NML circuits. Regarding the area of the circuits, 
we consider the bounding area in terms of tiles. Thus, we can 
realize this comparison in a fairway. Our approach reaches a 
much smaller area than ToPoliNano, achieving an improve-
ment of up to 18.80 times.

We also performed a comparison with the adders pre-
sented in the ToPolinano original paper [17]. In this work, 
the authors depict results for multiples ripple-carry adders 
varying the number of bits. Table 3 shows the results of this 
comparison, including the absolute area, which is the area 
occupied by all the nanomagnets, i.e., the sum of the areas 
of each magnet. Our approach needs much fewer nanomag-
nets than ToPoliNano for all the benchmarks, especially for 
larger circuits, reaching 113× fewer nanomagnets for 64-bit 
full adder. Consequently, our approach always presents a 
smaller circuit area. It’s worth mentioning that to calculate 
the area for our approach, we consider that all magnets have 
dimensions 150 nm × 50 nm, following the details of the cell 
library designed by Luz et al. [14].

The increase in the number of nanomagnets and clock 
zones is higher for ToPolinano than our approach. Our 
bounding area has shown worse results for only two cases, 
the 2 and 4-bit adders. However, for larger circuits, our 

Fig. 5   Physical layout of a an unsynchronized, and b a synchronized layout
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bounding area gets similar or better than ToPoliNano. For 
example, the bounding area for the 64-bit full adder uses 
3.77× less area in our approach compared to ToPoliNano. 
Regarding the absolute area, our approach has shown 
improvement for most cases. We have improvements of 
several orders of magnitude, reaching 88× smaller area for 
the 64-bit full adder. In terms of clock zones, our approach 
presents better results for the larger circuits (32 and 64-bit 
full adders). In ToPoliNano, when we double the full adder 
size, the number of nanomagnets is multiplied by approxi-
mately 4 times, and the number of clock zones is multiplied 
by about 3 times. In our approach, this multiplying factor 
is around 2 for both the number of nanomagnets and the 
number of zones.

4.2 � Routing larger circuits

Table 4 presents results for a set of circuits from different 
benchmarks [2, 3, 24], where the number of logic gates 
ranges from 22 up to 1669. Therefore, we increase the circuit 
size up to two orders of magnitude. The first five columns 
present the circuit name, function, number of logic gates, 
number of inputs, and outputs, respectively. The sixth and 
seventh columns show the run time and grid size (area) for 
the unsynchronized routing. The next two columns present 
the same information for the synchronized routing. Finally, 
the last two columns show the speedup and area overhead 
between the two cases.

As we can observe, the unsynchronized algorithm is 
faster since balanced paths are not required. It presents a 
speedup average equal to 3.06× when compared with the 
synchronized one. Also, to synchronize the paths, the algo-
rithm needs more cells to route the wires, occupying a larger 
area. It is important to highlight that we limited the maxi-
mum number of wires per cell to two in our approaches. It 
is unfeasible to handle more than this in NML due to mag-
netostatic interactions between the nanomagnets.

5 � Conclusion

In this work, we presented synchronized and unsynchronized 
routing algorithms using the A* search , with custom heu-
ristics, to find paths to connect the gates in an NML circuit. 
Our algorithms scaled better than the previous work pro-
posed by Silva et al. [19], being able to handle circuits with 
more than 1500 gates and reducing the execution times by 
orders of magnitude. Furthermore, our synchronized algo-
rithm outperformed the state-of-the-art ToPoliNano tool 
[17]. For larger circuits, our strategy presented area reduc-
tion of up to 113×.
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As future work, we aim to extend our approach to encom-
pass the Routing with the presence of a clocking scheme 
and minimize the wire crossing. We also intend to improve 
our pre-routing stage, especially the Placement phase and 
develop a highly efficient physical mapping.
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Table 2   Execution time and bounding area for our approach in comparison to ToPoliNano [17]

Circuits ToPoliNano Our approach Comparison

Name Gates Runtime (s) Bounding area Runtime (s) Bounding area Speedup time Area

b1 [24] 4 6 × 10−3 1260 1.14 × 10−3 120 5.26x 10.5×
1-bit Full-Adder [19] 5 4 × 10−3 900 7.54 × 10−4 128 5.30× 7.03×
C17 [2] 6 5 × 10−3 572 0.1 × 10−3 120 50× 4.77×
t [19] 6 5 × 10−3 572 1.32 × 10−3 100 3.78× 5.72×
newtag [19] 8 5 × 10−3 1672 1.73 × 10−3 168 2.89× 9.95×
xor5_r [19] 14 7 × 10−3 4212 3.41 × 10−3 224 2.05× 18.80×
xor5_r1 [19] 12 4 × 10−3 2508 2.62 × 10−3 180 1.52× 13.93×

Table 3   Adders generated by our approach in comparison to ToPoliNano [17]

Bits Nanomagnets Clock zones Bound area (mm2) Absolute area (mm2)

ToPoliNano Our approach ToPoliNano Our approach ToPoliNano Our approach ToPoliNano Our approach

2 1572 1151 52 181 3.84 × 10−5 8.1 × 10−5 9.12 × 10−6 8.63 × 10−6

4 6,021 2,307 129 365 1.59 × 10−5 3.16 × 10−4 3.49 × 10−5 1.73 × 10−5

8 28,513 4619 409 733 1.12 × 10−3 1.15 × 10−3 1.65 × 10−4 3.46 × 10−5

16 116,827 9243 932 1469 4.56 × 10−3 4.37 × 10−3 6.78 × 10−4 6.93 × 10−5

32 676,969 18,491 3022 2941 2.97 × 10−2 1.70 × 10−2 3.93 × 10−3 1.39 × 10−4

64 4,207,667 36,987 10,009 5885 2.54 × 10−1 6.73 × 10−2 2.44 × 10−2 2.77 × 10−4

Table 4   Our synchronized and unsynchronized approaches for larger circuits: execution time and grid area

Circuits Unsynchronized Synchronized Speedup Overhead

Name Function Gates In Out Time (s) Bounding area Time (s) Bounding area Time Area

Decod [24] Decoder 22 5 16 0.0243 920 0.0247 1080 1.01x 1.14×
Mux [24] Multiplexer 91 21 1 0.08 5568 0.12 5568 1.5× –
s208 [3] Frac. Multiplier 96 11 2 0.05 3920 0.07 4000 1.4× 1.02×
s349 [3] 4-Bit Multiplier 161 4 3 0.36 10,720 0.53 2960 1.39× 1.10×
adderfds [24] Adder 223 33 17 4.13 35,964 6.99 40,500 1.62× 1.11×
alu2 [24] ALU 335 10 6 44.06 89,832 57.78 89,832 1.31× –
s1494 [3] Generic controller 647 9 19 119.80 83,824 144.66 83,824 1.21× –
C3540 [2] ALU and Control 1669 50 22 338.5 275,840 620.4 279,040 1.83× 1.01×
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