
Vol:.(1234567890)

Journal of Computational Electronics (2023) 22:570–580
https://doi.org/10.1007/s10825-022-01960-3

1 3

An automatic routing approach for NML circuits

Pedro Arthur R. L. Silva1  · Ruan E. Formigoni2 · Laysson O. Luz1 · Ricardo Ferreira2 · Omar P. Vilela Neto1 ·
José Augusto M. Nacif2

Received: 7 April 2021 / Accepted: 4 September 2022 / Published online: 7 November 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Nanomagnetic Logic (NML) is an emergent computation model based on the interactions between nanomagnets. However,
there are several challenges and open problems in the NML design flow, where clocking schemes and routing play an essential
role. We compare the tradeoffs between NML synchronized and unsynchronized routing strategies using the A* search in
this work. Both algorithms outperform previous work execution times by orders of magnitude, scaling for circuits with more
than 1500 logic gates. Furthermore, we compare the synchronized circuits generated by our algorithm with ToPoliNano. For
different full adders sizes, we outperform their results in terms of number of nanomagnets, absolute area, and clock zones
by up to 113 × , 88 × , and 1.7 × , respectively.

Keywords  Nanocomputing · NML · Routing · EDA

1  Introduction

CMOS has been the standard technology for the manufactur-
ing of digital devices over the years. However, this technol-
ogy is close to its physical limits, while at the same time,
reliability and power issues are rising at an alarming pace
[12]. Several studies propose new technologies in recent
years to overcome these problems and continue increas-
ing integration densities, such as Field Coupled Nanotech-
nologies (FCN) [1, 4]. One among these is Nanomagnetic
Logic (NML), whose circuits are composed of arrays of

nanomagnets placed on a plane interacting through the mag-
netostatic dipolar coupling. Also, NML is nonvolatile and
operates with ultra-low energy dissipation [5, 15].

In NML circuits, the information from one or more input
particles propagates in the circuit as antiferromagnetic and
ferromagnetic coupling. Particle geometries and position
define their coupling interaction. Therefore, it is possible to
tailor the design of the particles in such a way that the shape
anisotropy energy (which is magnetostatic) influences the
final magnetization direction allowing only two stable states,
which are associated with ‘0’ and ‘1’ binary logic states,
enabling the implementation of Boolean logic operations.

Over the years, as the complexity of the CMOS inte-
grated circuits increases, Electronic Design Automation
(EDA) teams develop tools capable of providing higher
abstraction levels. These tools can perform the design and
verification of complex integrated circuits and electronic
systems. Since CMOS has been the leading technology to
build digital electronic devices, the literature presents a well-
established set of EDA tools and techniques that address
the problem of automatically generating a physical layout
for CMOS circuits. Still, NML is not fully mature yet, so
there is considerable room for research that aims to use this
technology to overcome circuit designing challenges at the
nanometric scale. Therefore, the development of tools and
techniques that can assist the designer while abstracting low-
level details of the NML technology is central. Due to the

 *	 Pedro Arthur R. L. Silva
	 pedro.rodrigues@dcc.ufmg.br

	 Ruan E. Formigoni
	 ruan.formigoni@ufv.br

	 Laysson O. Luz
	 layssonluz@dcc.ufmg.br

	 Ricardo Ferreira
	 ricardo@ufv.br

	 Omar P. Vilela Neto
	 omar@dcc.ufmg.br

	 José Augusto M. Nacif
	 jnacif@ufv.br

1	 Universidade Federal de Minas Gerais, Belo Horizonte, MG,
Brazil

2	 Universidade Federal de Viçosa, Viçosa, MG, Brazil

http://orcid.org/0000-0001-7854-1286
http://crossmark.crossref.org/dialog/?doi=10.1007/s10825-022-01960-3&domain=pdf

571Journal of Computational Electronics (2023) 22:570–580	

1 3

differences between CMOS and NML technologies and the
latter’s several constraints, current tools and techniques are
not entirely suitable to generate an efficient physical layout
for the new technology.

Recent works presented the first NML circuit simulation
tools, such as ToPoliNano [17] and NMLSim 2.0 [8, 9, 20].
These tools enable the increase in the abstraction levels and
the development of EDA tools for NML. ToPoliNano also
explores a series of optimizations to achieve an efficient
design in terms of area and delay. Although this represents
an important step toward the automatic design of NML cir-
cuits, researchers must further investigate and apply other
tools from the EDA field to fully automate the designing
process.

In this work, we focus on routing, one of the stages of the
circuit design workflow. This step consists of finding routes
to connect the logic elements previously placed in a given
space while minimizing area and satisfying other design
constraints. Despite previous works that propose algorithms
for placement and routing of a predecessor FCN, Quantum
Dots Cellular Automata (QCA) circuits [7, 22, 23], these do
not fit perfectly with NML, primarily due to features such as
wire crossing and information propagation.

We base our routing strategy in the A* search [10], a
well-known algorithm applied in graph search. This work’s
main contribution is proposing a new routing algorithm for
NML circuits that scales more than the previous work by
Silva et.al [19] that is also based on the A*. While Silva et al.
can handle small circuits (less than 20 gates), the adaptation
proposed in this work scales to more than 1,500 gates. More-
over, we improve the execution time by orders of magni-
tude, using the path-finding algorithm’s concurrent resource
instances. We also compared our strategy with ToPoliNano,
which provides a complete EDA tool for NML. Our results
show that the new proposed algorithm is able to outperform
ToPoliNano both in time and circuit area.

We organize this work as follows: Sect. 2 reviews the
basics of the NML technology and routing process. Sec-
tion 3 presents an algorithm for automatic routing of NML
circuits. In Sect. 4, we compare our approach to the previous
works [17, 19], and we present novel circuit routing results
for ISCAS’85 benchmarks [2]. Also, we analyze the perfor-
mance of our algorithm and the trade-off between circuit
area and execution time. Finally, Sect. 5 concludes this work.

2 � Background

2.1 � Nanomagnetic logic

This section presents a brief overview of Nanomagnetic
Logic (NML), explaining the basic concepts and devices of
the technology.

The NML primary device is a bistable elongated nano-
magnet whose magnetization is likely to lie alongside its
long axis (also known as easy axis) to minimize the shape
energy. Figure 1a depicts the possible configurations for the
magnetization of a nanomagnet. We arbitrarily define the
logic values ‘0’ and ‘1’ to magnetization points ‘down’ and

Logic 0 Logic 1 Logic
‘null’

(a) NML possible
cell states

(b) Antiferromagnetic wire
as an inverter

(c) Ferromagnetic wire

INPUTS

OUTPUT

(d) Majority voter logic gate

HOLD SWITCH RESET

RESET HOLD SWITCH

SWITCH RESET HOLD

ZONE 1 ZONE 2 ZONE 3

TI
M
E

T = 1

T = 2

T = 3

(e) 3-phase NML clock system

Fig. 1   NML basics

572	 Journal of Computational Electronics (2023) 22:570–580

1 3

‘up’, respectively. In contrast, the nanomagnet changes to
the ‘null’ logic state (metastable) while applying an external
magnetic field to the short axis of the particle [8].

Wires are the essential element to propagate informa-
tion through circuits. In NML, there are two configurations
to arrange the nanomagnets to create wires: antiferromag-
netic and ferromagnetic. The former structure presents the
antiparallel direction of the magnetization vectors (Fig. 1b),
while the latter exhibits a parallel orientation (Fig. 1c).

It is possible to exploit the wire structure in NML circuits
to create an inverter. Antiferromagnetic wires with an odd
number of cells propagate the logic values through the wire.
On the other hand, a wire with an even number of nanomag-
nets inverts the original input logic level, as shown in the
example of Fig. 1b.

Another essential element in NML circuits is the majority
gate (MG), which replicates on the output the logic level that
is most present in the inputs. Figure 1d depicts a 3-input MG
where one of them presents an antiferromagnetic coupling
with the output. Thus, when implementing a logic function,
we should consider the complement of this input. We can
reduce the MG to AND or OR gates by fixing one of the
inputs to 0 or 1, respectively. Therefore, by relying on the
wires, MG, and inverter, it is possible to implement any
logic function [11].

To build more complex NML devices, one should select
the placement of NML nanomagnets carefully and synchro-
nize the information, avoiding a signal to reach a logic gate
and propagate before the other inputs reach the gate. The
utilization of an NML clock solves these issues, ensuring
correct circuit operation. For simplicity, one can consider
the clock as an external magnetic field that controls the par-
ticle’s magnetization. The clock is applied perpendicularly
to the nanomagnet’s long axis to force it into a logic ’null’
state, as shown in Fig. 1a. When these particular nanoparti-
cles are horizontally oriented, they reach an unstable energy
state. The nanomagnets get oriented vertically by removing
the external magnetic field, assuming a minimum energy
state corresponding to a ground state. Finally, the magneti-
zation of a given nanomagnet points up or down, depending
on its neighbors’ polarization.

The clock in NML solves three main issues: it allows the
adiabatic change of the magnetization, generates direction
and synchronization of information, and avoids signal errors
in long arrays of nanomagnets due to non-nearest neighbor
coupling and thermal noise. Also, with the increase in inte-
gration levels of NML circuits, the design becomes a com-
plex process, being unfeasible to be performed manually.

As an example, Fig. 1e depicts a clocking system in NML
composed of three clock zones. A periodic clock signal con-
trols each zone with three phases: Hold, Reset, and Switch.
In the Hold phase, the magnetization of the nanomagnets
remains unchanged. In the Reset phase, the clocking system

applies an external magnetic field, inducing the nanomag-
nets into a null magnetization state. In the Switch phase, the
clocking system gradually removes the external magnetic
field, allowing the nanomagnets to polarize according to
their neighbors. A four clock zones scheme is also allowed.
In this case, as extra phase, called Relax, is included between
phases Reset and Switch, keeping the nanomagnets in a null
state.

When we split a circuit into clock zones, the magnetic
fields act upon each zone independently, thus eliminating
errors. A clock cycle in NML is the time a clock zone needs
to pass through all the phases. A clock scheme is when one
divides the nanomagnets in a circuit into very well organ-
ized, and distributed clock zones [7].

2.2 � NML routing

Routing is the procedure of adding wires and creating the
interconnections among circuit components. The synchro-
nization is a substantial issue to build layouts that depicts
the correct functionality. The synchronization of NML lay-
outs can be achieved by using clocking schemes and bal-
ancing the circuit path lengths. A circuit is synchronized if
we can ensure that all the paths leading to the gate inputs
pass through the same number of clock zones, arriving at
all gate inputs simultaneously. This phenomenon is known
as the layout-timing problem, inherent to the FCN paradigm
[13, 16].

At the graph level, in which the vertices are elements such
as buffers, wires, and gates, while edges represent connec-
tions between these elements, we can apply some changes to
simplify the Routing step. In the circuit graph, we name two
paths as reconvergent if they diverge from and then recon-
verge to the same logic element or block [7, 17]. Therefore,
we must guarantee that all the reconvergent paths leading to
the same element have the same length, which increases the
Routing complexity.

Figure 2 depicts an example of Placement and Routing
at both graph and layout levels. In Fig. 2a, there are two
unbalanced reconvergent paths starting in buffer1 and buffer2 ,
and ending in And1 and And2 , respectively. We introduce
wire nodes ( wire1,wire2 ) to balance the graph as shown in
Fig. 2b.

At the layout level, first, we need to place the graph inside
a regular grid. Figure 2c, d presents two circuit layouts
where we perform the Routing on the balanced graph from
Fig. 2b. Consider a special clock zone for these circuits,
while traversing the circuit, following the wires, from the
inputs to the outputs, each tile is assigned a zone (or a group
of equivalent clock zones) according to its distance from the
primary inputs, x1 and x2 . So, tiles at the same distance are
assigned to the same clock zone.

573Journal of Computational Electronics (2023) 22:570–580	

1 3

However, a balanced graph does not guarantee a synchro-
nized circuit. While the circuit in Fig. 2d is synchronized,
Fig. 2c depicts that even if we deal with reconvergent paths
at graph level, the Routing can generate an unsynchronized
layout. In this case, the Routing path from I3 to A3 has a
longer wire length in comparison to the path from I4 to A3 .
A signal value from I4 arrives at A3 after the time ti, but the
signal from I3 arrives after time ti+2. On the other hand, this
does not occur for the circuit in Fig. 2d, since both signals
I3 and I4 arrive at A3 at the same time.

The final area occupied by both layouts is the same, as
one may notice the grids of Figs. 2c, d contains 7 × 7 tiles
each. One tile represents the minimal layout unit, a logic
element, or a wire with the same delay. All tiles have the
same area, so we compute the total area of the layout by
multiplying the number of tiles rows by the number of tiles
columns, so the total area for the layouts depicted in Fig. 2c,
d is 49 tiles each.

In summary, the definition of balanced or unbalanced
relates to the graph level, and the term unsynchronized

X1

BUFFER 1

INV 1

X2

BUFFER 2

INV 2

AND 1 AND 2

INV 3 INV 4

AND 3

Z

(a) Original unbalanced circuit

X1

BUFFER 1

WIRE 1 INV 1

X2

BUFFER 2

INV 2 WIRE 2

AND 1 AND 2

INV 3 INV 4

AND 3

Z

(b) Balanced circuit

b1X1

X2

1 2 3 4 5 6 7

1

2

3

4

5

6

7

b2

i1

i2

W1

W2

A1

A2

i3

i4 A3
ti

ti ti+1

ti+2

Z

(c) Unsynchronized Routing

b1X1

X2

Z

1 2 3 4 5 6 7

1

2

3

4

5

6

7

b2

i1

i2

W1

W2

A1

A2

i3

i4

A3

ti

ti

(d) Synchronized routing

Fig. 2   Unsynchronized and synchronized routing example

574	 Journal of Computational Electronics (2023) 22:570–580

1 3

or synchronized refers to the layout level. An unbalanced
graph has not gone through Pre-Routing pre-processing
steps, as we will discuss in Sect. 3. A balanced graph does
not violate any of the restrictions imposed on the Pre-
Routing. After the Placement and Routing, we get to the
circuit’s final layout, which can be either Unsynchronized
or Synchronized. In a Synchronized layout, for each gate in
the circuit, all of its inputs arrive at the same time, unlike
the Unsynchronized one, which does not guarantee the
simultaneous arrival of inputs at each gate.

It is essential to highlight that a balanced graph can
have an unsynchronized layout. This situation occurs
because an edge at graph level always has length 1. Its
respective wire at layout level could cross several tiles,
resulting in a length higher than one, as illustrated in
Fig. 2c. The correct operation of unsynchronized circuits
depends on modifying external clocking to guarantee that
a signal arriving at a gate from a short path will wait for
the signal arriving from a longer route, which results in
lower throughput [18, 19].

3 � Methodology

In this section, we present our Routing methodology for
NML circuits. Sect. 3.1 details pre-processing, which
includes placement, and Sect. 3.2 provides important
information about our routing approach. Figure 3 shows a
summary of the whole process.

3.1 � Pre‑routing

Our algorithm executes on a Directed Acyclic Graph (DAG),
manipulating the logic gates of the circuit, which we inter-
changeably refer to as a network. The DAG vertices can be
gates, inputs, or outputs. The node can also represent buffers
that the routing algorithm may create during the following
steps to pre-process the circuit. The edge set E determines
the connections between the logic elements. Thus, an edge
from a vertex v to a vertex u means that v is an input of u.

The first step (1) is Fan-in and Fan-out Management,
generating an equivalent network where all the gates have
no more than two fan-ins and two fan-outs, this is similar to
what has been done in Fontes et al. [7] and Riente et al. [17].

As detailed in Sect. 2.2, there is a relationship between
circuit balancing and synchronization. Therefore, in the sec-
ond step (2), we use a balancing algorithm to topologically
order the network, providing a level-by-level view of the
graph. Then, our algorithm travels the edges of the graph
adding new edges if a given path is unbalanced, similarly to
the works by Fontes et al. [7] and Riente et al. [17].

The final step (3) of pre-routing is the Placement, which
assigns positions for each vertex of the graph in the cir-
cuit layout. The paths found at the Routing are intrinsically
dependent on the Placement since our algorithm exploits the
previous topological order to allocate children nodes as close
as possible to their respective parent nodes, thus reducing
the wire length. However, this step does not guarantee the
synchronization of the circuit.

3.2 � Routing

Our Routing algorithm applies the A* informed search
algorithm [6] to build the connection between the verti-
ces after the placement phase is complete. From here, we
treat the grid returned by the placement as an undirected
graph, where we define three types of adjacent positions
related to position (i, j): (i, j + 1) and (i, j − 1) are horizon-
tally adjacent; (i + 1, j) and (i − 1, j) are vertically adjacent;
(i + 1, j + 1), (i + 1, j − 1), (i − 1, j + 1) , and (i − 1, j − 1) are
diagonally adjacent. For the sake of understanding, we refer
to the DAG representing the circuit as G1 and the layout
representing the placement grid as G2.

The Placement step creates the layout G2 , where we exe-
cute our A* based approach to route the edges of G1 . Con-
sider an edge (V,U) from G1, both V and U were assigned
positions (Vx,Vy) and (Ux,Uy) during the placement, respec-
tively. Therefore, in G2 we must find a route from (Vx,Vy) ,
the source, to (Ux,Uy) , the target. This is true for every edge
of G1.

The A* algorithm builds the routes by relying on a heuristic
function to estimate the total path cost from the source S, pass-
ing through a vertex N, to the destination D. We present the Fig. 3   NML placement and routing flow

575Journal of Computational Electronics (2023) 22:570–580	

1 3

evaluation function in Eq. 1, where g(N) is the cost so far to
move from S → N and h(N) is the estimated cost from N → D.

Our algorithm splits the vertices into two sets: open and
closed. The open set contains the vertices yet not explored,
i.e., those available for expansion. Once we take the vertex
out of the open and add it to the closed set, we also add its
neighbors to the open set, and we cannot explore this node
again. We first expand the vertices with lower f(n) from the
open set to guide the search. The algorithm stops when we
fully expand the target, or the open set is empty. The lat-
ter case indicates that the target is not reachable from the
source. Also, our A* takes into account routing constraints
such as the maximum number of wires passing through a
position.

For the H(n) estimated cost in the evaluation function, we
assess four distance functions: Manhattan, Euclidean, Cheby-
shev, and Octile distance, described in Eqs. 2 to 5, respectively.

Next, we present the unsynchronized and synchronized vari-
ations of our NML routing algorithm.

3.2.1 � Unsynchronized routing

We present the unsynchronous routing in Algorithm 1. The
placement creates a hash table P to store the vertices positions,
and Table E stores the fan-ins and fan-outs of all vertices.
The pre-processing phase creates a k-layered bipartite graph
(KLBG) without intra-edge connections, then, instances of
A* execute between lev(i) and lev(i+1). The model receives
a predefined number of threads T to use simultaneously. The
number of layers of the KLBG splits into containers with sizes
equal to T, and each one has indices to adjacent levels. Each
thread inserts the result on a data-structure with a mutex-lock.
Thus, each thread waits for an unlocked state, locks the mutex,
stores the result, and unlocks it for the next thread.

(1)f (N) = g(N) + h(N),

(2)h(N) = �x + �y.

(3)h(N) =
√
�x2 + �y2.

(4)h(N) = max(�x,�y).

(5)h(N) = 1.414 ∗ min(�x,�y) + |�x − �y|.

3.2.2 � Synchronized routing

When we relax the synchronization constraint, it is not diffi-
cult to rely only on the A* to find the connections. Neverthe-
less, an unsynchronized NML circuit has a lower throughput
to guarantee valid outputs. We extended the A* to generate
a synchronized circuit, where all the route paths between
adjacent levels have the same length. For synchronized lay-
outs, the placement process already performs the first step
generating a topological ordered graph. All vertices on the
same topological level are on the same layout row. How-
ever, to generate a synchronized layout, we should organize
the sequence of vertices (column ordering) in each row to
mitigate the route paths, the wiring-cross between the lev-
els. Also, we should guarantee path balancing. We propose
a novel approximation algorithm for column assignment
inside each layout row. Figure 4a shows an example. First,
we partition the graph into a forest, as shown in Fig. 4b,
where we use colors to highlight the sub-graph partitions.
The algorithm traverses the graph in a depth-first manner.
We also add a queue to keep track of columns during the
traversal. We use the sub-graph partition and the topologi-
cal order to create new columns. Figure 4c shows the final
placement and routing.

In the worst case, the A* search time complexity is expo-
nential in the depth of the solution path, that is, O(bd ), where
b is the branching factor, and d is the depth of the solution
[21]. The branching factor represents the number of children
each node of the search may have, 8 in this case, one for
each neighbor in the matrix. However, the algorithm’s per-
formance strongly correlates with the heuristic choice. We
are currently investigating the heuristics choice impact on
the performance of the A* in the context of circuit routing.

Regarding the algorithm to generate the physical layout
for NMLSim 2.0, the time complexity is O(V + E), where

576	 Journal of Computational Electronics (2023) 22:570–580

1 3

V is the number of vertices and E is the number of edges of
the graph returned by the routing algorithm.

4 � Experiments and results

This section presents the analysis and comparison of our
NML Routing algorithms. The focus of this work is to depict
an algorithm capable of generate a valid placement and rout-
ing for a NML layout for any given circuit described in Ver-
ilog HDL. Although we do have an algorithm capable of

generate the circuit physical layout, it is out of the scope of
this work to give more details about it. We choose to show
only the physical layout depicted in Fig. 5a.

We have used the NMLSim 2.0 tool to simulate the cir-
cuits [8], and we set the number of clock zones to four. The
nanomagnets geometries and the design rules are based on
the work from Luz et al. [14]. To ensure that the generated
layouts perform the desired logic functions, we have con-
ducted extensive simulations in NMLSim 2.0. But unfor-
tunately, we could only perform the simulation for all the
possible combinations of inputs of small circuits since the
simulation time is prohibitive for more complex circuits.

In Fig. 2c, d, the tiles that represent each clock zone (or a
group of clock zones) all have the same size. However, the
physical mapping uses tiles of different sizes to avoid errors
and achieve a more robust layout. Therefore, for instance,
two wires designated to the same clock zone (or group) may
have a different number of nanomagnets.

When we remove the synchronization constraint, some
paths on the circuit may take shorter routes. As depicted in
Fig. 5a, we have two paths arriving at the same nanomag-
net at different moments. The shorter one takes 1.5 clock
cycles, while the longer one takes 2.5 clock cycles, yielding
an undesired output. These unbalanced paths are not present
in the circuit of Fig. 5b because the two paths have the same
delay, 2.25 clock cycles.

4.1 � Comparison with previous work

Here, we compare our results with previous works and dis-
cuss the advantages and drawbacks of our synchronized and
unsynchronized algorithms in more complex benchmarks.
We also used ToPolinano [17] to generate several circuits
to compare. Although our focus rests mainly on the Routing
phase and ToPolinano is a complete EDA tool, we see this as
a relevant comparison since ToPolinano presents very solid
results toward the automation of NML Routing.

We have implemented the algorithms in C++ and per-
formed the experiments on an Intel Core i5-7200U with 2.50
GHz and 8 GB of RAM. Our implementation covers the four
evaluation functions presented in Sect. 3. However, after
preliminary experiments, we chose the Octile to generate
the final results because this strategy outperforms the other
evaluation functions in terms of execution time. We believe
that the best performance of this algorithm is because it pri-
oritizes horizontal and vertical paths over diagonal ones.

Table 1 compares our approach with the previous work by
Silva et. al [19], and circuits from [2, 24]. In terms of area,
for most benchmarks, our algorithm does not outperform
the previous results. The difference is high for all circuits
when using our unsynchronized algorithm. The main reason
for this difference is that our new algorithm performs graph

Fig. 4   a An example circuit graph. b The columns set by the algo-
rithm. c The P&R approximation

577Journal of Computational Electronics (2023) 22:570–580	

1 3

balancing, which increases the area, while the previous work
takes another approach, ignoring the graph balancing.

The balancing considered now helps in the routing of
larger circuits. When we consider the synchronized algo-
rithm, the previous work outperforms the algorithm pre-
sented here for small circuits ( B1_r2 , FA_AOIG , C17, t,
and newtag). Nevertheless, for the more complex circuits,
especially with reconvergent paths, our algorithm presents
very close or even better area results, as can be seen in the
cases xor5_r and xor5_r1.

One of the main advantages of our algorithm is that it is
much faster than the previous one. For the unsynchronized
case we achieved speedups ranging from 65.21× (newtag)
up to 9,600× (b1). For the synchronized case we achieved
speedups ranging from 52,02× (newtag) up to 8,478×
(b1). These significant speedups occur because our cur-
rent approach simplifies the search and exploits parallel-
ism during the A* path routing. Furthermore, our approach
scales efficiently with the number of logic gates, while the
previous work [19] was limited to a few logic gates ( < 15 ,
see Table 1). With this in mind, we can now apply our
routing algorithm in larger circuits, as we describe later.

In Table 2, we present a comparison with ToPolinano
using the same circuits of Table 1. In this case, we compare
just synchronized circuits since ToPoliNano only works
on this kind of circuit. Besides the speedup, Table 1 also
presents the bounding box area, which is the area of the
minimum rectangle that bounds the layout. To measure it,
we consider tiles with size 4x4, the default value for ToPo-
liNano. The column Runtime for ToPoliNano considers

more than the Routing, since the tool does not provide a
way to measure the time spent only on the Routing.

One may notice that the speed up reached ranges from
1.52× to 50× in comparison with ToPoliNano. Even when
considering that the ToPoliNano runtime encompasses the
whole process of a CAD tool, this is a significant improve-
ment and depicts that our algorithm is very suitable for the
Routing of NML circuits. Regarding the area of the circuits,
we consider the bounding area in terms of tiles. Thus, we can
realize this comparison in a fairway. Our approach reaches a
much smaller area than ToPoliNano, achieving an improve-
ment of up to 18.80 times.

We also performed a comparison with the adders pre-
sented in the ToPolinano original paper [17]. In this work,
the authors depict results for multiples ripple-carry adders
varying the number of bits. Table 3 shows the results of this
comparison, including the absolute area, which is the area
occupied by all the nanomagnets, i.e., the sum of the areas
of each magnet. Our approach needs much fewer nanomag-
nets than ToPoliNano for all the benchmarks, especially for
larger circuits, reaching 113× fewer nanomagnets for 64-bit
full adder. Consequently, our approach always presents a
smaller circuit area. It’s worth mentioning that to calculate
the area for our approach, we consider that all magnets have
dimensions 150 nm × 50 nm, following the details of the cell
library designed by Luz et al. [14].

The increase in the number of nanomagnets and clock
zones is higher for ToPolinano than our approach. Our
bounding area has shown worse results for only two cases,
the 2 and 4-bit adders. However, for larger circuits, our

Fig. 5   Physical layout of a an unsynchronized, and b a synchronized layout

578	 Journal of Computational Electronics (2023) 22:570–580

1 3

bounding area gets similar or better than ToPoliNano. For
example, the bounding area for the 64-bit full adder uses
3.77× less area in our approach compared to ToPoliNano.
Regarding the absolute area, our approach has shown
improvement for most cases. We have improvements of
several orders of magnitude, reaching 88× smaller area for
the 64-bit full adder. In terms of clock zones, our approach
presents better results for the larger circuits (32 and 64-bit
full adders). In ToPoliNano, when we double the full adder
size, the number of nanomagnets is multiplied by approxi-
mately 4 times, and the number of clock zones is multiplied
by about 3 times. In our approach, this multiplying factor
is around 2 for both the number of nanomagnets and the
number of zones.

4.2 � Routing larger circuits

Table 4 presents results for a set of circuits from different
benchmarks [2, 3, 24], where the number of logic gates
ranges from 22 up to 1669. Therefore, we increase the circuit
size up to two orders of magnitude. The first five columns
present the circuit name, function, number of logic gates,
number of inputs, and outputs, respectively. The sixth and
seventh columns show the run time and grid size (area) for
the unsynchronized routing. The next two columns present
the same information for the synchronized routing. Finally,
the last two columns show the speedup and area overhead
between the two cases.

As we can observe, the unsynchronized algorithm is
faster since balanced paths are not required. It presents a
speedup average equal to 3.06× when compared with the
synchronized one. Also, to synchronize the paths, the algo-
rithm needs more cells to route the wires, occupying a larger
area. It is important to highlight that we limited the maxi-
mum number of wires per cell to two in our approaches. It
is unfeasible to handle more than this in NML due to mag-
netostatic interactions between the nanomagnets.

5 � Conclusion

In this work, we presented synchronized and unsynchronized
routing algorithms using the A* search , with custom heu-
ristics, to find paths to connect the gates in an NML circuit.
Our algorithms scaled better than the previous work pro-
posed by Silva et al. [19], being able to handle circuits with
more than 1500 gates and reducing the execution times by
orders of magnitude. Furthermore, our synchronized algo-
rithm outperformed the state-of-the-art ToPoliNano tool
[17]. For larger circuits, our strategy presented area reduc-
tion of up to 113×.

Ta
bl

e 
1  

E
xe

cu
tio

n
tim

e
an

d
gr

id
 a

re
a

fo
r o

ur
 a

pp
ro

ac
h

in
 c

om
pa

ris
on

 to
 p

re
vi

ou
s w

or
k

[1
9]

C
irc

ui
ts

Si
lv

a
et

 a
l.

[1
9]

O
ur

 a
pp

ro
ac

h

N
am

e
G

at
es

U
ns

yn
ch

ro
ni

ze
d

Sy
nc

hr
on

iz
ed

U
ns

yn
ch

ro
ni

ze
d

Sy
nc

hr
on

iz
ed

Ru
nt

im
e

(s
)

B
ou

nd
in

g
ar

ea
Ru

nt
im

e
(s

)
B

ou
nd

in
g

ar
ea

Ru
nt

im
e

(s
)

Sp
ee

du
p

B
ou

nd
in

g
ar

ea
Ru

nt
im

e
(s

)
Sp

ee
du

p
B

ou
nd

in
g

ar
ea

b1
 [2

4]
4

9.
66

16
0.

16
50

1.
00

 ×
 10

−
4

96
,6

00
 ×

10
0

1.
14

 ×
 10

−
3

8,
47

3 ×
12

0
1-

bi
t F

ul
l-A

dd
er

 [1
9]

5
0.

10
24

9.
44

56
5.

52
 ×

 10
−
4

18
1.

15
×

96
7.

54
 ×

 10
−
4

13
2.

62
×

12
8

C
17

 [2
]

6
0.

73
32

0.
13

40
9.

21
 ×

 10
−
4

79
2.

61
×

96
1.

33
 ×

 10
−
3

54
8.

87
×

12
0

t [
19

]
6

0.
09

32
0.

15
40

1.
06

 ×
 10

−
3

65
.2

1 ×
80

1.
32

 ×
 10

−
3

68
.1

8 ×
10

0
ne

w
ta

g
[1

9]
8

0.
09

70
0.

14
70

1.
38

 ×
 10

−
3

65
.2

1 ×
16

8
1.

73
 ×

 10
−
3

52
.0

2 ×
16

8
xo

r5
_r

 [1
9]

14
0.

18
88

18
.6

8
21

6
1.

23
 ×

 10
−
3

14
6.

34
×

22
4

3.
41

 ×
 10

−
3

52
.7

8
×

22
4

xo
r5

_r
1

[1
9]

12
0.

2
88

0.
27

21
6

1.
93

 ×
 10

−
3

10
3.

62
×

18
0

2.
62

 ×
 10

−
3

76
.3

3 ×
18

0

579Journal of Computational Electronics (2023) 22:570–580	

1 3

As future work, we aim to extend our approach to encom-
pass the Routing with the presence of a clocking scheme
and minimize the wire crossing. We also intend to improve
our pre-routing stage, especially the Placement phase and
develop a highly efficient physical mapping.

Acknowledgements  This study was financed in part by the Coorde-
nação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil
(CAPES)—Finance Code 001, Fundação de Amparo à Pesquisa do
Estado de Minas Gerais—FAPEMIG, and Conselho Nacional de
Desenvolvimento Científico e Tecnológico—CNPq.

Funding  This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance
Code 001, Fundação de Amparo à Pesquisa do Estado de Minas Ger-
ais—FAPEMIG, and Conselho Nacional de Desenvolvimento Cientí-
fico e Tecnológico—CNPq.

Availability of data and material  Not applicable.

Declarations 

 Conflict of interest  The authors declare that they have no known com-
peting financial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

Table 2   Execution time and bounding area for our approach in comparison to ToPoliNano [17]

Circuits ToPoliNano Our approach Comparison

Name Gates Runtime (s) Bounding area Runtime (s) Bounding area Speedup time Area

b1 [24] 4 6 × 10−3 1260 1.14 × 10−3 120 5.26x 10.5×
1-bit Full-Adder [19] 5 4 × 10−3 900 7.54 × 10−4 128 5.30× 7.03×
C17 [2] 6 5 × 10−3 572 0.1 × 10−3 120 50× 4.77×
t [19] 6 5 × 10−3 572 1.32 × 10−3 100 3.78× 5.72×
newtag [19] 8 5 × 10−3 1672 1.73 × 10−3 168 2.89× 9.95×
xor5_r [19] 14 7 × 10−3 4212 3.41 × 10−3 224 2.05× 18.80×
xor5_r1 [19] 12 4 × 10−3 2508 2.62 × 10−3 180 1.52× 13.93×

Table 3   Adders generated by our approach in comparison to ToPoliNano [17]

Bits Nanomagnets Clock zones Bound area (mm2) Absolute area (mm2)

ToPoliNano Our approach ToPoliNano Our approach ToPoliNano Our approach ToPoliNano Our approach

2 1572 1151 52 181 3.84 × 10−5 8.1 × 10−5 9.12 × 10−6 8.63 × 10−6

4 6,021 2,307 129 365 1.59 × 10−5 3.16 × 10−4 3.49 × 10−5 1.73 × 10−5

8 28,513 4619 409 733 1.12 × 10−3 1.15 × 10−3 1.65 × 10−4 3.46 × 10−5

16 116,827 9243 932 1469 4.56 × 10−3 4.37 × 10−3 6.78 × 10−4 6.93 × 10−5

32 676,969 18,491 3022 2941 2.97 × 10−2 1.70 × 10−2 3.93 × 10−3 1.39 × 10−4

64 4,207,667 36,987 10,009 5885 2.54 × 10−1 6.73 × 10−2 2.44 × 10−2 2.77 × 10−4

Table 4   Our synchronized and unsynchronized approaches for larger circuits: execution time and grid area

Circuits Unsynchronized Synchronized Speedup Overhead

Name Function Gates In Out Time (s) Bounding area Time (s) Bounding area Time Area

Decod [24] Decoder 22 5 16 0.0243 920 0.0247 1080 1.01x 1.14×
Mux [24] Multiplexer 91 21 1 0.08 5568 0.12 5568 1.5× –
s208 [3] Frac. Multiplier 96 11 2 0.05 3920 0.07 4000 1.4× 1.02×
s349 [3] 4-Bit Multiplier 161 4 3 0.36 10,720 0.53 2960 1.39× 1.10×
adderfds [24] Adder 223 33 17 4.13 35,964 6.99 40,500 1.62× 1.11×
alu2 [24] ALU 335 10 6 44.06 89,832 57.78 89,832 1.31× –
s1494 [3] Generic controller 647 9 19 119.80 83,824 144.66 83,824 1.21× –
C3540 [2] ALU and Control 1669 50 22 338.5 275,840 620.4 279,040 1.83× 1.01×

580	 Journal of Computational Electronics (2023) 22:570–580

1 3

 Code availability  Not applicable.

References

	 1.	 Anderson, N.G., Bhanja, S.: Field-Coupled Nanocomputing, 1st
edn. Springer, Berlin, Heidelberg (2014)

	 2.	 Brglez, F.: A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in FORTRAN (1985)

	 3.	 Brglez, F., Bryan, D., Kozminski, K.: Combinational Profiles of
Sequential Benchmark Circuits. IEEE Int. Sympos. Circuits Syst.
3, 1929–1934 (1989)

	 4.	 Cavin, R., Lugli, P., Zhirnov, V.V.: Science and engineering
beyond Moore’s law. Proc. IEEE 100, 1720–1749 (2012)

	 5.	 Cowburn, W.: Room temperature magnetic quantum cellular
automata. Science 287(5457), 1466–8 (2000)

	 6.	 Dechter, R., Pearl, J.: Generalized best-first search strategies and
the optimality of A*. J. ACM 32(3), 505–536 (1985). https://​doi.​
org/​10.​1145/​3828.​3830

	 7.	 Fontes, G., Silva, P.A.R.L., Nacif, J.A.M., Vilela Neto, O.P., Fer-
reira, R.: Placement and routing by overlapping and merging QCA
Gates. In: 2018 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 1–5 (2018)

	 8.	 Freitas, L., Neto, O.P.V., Rahmeier, J.G.N., Melo, L.G.C.: Nmlsim
2.0: A robust cad and simulation tool for in-plane nanomagnetic
logic based on the llg equation. In: 2019 32nd Symposium on
Integrated Circuits and Systems Design (SBCCI), pp. 1–6 (2019)

	 9.	 Freitas, L.A.L., Rahmeier, J.G.N., Vilela Neto, O.P.: Shape engi-
neering for custom nanomagnetic logic circuits in nmlsim 2.0.
IEEE Des. Test (2020)

	10.	 Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the Heu-
ristic determination of minimum cost paths. IEEE Trans. Syst. Sci.
Cybern. 4(2), 100–107 (1968)

	11.	 Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G., Porod, W.:
Majority logic gate for magnetic quantum-dot cellular automata.
Science 311, 205–208 (2006)

	12.	 Liu, T., Kuhn, K.: Cmos and beyond : logic switches for terascale
integrated circuits (2015)

	13.	 Liu, W., Lu, L., O’Neill, M., Swartzlander, E.E.: Design rules
for quantum-dot cellular automata. In: 2011 IEEE International
Symposium of Circuits and Systems (ISCAS), pp. 2361–2364.
IEEE (2011)

	14.	 Luz, L.O., Nacif, J., Ferreira, R., Neto, O.P.V.: Nmlib: A nano-
magnetic logic standard cell library. In: 2021 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2021)

	15.	 Melo, L.G., Soares, T.R., Vilela Neto, O.P.: Analysis of the mag-
netostatic energy of chains of single-domain nanomagnets for
logic gates. IEEE Trans. Magn. 53(9), 1–10 (2017)

	16.	 Niemier, M., Kogge, P.: Problems in designing with qcas: layout
= timing. Int. J. Circuit Theory Appl. 29, 49–62 (2001)

	17.	 Riente, F., Turvani, G., Vacca, M., Roch, M.R., Zamboni, M.,
Graziano, M.: ToPoliNano: a CAD tool for nano magnetic logic.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(7),
1061–1074 (2017)

	18.	 Sill Torres, F., Silva, P.A., Fontes, G., Nacif, J.A., Santos Ferreira,
R., Vilela Neto, O.P., Chaves, J., Drechsler, R.: Exploration of
the synchronization constraint in quantum-dot cellular automata.
In: 2018 21st Euromicro Conference on Digital System Design
(DSD), pp. 642–648 (2018)

	19.	 Silva, P.A.R.L., Neto, O.P.V., Nacif, J.A.M.: Toward nanometric
scale integration: an automatic routing approach for NML Cir-
cuits. In: 2019 32nd Symposium on integrated circuits and sys-
tems design (SBCCI), pp. 1–6 (2019)

	20.	 Soares, T.R., Rahmeier, J.G.N., De Lima, V.C., Lascasas, L.,
Melo, L.G.C., Vilela Neto, O.P.: Nmlsim: a nanomagnetic logic
(nml) circuit designer and simulation tool. J. Comput. Electron.
17(3), 1370–1381 (2018)

	21.	 Stuart, R., Peter, N.: Artificial intelligence—a modern approach.
Berkeley, New York (2016)

	22.	 Trindade, A., Ferreira, R., Nacif, J.A.M., Sales, D., Neto, O.P.V.:
A placement and routing algorithm for quantum-dot cellular
automata. In: 2016 29th Symposium on Integrated Circuits and
Systems Design (SBCCI), pp. 1–6 (2016). https://​doi.​org/​10.​1109/​
SBCCI.​2016.​77240​48

	23.	 Walter, M., Wille, R., Große, D., Sill, F., Drechsler, R.: An exact
method for design exploration of quantum-dot cellular automata.
In: 2018 Design, Automation and Test in Europe Conference and
Exhibition (DATE), pp. 503–508 (2018)

	24.	 Yang, S.: Logic synthesis and optimization benchmarks user guide
version 3.0 (1991)

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1145/3828.3830
https://doi.org/10.1145/3828.3830
https://doi.org/10.1109/SBCCI.2016.7724048
https://doi.org/10.1109/SBCCI.2016.7724048

	An automatic routing approach for NML circuits
	Abstract
	1 Introduction
	2 Background
	2.1 Nanomagnetic logic
	2.2 NML routing

	3 Methodology
	3.1 Pre-routing
	3.2 Routing
	3.2.1 Unsynchronized routing
	3.2.2 Synchronized routing

	4 Experiments and results
	4.1 Comparison with previous work
	4.2 Routing larger circuits

	5 Conclusion
	Acknowledgements
	References

