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Abstract
Derived from an excellent light harvester, an iminodibenzyl-substituted porphyrin sensitizer consisting of a series of D-π-
A-A structural motifs, was investigated using density functional theory (DFT) and time-dependent DFT methods to demon-
strate the effects of various auxiliary acceptors on sensitizers. Absorption spectra simulations at 417.51 nm calculated using 
CAM-B3LYP with a mixed LanL2DZ/6-31G(d,p) basis set exhibited good agreement with the experimental results (i.e., 
426.60 nm). Impressively, the introduction of a co-acceptor moiety on the sensitizers effectively shifted the light absorp-
tion to the NIR region. The computational results showed that Dye 9 notably exhibited the smallest HOMO–LUMO energy 
gap (3.34 eV). The Q band of Dye 9 was located at 756.72 nm, which was the largest wavelength and the most redshifted 
absorption spectrum. The short-circuit current density ( J

SC
 ) was calculated by considering the free energy of charge injection 

( ΔGinject ), the free energy of dye regeneration ( ΔGreg ), and light-harvesting efficiency (LHE). The oscillator strength of the 
maximum absorption was greatest for Dyes 3 and Dye 9, resulting in increase LHE and improved JSC , hence affecting the 
overall photoelectric conversion efficiency. Dye 9 demonstrated better electron transfer performance, with qCT (0.630 e−), 
which was attributed to its better planarity compared to other dyes. Interestingly, Dye 9 exhibited substantially enhanced 
nonlinear optical response through intramolecular charge transfer process, with a �tot value many-fold higher than that of 
urea computed at the same theoretical level. It indicates that the studied dye molecules are potential candidates for the opto-
electronic applications. Dye 9 was therefore the most feasible dye candidate for efficient DSSC applications.
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1 Introduction

Dye-sensitized solar cells (DSSCs) are considered a viable 
alternative for harvesting of infinite solar energy resources 
for future energy needs, and many studies have been car-
ried out on both theoretical aspects and fabrication of the 
device [1]. Historically, extensive research has been con-
ducted on DSSCs since they were introduced by O'Regan 
and Gratzel in 1991 [2], due to their acceptable efficiency 
and photophysical and electrochemical properties that 
can be effectively managed. DSSCs are also regarded as a 
promising encouraging alternative for photon capture and 
charge transport in solar conversion [3].

DSSCs typically contain four elements: a mesoporous 
working electrode (as part of the photon anode), a dye 
(connected to the surface of the oxide semiconductor), a 
redox liquid electrolyte (based mostly on iodine electro-
lytes), and a counter electrode. Dyes play a pivotal role 
in DSSCs, as they are responsible for the wide range of 
light absorption from the ultraviolet–visible (UV–Vis) to 
the infrared (IR) region and for capture of abundant solar 
energy to generate electricity and mediate the interactions 
between semiconductors and redox transport [4–6].

To date, Ru(II) and Zn(II) porphyrin complexes have 
demonstrated outstanding photophysical properties due to 
their wide suitability, and display impressive power con-
version efficiency (PCE) of 11% and 13%, respectively 
[7, 8]. The utilization of ruthenium complexes in DSSC 
applications is still limited, mainly because of their high 
cost due to their limited resources [9, 10]. Meanwhile, due 
to the high molar absorption coefficient in both blue (Soret 
band at 350–500 nm) and red (Q band at 550–700 nm), 
porphyrin can be an excellent light harvester [11–13].

Among dye sensitizers, the efficient push–pull D-π-A 
system, which represents the D (donor), π (bridge), and 
A (acceptor) configuration, is responsible for the PCE of 
DSSCs. A better intramolecular charge transfer (ICT) phe-
nomenon and separation on photoexcitation are affected by 
the electron-donating capability of the donor unit, the abil-
ity of the acceptor to withdraw electrons, and the modifica-
tion of the length or shape of the π spacers [14].

Therefore, improved photovoltaic performance can be 
achieved by adjusting the molecular structure and optimiz-
ing energy levels. A modification of the D-π-A framework 
leads to a dye structure which is more effective than the 
basic D-π-A structure. For instance, SM315 and SM371 
significantly improve UV–Vis and near-infrared (NIR) 
absorption through insertion of multiple triple bonds 
between the porphyrin core and the anchoring group; effi-
ciency of up to 13% was recorded in 2014 [7]. In the same 
context, Wang et al. also effectively integrated a porphy-
rin sensitizer and an ethynyl unit to achieve high PCE of 

up to 10.45% in the presence of an iodide/triiodide-based 
electrolyte [12]. This record was exceeded by a  PCE value 
of 12.5% for a C275 dye with the insertion of an ethynyl 
unit to form an interpenetrating charge transport network 
[15]. Ethynyl units have since been widely used to connect 
porphyrin cores for constructing several new kinds of sen-
sitizers, which can facilitate the electronic coupling on the 
 TiO2 surface and widen the light-harvesting regions [10]. 
A study by Song et al. showed that insertion of an ethynyl 
unit proved highly effective for increasing light absorption 
and enhancing photovoltaic performance in comparison to 
counterpart dyes without insertion [16].

In a separate study, the introduction of the co-acceptor 
moiety into the D-π-A system to form a D-π-A-A struc-
tural motif not only affected the electron withdrawal ability, 
but also improved the light-harvesting ability. Reports in 
the literature reveal that the insertion of a double accep-
tor moiety in the dye structure can also widen the absorp-
tion band. Slimi et al. investigated a new type of D-π-A-A 
organic dye with a triphenylamine derivative as the core 
and benzoic acid as the anchoring group within the BH and 
HLYP/6-31G(d, p)/SMD level, in which dye D4 contained 
1,2,5-thiadiazolo[3,4-d]pyridazine units as an auxiliary 
acceptor, exhibiting better photovoltaic properties [17]. 
Recently, Zhao et al. studied five D-π-A-A organic dyes 
of heterocyclic polycyclic aromatic hydrocarbons (hetero-
PAH). The results showed that the introduction of indoline 
derivatives (B) as a donor group or benzobisthiadiazole (B) 
as an auxiliary acceptor unit can improve the photoelec-
tric performance [18]. Previous studies have shown that a 
series of auxiliary acceptors including benzotriazole [19, 
20], quinoxaline [21–23], and benzothiadiazole [1, 24–26], 
among others [27–30], can be employed to expand the light-
harvesting response of the dye.

High-level quantum chemical techniques are useful in the 
design of efficient sensitizers, as they determine the proper-
ties of electron transfer, charge separation, injection, and 
regeneration processes. From a theoretical perspective, a 
number of studies have explored density functional theory 
(DFT) and time-dependent DFT (TD-DFT) for the rational 
design of molecular modification of the donor, π-spacer, and 
acceptor units [31–34]. Using the DFT/B3LYP/LANL2DZ 
method, computational studies have been carried out on the 
effect of substituent groups on the molecular and electronic 
structures of several meso-substituted metalloporphyrin 
complexes. The results of the calculations show that the 
introduction of the substituent groups in metalloporphyrin 
(Cd-, Hg-, and Pt-porphyrin) has a significant effect on the 
electronic properties [35–37].

D-π-A dye molecules with an iminodibenzyl (IDB)-sub-
stituted porphyrin sensitizer were synthesized and exhib-
ited photo-conversion efficiency (PCE) up to 5.26%, short-
circuit current density ( JSC ) of 9.68 mA  cm−2, open-circuit 
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photovoltage ( VOC ) of 0.74 V, and fill factor ( FF ) of 0.73, 
thus demonstrating better performance than diphenylamine 
(DPA)-substituted porphyrin and iminostilbene (ISB)-substi-
tuted porphyrin, with PCE of 4.05% and 2.62%, respectively 
[38]. Based on this study, it appears that IDB is a potential 
electron donor for photovoltaic applications.

In this paper, to study the effect of the molecular struc-
ture on photovoltaic performance, we compared the perfor-
mance of a series of dyes with IDB-substituted porphyrin 
sensitizer reference dyes (IDB: 5.26%). As exhibited in 
Fig. 1, a D-π-A-A series of IDB-substituted porphyrin sen-
sitizers with different auxiliary acceptors was designed to 
examine the relationship between the expanded acceptor 
moieties and the performance of DSSCs. The porphyrin 
core in the meso position was linked by ethynyl units to 
this latter group. We introduced benzo[c][1,2,5]thiadiazole, 
[1,2,5]thiadiazolo[3,4-c]pyridine, [1,2,5]thiadiazolo[3,4-d]
pyridazine, thieno[3,4-d]pyridazine, 2-methyl-2H-[1,2,3]
triazolo, 2,3-dimethylquinoxalin, thiazolo[5,4-d]thiazole, 
naphtho[2,3-c][1,2,5]thiadiazole, and thieno[3,4-b]qui-
noxaline as auxiliary acceptors between the ethynyl unit 
and the anchoring group (see Fig. 1). Because of their high 

conjugation of π electrons and planarity, these units were 
selected and expected to trap electrons in order to increase 
the mobility of the charge carriers from the electron-donat-
ing to the electron-accepting groups.

The dyes designed by forming the D-π-A-A configuration 
exhibited better electronic and optical properties, as well as 
a decrease in the bandgap, indicating that the dye designed 
in this work exhibited better performance. The effect on the 
electron injection and dye regeneration processes was ascer-
tained by the calculated energy gap trends of these dyes, 
which are high compared with the spectral data. Further-
more, our theoretical study is expected to serve as a step-
ping stone into a new design of metalloporphyrin-based dye 
molecular optimization for future applications in DSSCs.

2  Computational details

In summary, all isolated dyes in neutral, cationic, and ani-
onic states were optimized in the frame of DFT with CAM-
B3LYP using the LANL2DZ basis set for Zn atoms and 
6-31G(d,p) for other atoms [39]. To obtain the absorption 

Fig. 1  Molecular structure of the studied dyes
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spectrum simulation in a more realistic environment, the 
above optimization was achieved in tetrahydrofuran (THF) 
solvent with the conductor-like polarizable continuum model 
(CPCM) [40–42]. The electronic excitation and absorption 
energy of the spectrum of the organic dye molecules was 
calculated using TD-DFT. The six XC functions investigated 
were B3LYP [43], CAM-B3LYP [44], M06 [45], ωB97XD 
[46], BH and HLYP [47], and MPW1PW91 [48], while the 
basis sets for organic atoms including 6-31G, 6-31G(d), 
6-31G(d,p), 6–31+ +G, 6–31+G(d,p), and 6–31+ +G(d,p) 
were also investigated. These basis sets are widely used and 
efficiently reproduce many of the electronic properties, i.e., 
geometric parameters for organic atoms, including charge 
transport and nonlinear optical (NLO) properties [49–53].

The resulting simulated absorption spectra produced 
using various functions and basis sets were compared with 
the reference absorption spectra for IDB [38] (see Sup-
plementary Information Table S2). Considering the small-
est deviation of the absorption spectrum through experi-
ments, the UV–Vis absorption spectra analysis for IDB was 
obtained using CAM-B3LYP with LanL2DZ/6-31G(d,p). 
Thus, it is the most reliable function and basis set to investi-
gate the photophysical properties. Based on these findings, 
the CAM-B3LYP with LanL2DZ/6-31G(d,p) was applied 
in this work.

All calculations were performed using the Gaussian09 
program package [54]. To analyze the different phenom-
ena of charge transfer properties during electron transitions, 
the charge transfer parameters were calculated with CAM-
B3LYP/6-31G(d,p) and LANL2DZ (for Zn atoms) using the 

method developed by Ciofini et al. [55, 56] implemented in 
Multiwfn 3.3.8 code [57]. Moreover, the NLO properties 
were computed with the CAM-B3LYP using the same basis 
set, mixed LanL2DZ/6-31G(d,p) in gas phase.

3  Results and discussion

3.1  Geometric structure properties

In this study, we designed several different dyes based on 
experimentally studied dyes with the D-π-A-A system, 
which takes iminodibenzyl as the donor electron, porphy-
rin as π-spacer, and benzoic acid as the anchoring unit. 
For molecular rigidity, the donor and anchoring units are 
attached to the π-spacer, respectively, by an ethynyl bridge 
(carbon–carbon triple bond). In addition, several different 
auxiliary acceptors were selected and are fitted between 
the π-spacer–ethynyl bridge unit and the anchoring unit to 
increase the planarity and the potential for the conjugate 
effect.

To evaluate the effect of insertion of the ethynyl bridge 
and different auxiliary acceptor units, the optimized geom-
etries of the dyes, which were obtained using DFT/CAM-
B3LYP with the 6-31G(d,p) (LANL2DZ for Zn atoms) basis 
set in THF solvent, are presented in Fig. 2, and the selected 
geometric parameters are tabulated in Table 1. The Cartesian 
coordinates of the optimized ground-state geometries of the 
dyes are provided in the supporting material.

As presented in Fig. 1, d1 and Φ1 are the bond lengths 
and dihedral angles between the Zn–porphyrin ring as the 
π-bridge and the triple bond (ethynyl units), respectively. 
Φ2 and d2 are the dihedral angles and bond lengths between 
the ethynyl unit and the auxiliary acceptor (A), respectively. 
Φ3 is the dihedral angle between the auxiliary acceptor and 
benzoic acid (anchoring group), while d3 is the correspond-
ing bond length of the auxiliary acceptor and the anchor-
ing group. Based on the results of observational data, the 
bond distance values between the single and double bonds 
obtained for d1, d2, and d3 are in the range of 1.400–1.483 Å 
for all dyes, which indicates that these bond lengths are 
shorter than the C − C single bond. This suggests that these 
bond lengths have a double bond (C=C) character (i.e., C–C: 
1.506 Å, C=C: 1.446 Å) [58], which contributes to the small 
energy gap (∆H–L). Moreover, this means that there is delo-
calization of π electrons between each of the constituent 
groups of the molecule.

None of these dyes is particularly planar. It can be seen 
from Table 1 that IDB-ZnP4 has better coplanarity than 
IDB-ZnP1. This indicates that the optimized ground state 
of IDB-ZnP4 consists of donor and acceptor moieties that 
separate the Zn–porphyrin ring from the ethynyl bridges 
on the left and right side, which keeps the molecules in 

weiVediSweiVpoTseyD

IDB-ZnP1 

IDB-ZnP2 

IDB-ZnP3 

IDB-ZnP4 

Fig. 2  The optimized geometry structure using DFT/CAM-B3LYP 
with the 6-31G(d,p) (LANL2DZ for Zn atoms) basis set THF solvent. 
The color scheme adopted is gray, white, blue, red, yellow, and light 
blue for C, H, N, O, S, and Zn atoms, respectively
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one plane. The larger dihedral angles resulting from the 
mutual exclusion of iminodibenzyl and Zn–porphyrin/
Zn–porphyrin and benzene are bridged by a triple bond 
(C≡C).

On the other hand, the dihedral angles of Φ1, Φ2, and 
Φ3 are in the same plane (in the order of ~ 180°), due to 
the extended π-bond conjugation for Dyes 1–9. Because 
of the introduction of an ethynyl bridge and suitable aux-
iliary acceptors, this will improve the planarity between 
the π-bridge and the anchoring unit. In general, it is known 
that the more planar the dye molecules are, the greater the 
injection of the photoexcited electrons from the dye into 
the conduction band (CB) of the semiconductor surface. 
Based on the above explanation, Dye 9 displays excel-
lent molecular planarity compared to other molecules (see 
dihedral angle Φ1,2,3 ~ 163–173° in Table 1). This suggests 
that Dye 9 might lead to a broad redshift at the maxi-
mum absorption wavelength and show better photovoltaic 
performance.

3.2  Electronic structure properties

The proper highest occupied molecular orbital (HOMO) and 
lowest unoccupied molecular orbital (LUMO) energy lev-
els of the sensitizer are good tools for predicting electronic 
transition behavior and excitation properties [59]. To bet-
ter understand the effect of introducing auxiliary acceptors 
on the electronic properties of these dyes, quantum chemi-
cal calculations were carried out on the investigated dyes. 
Through systematic tuning of the optical and electronic 
properties of the dye, it is possible to achieve the desired 
properties for maximum power conversion efficiency of the 
DSSCs. The EHOMO-1, EHOMO, ELUMO, ELUMO+1, and the 
HOMO–LUMO energy gap (∆H–L) of the different studied 
dyes are collected in Table 2 and illustrated in Fig. 3.

Dye1 

Dye2 

Dye3 

Dye4 

Dye5 

Dye6 

Dye7 

Dye8 

Dye9 

Fig. 2  (continued)

Table 1  Selected bond distance 
(unit in Å) and dihedral angle 
(unit in °) of the studied dyes

Dye Bond length Dihedral angle

d1 d2 d3 Φa Φb Φ1 Φ2 Φ3

IDB-ZnP1 – – – 99.74 114.02 – – –
IDB-ZnP2 – – – 179.761 114.31 – – –
IDB-ZnP3 – – – 100.02 179.86 – – –
IDB-ZnP4 – – – 177.77 179.67 – – –
Dye 1 1.422 1.417 1.479 – – 178.89 177.92 141.99
Dye 2 1.417 1.416 1.477 – – 178.87 179.29 143.44
Dye 3 1.416 1.413 1.482 – – 156.01 167.91 160.50
Dye 4 1.420 1.400 1.463 – – 177.96 178.29 158.59
Dye 5 1.423 1.418 1.478 – – 179.87 179.58 147.24
Dye 6 1.424 1.422 1.483 – – 178.35 93.81 135.08
Dye 7 1.419 1.408 1.468 – – 152.68 136.41 179.01
Dye 8 1.421 1.415 1.482 – – 172.62 174.80 120.60
Dye 9 1.418 1.397 1.461 – – 173.81 176.40 163.78
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The effective operation of DSSC sensitizers should meet 
the following criteria: a narrow bandgap with HOMO should 
be lower than the redox potential energy of the electrolyte 
I−/I3

− (−4.6 eV) to ensure that the dye can be efficiently 
regenerated by electron transfer from the redox mediator 
[60], whereas LUMO should be higher in the conduction 
band (CB) of  TiO2 (−4.0 eV) to ascertain that the dye can 
energetically allow an efficient interface charge injection 
from the excited state to the CB of the semiconductor [61]. 
Overall, as shown in Fig. 3, all dyes have a HOMO that lies 
below the redox potential of the electrolyte, whereas the 
LUMO of all dyes is above the CB of  TiO2. Therefore, it 
was observed that all dyes were energetically favorable for 
electron injection into the CB of  TiO2 and supported the 
effective regeneration by shuttle electrolytes [62].

Previous studies revealed that a decrease in LUMO and 
an increase in HOMO energy levels led to a lower energy 
gap, resulting in higher PCE observed experimentally [63]. 
In this case, the ∆H–L energy values of the designed dye 
were studied and compared. The ∆H–L energy values of 

the dyes studied increase in the order: Dye 1 > Dye 6 > Dye 
5 > Dye 7 > Dye 2 > Dye 4 > Dye 3 > Dye 8 > Dye 9 (see 
Fig. 3 and Table 2). A smaller bandgap in the dye can lead 
to a higher short-circuit current density ( JSC ) and thus a 
longer wavelength region [64]. The calculated results show 
that the elongation of the auxiliary acceptor in the dyes 
decreased the gap energy. In addition, Dye 9 has a lower 
gap value than other dyes, which is in line with previous 
studies reporting that the gap energy of the dye was reduced 
after inserting a suitable auxiliary acceptor [17]. Therefore, 
this reduction in ∆H–L energy values confirms that the aux-
iliary acceptor of thieno[3,4-b]quinoxaline present in Dye 
9 succeeds in reducing the energy values of ∆H–L.

Figure 4 illustrates the distribution of frontier molecu-
lar orbitals (FMO) of the HOMO −1, HOMO, LUMO, and 
LUMO +1 levels of the studied dyes. The HOMO distribu-
tion of all dyes is very similar, which is delocalized over the 
entire Zn–porphyrin ring and extended to ethynyl units (for 
the D-π-A-A series) as a π bridge. Thus, Dye 1, Dye 3, Dye 
4, and Dye 9, whose LUMO distribution is predominantly 

Table 2  The FMO energies 
of EHOMO-1, EHOMO, ELUMO, 
ELUMO+1, ∆H–L (in eV), and 
μg (in Debye) at the CAM-
B3LYP/6-31G(d,p) (LANL2DZ 
for Zn atom) level of the 
isolated dyes in THF with the 
CPCM

Dye EHOMO-1 EHOMO ELUMO ELUMO+1 ∆H–L μg (D)

IDB-ZnP1 −6.205 −6.033 −1.503 −1.402 4.530 1.857
IDB-ZnP2 −6.187 −5.704 −1.478 −1.335 4.225 5.217
IDB-ZnP3 −6.258 −5.996 −1.789 −1.415 4.207 2.982
IDB-ZnP4 −6.250 −5.705 −1.737 −1.335 3.968 7.807
Dye 1 −6.244 −5.684 −1.722 −1.326 3.963 8.404
Dye 2 −6.285 −5.777 −2.056 −1.405 3.720 9.768
Dye 3 −6.303 −5.813 −2.219 −1.560 3.594 11.304
Dye 4 −6.232 −5.656 −1.749 −1.320 3.676 8.791
Dye 5 −6.218 −5.648 −1.716 −1.309 3.906 7.394
Dye 6 −6.298 −5.763 −1.886 −1.361 3.932 6.962
Dye 7 −6.264 −5.582 −2.245 −1.528 3.877 9.833
Dye 8 −6.246 −5.634 −2.070 −1.453 3.564 8.191
Dye 9 −6.257 −5.628 −1.952 −1.336 3.337 9.335

Fig. 3  Diagram of schematic 
energy for all dyes,  TiO2 CB, 
and  I−/I3

− redox
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localized in the acceptor unit, contribute to the FMO distribu-
tion and the intramolecular charge transfer characters. Based 
on the above FMO illustrations, it can be inferred that the 
insertion of ethynyl and an auxiliary acceptor unit is a prom-
ising approach to obtain a bathochromic shift of the absorp-
tion band of the designed dyes, which is also consistent with 
the results of the electronic properties discussed above.

Considering the HOMO, LUMO, ∆H–L, μg, and FMO, it 
can be concluded that Dye 9 and Dye 3 may have redshifted 
spectrums and better electron transition ability than other 
dyes, which should have the best photovoltaic performance.

3.3  Molecular orbital calculations

To determine the optical properties of the dyes, calcula-
tions in THF solvent were carried out using TD-DFT/
CAM-B3LYP/6-31G(d,p) (LANL2DZ for Zn atoms) for the 
first 30 excited states. The calculated UV–Vis absorption 
wavelengths (λ), oscillator strength (f), excitation energies 
(∆E), and the dominant transition configuration are provided 
in Table 3. The simulated UV–Vis spectra of the dyes are 
shown in Fig. 5.

The absorption spectrum of the dyes is characteristic of 
porphyrin, with high intensity (Soret band) in the range of 
λ 350–500 nm and negligible absorption (Q band) in the 
range of λ 550–700 nm [11–13]. Based on the observed 
data, our computational results indicate that the absorption 
band of porphyrin dye for the first expected excited state 
(Q-band,  S0-S1) showed maximum oscillator power in the 
range of 600–800 nm, mainly from the HOMO → LUMO 
transition, so this typical intensity band is mainly analyzed. 
The second band (B-band) with lower intensity was found 
in the range of 400–600 nm. As expected, compared to IDB-
ZnP1, IDB-ZnP4 dye using an ethynyl linker on the left and 
right sides of the meso-porphyrin showed a slight redshift. 
Compared to IDB-ZnP1, the absorption maxima of IDB-
ZnP2, IDB-ZnP3, and IDB-ZnP4 were redshifted 27, 29, 
and 47 nm, respectively, while the corresponding f values   
also increased. This trend correlates with the conjugation 
length of π-linkers. It is worth mentioning that the ethynyl 
linker is useful for increasing the conjugation between donor 
and acceptor.

The oscillator strength (f) describes the strength of 
molecular interactions. The value of f > 1 represents a strong 
transition. In addition, greater oscillator strength (f) helps 
to improve light-harvesting efficiency (LHE) and leads to 
higher efficiency. As shown in Table 3, the f values of Dyes 
1–9 were in the range of 0.7739 to 1.5463 a.u. compared 
to IDB-ZnP1 (f = 0.0266 a.u.). The results of f values for 
Dyes 1–9 show that all the designed dyes exhibit better per-
formance, indicating that the introduction of the auxiliary 
acceptor is a promising strategy to increase efficiency due 
to higher LHE.

Moreover, the introduction of various auxiliary accep-
tor groups in Dyes1–9 significantly improved the LHE. The 
effect of the insertion of auxiliary acceptors on the absorp-
tion wavelengths can be seen from the simulated spectra 
(see Fig. 5). As listed in Table 4, it is noticed that Dye 9 
obtaining thieno[3,4-b]quinoxaline as an auxiliary acceptor 
showed redshifted absorption and involved effective transi-
tion of HOMO → LUMO (82%). In addition, for Dyes 1–9, 
the maximum absorption wavelength of the Q band broad 
absorption led near the IR region relative to the IDB-ZnP4 
(607.11 nm) with a simple dye with no inserted auxiliary 
acceptor and thus produced a redshifted absorption in the 

Dyes HOMO-1 HOMO LUMO LUMO+1 

IDB-ZnP1 

IDB-ZnP2 

IDB-ZnP3 

IDB-ZnP4 

Fig. 4  The selected FMOs of the dyes between the ground state and 
the excited state, with an isodensity contour of 0.02

Dye1 

Dye2 

Dye3 

Dye4 

Dye5 

Dye6 

Dye7 

Dye8 

Dye9 

Fig. 4  (continued)
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following order: Dye 9 (756.7 nm) > Dye 8 (663.3 nm) > Dye 
4 (669.2 nm) > Dye 3 (652.4 nm) > Dye 1 (643.1 nm) > Dye 
5 (641.7 nm) > Dye 2 (618.5 nm) > Dye 7 (614.3 nm) > Dye 
6 (614.1 nm). This corresponds to the order of the energy 
gaps of the dyes. The difference in the energy gap values and 

the spectral range of the dyes can be caused by the difference 
in the electron withdrawal ability of the auxiliary acceptors.

Among Dyes 1–9, Dye 9 with thieno[3,4-b]quinoxaline as 
a closed auxiliary acceptor for the barrier segment performed 
best at maximum wavelengths and energy gaps, whereas Dye 
6 with 2,3-dimethylquinoxaline as auxiliary acceptor showed 

Table 3  Electronic transitions, 
excitation energies ΔE (eV), 
maximum wavelength λmax 
(nm), oscillator strength f 
(arb, units), and approximate 
transition assignment for the 
dyes

Dye State ΔE λmax f Approximate transition assignment

IDB-ZnP1 S0-S1 2.236 554.41 0.0266 H-1 → L + 1 (40%), H → L (57%)
S0-S4 3.191 388.53 1.3071 H-1 → L (44%), H → L + 1 (52%)
S0-S5 3.289 376.93 1.6433 H-2 → L (35%), H-1 → L + 2 (44%), H → L (20%)

IDB-ZnP2 S0-S1 2.133 581.26 0.2438 H-1 → L + 1 (27%), H → L (71%)
S0-S3 3.066 404.37 2.0897 H-1 → L + 1 (67%), H → L (27%)
S0-S4 3.136 395.40 1.4402 H-1 → L (61%), H → L + 1 (39%)

IDB-ZnP3 S0-S1 2.124 583.64 0.2681 H-1 → L + 1 (26%), H → L (71%)
S0-S4 3.097 400.32 2.2461 H-2 → L (15%), H-1 → L + 1 (58%), H → L (19%)
S0-S5 3.117 397.83 1.3881 H-1 → L (42%), H → L + 1 (56%)

IDB-ZnP4 S0-S1 2.042 607.11 0.6740 H-1 → L + 1 (17%), H → L (80%)
S0-S3 3.018 410.88 2.2902 H → L + 1 (75%), H → L (17%)
S0-S4 3.060 405.24 1.3793 H-1 → L (55%), H → L + 1 (45%)

Dye 1 S0-S1 1.928 643.08 0.8647 H-1 → L + 2 (13%), H → L (64%), H → L + 2 (19%)
S0-S3 2.598 477.17 0.5814 H-1 → L + 2 (17%), H → L (24%), H → L + 1 (41%)
S0-S4 2.960 418.88 1.1036 H-1 → L (52%), H → L + 2 (38%)
S0-S5 3.045 407.21 1.4220 H-1 → L + 2 (62%), H → L + 1 (25%)

Dye 2 S0-S1 2.005 618.48 1.0873 H → L (67%), H → L + 1 (17%)
S0-S3 2.573 481.78 0.6855 H-1 → L + 2(24%), H → L (17%), H → L + 1 (39%)
S0-S4 2.942 421.48 0.8457 H-1 → L (50%), H → L + 2 (48%)
S0-S5 3.032 408.98 1.0864 H-2 → L (14%), H-1 → L + 2 (49%), H → L + 1 (25%)
S0-S6 3.274 378.70 0.5460 H-1 → L + 1 (62%)

Dye 3 S0-S1 1.901 652.35 1.5463 H → L (73%), H → L + 1 (16%)
S0-S4 2.849 435.24 1.2498 H-1 → L + 1(41%), H → L + 2 (54%)
S0-S5 2.947 420.68 1.3076 H-2 → L (12%), H-1 → L + 2(59%), H → L + 1 (22%)

Dye 4 S0-S1 1.853 669.16 1.3133 H → L (81%)
S0-S4 2.968 417.68 1.1291 H-1 → L (53%), H → L (26%) H → L + 2 (17%)
S0-S5 3.055 405.91 1.2644 H-2 → L (22%), H-1 → L + 1 (45%), H-1 → L + 2 (11%)

Dye 5 S0-S1 1.932 641.71 0.7965 H-1 → L + 1 (15%), H → L (73%)
S0-S3 2.717 456.41 1.3422 H-1 → L + 1 (32%), H → L (17%), H → L + 2 (33%)
S0-S4 2.950 420.37 1.1840 H-1 → L (54%), H → L + 1 (41%)
S0-S5 3.052 406.19 0.8205 H-2 → L (14%), H-1 → L + 1 (46%), H → L + 2 (32%)

Dye 6 S0-S1 2.019 614.07 0.7739 H-1 → L + 1 (16%), H → L (80%)
S0-S3 2.972 417.15 2.4681 H → L (69%), H → L + 2 (16%)
S0-S4 3.051 406.39 1.3353 H-1 → L (55%), H → L + 1 (44%)

Dye 7 S0-S1 2.018 614.28 1.0686 H-1 → L + 2 (13%), H → L (81%)
S0-S3 2.923 424.11 2.6554 H-1 → L + 1 (63%), H → L (12%), H → L + 2 (11%)
S0-S4 3.040 407.85 1.3061 H-1 → L (49%), H → L + 1 (50%)

Dye 8 S0-S1 1.869 663.30 1.2797 H → L (77%)
S0-S4 2.961 418.68 0.9226 H-1 → L (53%), H → L + 2 (41%)
S0-S6 3.089 401.43 1.5251 H-1 → L + 2 (52%), H → L + 1 (33%)

Dye 9 S0-S1 1.638 756.72 1.3428 H → L (82%)
S0-S5 2.857 434.94 0.6584 H-1 → L (61%), H → L + 2 (34%)
S0-S6 3.016 411.10 2.0574 H-1 → L + 2 (69%), H → L + 1(20%)
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the worst spectral properties. These observed absorption 
bands in the near-IR region correlate with small excitation 
energies (∆E), which is associated with the HOMO–LUMO 

gaps. It is recognized that a lower energy gap is expected to 
favor ICT. In general, this also confirms that the extension 
of the π-conjugated framework due to the presence of an 
additional co-acceptor moiety in the dyes is responsible for 
the reduction of the HOMO–LUMO gaps, which can also 
contribute to photon harvesting for the current conversion.

3.4  Electron injection and dye regeneration 
efficiency

It is necessary to discuss the suitability of the investigated 
dyes in the DSSCs. Of all the electrochemical parameters 
that can be optimized to achieve higher photoelectric con-
version, the free energy of charge injection ( ΔGinject ) from 
the dye in the excited state to the semiconductor CB and 
the free energy of dye are regenerated from reduced dye 
to  I3

− ( ΔGreg) . The values of ΔGinject and ΔGreg can be 
expressed in the following equations:

where ECB = −4.00 eV is the conduction band of  TiO2 
[65], and EI−∕I−

3
 = −4.60 eV is the potential of redox media-

tor of I−∕I−
3
.Edye is defined as the ground-state oxidation 

potential of the dye which is considered to be equivalent to 
the HOMO energy, E�max

 is the first transition energy corre-
sponding to λmax, and E∗

dye
 is the excited-state oxidation 

potential calculated as [66]

The calculations for ΔE , ΔGinject , and ΔGreg are presented 
in Table 4; the findings showed that ΔGinject values of the 

(1)ΔGinject = E∗

dye
− ECB

(2)ΔGreg = Edye − EI−∕I−
3

(3)E∗

dye
= Edye − ΔE.

Fig. 5  The plot of the UV–Vis spectra of dyes a IDB-ZnP1 ~ 4 and b 
Dye1 ~ 9

Table 4  Calculated Edye, ΔE
, E∗

dye
, ΔGinject, ΔGreg , and LHE 

of the dyes

Dye Edye(eV) ΔE(eV) E∗

dye
(eV) �Ginject(eV) �Greg(eV) LHE

IDB-ZnP1 6.033 2.236 3.797 −0.203 −1.433 0.059
IDB-ZnP2 5.704 2.133 3.571 −0.429 −1.104 0.430
IDB-ZnP3 5.996 2.124 3.871 −0.129 −1.396 0.461
IDB-ZnP4 5.705 2.042 3.662 −0.338 −1.105 0.788
Dye 1 5.684 1.928 3.756 −0.244 −1.084 0.863
Dye 2 5.777 2.005 3.772 −0.228 −1.177 0.918
Dye 3 5.813 1.901 3.912 −0.088 −1.213 0.972
Dye 4 5.628 1.853 3.776 −0.225 −1.028 0.951
Dye 5 5.656 1.932 3.724 −0.276 −1.056 0.840
Dye 6 5.648 2.019 3.629 −0.371 −1.048 0.832
Dye 7 5.763 2.018 3.744 −0.256 −1.163 0.915
Dye 8 5.634 1.869 3.765 −0.235 −1.034 0.947
Dye 9 5.582 1.638 3.943 −0.057 −0.982 0.955
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designed dyes were negative, ranging from −0.05 to 0.50 eV. 
This can ensure the electron injection from the excited dye 
to the  TiO2 conduction band works smoothly. The ΔGreg val-
ues of the designed dye were negative, which promoted the 
dye regeneration process and implied a low dye recombina-
tion [62]. In addition, all dyes showing heterocyclic barrier 
groups in the sensitizer indicate a reduction in excitation 
energies ( ΔE ) and hence a longer wavelength λmax.

3.5  Overall efficiency

In this subsection, the energy conversion efficiency ( � ) of 
DSSC devices fabricated using the designed dyes is esti-
mated primarily by their short-circuit current (JSC) , open-
circuit photovoltage ( VOC) , and fill factor (FF) values, as well 
as the intensity of the incident light (Pinc) , can be calculated 
using the following Eq. (4)[67]:

Regarding this equation, where FF is defined as the ratio 
of the solar cell's maximum power and the product of JSC , 
VOC , and Pinc , the incidence of solar power in the cell. It 
is obvious that to increase efficiency, the modification of 
molecular structure effect on JSC and VOC products must be 
optimized.

where kB T is the thermal energy, q is the electron charge, 
nC is the number of electrons in the CB, NCB is the acces-
sible density from the CB state, and Eredox is the oxidation 
potential of the electrolyte [68].

VOC is calculated by the energy difference between the 
CBE and the redox potential of the electrolyte. Typically, 
I−∕I−

3
 is used as the redox electrolyte, so it is assumed to 

be constant. The primary factor influencing VOC is ΔCBE , 
which can be expressed as Eq. (6):

where � is the dyes surface concentration, and �g meas-
ures the component of the dipole moment of the individual 
molecule perpendicular to the semiconductor surface, and 
�0 and � are the dielectric constants [69].

The ∆H–L values of the designed dyes correlated with the 
�g values reported in Table 2. The calculated results show 
that the �g and ∆H–L values followed the opposite trend. 
As the HOMO–LUMO gap value decreased, the �g value 
increased, which reflects better charge transport proper-
ties of the dyes. Indeed, Dye 9 and Dye 3 showed dipole 

(4)� = FF
VOC JSC

Pinc

.

(5)VOC =
ECB

q
+

kBT

q
ln

[
nC

NCB

]

−
Eredox

q
,

(6)ΔCBE = −

q.�g.�

�0.�
,

moments of 9.335 Debye and 11.304 Debye, respectively, 
which were higher than those of other dyes. This high dipole 
moment indicates the polar nature of the dye molecule. Dyes 
with a larger dipole moment show better charge separation 
between the donor and acceptor units. As a result, the VOC 
may increase with an increase in the concentration of accep-
tor species on the semiconductor surface [70]. Therefore, 
Dye 9 and Dye 3 may be the best candidates for achieving 
high conversion efficiency.

Equation (7) can be used to calculate the JSC value of 
DSSCs:

where the LHE parameter indicates the ability of the 
dyes to efficiently harvest photons and evaluates the � of the 
DSSCs, �inject represents the electron injection efficiency, 
and �collect denotes the charge collection efficiency. The elec-
trode is the same in all of the DSSCs under consideration, 
and only the dye as sensitizer differs. Therefore, we can 
assume that �collect is a constant [69].

Furthermore, it is well known that oscillator strength (f) 
reveals the LHE at a certain wavelength. The LHE value 
relates to the transition power for the excited states [71, 72], 
and can be calculated as Eq. (8):

As can be observed from Eq. (8), the significant f value 
is proportional to the maximum value of LHE obtained 
from the maximum photocurrent response. The LHE value 
has been found to be directly associated with the geomet-
ric structure of the studied dye, which should enhance the 
ICT (see Table 4). A higher degree of coplanarity tends to 
increase electronic conjugation between the electron donor 
and the electron acceptor, thereby increasing the f value [73]. 
It is clear that across the visible spectrum, dye molecules 
Dye 9 and Dye 3 showed a broader absorption spectrum 
than other dyes, with an estimated LHE value in the range 
of 0.96–0.97.

3.6  The ionization potential, electron affinity, 
and inner reorganization energy

To gain deeper insight into the effect of the additional 
π-linker and co-acceptor on the reactivity of the sensitizer, 
several parameters should be considered, including ioniza-
tion potential ( IP ), electron affinity ( EA ), and reorganization 
energy ( � ). The IP and EA are directly related to the energy 
barrier for hole and electron injection. It has been found 
that to achieve outstanding performance, a DSSC device 
should have good charge injection and transport properties, 
and equilibrium between the hole and electron transport. 

(7)JSC = ∫ LHE(�)�inject�collectdλ

(8)LHE = 1 − T = 1 − 10−A = 1 − 10−f .
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The adiabatic IP and EA values of the designed dyes can be 
expressed as follows [74]:

The IP , EA , �h , and �e are compared and listed in Table 5. 
Based on the computed adiabatic IP and EA values of Dyes 
1–9 in the table, they show a range of 4.113–4.821 eV and 
2.686–3.296 eV, respectively. The increase in EA implies 
that electron injection is more feasible between Dye 3 and 
Dye 9, demonstrating maximum EA values. This indicates 
that it has better electron transport properties. Moreover, 
Dye 6 and Dye 9 show lower IP values, which is beneficial 
for hole injection into semiconductors. The above discus-
sions prove that the ethynyl linker with thieno[3,4-b]quinox-
aline (Dye 9) is indeed more efficient, and results in lower 
ionization potential ( IP ) values and higher electron affinity 
( EA ) values. These results also suggest that the smaller IP 
and higher EA values of Dye 9, among others, indicate that 
it is easy to inject holes and electrons into the HOMO and 
LUMO.

In addition to the IP and EA values, the charge transfer 
behavior can also be influenced by the intermolecular reor-
ganization energy [34], which can be described in Eq. (11) 
and Eq. (12) by Marcus theory [75]:

Following these equations, E+
(
M0

)
/E−

(
M0

)
 is the energy 

of cation/anion in the optimized geometry of the neutral 

(9)IP = E+
(
M

+

)
− E0

(
M0

)

(10)EA = E0
(
M0

)
− E−

(
M

−

)

(11)�h =
[
E+

(
M0

)
− E+

(
M

+

)]
+
[
E0

(
M

+

)
− E0

(
M0

)]

(12)�e =
[
E−

(
M0

)
− E−

(
M

−

)]
+
[
E0

(
M

−

)
− E0

(
M0

)]

molecule, and ( E+
(
M

+

)
∕E−

(
M0

)
/(E0

(
M0

)
 is the energy of 

the cation/anion/neutral molecule in the corresponding opti-
mized geometry, while E0

(
M

+

)
∕E0

(
M

−

)
 is the energy of a 

neutral molecule in the optimized geometry of the cationic/
anionic state. As displayed in Table 5, comparing the inner 
reorganization energies for electrons and holes, the values 
of �e are smaller than �h (except Dye 8). This indicates that 
the electron transferability in these dyes is better than their 
hole transferability [74, 75].

3.7  Charge transfer properties

To further ascertain whether the designed dye molecule 
can produce higher conversion efficiency, the excited-state 
charge transfer of the dye was also calculated, which results 
from the difference in the ground-state and excited-state 
charge density. The intramolecular charge transfer property 
is a key parameter to describe the photoelectric conversion 
property of the designed sensitizers. In general, electrons 
in the excited state at the donor need to be transferred to 
the acceptor. Suitable photo-induced intramolecular charge 
transfer can enhance effective charge separation [55, 57, 
76, 77]. For this reason, the CT descriptors including the 
amount of charge transfer ( qCT ), the effective charge transfer 
distance ( DCT ), the corresponding alteration in the dipole 
moment (∆μCT), and half of the sum of the centroid axis 
along the electron transfer (H) are described and summa-
rized in Table 6. The electron density variation ( Δ� ) from 
the excited state ( �ES ) to the ground state ( �GS ) can be cal-
culated as follows [55]:

(13)Δ�(r) = �ES(r) − �GS(r)

Table 5  Calculated hole ( �h ) and electron ( �e ) reorganization energy, 
ionization potential ( IP ), and electron affinity ( EA ) of the dyes

Dyes �h(eV) �e(eV) IP(eV) EA(eV)

IDB-ZnP1 0.126 0.183 4.958 2.525
IDB-ZnP2 0.245 0.245 4.685 2.506
IDB-ZnP3 1.961 0.095 4.985 2.738
IDB-ZnP4 0.218 0.090 4.713 2.678
Dye 1 1.416 0.872 4.685 2.833
Dye 2 0.281 0.136 4.781 3.040
Dye 3 0.191 0.191 4.821 3.296
Dye 4 0.191 0.090 4.631 3.105
Dye 5 0.191 0.054 4.658 2.686
Dye 6 0.218 0.093 4.113 3.187
Dye 7 0.183 0.558 4.786 2.825
Dye 8 0.136 0.163 4.685 2.969
Dye 9 0.627 0.218 4.582 3.293

Table 6  The calculated intramolecular charge transfer (ICT) param-
eters of the dyes at the CAM-B3LYP/6-31G(d,p) (LANL2DZ for Zn 
atoms) level in THF with the CPCM

Dye DCT
(Å) qCT(e−) H (Å) t (Å) ∆μCT(Debye)

IDB-ZnP1 1.028 0.184 4.525 −2.362 0.910
IDB-ZnP2 1.118 0.309 4.647 −2.501 1.657
IDB-ZnP3 0.568 0.319 4.650 −3.045 0.869
IDB-ZnP4 0.414 0.452 4.704 −3.395 0.897
Dye 1 2.061 0.495 5.513 −2.664 4.896
Dye 2 2.051 0.598 5.506 −2.706 5.896
Dye 3 2.932 0.654 5.762 −2.093 9.219
Dye 4 1.704 0.541 5.599 −3.118 4.481
Dye 5 0.418 0.466 4.899 −3.629 0.936
Dye 6 0.406 0.454 4.834 −3.551 0.886
Dye 7 0.648 0.519 5.018 −3.593 1.613
Dye 8 2.617 0.581 5.779 −2.387 7.302
Dye 9 3.681 0.630 5.913 −1.310 11.148
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where Δ�(r) can be divided into two parts: a positive 
( �+(r)) and a negative (�−(r)) . The integrals of �+ and �− 
over all space should normally be equal. The positive ( C+ ) 
and negative ( C− ) barycenter parts of these spatial regions 
can be computed as Eqs. (14–15):

where qCT is defined as the amount of charge transferred 
which can be obtained by integrating �+ and �−  over all 
space. The value of qCT is predicted to be in the range of 0–1 
under one-electron excitation conditions. The DCT param-
eter is defined as the distance the charge transfer traveled 
to determine the distance of the two-density depletion bar-
ycenters (positive and negative) of the density distribution 
in a molecule, and it can be calculated by Eq. (16):

In general, larger qCT and DCT resulting from the over-
lap between the holes and electrons are favorable for the 
ICT process. The amount of charge transferred ( qCT ) can be 
obtained by integrating the increase or decrease in electron 
density in all spaces [78]. As shown in Table 6, the charge 
transfer effect of a dye is generated by introducing an aux-
iliary acceptor in the D-π-A-A porphyrin dye framework. 
Compared with IDB-ZnP1, Dye 2, Dye 9, and Dye 3 showed 
higher qCT values of 0.598 e− (Dye 2), 0.630 e− (Dye 9), 
and 0.650 e− (Dye 3). This indicates that the introduction of 
[1,2,5]thiadiazolo[3,4-c]pyridine, thieno[3,4-b]quinoxaline, 
and [1,2,5]thiadiazolo[3,4-d]pyridazine as auxiliary accep-
tors have a beneficial effect on the electron charge transfer 
in these dyes.

The value of t can be used to describe the spatial extent of 
a particular electronic transition. t with an axis value > 1.6 Å 
indicates that the applied function used in determining the 
CT model will not provide a precise description of the transi-
tion energy. A more detailed description of these descriptors 
can be found in previous works [55, 57, 76, 77]. The calcula-
tion results obtained a negative t value (t value < 1.6 Å) for 
all the studied dyes, and thus the applied function works 
well in describing the charge transfer model. These results 
are similar to observations reported in the literature [55, 
79]. Their results suggest that there is an inevitable spatial 
proximity between areas of decreasing density and areas of 
increasing density. As the t value becomes larger, the overlap 

(14)C+
=

∫ r�+(r)dr

qCT
=
(
x+, y+, z+

)
,

(15)C−
=

∫ r�−(r)dr

qCT
= (x−, y−, z−),

(16)DCT = ||C
+
− C−||

between the electron-donating and the electron-accepting 
regions decreases [79].

The dipole moment (∆μCT) is another parameter to char-
acterize how the dipole moment of the dye changes between 
the ground state (GS) and the excited state (ES) due to the 
electron transition [80]. Based on data in Table 6, Dye 8, 
Dye 3, and Dye 9 showed relatively higher ∆μCT values of 
7.302, 9.219, and 11.148 Debye, respectively. The value of 
∆μCT shows the variation in the molecular dipole moment 
between the ground state and the excited state due to elec-
tronic excitation. In general, during the ICT process, the 
density of positive and negative parts should be delocalized 
in the molecules of different groups. Thus, the reorgani-
zation of charge density increases the value of the dipole 
moment [80]. Moreover, H represents half of the totality of 
the barycenter axis along the charge direction. An H value 
greater than DCT confirms that the overlap between the cent-
ers of mass along the x-axis of charge transfer is predictable 
[55].

3.8  Nonlinear optical (NLO) properties

One of the important keys in analyzing the charge transfer 
of molecules is assessing the efficiency of electronic com-
munication between the acceptor and donor groups. In this 
case, by inducing the polarization of the applied external 
electric field, the response of the D-π-A system to the delo-
calization of the intramolecular charges on the donor and 
electron acceptor groups can be observed with the NLO 
properties [81]. Dyes with higher NLO properties possess 
better efficiency of intramolecular charge transfer. Thus, they 
will exhibit higher efficiency of DSSC photovoltaic perfor-
mance [82].

The analysis of electric dipole moment (�tot)  and compo-
nents of NLO properties, including isotropic polarizability 
( �0 ) and total first hyperpolarizability 

(
�tot

)
, was carried out 

to comprehend the relationship between the structure and 
NLO characteristics. The calculated values of the resulting 
dipole moment, polarizability, and first hyperpolarizability 
using x,y,z (Cartesian) coordinates by CAM-B3LYP with 
LanL2DZ/6-31G(d,p) basis sets are tabulated in Table 7 and 
expressed as follows [50, 83]:

(17)�tot =

(
�2
x
+ �2

y
+ �2

z

)1∕2

(18)�0 =
1

3
(�xx + �yy + �zz)

(19)�tot =

√(
�xxx + �xyy + �xzz

)2
+
(
�yyy + �xxy + �yzz

)2
+
(
�zzz + �xxz + �yyz

)2
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As displayed in Table 7, Dye9 (8.266 Debye) and Dye 3 
(9.476 Debye) are more polarized; thus, the �tot is also high. 
It is observed that Dye 9 and Dye 3 exhibit maximum linear 
to strong CT behavior caused by the introduction of auxil-
iary acceptors. As the auxiliary acceptor strength increases, 
the NLO performance decreases because of the strengthen-
ing of CT ability. A low molecular energy gap should facili-
tate greater interactions and therefore improve the polariza-
tion of the molecule. Furthermore, the molecular electric 
dipole moment can increase the microscopic polarization 
and hyperpolarization properties in relation to the applied 
field strength [84].

Introduction of different auxiliary acceptor units influ-
enced the isotropic polarizability ( �tot ) in Dye1 to Dye9. 
The highest value of isotropic polarizability was noted 
as 192.965 ×  10−24 esu in Dye 9, followed by Dye 8 and 
Dye 4. This means that Dye 9 showed the best photoelec-
tric properties, followed by Dye 8 and Dye 4. The iso-
tropic polarizability values of the studied dyes are found 
to be in the following descending order: Dye 9 > Dye 
8 > Dye 4 > Dye 3 > Dye 2 > Dye 7 > Dye 5 > Dye 1 > Dye 
6 > IDB-ZnP4 > IDB-ZnP3 > IDB-ZnP2 > IDB-ZnP1.

In addition, the first hyperpolarizability values 
of the studied dyes are found to be in the following 
descending order: Dye 9 > Dye 3 > Dye 2 > Dye 8 > Dye 
4 > Dye 1 > Dye 7 > Dye 5 > Dye 6 > IDB-ZnP4 > IDB-
ZnP2 > IDB-ZnP3 > IDB-ZnP1. It is reflected that Dye 
9 exhibits superior �tot values compared to other deriva-
tives, due to the low HOMO–LUMO bandgap, which 
promotes superior ICT properties. It is noteworthy 
that the NLO response of Dye 8 and Dye 9 contain-
ing naphtho[2,3-c][1,2,5]thiadiazole and thieno[3,4-b]

quinoxaline as auxiliary acceptor was found to be higher 
than that of other dyes. For further evaluation, the highest 
NLO response was measured in Dye 9 with a �tot value 
of 2627.878 ×  10−30 esu. Compared to a standard NLO 
urea molecule [85, 86], the calculated value of the first 
hyperpolarizability of Dye 9 was 1747 times greater at 
the same theoretical level. Therefore, it can be concluded 
that the dye represents a potential NLO candidate for the 
fabrication of optoelectronic devices.

4  Conclusions

The optoelectronic and charge transfer properties of the 
D-π-A-A series for applications as a sensitizer in DSSCs 
were investigated in detail using DFT and TD-DFT calcu-
lations. The introduction of an auxiliary acceptor between 
the Zn–porphyrin ring and the anchoring group was found 
to have a significant positive effect in optimizing the dis-
tribution of electrons in molecular orbitals, reducing the 
HOMO–LUMO energy gap, and thereby broadening the 
absorption spectrum and increasing LHE values. Further-
more, a good balance between better-calculated energy 
levels, electron injection propulsion, dye regeneration 
energy, total reorganization energy, charge-transporting 
ability, and ICT parameters was obtained.

The computational results showed that the extended 
π-conjugation and high delocalization of the introduc-
tion of ethynyl linker and the auxiliary acceptors in Dye 9 
improve performance mainly due to the favorable energy 
alignment between the HOMO dye and the redox poten-
tial of the electrolyte, leading to an efficient dye regenera-
tion process. In addition, the designed molecule of Dye 9 
exhibited smaller energy gaps, better ICT between electron 
donors and acceptors, and an enlarged absorption range 
in the NIR region. Dye 9 exhibited an appealingly large 
enhancement in NLO response through the ICT process, 
with a  �

tot
 value that was many-fold higher than that of 

urea computed at the same theoretical level. It indicates 
that the studied dye molecules represent potential can-
didates for optoelectronic applications. Furthermore, we 
found that Dye 9 was the best among the studied dyes for 
the design of new sensitizers in DSSC applications.
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Table 7  The calculated electric dipole moment (�tot) , the average 
polarizability (�0)  (10−24 esu), and the first hyperpolarizability �tot 
 (10−30 esu) of studied dyes

Dye Dipole moment 
�
tot

 (Debye)
Polarizability 
�
0
  (10–24 esu)

First hyperpolariz-
ability �

tot
  (10−30 

esu)

IDB-ZnP1 1.492 119.226 63.398
IDB-ZnP2 4.460 129.069 327.866
IDB-ZnP3 2.426 131.962 295.762
IDB-ZnP4 6.544 143.758 741.079
Dye 1 7.197 167.366 1518.123
Dye 2 8.248 169.690 1979.103
Dye 3 9.476 170.173 2409.504
Dye 4 7.724 175.747 1773.069
Dye 5 6.493 166.578 1399.731
Dye 6 5.855 168.306 942.174
Dye 7 8.560 171.301 1453.136
Dye 8 7.139 180.335 1920.277
Dye 9 8.266 192.965 2627.878
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