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Abstract
We investigate high-order harmonics spectra radiated from a two-level model system driven by strong, ultrabroadband, half- 
and single-cycle pulses, which are shorter than the inverse of the transition frequency. In this driving regime, the plateau in 
frequency spectra typical for radiation from strongly driven systems, has noticeable modulation in amplitude due to inter-
ference between waves of same frequency and emitted at different time instants. Specifically, there are characteristic ‘dip’ 
structures at a set of frequencies in the radiation spectra, where the corresponding amplitudes are suppressed by several orders 
of magnitude. Understanding these structures is required for applications such as the generation of attosecond pulse, where 
the number of composing modes and their relative phases are important. Therefore, we demonstrate a systematic way to find 
frequencies at which the dips are formed. To further illustrate the interference mechanism, we extract the phase information 
with the help of time-frequency distribution functions, namely the Husimi and Wigner functions. In particular, we found 
that the negativity structure of the Wigner function corresponds to each dip frequency and that the information regarding 
the type of interference is encoded in the pattern of the negative region of the Wigner function. Since such time-frequency 
Wigner function can actually be measured, we envisage utilizing its negativity structure to extract the phase information 
between radiation components emitted at time points within a subcycle timescale. This should provide an efficient tool for 
understanding and designing photonic applications, including short-wavelength coherent light sources.

Keywords High-order harmonics · Ultrabroadband pulse · Subcycle driving · Two-level system · Husimi function · Wigner 
function

1 Introduction

When a system is driven by light of central frequency � , 
not only the same mode is typically emitted but also modes 
of an integer N multiple of � may arise, called N-th-order 
harmonics. When the driving field is strong enough, high 
orders of harmonics can be obtained, which have a series 
of applications such as the attosecond pulse generation and 
short-wavelength coherent light sources in a tabletop setup. 
In particular, among various candidates, solid-state-based 

systems driven by appropriate fields have been proposed as 
a promising platform for being compact, energy-efficient and 
capable of producing stable extreme ultraviolet light with 
robustness to fluctuations in the parameters of the driving 
pulse [1, 2].

In order to utilize the full potential of high harmonics 
from solid-state systems, several attempts have been made 
to model the underlying microscopic details of the mecha-
nisms. In particular, a multi-level model has been shown to 
be capable of explaining unique features including multiple 
plateaus of solid-state high harmonics spectra while pro-
viding a concise picture of the radiation processes [3, 4]. 
Remarkably, it was shown that although there are multiple 
energy levels interacting with each other, a set of two-level 
systems was a key building block to understand the harmon-
ics radiation from solid-state systems [4].

High-order harmonics radiation from two-level systems 
driven by multi-cycle pulses has been studied extensively 
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and utilized to explain the key features of typical experimen-
tal high harmonics spectra, including peaks at integer mul-
tiples of the fundamental frequency followed by a plateau 
which extends up to a sharp cutoff [5, 6]. In these works, 
the driving field has a well-defined central frequency and 
the envelope duration of few oscillation cycles. Then, since 
the fundamental frequency is unambiguous, frequencies of 
the harmonics are also well-defined. Furthermore, although 
there are some fluctuations at the plateau region due to the 
interference between wave trains of the same central fre-
quency emitted at each half-cycle, if there are several cycles 
so that the number of emission time instants is not small, the 
corresponding contributions tend to average out. This leads 
to the formation of a plateau structure in the spectra.

In this work, we go beyond the few-cycle case to deal with 
half-cycle and single-cycle driving pulses, being ultrabroad-
band in the frequency domain (for general discussions on 
such pulses including their experimental generation as well 
as theoretical descriptions see [7, 8] and references therein). 
We consider the subcycle driving regime with respect to 
the driven system, in the sense that the pulse duration is 
much shorter than the characteristic timescale of the system, 
e.g., T0 ≡ 2�∕�0 , for the case of a two-level system with 
the energy difference ℏ�0 between the two levels. Under the 
term ‘ultrabroadband,’ we specifically mean that the band-
width of driving field is comparable to its central frequency, 
so that the fundamental frequency mode and its harmonics 
are not precisely defined. Here, we say ‘high-order harmon-
ics’ for indicating radiations of frequencies much higher than 
the central frequency of the driving field. In this situation, 
since the number of cycles is not high enough to ignore the 
interference between radiation bursts for a given frequency 
emitted at different time points, the plateau is no longer flat 
but has a set of missing frequencies due to the corresponding 
events of destructive interference. The information on the 
spectral distribution and phase in the high harmonics spectra 
is essential for applications such as attosecond pulse genera-
tion [9]. It is important to understand interference schemes 
and quantitatively predict those missing frequencies in the 
high harmonics spectra. In order to clearly reveal forma-
tion mechanisms of such spectral structures, we performed a 
time-frequency analysis using the Husimi and Wigner func-
tions [10], the latter of which we found to be particularly 
useful for this goal.

We begin with a basic description of the driving scheme 
of the system in Sect. 2 and evaluation of the resulting radia-
tion spectra in Sect. 3. Then missing frequencies in the spec-
tra are identified quantitatively with the help of the Husimi 
function in Sect. 4, followed by a discussion on how to uti-
lize the Wigner function to extract the information on the 
interference involving more than two radiation time points. 
We describe a found set of correspondences between the 
patterns of negative regions in the Wigner function and the 

interference mechanisms, explained in Sect. 5. We conclude 
this work with a summary on our findings and remarks on 
possible applications in Sect. 6.

2  Theoretical model

2.1  Two‑level system driven by an ultrashort pulse 
in the subcycle regime

We consider an electronic system interacting with an ultra-
short pulse of light in the subcycle driving regime. The 
size of interaction region is assumed to be small enough so 
that the system perceives the electric field of light as nearly 
homogeneous throughout the region, i.e., we consider a case 
where dipole approximation is valid. We are interested in a 
case where just two levels of the system are relevant for the 
electron dynamics. Let us denote the two eigenvectors of the 
unperturbed Hamiltonian corresponding to the states of the 
lower and upper energy levels as �1⟩ and �2⟩ , respectively. 
Then one can write the total Hamiltonian in terms of Pauli 
operators �̂�3 = �2⟩⟨2� − �1⟩⟨1� and �̂�1 = �2⟩⟨1� + �1⟩⟨2� , 
along with, for completeness, �̂�2 = −i�2⟩⟨1� + i�1⟩⟨2� . 
Firstly, the unperturbed Hamiltonian can be written, up to a 
constant energy offset, as

with ℏ being the reduced Planck constant and �0 being the 
transition frequency between the two states. Secondly, the 
electric-dipole coupling Hamiltonian is given by

where �̂ = q�̂ is the dipole moment operator with electronic 
charge q = −e . This operator can be expressed as �̂ = �0�̂�1 
under the two-level approximation and assuming that �1⟩ and 
�2⟩ having opposite parity. Here, the dipole moment matrix 
element �0 is defined as �0 = ⟨2��̂�1⟩ ∈ ℝ

3 , exploiting the 
invariance of quantum states under multiplication by an arbi-
trary complex unit number. Then the interaction Hamilto-
nian, Eq. (2), becomes

which can be further simplified introducing an effective 
amplitude Ed and a temporal shape function f(t) of

where �d ≡ �0∕d0 is the unit vector pointing along the direc-
tion of �0 . Furthermore, one can express the interaction 
Hamiltonian as V̂(t) = f (t)V̂0 with

(1)Ĥ0 =
�𝜔0

2
�̂�3

(2)V̂(t) = −�̂ ⋅ �(t),

V̂(t) = −�0 ⋅ �(t)�̂�1,

�d ⋅ �(t) ≡ Edf (t),
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Here ℏ� ≡ d0Ed , where � is the Rabi frequency characteriz-
ing the interaction strength. The total Hamiltonian becomes

In this work, we consider two types of the pulse shapes, 
fh(t) and fs(t) , namely half-cycle and single-cycle Gaussian 
pulses: 

 Here �d is the duration of the pulse.

2.2  Time evolution in terms of rotation

As a useful framework to understand the coherent dynamics 
of a pure quantum state, one can uniquely associate it with 
a point on a unit sphere, which is often called Bloch sphere. 
This point corresponds to a 3-tuple ��� comprising expectation 
values 𝜎j ∶= ⟨�̂�j⟩ , j ∈ {1, 2, 3} of the Pauli operators, called 
Bloch vector. The time evolution of a Bloch vector ��� can be 
determined by evaluating the time derivative of each compo-
nent following from the Schrödinger equation i���̇�⟩ = Ĥ�𝜓⟩:

Expressing the Hamiltonian as Ĥ ≡ ∑3

k=1
�𝛤k�̂�k∕2 , one 

arrives at the Bloch equation:

It prescribes, at a given time instant, an instantaneous rota-
tion with an angular speed � ≡ |�| about the axis � ≡ �∕�  . 

(3)V̂0 = −�𝛺�̂�1.

(4)Ĥ(t) = Ĥ0 + f (t)V̂0.

(5a)fh(t) = exp
[
−t2∕�2

d

]
,

(5b)fs(t) = t fh(t).

�̇�j = ⟨[�̂�j, Ĥ]⟩∕i�.

�̇�� = � × ���.

For Ĥ given by Eq. (4), the instantaneous angular velocity 
vector reads

so that 

 where �j for j ∈ {1, 2, 3} are the unit vectors in ℝ3 cor-
responding to each direction. Also the inclination angle 
� ≡ �(t) of the rotational axis is determined by

In Fig. 1, we illustrate how the angular velocity � of the 
Bloch vector ��� changes with time for a driving field given 
by Eq. (5a).

2.3  Numerical computation of the time‑evolving 
state

To compute the time-dependent state vector and associated 
observables, we used the Crank-Nicolson method [11, 12]. For 
components of the state vector cn(t) ≡ ⟨n��(t)⟩ in an ordered 
basis {�2⟩, �1⟩} formed by the eigenvectors of the unperturbed 
Hamiltonian Ĥ0 of Eq. (1), the Schrödinger equation reads

with � ≡ [c2, c1]
T and � being a matrix representation of the 

total Hamiltonian Ĥ(t) in Eq. (4), given as

� = �0�3 − 2�f (t)�1,

(6a)� (t) =

√

�2
0
+ {2�f (t)}2,

(6b)�(t) = cos ��3 − sin ��1

(7)tan �(t) = 2�f (t)∕�0.

(8)i��̇ = ��
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Fig. 1  Dynamics of the angular velocity vector of the Bloch vector. 
A half-cycle Gaussian pulse, Eq. (5a), is used for f(t). Each sphere 
is represented for each time specified by the corresponding verti-
cal line in the upper panel. Rotational axis � and angular speed �  in 

each sphere are determined by Eq. (6), by the penetrating line and the 
thickness of the arrow around the line, respectively. Driving strength 
corresponds to the Rabi frequency � = 2

√
�∕�d , pulse duration 

�d = T0∕20
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To solve Eq. (8), one may numerically evolve the initial 
state vector �(0) by a small time interval �t repeatedly until 
reaching a desired final time instant. The matrix transfor-
mation corresponding to the time evolution, which should 
be unitary to preserve the norm of the state vector, can 
be constructed from a relation between the vector com-
ponents �q ≡ �(t + q�t) and the time evolution matrices 
�p,q ≡ �(t + p�t, t + q�t) for p, q ∈ [0, 1]:

This basically says that �0 evolved by a half-time step �t∕2 
forward is the same as �1 propagated by a half-time step 
backward. Noting that the unitary matrices can be expanded 
for a small enough �t , with �1∕2 ≡ �(t + �t∕2),

one can finally derive the expression for the Crank-Nicolson 
evolution matrix,

Here applying the inverse matrix �−1
−

 can be done either 
directly evaluating the matrix or by applying implicit algo-
rithm such as lower–upper (LU) decomposition. It is known 
that the Crank-Nicolson method is stable in that the norm of 
the state vector remains constant being unconditional to the 
time step size �t [12].

3  Origin of classical radiation: dipole 
dynamics

In this work, we deal with a semiclassical framework where 
the system being perturbed by the external light is treated 
quantum mechanically, whereas the emitted light is consid-
ered classically. Quantum optical models for the high-order 
harmonics generation have been developed and utilized until 
now for multi-cycle pulses [13, 14]. In future work it would 
be interesting to see effects the fully quantum mechanical 
treatment may reveal also in the case of the driving by half-/
single-cycle pulses.

Frequency spectra for the radiated classical light meas-
ured in far field can be evaluated by performing the Fourier 
transformation of a time-dependent dipole expectation value 
[5]. In the considered case this expectation value is given by

�(t)∕ℏ =
1

2

[
�0 − 2�f (t)

−2�f (t) − �0

]

.

�1∕2,1�1 = �1∕2 = �1∕2,0�0.

�1∕2,1∕2∓1∕2 ≃ � ±
�1∕2

iℏ

�t

2
≡ �±

�
CN ≡ �

−1
−
�+.

⟨�̂⟩ = �0𝜎1 = d0𝜎1�d,

where 𝜎1(t) ≡ ⟨�̂�1⟩(t) is the dipole expectation value along 
the direction of dipole matrix element d ≡ �d ⋅ ⟨�̂⟩ normal-
ized by d0,

the resulting frequency spectrum can be obtained in arbitrary 
units as:

where d̈𝜔 is the Fourier transform of the second derivative 
of the dipole expectation value d̈(t).

Figure 2a shows the dipole expectation value d(t) in the 
case of subcycle driving by a half-cycle Gaussian pulse. It 
oscillates in the temporal vicinity of the field maximum at 
t = 0 . This oscillation can be expected from the behavior 
of the Bloch vector depicted in Fig. 2b: oscillation in �1 
comes from the rotation of the Bloch vector ��� with � as 
its axis. Most of the oscillatory behavior occurs during the 
time interval when the angle � of rotational axis � changes 
slowly compared to the angular speed � ≡ |�| near the field 
maximum. This time interval is of the order of the pulse 
duration �d . Such oscillations can occur when the period of 

d∕d0 = �1.

(9)|
|Ẽ(𝜔)

|
|
2
= |
|d̈𝜔

|
|
2
,

(b)

Γ
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Fig. 2  a Dipole expectation value d(t) driven by a half-cycle Gauss-
ian pulse of shape f(t) given in Eq. (5a) with duration �d = T0∕20 and 
interaction strength � = 2

√
�∕�d . b A snapshot of Bloch sphere at 

an instant near the field maximum indicated by the dotted vertical 
line in (a). The points on the Bloch sphere represented by �1 and �3 
correspond to eigenvectors of the Pauli operators �̂�1 and �̂�3 , respec-
tively. Projection of the Bloch vector ��� onto the axis along �1 is plot-
ted in the plane at the bottom of the sphere
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a full rotation near the field maximum Tpeak = 2�∕�peak fits 
into the pulse duration:

Since �peak ∼ 2� , as can be seen from Eq. (6a) for 𝛺 ≫ 𝜔0 , 
the condition in Eq. (10) can be rewritten with respect to the 
interaction strength �:

In the regime specified by Eq. (11), frequencies higher 
than the transition  frequency between the two  unper-
turbed states are emitted effectively.

4  Radiation spectra and ‘dip’ structures

4.1  Half‑cycle driving pulse

In Fig. 3a we show the electric field E(t) emitted from the 
system driven by a half-cycle Gaussian pulse with duration 
of �d = T0∕20 and interaction strength of � = 4

√
�∕�d , 

being in the regime of strong driving specified by Eq. (11). 
The emitted electric field is evaluated for the case of meas-
urement in the far-field region, where it is proportional to the 
acceleration of dipole expectation value, namely E(t) ∝ d̈(t) . 
Since the oscillation of d(t) comes from the rotation of the 
Bloch vector, whose angular frequency � (t) given by Eq. 
(6a) is plotted in Fig. 3b, the emitted electric field in Fig. 3a 
also changes its frequency with time. In other words, the 
emitted electric field is chirped. This can also be checked by 
evaluating time-dependent spectra [15] of the emitted elec-
tric field, constructed applying a convolution with a window 
function localized at a time instant of interest:

where G(t� − t;�t) is centered at t� = t and has width of �t . In 
the calculations of this work we used

when QE is also called Husimi function [16, 10]. From the 
Husimi function in Fig. 3b, one can check that the dominant 
frequency radiated at each time instant basically follows the 
dynamics of the angular speed of the Bloch vector � (t).

In Fig. 3c, total power spectra |E(�)|2 are plotted accord-
ing to Eq. (9). As may be predicted from the connection of 
the dynamics of dipole expectation value and the rotation 
of the Bloch vector mentioned above, the highest possible 

(10)Tpeak ≲ 𝜏d.

(11)𝛺 ≳
1

𝜏d
.

(12)QE(t,�) =
|
|
|
|∫

∞

∞

dt�E(t�)G
(
t� − t;�t

)
e−i�t

� ||
|
|

2

,

(13)G(t;�t) = e−t
2∕4�2

t ∕
(
2��2

t

)1∕4
,

frequency is given by the peak angular speed of the Bloch 
vector, as follows from Eq. (6a),

Here fpeak is the peak value of the given pulse shape function 
f(t). The last approximation comes from the condition of the 
subcycle driving regime 𝜏d ≪ T0 , implying 1∕𝜏d ≫ 𝜔0 , and 
that of the strong driving regime satisfying Eq. (11).

Below the cutoff frequency there are frequencies at which 
the spectral density drops rapidly by several orders of magni-
tude, forming ‘dip’ structures. These features can be attrib-
uted to the interference between radiations of the same cen-
tral frequency emitted at two different time instants. This fact 
can be anticipated analyzing Fig. 3b and c. For example, the 
highest dip frequency �dip,0 corresponds to two instants of 
time when the contributing wave trains are emitted. They are 
determined by intersections of the horizontal line at the level 
of �dip,0 with � (t) in Fig. 3b. Although the existence of such 

(14)�cutoff = �peak ≡
√

�2
0
+
(
2�fpeak

)2
≃ 2�fpeak.
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Fig. 3  a Emitted electric field E(t) from the system driven by a 
half-cycle Gaussian pulse with duration �d = T0∕20 and interaction 
strength � = 4

√
�∕�d . b Husimi function of the emitted electric 

field with time window of width �t = �d∕(2
√
2) , indicated as a bar 

in the figure. Instantaneous angular speed � (t) defined in Eq. (6a) 
is overlaid on the Husimi function. Labels ‘ 3�∕2 ,’ ‘ 2� ,’ ‘ 2� ’ repre-
sent areas enclosed by � (t) curve and respective dotted horizontal 
lines. These areas represent phase differences described in Eq. (15), 
which determine the positions of ‘dip’ frequencies shown in (c). 
c Power spectrum for the emitted electric field shown in (a). Cutoff 
frequency �cutoff beyond which the power spectrum monotonically 
declines coincides with the peak angular speed of the Bloch vector 
�peak = � (0) shown in (b)
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interference effect has been known [6], here we deal with 
ultrabroadband pulses comprising just a half or a single opti-
cal cycle. Thus the modulation of the resulting spectra due to 
such interference effect is not merely smeared out to form a 
plateau typical for high-order harmonics spectra but leads to 
clear dip structures as demonstrated in Fig. 3c. Furthermore, 
we are able to report a quantitative identification of the dip 
frequencies for the case of half-cycle pulse, constituting a 
building block to understand the phenomena induced by 
few- and many-cycle pulses. To find these frequencies, one 
should look for a condition where radiation contributions 
with a given frequency below the cutoff are emitted at two 
different time points before and after the peak of the driving 
field and interfere destructively to yield a suppressed ampli-
tude in the spectrum. If the angular speed of the rotation 
governing the emission frequency were constant � (t) = �c , 
then the emitted light would basically be a monochromatic 
wave in a form of cos(�ct) , with no destructive interference 
but yielding a single peak at � = �c for the spectrum. In our 
case, � (t) is not constant in time. For the two time points 
at which radiation wave trains with a given frequency of 
interest � are emitted, denoted as t�,− and t�,+ , � (t) satisfies 
� (t�,±) = � . 𝛤 (t) > 𝜔 for the time interval between these 
time points t ∈ (t�,−, t�,+) , as can be seen in Fig. 3b. Thus, 
during this time interval the emitted electric field shown in 
Fig. 3a oscillates with instantaneous frequency � (t) which 
is higher than � . The phase difference between the emitted 
electric field and that specified mode emitted at t�,− starts to 
accumulate as � (t)dt − �dt during every passing time inter-
val dt. Searching for a set of frequencies {�dip,n} such that 
the accumulated phase difference makes the two contribu-
tions at each of these frequencies to interfere destructively 
and form a dip in the spectra, we obtain

Here n is a non-negative integer and �0 = 3�∕2 . The dip 
frequencies �dip,n found by using this Eq. (15) well coincide 
with the actual locations of the dip structures in the spectrum 
shown in Fig. 3c.

4.2  Single‑cycle driving pulse

In Fig. 4 we show a time-dependent spectrum from the sys-
tem driven by a single-cycle Gaussian pulse along with the 
emitted electric field and the total spectrum. The duration of 
the driving can be divided into two half-cycles of the pulse, 
each of which has two time points where radiation of a given 
frequency below the cutoff is emitted, as shown in Fig. 4b. 
Since there are four contributions in total, more than one 
phase difference among them should be specified in order 

(15)�� ≡ �
t�,+

t�,−

[� (t) − �]dt = �0 + 2�n.
to characterize how they interfere to form a structure in the 
total spectrum.

In the total power spectrum plotted in Fig. 4c there are a 
set of dip frequencies. We want to clarify the mechanism of 
their formation. Since we have identified dip frequencies for 
the case of half-cycle pulses as in Fig. 3 by using Eq. (15) 
and since a single-cycle pulse consists of half-cycles, we can 
try to follow the same strategy to identify at least some of 
the dip frequencies in the single-cycle driving case. Namely, 
we search for frequencies giving rise to contributions emit-
ted twice within a half-cycle with the phase difference 
acquiring the values given in Eq. (15). Thus these contribu-
tions interfere destructively. For the driving as in Fig. 4, 
there are three such dip frequencies �dip,n with n ∈ {0, 1, 2} , 
leading to the phase differences of 3∕2� + 2�n between the 
two respective time moments within each half-cycle. Note 
that the chosen single-cycle Gaussian pulses are symmetric 
with respect to t = 0 . Therefore the dip frequencies are the 
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Fig. 4  Same as Fig. 3 except that the pulse shape is the single-cycle 
Gaussian, Eq. (5b) with duration �d = T0∕10 and interaction strength 
� = 22∕�d . A frequency � between �0 and �cutoff has four time points 
at which contributions at that frequency � are emitted as there are 
four intersections between the corresponding horizontal line at height 
of � and the angular speed � (t) of Bloch vector. The horizontal lines 
corresponding to dip frequencies �dip,n with n ∈ {0, 1, 2} are drawn 
such that the areas enclosed by those horizontal lines and � (t) are 
‘ 3�∕2 ,’ ‘ 2� ,’ ‘ 2� ’ in the order from top to bottom as shown in (b). 
In addition to the indicated dip frequencies �dip,n given by Eq. (15) 
which was derived from an interference between two contributions of 
the same frequency both emitted within the same half-cycle, ‘intra-
half-cycle’ interference, there are additional dip structures which can 
be attributed to the phase differences between contributions originat-
ing from different half-cycles, ‘inter-half-cycle’ interference
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same for both half-cycles, as evidenced in Fig. 4b. We 
observe that the frequencies found in this way agree well 
with the corresponding portions of the dips in the total spec-
trum Fig. 4c. Since the predicted dip frequencies, which 
comprise a part of the total set of dip locations, come from 
interferences between radiation contributions emitted within 
a single half-cycle, we may call them intra-half-cycle dip 
frequencies and denote as �intra

dip,n
.

5  Negativity structure of the Wigner 
function as an indicator for dip 
frequencies

5.1  Correspondence between negativity 
of the Wigner function and dip frequencies

In Fig. 5a, power spectra of the emitted electric field driven 
by a half-cycle Gaussian pulse are shown, in dependence 
on the driving strength � . A particularly selected example 
of the spectra is depicted in Fig. 5b for the driving strength 
� = 24.5�0 . The dip frequencies predicted by the intra-
half-cycle interference picture as in Fig. 3 are indicated 
along with the cutoff frequencies following from Eq. (14). 
The spectra plotted in Fig. 5a and b are evaluated by the 
Fourier transformation, Eq. (9), providing the amplitude at 
each frequency with the locations of dips. However, they 
do not provide, at least in a direct way, information on how 
such amplitudes are formed via the interference processes 
between radiations at the corresponding frequency. In order 
to obtain a signature which manifests the mechanism of such 
underlying interference processes, one needs to analyze the 
information related to the frequency of interest as well as the 
corresponding time-domain picture. The Husimi function 
which is an instance of the time-windowed Fourier trans-
form, as in Eq. (12), has been used to analyze the emitted 
electric field, delivering time-dependent spectra which are 
local in time. Being useful to identify the time points at 
which the waves of the frequency of interest are emitted, 
however, the Husimi function may not be effective to com-
bine signals from two or more distinct time points simul-
taneously, which is necessary to identify the interference 
mechanism.

For this purpose, we used an inherently non-local trans-
formation in time, provided by the Wigner function. It is 
defined in the time-frequency domain as [10]

By integrating the product of electric fields at different time 
points, extending the whole time domain, information from 
distinct time points is combined and encoded in the Wigner 

WE(t,�) = ∫
∞

−∞

ds

2�
E∗(t − s∕2)ei�sE(t + s∕2).

function. Then, to investigate the interference mechanism 
for each dip frequency, we multiply a window function to 
the emitted electric field in the frequency domain, centered 
at the frequency of interest with a certain width �� as was 
done in, e.g., [17]. The frequency-windowed time-domain 
function is evaluated:

E𝜔(t) = ∫
∞

−∞

d𝜔�

2𝜋
Ẽ(𝜔�)G(𝜔� − 𝜔;𝜎𝜔)e

i𝜔�t,
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Fig. 5  a Power spectra |Ẽ(𝜔)|2 of emitted electric field changing 
with the driving strength � , whereas the pulse duration is fixed to 
�d = T0∕20 . The driving field shape is the half-cycle Gaussian. Cut-
off frequencies �cutoff are proportional to the driving strength � , as 
given by Eq. (14) (see the rightmost  diagonal line). Frequencies at 
which dip structures appear are shown according to the prediction of 
Eq. (15). b Power spectrum at a selected driving strength � = 24.5�0 
as indicated in (a) by a horizontal line. Dip frequencies �intra

dip,n
 for 

n ∈ {0, 1, 2, 3} are shown. c Wigner functions for the emitted field 
with a window function of width �� = 2�0 and centered in frequency 
domain at the dips frequencies of indices n = 2, 1, 0 , respectively
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where Ẽ(𝜔) is the Fourier transform of E(t) and G(�;��) 
takes the Gaussian form defined by Eq. (13).

The Wigner functions for the emitted electric field after 
applying the window transform centered at the dip fre-
quencies are shown in Fig. 5c for the case of the half-cycle 
driving. We observe that at the time instant of the peak 
of the driving pulse, t = 0 , the Wigner functions show 
negative values centered close to each dip frequency. The 
negativity structures of the Wigner functions turn out to be 
indicators of dip frequencies originating in the underlying 
interference processes.

Such signatures in the Wigner function become more 
sophisticated for the case of the single-cycle driving. In 
Fig. 6a, the corresponding power spectra are shown in 
dependence on driving strengths. Compared to the case of 
the half-cycle driving illustrated in Fig. 5a, the structure 
of the power spectra induced by a single-cycle Gaussian 
pulse has a set of similarities including the cutoff and 
intra-half-cycle dip frequencies. One remarkable differ-
ence is that there are additional sets of dip frequencies that 
may not be attributed to intra-half-cycle interference, as 
pointed out in Sect. 4.2. The existence of such extra dip 
structures may be expected since, compared to the case of 
the half-cycle driving pulse, there are now two half-cycles 
to yield in total four emission instants for a given radiation 
frequency, not two. Thus, the outcome is determined by 
three phase differences between the corresponding four 
contributions. Since both half-cycles have the same shape, 
phase difference between the two time points of emission 
within one half-cycle is fixed if that of the other side from 
t = 0 is given. This leaves only two degrees of freedom, 
namely the intra- and inter-half-cycle phase differences, 
for controlling the interference scheme. As a result, after 
excluding the dip frequencies coming from the intra-half-
cycle interference, {�intra

dip,n
} , we are left with the dip struc-

tures formed by the inter-half-cycle interference effect. For 
example, the power spectrum shown in Fig. 6b has a set of 
dip frequencies, four of which are due to the intra-half-
cycle interference at �intra

dip,n
 with n ∈ {0, 1, 2, 3} , and the rest 

comes from the inter-half-cycle interference effects.
Let us consider the Wigner function shown in Fig. 6c, 

with frequency windows centered at the three highest 
intra-half-cycle dip frequencies, in comparison with the 
corresponding total power spectra for a given driving 
strength � = 43.4�0 shown in Fig. 6b. We can observe 
that the respective Wigner function has negative values 
at each dip frequency, whether it comes from the intra-
half-cycle or inter-half-cycle interference. However, some 
parts of the negativity structure represent not just simple 
pits, but are connected to nearby frequencies, forming a 
donut-like pattern, which will be discussed in the follow-
ing subsection.

5.2  Correspondence between the negativity 
of the Wigner function and the avoided crossing 
of dip frequencies

Investigating the picture of the power spectrum in depend-
ence on driving strength for the case of the single-cycle driv-
ing, Fig. 6a, we notice that there are several lines of intra-
half-cycle dip frequencies with positive slopes in �-� space, 
along with another set of lines of dips with negative slopes 
following the inter-half-cycle dip frequencies. We would like 
to focus on the intersection points of those two sets of lines. 
An example of such an intersection point can be found in 
Fig. 6a at � = �inter

dip,2
 and � = 43.4�0 . However, a closer 
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Fig. 6  Same as Fig. 5, except that the driving pulse shape is the sin-
gle-cycle Gaussian and that the pulse duration is �d = T0∕10 . Also, 
among the dip frequencies, only those coming from the interference 
within each half-cycle, denoted as �intra

dip,n
 , are indicated following 

Eq. (15). The solid vertical lines in (b) and (c) indicate numerically 
obtained dip frequencies, by just detecting local minima of the spec-
tra in (b)
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look at the vicinity of the alleged intersection point reveals 
that actually the dip lines do not cross. Instead, they repel 
each other, forming an ‘avoided crossing.’ We observe in 
Fig. 6b that the precise position of the dip frequency near 
the avoided crossing at (�,�) = (�intra

dip,2
, 43.4�0) in Fig. 6a 

is not the crossing point itself but is split into two nearby 
dips of which �intra

dip,2
 is located around the middle.

Comparing the structure of the avoided crossings in 
Fig. 6a with the Wigner functions for frequency-windowed 
electric fields centered at the intra-half-cycle dip frequen-
cies, we observe that each donut-shape pattern appears in 
the Wigner functions in Fig. 6c in the frequency range where 
an avoided-crossing structure is located in Fig. 6a. Also, at 
the dip frequency relatively far from avoided crossings such 
as the one in between of �intra

dip,0
 and �intra

dip,1
 at � = 43.4�0 , the 

Wigner function shows a simple negative spot, instead of a 
donut-shape pattern. We note that the connection between 
two different dip frequencies forming a donut shape found 
near an avoided crossing has not occurred for the case of the 
half-cycle driving even when the width of the window func-
tion in the frequency domain �� has been extended to include 
more than one dip frequencies. This is consistent with the 
observation that there is no avoided crossing for the case of 
the half-cycle driving.

Based on the comparison between the power spectrum 
and Wigner functions, we are able to make the following 
correspondences: On the one hand, a simple pit of the nega-
tivity in the Wigner function represents a dip frequency rela-
tively far from the region of avoided crossings, where only 
one of the two lines, corresponding to the intra- or inter-half-
cycle dip frequencies, passes through. On the other hand, the 
negativity structure of the donut shape indicates an avoided 
crossing of the two lines. We point out that how a given 
dip structure is formed, i.e., whether via the intra-half-cycle 
interference or via the inter-half-cycle interference, or con-
tributed by both of them that occurs in the avoided crossing 
region, may not be possible to figure out by just looking 
at the total power spectrum as in Fig. 6b. Rather, we can 
identify the interference scheme of each dip frequency by 
analyzing the spectra in the time-frequency domain with 
the help of the frequency-windowed Wigner function. Fur-
thermore, since the Wigner function in the time-frequency 
domain can actually be measured experimentally [10, 18], 
the corresponding analysis should be feasible under realistic 
conditions.

5.3  Complementary usage of the Husimi 
and the Wigner function for the analysis of dip 
structures

We note that the Husimi function and the Wigner func-
tion have complementary roles in analyzing the underlying 

mechanism of the formation of dip structures. The Husimi 
function is useful to confirm the dominant frequency emitted 
at each time point. Based on the Husimi function in Figs. 3 
and 4, we could make a set of predictions whether there 
would be an intra-half-cycle interference and/or an inter-
half-cycle interference depending on a given frequency. 
However, the Husimi function does not uncover directly at 
which frequency a particular dip occurs. Its time resolution 
enables finding dominant spectral components at a given 
time instant but, at the same time, suppresses information 
originating from other time instants. This locality of the 
Husimi function has been widely used to analyze time-
dependent spectra [19, 20], but it may not be an optimal 
tool to analyze interference which requires collecting phase 
information from different time points distributed over a 
time interval larger than the width of the time window of 
the Husimi function. In contrast, the Wigner function is 
inherently non-local in time and it can indeed collect phase 
information throughout the whole time domain. This fact 
elucidates why the Wigner function can be used to directly 
find the dip frequencies and to determine the interference 
mechanism for the formation of each dip structure. Further-
more, it is actually the negative regions of the Wigner func-
tion which encode this information in a transparent way.

6  Conclusion

We investigated radiation spectra from a two-level system 
serving as a building block of the multi-level model, which 
in its turn can fully reproduce high-order harmonics radia-
tion from solids. Especially in contrast to the conventional 
high harmonics generation, we considered driving fields that 
have only half- or single-cycle duration, so that the typical 
plateau in the radiation spectra starts to have clear dip struc-
tures. This implies that there is a set of missing frequencies 
with amplitudes suppressed by several orders of magnitude. 
The information on those missing modes is important for 
application of the high harmonics radiation in the context of 
the generation of attosecond pulses and the design of short-
wavelength coherent light sources.

We evaluated radiation spectra for half-/single-cycle 
pulses and observed a series of dips structures. Quantitative 
identification of dip frequencies at which such structures are 
formed was demonstrated. With the help of the Husimi func-
tion, three schemes of interference to form each dip struc-
ture were found, namely intra-half-cycle, inter-half-cycle, 
and their hybrid. In particular, we found that, in the driving 
strength-dependent power spectra, there is a set of avoided 
crossings at the hybrid regions where the lines of dip fre-
quencies formed by the intra- and inter-half-cycle interfer-
ences are supposed to cross each other but never do so. To 
further understand each interference scheme, we employed 
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the time-frequency Wigner function which is an inherently 
non-local transformation in the time domain, capable of 
collecting information on phase differences between radia-
tion contributions emitted at distinct time moments dur-
ing the pulse. From the analysis, we observed that the dip 
structures correspond to the negative-valued regions of the 
Wigner functions. Furthermore, we figured out that it can 
be identified from the negativity pattern of the Wigner func-
tion whether a given dip structure had originated from the 
interplay of both the intra- and inter-half-cycle interferences 
or had been contributed by only one of them. Since such 
time-frequency Wigner function can actually be measured, 
we envisage utilizing the negativity structure of the Wigner 
function toward extracting the information on the relative 
phases of the radiation components emitted at the subcycle 
timescale during the pulse.
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