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Abstract
Synaptic plasticity is studied herein using a voltage-driven memristor model. The bidirectional weight update technique is 
demonstrated, and significant synaptic features, including nonlinear and threshold-based learning and long-term potentia-
tion and long-term depression, are emulated. The spike-timing-dependent plasticity (STDP) learning characteristic curve is 
obtained from exhaustive simulations. Then, using leaky integrate and fire neurons and memristive synapses, fully connected 
spiking neural networks with 2 × 2 and 4 × 2 architectures are constructed, and unsupervised learning using the STDP rule 
and winner-takes-all strategy is evaluated in those networks for pattern classification.

Keywords Memristor · Synapse · Spiking neural network (SNN) · Unsupervised learning · Spike-timing-dependent 
plasticity (STDP)

1 Introduction

The human brain contains about 1010 neurons, each con-
nected to 103 − 104 other neurons via synapses [1]. This 
means that the synapse is the most abundant element in the 
brain neural network. Therefore, the development of high-
density and biologically plausible spiking neural networks 
(SNNs) requires an efficient circuit component that realizes 
synaptic plasticity. The three functionalities required of 
this component include: (1) storage of the synaptic weight, 
(2) updating the weight according to the network activities 
(update rule), and (3) affecting the strength of the com-
munication between a pre- and postsynaptic neuron [2, 3]. 
Neurons in SNNs communicate with each other by transmit-
ting signals in the form of voltage spikes. When a neuron is 
activated, it fires and generates spikes. The spikes pass to the 
next neuron through synaptic connections and then increase 
or decrease the membrane potential of the neurons in the 
next layer. The synaptic weights modulate the spikes. A 
popular weight update algorithm is spike-timing-dependent 

plasticity (STDP), which is as a refinement of the Hebbian 
learning method in which the weight of a synapse varies 
based on the relative timing between the pre- and postsyn-
aptic neuron spikes. According to STDP, if the presynaptic 
spikes arrive before the postsynaptic spikes, the weight of 
the synapse increases, leading to long-term potentiation 
(LTP). However, if they arrive after the postsynaptic spikes, 
the synaptic weight decreases, leading to long-term depres-
sion (LTD).

Several circuits have been proposed to achieve synapse 
functionality based on STDP learning rules. However, these 
circuits face several challenges that limit their application as 
efficient synapses in large-scale SNNs. The synaptic circuit 
proposed in Ref. [1] requires external controllers and sev-
eral switches. Indiveri et al. [4] proposed a complementary 
metal–oxide–semiconductor (CMOS) circuit with 30 transis-
tors to implement a single synapse using the STDP learning 
rule, but this is not appropriate for large-scale implementa-
tion. In Ref. [5], synaptic plasticity was investigated by using 
binary memristive synapses. However, a gradual and analog 
weight change is more desirable and also biologically plausi-
ble. Hong et al. [6] proposed a structure with two memristors 
connected in reverse polarity to implement a single synapse 
that exhibited both potentiation and depression processes. 
Long et al. [7] proposed a memristive synapse including 
two memristors connected in reverse polarity in series and 
two transistors. Their memristor model followed the simple 
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model of HP Labs. To improve the performance of the HP 
model, a window function has been proposed. In the work 
presented herein, we use a single memristor with bidirec-
tional and analog weight change characteristics.

Nonvolatile storage is preferred for efficient synapse cir-
cuit components so that the weight does not vanish over 
time. Besides, such devices should have a minimal foot-
print to facilitate large-scale integration. It is also preferred 
that the weight only changes when the applied signal level 
exceeds threshold. This feature discriminates between learn-
ing and regular operation, such as classification. All the 
above characteristics are offered by a two-terminal device 
named the memristor, first introduced by Leon Chua in 1971 
[8] and experimentally demonstrated by HP Labs in 2008 
[9]. In particular, Chua proposed to use memristors to fabri-
cate synapses and neurons following the Hodgkin–Huxley 
formalism [10]. Jo et al. experimentally demonstrated the 
use of a memristor as a synapse [3]. The memristor exhibits 
nonvolatile modification of its resistance (or conductance) in 
response to the current (charge) or voltage (flux) driving the 
device. Several models have been proposed to capture the 
electrical characteristic of a memristor [9, 11–15]. A phys-
ical-based model called the ThrEshold Adaptive Memristor 
(TEAM) model [14] takes into account the Simmons tun-
neling equations and is compatible with several devices such 
as spin-based memristive systems and ionic thin-film mem-
ristors made from materials such as TiO2 . Subsequently, the 
voltage (V)TEAM model [15] was introduced as a voltage-
driven version of the TEAM model. VTEAM expresses the 
physical relations via relatively simple mathematical equa-
tions, which are reasonably accurate. Besides, a threshold 
level is defined for the learning function, which is compat-
ible with the synapse wright update requirement. In recent 
years, the implementation of artificial synapses using mem-
ristors has attracted significant attention. Zamarreño-Ramos 
et al. [16] proposed a macro model to implement the mem-
ristor characteristic. Then, based on this macro model and 
the leaky integrate and fire (LIF) neuron circuit, STDP learn-
ing rules were implemented. Spiking neuron and memristor-
based STDP learning circuits have been designed to repre-
sent both LTP and LTD processes in one circuit [17]. Covi 
et al. [18] studied the performance of HfO2-based memris-
tors by placing the device between two spiking channels, 
i.e., two waveform generators and fast measurement units. 
They characterized the STDP mechanism by analyzing the 
delay between the pre- and postsynaptic signals. This arti-
ficial synapse was then used in a sample neural network to 
perform unsupervised learning to recognize five characters. 
The use of memristors as synapses in a SNN with Hodg-
kin–Huxley and Morris–Lecar neurons has been reported 
for pattern classification applications [19, 20]. These works 
used the current-controlled linear ion drift model [9] and the 
Biolek [21] memristor model, respectively.

In the work presented herein, we use the VTEAM model 
for the memristor, and investigate the resulting synaptic 
functionality for an SNN. To demonstrate the application of 
the proposed modeling approach in an SNN, two examples 
of fully connected SNN architectures based on LIF neurons 
and memristive synapses in the form of a crossbar array are 
presented for pattern classification.

2  The memristor model

A voltage-controlled time-invariant model of a memristor 
device can be expressed as

where w is an internal state variable that is limited to the 
physical dimension of the device [0, D] with D being the 
device length, v(t) is the voltage applied to the device, and 
i(t) is the device current. The mathematical relation for 
f(w, v) in the VTAEM model is defined as [15]

where k, �on , and �off are constant parameters that can be 
considered as reinforcement coefficients. von and voff are 
voltage thresholds. fon(w) and foff(w) are window functions 
defined in Ref. [14] as

where wc is a constant parameter. The current–voltage rela-
tionship can be defined as

Roff and Ron are the memristance values at the bounds D and 
0, respectively, and � is obtained as
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Figure 1a shows the variation of the memristance as a func-
tion of time for several values of the Roff∕Ron ratio. Increas-
ing Roff∕Ron extends the dynamic range of the device. This 
causes the conductance to change over a wide range and 
prevents early saturation of the conductance. This feature 
is vital to achieve precise control over and analog variation 
of the synaptic weight. However, practical devices have a 
limited dynamic range that should be taken into account. 
Figure 1b shows the hysteresis characteristic obtained from 
the model for different values of k. In fact, k acts as a gain 
parameter in our model, increasing or decreasing the rate 
of change of the state variable. Too large values of k cause 
the resistance to saturate with small changes of the applied 
voltage. The values of the model parameters are presented 
in Table 1, selected such that the memristor model can func-
tion properly as a synapse and thereby can be adapted to 
implemented practical devices; For example, the length of 
a practical device is less than 10 nm, and this parameter is 
3 nm in the current memristor model. The Roff∕Ron ratio is 
selected based on dynamic range considerations. To study 
the feasibility of using the proposed device as a synapse, the 
variation of the current over five positive and five negative 
voltage cycles is shown in Fig. 2a. A consecutive increase 
(or decrease) of the memristor conductance is observed in 
the positive (negative) applied voltage cycles. When apply-
ing positive voltages, the current and conductance gradually 
increase from their previous values. Then, when applying 
negative pulses at each stage, the current decreases from its 
maximum value. This result suggests that this memristive-
based synapse can preserve its weight and that its weight 
can be updated at any stage by applying an external voltage. 
Figure 2b illustrates the hysteresis characteristic in sequen-
tial voltage sweeps. When applying a train of positive (or 
negative) voltage pulses, the conductance of the memristor 

gradually increases (or decreases) in a continuous way and 
the magnitude of the weight change is considerable for the 
selected parameter values, indicating that the proposed 
memristor model with the specified parameter values can 
display long-term potentiation (and depression) features as 
an artificial synapse.

3  The LIF neuron model

The leaky integrate and fire (LIF) neuron model is widely 
used in SNNs since it demonstrates the main biological fea-
tures seen in Nature without high computational cost [22]. 
In the LIF model, when the voltage crosses a threshold, the 
neuron fires and produces an output spike that is transmit-
ted to other neurons via the synapse. The weights of the 
synapses control the impact of the spikes on the neurons in 
the next layer. This electrical spike corresponds to the action 
potential of biological neurons. Immediately after firing, the 
depression phase takes place, and the neuron’s potential is 
reset to 0. The LIF neuron model can be described based on 
a few circuit components, including a capacitor for integra-
tion of the input current with a resistor in parallel to describe 
the leakage term. This circuit is driven by an input current 
I(t). The voltage across the capacitor is compared with a 
threshold, and a switch turns on at the threshold voltage, 
when a spike is produced. The differential equation describ-
ing the circuit can be written as [23]

where v is the membrane potential and � = RC is the time 
constant.

(7)�
dv

dt
= RI(t) − v,

Table 1  The values of the 
memristor model parameters

Ron (k�) Roff (k�) won (nm) woff (nm) k von (mV) voff (mV) �on, �off

0.1 5 0 3 5 × 10
−16 −1.5 1.5 3

Fig. 1  a The effect of the 
Roff∕Ron ratio on the variation of 
the memristance as a function 
of time. The applied stimulation 
voltage profile with a maximum 
of 0.95 V and frequency of 
1.2 Hz is shown in the inset. b 
The effect of different |k| values 
on the I–V characteristic
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4  Synaptic plasticity

The circuit designed to investigate the behavior of such 
memristor-based synapses in HSPICE is illustrated in Fig. 3 
[24]. In this circuit, a memristor is considered as a synaptic 
device, and no complex synaptic circuit is required. Unlike 
other fundamental elements (such as the resistor, capacitor, 
and inductor), the memristor is unknown to HSPICE. There-
fore, it is necessary to describe the memristor in the Verilog-
A circuit language. In addition to the memristor, the pre- and 
postsynaptic neuron blocks are defined in Verilog-A, too.

The spike resulting from firing either the pre- or post-
synaptic neuron should reach the memristor synapse with 
a delay relative to the other neuron spike so that the learn-
ing ability can be assessed through the STDP mechanism. 
Therefore, a delay block is required for either the LTP or 
LTD process. The delay block shown with solid or dashed 

lines is used for the LTP and LTD mode, respectively. In 
the circuit-level modeling, when one neuron fires, due to 
the loading effect of the previous circuit stages, the result-
ing spike is attenuated along the path to the synapse. A 
voltage buffer block is inserted into the proposed circuit to 
isolate the network from other circuit components.

The response of the device to a constant stimulation 
current I1, I2 applied in the form of identical spike trains 
is demonstrated in Figs. 4 and 5 . When the voltage across 
the memristor synapse exceeds a positive threshold, the 
memristor conductance, equivalent to the synapse weight, 
gradually increases as shown in Fig. 4. This situation is 
reversed in the LTD mode, as shown in Fig. 5. Synaptic 
plasticity can be observed for fixed spike times in these 
figures. The parameter |�t| is constant in this case. The 
analog behavior of the device is confirmed, too (Figs. 4d, 
5d).

Fig. 2  a The variation of the 
device current as a result of 
five positive and five negative 
consecutive voltage cycles. b 
The continuous lines show the 
change in the hysteresis charac-
teristic in the first and fifth posi-
tive and negative direct-current 
(DC) sweeps

Fig. 3  A schematic of the 
synaptic plasticity circuit. The 
delay blocks shown with solid 
and dashed lines are used to 
implement LTP and LTD, 
respectively
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5  The STDP characteristics of the memristor 
synapse

To study the feasibility of implementing the STDP rule using 
the proposed memristor model, input signals in the form of 
pulse trains are applied to both nodes of the memristor [16]. 
The signals are shaped so that the voltage difference between 
two nodes may exceed the threshold value for both the LTP 
and LTD weight update. The delay between consecutive fall-
ing edges of these pulse trains �t is a crucial parameter in 
the STDP characteristics because it defines the duration for 
the weight update,

(8)�t = tpost − tpre.

Figure 6a depicts a typical set of pre- and postsynaptic pulse 
trains, and the resulting voltage drop across the memristor 
( Vmem = Vpost − Vpre ) is shown in Fig. 6b. Figure 6c demon-
strates the response of the proposed memristor to the applied 
spike trains. As expected from Eq. 2, the conductance of the 
memristor is only updated when Vmem exceeds the threshold 
(the regions indicated by the red color above and below the 
dashed line in Fig. 6b). Two examples each of potentiation 
and depression are demonstrated in Fig. 6b with �ta,�tb,�tc , 
and �td . For the cases with �ta and �tb , the conductance 
increases because the presynaptic spike occurs before the 
postsynaptic one. On the other hand, for �tc and �td , the 
postsynaptic spike occurs before the presynaptic one, thus 
the memristor conductance decreases, as shown in Fig. 6c. 
A comparison of �ta with �tb and �tc with �td shows that, 
the smaller the value of �t , the sharper the change in the 

Fig. 4  A constant-current stimulation of a Vpre , b Vpost , and c 
Vpost − Vpre for LTP when reaching the positive threshold. d The 
gradual increase in the conductance induced in the LIF neuron blocks 
when using a train of identical spikes. The three spikes are magnified 
in a–c 

Fig. 5  A constant-current stimulation of a Vpre , b Vpost , and c 
Vpost − Vpre for LTD when reaching the negative threshold. d The 
gradual decrease in the conductance using a train of identical spikes 
induced by the LIF neuron blocks. The three spikes are magnified in 
a–c 
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conductance. Figure 6 confirms the bidirectional behavior 
of the memristor synapse.

In Fig. 6, although the interval �ta is longer than �tb , 
the incremental steps in the conductance are almost equal. 
Nevertheless, this is not precisely according to the STDP 
rule. Previously, the STDP characteristics were obtained by 
applying current pulses to LIF neuron blocks, and a sin-
gle spike is produced in the synaptic circuit (Fig. 3) in Ref. 
[24]. The spikes displayed in Fig. 6 are used to show the 
bidirectional behavior of the memristor. However, the mag-
nitude of the conduction change due to the variation of the 
time difference between the pre- and postsynaptic spikes is 
not noticeable, so this spike shape is not suitable for STDP 
characterization. Therefore, we use different shapes for the 
pre- and postsynaptic spikes to reflect the effect of the delay 
on the weight update more effectively, as shown in Fig. 7. 
Figure 8 shows the maximum value of the voltage applied to 
the memristor max(Vmem) for the new pulse shapes in Fig. 7 
as a function of �t . The duration for which the voltage is 
above the threshold is almost constant, and Fig. 8 indicates 
that the magnitude of the weight change is directly related 

to �t . To obtain STDP characteristics, the parameter ( �t ), 
which is the time difference between the pre- and postsyn-
aptic neuron spikes, varies and the voltage applied to the 
memristor ( �v ) is calculated as

In each step, the conductance varies as

where G0 and G1 are the conductance values (synapse 
weights) before and after the update, respectively. Next, the 
STDP characteristics �G are obtained based on exhaustive 
simulations (with 110 simulation steps) for different values 
of the delay ( �t ). The results are shown in Fig. 9. In each 
simulation step, a �t value is assumed and input pulses are 
applied to both nodes of the memristor, while the weight is 
updated according to the model if the threshold is crossed. 
Figures 8 and 9 demonstrate several essential features of the 
proposed memristor model along with the input spikes for 

(9)�v = ±max
|||Vpost − Vpre

|||.

(10)�G =
G1 − G0

G0

× 100,

Fig. 6  The bidirectional 
conductance variation of the 
memristor: a the pre- and 
postsynaptic pulse trains, b 
the voltage Vmem applied to the 
memristor, and c the variation 
of the conductance with time
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neuromorphic applications. The maximum duration �t that 
can affect the synapse weight is about 100 μ s, whereas for a 
longer delay between the pre- and postsynaptic signals, the 
weight change is almost negligible. The magnitude of the 

weight change increases when reducing �t . However, for a 
�t value that is comparable to the postsynaptic pulse dura-
tion, the two consecutive weight changes (positive and nega-
tive) almost cancel out and the weight change is negligible 

Fig. 7  The new pulse shapes for 
STDP: a the presynaptic pulse 
and b the postsynaptic pulse

Fig. 8  max(Vmem) as a function 
of �t for the pre- and postsynap-
tic pulse shapes shown in Fig. 7

Fig. 9  The STDP character-
istics: �G obtained based on 
exhaustive simulations as a 
function of the pre-to-post spike 
delay ( �t)
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at around �t = 0 . Figure 9 follows the experimental results 
[25]. This result suggests that the behavior of the device is 
promising and that it could be used as an artificial synapse.

6  Network architectures with memristor 
synapses

In this section, we demonstrate unsupervised learning based 
on the STDP rule of the proposed memristor synapse in 
simple SNNs formed by connecting LIF neurons through 
voltage-driven memristors playing the role of synapses 
(Fig. 10a). The membrane voltage of the presynaptic neuron 
in each input neuron can be determined by Eq. 7, where v 
and I(t) are replaced by Vpre and Iin(t) , respectively. Vpre is the 
voltage of the presynaptic neuron, and Iin is the input current 
applied to the presynaptic neurons with an amplitude of 1 A.

The excitatory current of the postsynaptic neurons is the 
current from the previous layer that passes through the mem-
ristor synapse. The membrane voltage of the postsynaptic 
neuron can be determined by Eq. 7, where v and I(t) are 
replaced by Vpost and Ipostsynaptic(t) , respectively. The cur-
rent that stimulates each postsynaptic neuron is the sum of 
the currents passing through the synapses connected to that 
neuron,

When the voltage across each memristive synapse exceeds 
the positive or negative threshold of the device, the LTP and 
LTD phenomenon occurs and the conductance of the mem-
ristive synapses is altered. In an SNN with k input neurons, 

(11)Ipostsynaptic =

k∑
s=1

Is.

input current s to the postsynaptic neuron is obtained by 
Eq. 1.

Gs is the conductance of the memristor synapse and can 
be calculated by using Eq. 5, where ws(t) is the situation of 
the state variable in each moment, calculated using Eq. 2. 
The behavior of the LIF neurons in the presence of memris-
tor synapses is shown in Fig. 10b. Unsupervised learning 
in a 2 × 2 network with four memristors and then in a 4 × 2 
network with eight memristors is investigated.

6.1  The 2 × 2 SNN using STDP learning

The 2 × 2 network with two input and two output LIF neu-
rons is depicted in Fig. 11. The proposed network is fully 
connected through four memristive synapses. This SNN is 
used for unsupervised learning of the XOR pattern based on 
two complementary input pulses demonstrated in Fig. 11. 
The input waveform can be divided into several time slots, 
during which a two-pixel pattern is displayed on the net-
work. Black pixels stimulate their corresponding presynaptic 
neurons with level “1”, while white pixels are represented 
by input level “0”. The membrane potential of the presyn-
aptic neurons is shown in Fig. 12a, b. The threshold value 
of all the output neurons is constant and equal to each other. 
The initial weights of the synapses are randomly assigned. 
The spiking characteristics of the postsynaptic neurons are 
shown in Fig. 12c, d. As expected, the two output neurons 
compete with each other to spike earlier in response to the 
input spikes. We use the winner-takes-all concept, thus as 
soon as one neuron spikes, the current time slot is assigned 
to it. In this way, potentiation and depression are applied to 
the corresponding synapses. At each step, the voltage drop 

Fig. 10  a The bioinspired SNN 
architecture consisting of a 
presynaptic neuron, a memris-
tor synapse, and a postsynaptic 
neuron. b The membrane volt-
age of the pre- and postsynaptic 
LIF neurons connected by a 
voltage-driven memristor as a 
synapse for a stimulus current 
of 1 A
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across the memristor synapses is calculated and compared 
with the threshold value. If it exceeds the threshold, the 
memristor synapse weight is updated. Given that the output 
1 neuron spikes earlier after applying class 1 input, the syn-
aptic weight W11 is increased through the LTP phenomenon. 
Presynaptic neuron 1 spikes before output 1. However, since 
output 2 is inactive in this time slot, its synaptic weight W12 
should be reduced. A similar behavior occurs for the class 
2 pattern. Figure 13 demonstrates the time evolution of the 
weight changes for all the memristive synapses. At the end 
of the learning process, the synapse weights W11 and W22 
are increased and almost become saturated at the maximum 
value, while W12 and W21 are decreased to the minimum 
value.

6.2  The 4 × 2 SNN using STDP learning

A crossbar framework for the LIF-based memristive SNN 
consisting of four inputs and two outputs is shown in Fig. 14. 
The proposed structure has eight memristive synapses and 
classifies two classes of four-pixel images. Each class is 
assigned to presynaptic neurons in the form of four input 
waves (Fig. 15a–d). Figure 15e, f shows the output results 
for the two postsynaptic neurons. Whenever an input neu-
ron spikes before an output neuron, the corresponding 

memristive synapse is potentiated and otherwise depressed, 
as demonstrated in Fig. 16. Note that the weight for the two 
synapses connecting each input neuron x to two output neu-
rons (Wx1, Wx2) varies in opposite directions.

Other works have examined the Hodgkin–Huxley and 
Morris–Lecar models. Table 2 presents a comparison of 
those results with the current work. Despite the high accu-
racy of the cited models, they suffer from high computa-
tional cost due to their complexity. In this study, the LIF 
model, the most popular neuron model with very low com-
plexity and acceptable accuracy, has been used for the mem-
ristive SNNs. During the learning process, the LIF neuron 
model is used directly instead of the neural spike shapes. 
In this study, the VTEAM model was applied to achieved 
synaptic plasticity, and a thorough analysis of its different 
synaptic features carried out, being used for the first time as 
an artificial synapse in a sample SNN.

7  Conclusions

The feasibility of using a voltage-driven memristor model 
as a synapse in SNNs has been studied through circuit- 
and system-level simulations. The model is analyzed 
and parameterized to demonstrate the variation of the 

Fig. 11  A 2 × 2 spiking network 
with LIF neurons and four 
memristive synapses for unsu-
pervised learning of exclusive 
patterns

Fig. 12  The membrane potential 
of the a, b input and c, d output 
neurons in the 2 × 2 SNN
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analog conductance in response to an applied excitation. 
The results of the simulations confirm the ability of the 
proposed model to demonstrate bidirectional character-
istics in response to input spikes, including both long-
term potentiation (LTP) and depression (LTD). The STDP 
characteristics of the proposed synapse are explored using 
exhaustive simulations under specific spike patterns. 
Unsupervised learning based on the STDP rule with 
the proposed synapse in 2 × 2 and 4 × 2 SNNs is further 
demonstrated. These results suggest that the proposed 
memristor-based synapse model might emulate synapses 
in spiking neural networks, including networks with tem-
poral encoding [26].

Fig. 13  a–d The time evolu-
tion of the memristor synapse 
conductance (weight) changes 
for the 2 × 2 SNN

Fig. 14  A crossbar framework for the 4 × 2 memristor-based SNN
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Fig. 15  The membrane potential 
of a–d four input neurons and 
e, f two output neurons for the 
4 × 2 LIF-based SNN

Fig. 16  The time evolution of 
the eight memristor synapse 
conductance (weight) changes 
for the 4 × 2 SNN

Table 2  A comparison of 
different memristive SNNs 
for pattern classification 
applications

Criterion [19] [20] This work

Neuron type Conductance based Conductance based Spiking based
Neuron model Hodgkin–Huxley Morris–Lecar LIF
Memristor model Linear ion drift Biolek VTEAM
Memristor control mechanism Current driven Voltage driven Voltage driven
Number of neuron parameters 7 9 2
Computational operations to pro-

duce one spike
1200 600 9–13

Complexity of equations Highest Moderate Sufficient
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