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Abstract
In the design of a high-performance diaphragm-based static/dynamic pressure sensor (DB-S/DPS), researchers have mostly 
carried out studies on static deflection and frequency analysis without including diaphragm vibration damping and the effect 
of the operating medium (OM). However, diaphragms and OM usually contain dynamic processes where vibration damping 
occurs with constantly changing frequency parameters. Therefore, to design a sensor that will work in such an OM, the effect 
of the dynamic pressure performance of the diaphragm materials on the sensor parameters (sensitivity, bandwidth, linearity) 
becomes even more important. In this study, for the first time in the literature, the effect of many different parameters on sen-
sor parameters at the same time was analyzed by theoretically examining the dynamic deflection and static deflection expres-
sions that the researchers did not consider in the pressure sensor design. Also, for the first time in the literature, the analysis 
of the dynamic parameters of many diaphragm materials and sensor operating media was carried out with this study. In order 
to determine the effect of the dynamic pressure performance of the diaphragms on sensor parameters in high-performance 
DB-S/DPS design, multiple parameter implementation (MPI) was carried out with MATLAB software. MPI has been real-
ized considering various diaphragm materials, alternative operating media, and all the dynamic parameters (the damping 
ratio of the medium, added virtual mass incremental factor). In the work, metallic (Al, Au), polymer (cellulose triacetate), 
semiconductor (Si), glass derivative  (SiO2), and two-dimensional (graphene) materials which are frequently reported in the 
literature were chosen as the diaphragm. The effects of these selected materials and OMs (air, water, mineral oil) on sensor 
parameters were examined in detail. To the best of our knowledge, there is no comprehensive study in the literature involving 
such dynamic pressure parameters. With this valuable research, considering the forced oscillations and damping, valuable 
and interesting results are presented that can guide DB-S/DPS designers.

Keywords Diaphragm-based static/dynamic pressure sensor · Clamped edge circular diaphragm · Vibration analysis · 
Dynamic sensitivity analysis · Damping effect · Optical fiber Fabry–Perot sensor

1 Introduction

For many years, optical fiber Fabry–Perot (FP) interfero-
metric sensors have found extensive application, as they 
can offer many important advantages over conventional 
sensors, including electromagnetic interference, high sensi-
tivity, instant response, and small size. Also, these sensors 
provide high sensitivity and low noise, with easy optical 
multiplexing to arrays. The high sensitivity results from the 
high compatibility of the diaphragm, which can be measured 
interferometrically even under very low pressure. Because of 
these unique features, they are studied and developed for use  
in applications such as MRI-compatible microphones [1], 
small force measurements [2], large structure monitoring 
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[3], underwater surveillance [4], seismic research [5], bio-
chemical sensors [6], atomic force microscopy [7], and 
photo-acoustic imaging [8].

The FP interferometer-based sensor tip consists of two 
parallel interfaces, fiber and diaphragm. Therefore, the dia-
phragm is an important factor in the practical application 
of extrinsic Fabry–Perot interferometric (EFPI) sensors. 
Various diaphragm materials have been used in the design, 
including silicon [9], silica [10], metallic [11–13], two-
dimensional (2D) [14], and polymer [15–17] materials. The 
geometric properties and material used for the diaphragm are 
important parameters that determine the sensitivity and fre-
quency response of the EFPI sensor [18]. Sensor parameters 
such as bandwidth, linearity, and sensitivity must be deter-
mined for the efficient operation of the diaphragm. Analysis 
of multiple factors is required to determine these parameters.

Many theoretical studies regarding the effects of the 
medium on the resonance frequency have provided valu-
able information. The Poisson–Kirchhoff vibration theory 
of circular plates was investigated by several authors, and 
the free edge condition was studied by Kirchhoff [19], Lamb 
[20], and Rayleigh [21]. Timoshenko [22] used the energy 
method to solve the clamped edge plate condition. Amabili 
and Kwak [23, 24] investigated the effect of free surface 
waves on the free vibrations of circular plates based on the 
free surface of an infinite liquid area. Kozlovsky [25] studied 
Lamb’s work for viscous liquid, and Olfatnia [26] experi-
mentally confirmed Lamb’s theoretical results. However, in 
his studies, residual stress was not studied in the membrane. 
Yu et al. and Wu et al. [27, 28] studied the effects of residual 
stress on the dynamic behavior of a sensor diaphragm. In 
diaphragm-based biosensors, the mass microbalance tech-
nique uses a dynamic mode to measure the shift in reso-
nance frequency that reflects the change in mass [29]. Since 
the sensor dimensions can be reduced, it can be designed 
with large natural frequencies. In this case, a dynamic mode 
provides higher sensitivity than a static mode [29]. In the 
literature, diaphragm analysis of acoustic sensors has typi-
cally been carried out using static deflection and frequency 
analysis, where the diaphragms did not have vibration damp-
ing. In practice, the operating medium (OM) of the sensor 
usually has dynamic properties such as acoustic damping 
and variable frequency. Three types are used in mechanical 
sensors: cantilever, bridge, and diaphragm. The diaphragm 
has advantages because the effect of medium damping on the 
quality of the diaphragm is less than with other structures 
[30], and the diaphragm is also resistant to viscous damping 
[31]. Thanks to these superior features, the diaphragm has 
become an effective element for mechanical sensors.

On the other hand, the dynamic response of the dia-
phragm is often greatly affected by acoustic radiation losses 
[32]. As a result, it is important to clearly understand the 
relationship between structure and medium damping for 

the design of a high-performance diaphragm-based static/
dynamic pressure sensor (DB-S/DPS). Therefore, the effect 
of dynamic mode performance of diaphragm materials on 
sensor parameters (sensitivity, bandwidth, linearity) in a 
dynamic OM becomes even more important. Since sen-
sors are designed to detect dynamic pressure, it is neces-
sary to determine the natural frequency and flexural prop-
erties, and this is only possible with a dynamic analysis of 
the diaphragm. Thus, it is possible to design sensors with 
desired operating frequency, sensitivity, and bandwidth. The 
development of high performance requires investigating the 
dynamic properties of the diaphragm and OM.

In this study, the effects of diaphragm materials and OM 
parameters on sensor performance were investigated for a 
DB-S/DPS. Simulation following theoretical analysis stud-
ies was performed with different diaphragm materials (sil-
ica, silicon, graphene, gold, aluminum, cellulose triacetate 
[CTA]) and in different operating media (air, water, oil). 
Theoretically, analysis of multiple parameters by MATLAB 
software was carried out considering the diaphragm vibra-
tion-damping values and forced oscillations which were not 
generally examined in the literature. Also, thanks to these 
analyses, the effects of the mechanical properties and geo-
metric dimensions of the diaphragm on the dynamic pres-
sure sensitivity and natural frequency were determined for 
DB-S/DPS design. This very comprehensive and impressive 
study will shed light on the optimization of the diaphragm 
material and geometric dimensions according to the sensor 
OM in determining the DB-S/DPS design parameters.

1.1  Dynamic pressure response of the circular 
diaphragm

Descriptions of the symbols used in Sect. 2 are given in 
Table 1.

When the sound wave impacts the diaphragm, the actu-
ating force in the unit area is the pressure P(r,θ,t). If the 
wavelength of the sound is not smaller than the diaphragm 
size (occurs only at frequencies higher than 20 kHz), the 
pressure effect can be assumed to be equal on the surface of 
the diaphragm [33]. The dynamic response of the diaphragm 
for forced oscillations is governed by Eq. (1). For vibration 
analysis of the circular diaphragm in a vacuum, transverse 
deflection is admitted, being w.

where ∇4 = ∇2∇2, D = Eh3/12(1 −v2) is the diaphragm’s 
bending strength, v is the material’s Poisson ratio, and E is 
the material’s Young’s modulus. The right side of Eq. (1) is 
taken as zero when pressure is not applied. Since we focus 
on applying a forced pressure to the diaphragm, the value of 

(1)D∇4w + �h
�2w

�t2
+ 2�

�w

�t
= P(r, �, t)
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P(r,θ,t) is written. The Laplacian operator in polar coordi-
nates is given in Eq. (2):

However, analyzing Eq. (1) analytically is very trouble-
some. For convenience, the following quadratic differential 
equation, known as the single-degree-freedom system [34], 
has been added to obtain the output response.

where, m, c, and k respectively indicate mass, damping 
coefficient, and spring constant, and d = d(t) indicates the 
system’s stretching. Also, F0cosωt represents the harmonic 
oscillatory excitation acting on the diaphragm. Equation (4) 
is written by editing Eq. (3).

Here, γ = c/2 m, δ = √(k/m), and dc = F0/m are given. 
The solution of Eq. (3), which expresses the steady-state 
response of its system, is given in Eq. (5) [34].
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Thus, the harmonic response can be written compactly 
as in Eq. (6).

d(ω) determines the dynamic deflection response of the sys-
tem, while ∅(ω) determines the phase angle of the steady-
state response. Also, dc is the static-state response of the 
system and is determined as follows [35]:

Equation (7) is arranged according to the dynamic fre-
quency applied to the diaphragm, and Eq. (10) is obtained. 
Dynamic sensitivity, S, is given in Eq. (11).

Throughout the study, the terms sensitivity and dynamic 
sensitivity are used interchangeably.

The natural resonance frequency of the diaphragm is fmn, 
given by Eq. (12) [36]. The deflections of a smooth thick 
flexible circular diaphragm fixed to a rigid circular frame are 
solutions of the two-dimensional wave equation. The natural 
modes of vibration and mode shapes are defined by (m,n). 
The index m = 0, 1, 2 corresponds to the number of diam-
eter lines with zero displacements on the diaphragm, while 
n = 1, 2, 3 corresponds to the number of circumferential lines 
with zero displacements. In other words, m and n relate to 
the node diameters and number of knot circles, respectively 
[36]. Since the frequency mode with the highest sensitivity 
is f01, this study focused on the frequency of f01. The natural 
resonance frequency value expressed in the article is f01.

For a diaphragm that is in contact with an inviscid 
and incompressible fluid with density ρ’ on one side, the 
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Table 1  Definition of variables

Variables Definition

r Radius of the diaphragm
t Thickness of the diaphragm
d Dynamic deflection
dc Static deflection at the center
P Pressure
E Young’s modulus of the diaphragm material
v Poisson ratio of the diaphragm material
fmn The natural frequency of the diaphragm
f Excitation frequency
ff The frequency of the diaphragm in the fluid
ξ The damping ratio of the medium
φmn mn order vibration mode
Tf The kinetic energy of the fluid
Td The maximal kinetic of the diaphragm in the vacuum
β Added virtual mass incremental (AVMI) factor
ρ The mass density of the diaphragm
ρ’ The mass density of the liquid
S Dynamic sensitivity
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presence of the fluid causes the vibration to be dampened 
due to the energy driven by lowering frequency and sound 
waves due to increased inertia. Therefore, this type of damp-
ing is known as acoustic radiation or additional mass effect. 
The kinetic energy of the liquid in contact with the dia-
phragm is expressed following  Lamb [37]:

The resonance frequency of the diaphragm inside the 
fluid is reduced by an added virtual mass incremental 
(AVMI) factor β [26].

2  Results and discussion

In this study, circular diaphragms with a clamped edge are 
modeled and analyzed using MATLAB. In the program, with 
Eq. (11) for dynamic sensitivity, Eq. (12) for diaphragm air 
natural resonance frequency, and Eq. (16) for water, the nat-
ural resonance frequency is used. In the multiple parameter 
implementation (MPI) with MATLAB software of modeled 
structures, the effects of factors such as different diaphragm 
materials, damping values, media, geometric dimensions on 
the dynamic sensitivity, and frequency were investigated. In 
this way, sensor parameters such as bandwidth, sensitivity, 
and linearity were determined for a DB-S/DPS. Although 
there are many theoretical and experimental studies for dia-
phragms, the formulas applied in these studies are generally 
carried out in static and non-damped media, but all experi-
ments are carried out in opposite conditions. The effects of 
dynamic parameters on sensor parameters cannot be seen. 
This situation reveals a contradiction between theoretical 
and experimental studies, and for this reason, the impor-
tance of the diaphragm dynamic response is increased. For 
this purpose, a comprehensive analysis is carried out. In the 
analyses, silica, silicon, graphene, gold, aluminum, and CTA 
were used as diaphragm materials and in geometric dimen-
sions r = 0–8 mm, t = 0–50 µm. As the OM, air for the micro-
phone applications, water for hydroponics applications, and 
mineral oil for partial discharge applications were selected. 
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The mechanical properties of the materials used in the study 
are given in Table 2.

2.1  The effect of damping ratio, AVMI factor, 
and frequency on dynamic sensitivity

In this study, we first focused on the vibration damping ratio 
of the diaphragm, which we think has an important effect 
on the sensor parameters mentioned above [38]. In general, 
damping can be caused by energy distributed internally in 
the diaphragm material and energy flow to the surround-
ing fluid. This physical condition is more effective than 
the other and is commonly used to determine the damping 
coefficient in the design of pressure sensors. An example 
of this is the inclusion of a perforated backplate in many 
condenser microphones to increase damping [39]. Studies 
have demonstrated that damping is an important factor in 
sensor design [40, 41]. The inclusion of damping by non-
linear and linear analysis to increase bandwidth and reduce 
the nonlinear effect further flattens the sensor diaphragm 
frequency response. In Fig. 1, dynamic sensitivity versus 
frequency is given at different damping values for differ-
ent diaphragm materials in an air medium. As noted by Yu 
and Balachandran, as the ξ value increases, the behavior 
of the dynamic sensitivity evolves from a sharp resonance 
peak to a flatter response. In this case, the diaphragm causes 
an increase in bandwidth of full width at half maximum 
(FWHM). Moreover, as the ξ value increases, the frequency 
sensitivity decreases, thus reducing the dynamic sensitiv-
ity. In partial discharge determination in transformers, it is 
generally preferred that the sensor be a flat response since 
the resonance frequency (partial discharge formation band 
at 20–200 kHz) of discharge is not fully known. Similarly, 
in optical microphone applications, a flat response sensor is 
preferred because detection is performed on a certain sound 
band (1–10 kHz). In a special case such as a non-damped 
system, where ξ = 0, the graph shows a discontinuity at 
Eq. (10) for f/fmn = 1, at which point the flexural amplitude 
becomes infinite, which is called resonance. Since it is not 
possible to have infinite displacement of the diaphragm in 

Table 2  Mechanical properties of materials

Material Young’s 
modulus
E (GPa)

Poisson’s ratio
v

Density
ρ (kg/m3)

Silica,  SiO2 73.7 0.17 2200
Silicon, Si 170 0.3 2350
Graphene 1000 0.16 2200
Gold, Au 79.5 0.42 19,300
Aluminum, Al 69 0.35 2700
CTA 1.278 0.36 1300
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physical systems, the deflection should be limited by not 
stimulating at the resonance frequency. The solution of the 
system is made by assuming that the displacements are small 
enough to remain in the linear range. Therefore, a separate 
solution must be produced for a system without damping in 
resonance. However, the graph of the frequency response 
corresponding to ξ = 0 serves as a warning that the system 
may experience severe vibration when the excitation fre-
quency passes through resonance. At the same time, if exci-
tation is made at a frequency close to the natural resonance 
frequency of the diaphragm, the deflection response of the 
diaphragm also behaves as a nonlinear response. Therefore, 
it is not possible to operate the sensor in the linear region. 
In a sensor design, the nonlinear effect is not desired. There-
fore, if the sensor remains in the linear region, excitation 
should be made at values less than one-third of the natural 
resonance frequency value [42].

When the OM changes, that is, when the AVMI factor 
is included in the calculation, MPI has been carried out 
in media such as water and mineral oil outside the air to 
investigate how the sensor affects its dynamic sensitivity. 
Since water and mineral oil showed very similar results 
in the analyses, the analyses were continued with water 
instead of oil. The natural frequency of a vibrating dia-
phragm decreases when it comes into contact with a fluid 
[37], a special case caused by the induced vibration of the 

fluid. While the vibration continues through the fluid, it 
can be considered as a layer of fluid that is coupled to the 
diaphragm and vibrates with the diaphragm. Assuming 
that it exists, the diaphragm vibrates as if its mass has 
grown by the mass of fluid that vibrates virtually, result-
ing in the natural resonance frequency decreasing. This 
special case is called an additional virtual mass effect. 
The original classical analysis of the problem by Lamb 
[37] is important in this regard and proceeds according 
to the stages specified below. The analysis content is the 
stretching of a thin circular deflectable diaphragm, which 
is clamped against a hard wall. Its natural mode in a vac-
uum is explained by the theory of flexibility [22]. It is esti-
mated that the vibration mode remains unchanged when 
the plate contacts a liquid. To determine the vibration of 
the fluid, the fluid is considered incompressible and invis-
ible, and therefore its speed is derived from a speed poten-
tial. The speed of the fluid must match the overall speed 
of the diaphragm at the diaphragm boundary. Besides, 
the kinetic energies of the diaphragm and fluid are deter-
mined, and the ratio of the fluid to that of the diaphragm 
determines the added virtual mass. The difference between 
Figs. 1 and 2 is the transition of the OM from air to water, 
respectively. As noted above, although there is no change 
in the behavior of the materials in the measurements in 
water, consistent with Eq. (16), a significant decrease in 
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Fig. 1  Dynamic sensitivity versus frequency at different ξ values with various diaphragm materials in air
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their natural frequency in the liquid was noticed. While ξ 
reduces the dynamic sensitivity, it is seen that the AVMI 
factor β decreases the natural frequency.

In Fig. 3, sensitivity versus frequency behaviors of differ-
ent diaphragm materials are given in air and water. The fig-
ure shows the effects of different ξ (0.01, 0.05, 0.07) values. 
The results obtained by increasing the ξ values in Fig. 3 are 
given in Fig. 4. In Fig. 5, the dynamic responses of the dia-
phragms  in the MHz band are shown. As seen in Figs. 3, 4, 
and 5, although the dynamic sensitivity of graphene is low, 
natural frequencies are much higher than other materials. 
Since graphene was first isolated by Stankovich et al. [43], it 
has aroused great curiosity due to its remarkable properties. 
Graphene also has very high mechanical strength and can 
be stretched up to 20% [44]. It is the thinnest natural dia-
phragm, with a thickness of approximately 0.335 nm, which 
enables it to oscillate at high frequencies. In this respect, 
it is a very suitable material for biomedical imaging [45] 
and photoacoustic detection [46] applications performed in 
the megahertz frequency band. CTA differs markedly from 
other materials such as graphene, and demonstrates very 
high dynamic sensitivity in the audible frequency range. It 
is an important cellulose derived from an organic acid-based 
natural polymer. The CTA film surface is smooth and has 
good optical and mechanical properties. It is also resistant to 
water and oil, and even solvents such as acetone [15]. With 

its low density and a satisfactory Poisson ratio, its dynamic 
sensitivity is higher than that of other materials. With these 
features, the optical microphone is very suitable for sound 
and pressure sensing applications at very low amplitudes. 
Although silica is a glass derivative and aluminum is a 
metallic material, the sensitivity and frequency response 
are both very similar when the geometric dimensions and 
selected OM are taken into consideration. While gold has a 
lower value than the frequency values of silica and Al in air, 
it gives the same frequency values in water. Because, as seen 
in Table 2, the density value of Au is much higher than the 
medium densities, in Eq. (15) the effect of the AVMI fac-
tor decreases. For this reason, there is very little change in 
the frequency value in water in Eq. (16). Since the opposite 
situation is seen in the case of other materials, the frequency 
shifts were higher. Detailed analyses are available in our 
previous study [47].

2.2  The effect of diaphragm radius on dynamic 
sensitivity

We have already mentioned that when designing a pres-
sure sensor, the diaphragm should be smaller than the first 
natural frequency to ensure sensor linearity. In determining 
this situation, besides the mechanical properties of the dia-
phragm and whether the medium is damped, the geometric 
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Fig. 2  Dynamic sensitivity versus frequency at different ξ values with various diaphragm materials in water
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Fig. 3  Dynamic sensitivity versus frequency at low ξ values with various diaphragm materials in air and water

Fig. 4  Dynamic sensitivity versus frequency (in the kHz band) at high ξ values with various diaphragm materials in air and water
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size of the diaphragm is an important parameter. The effects 
of circular diaphragm sizes are vital for micromachined 
pressure sensors [48]. By reducing the radius, increasing 
the thickness, or increasing the tension parameter, the first 
natural frequency of the diaphragm can be increased, which 
increases the sensor bandwidth. However, the exchanges 
between bandwidth and sensitivity should be carefully 
studied. High sensitivity does not always mean broad band-
width, or it can sometimes happen in a contrasting situation. 
Considering that the sensing event is based on a pressure-
dependent diaphragm deflection measurement, precision is 
related to the displacement of the diaphragm center for unit 
pressure. Within these comments, it may be thought that 
it is possible to design a sensor with both wide bandwidth 
and high sensitivity by applying the tension determined by 
establishing the best relationship between bandwidth and 
sensitivity and reducing the diaphragm thickness or increas-
ing the radius. In the graphs from Figs. 6, 7, 8, and  9, the 
changes in dynamic sensitivity according to the radius of the 
diaphragm are shown for different media, frequency, and ξ. 
Figure 6 was performed with signal excitation ranging from 
1 to 10 kHz by selecting ξ = 0.3 and t = 30 µm in air. As can 
be seen from the graphs, the dynamic sensitivity increases as 
the excitation frequency decreases, and the radius increases. 
While the sensitivity is expected to increase continuously 
with increasing radius in Fig. 6, it is determined that the sen-
sitivity decreases and then remains constant after a certain 

radius value. Of course, this can be determined by the spec-
tral content of dynamic sensitivity. This constant sensitiv-
ity is lower in water, and as can be seen from Fig. 7, the 
behavior varied within a narrower radius range. In Fig. 7, 
there are serious decreases in dynamic sensitivities due to 
the increased weight effect with the inclusion of the AVMI 
factor. Additionally, due to the natural frequency of the dia-
phragm falling due to the AVMI factor effect, the radius in 
which the maximum sensitivity in the frequency in air was 
obtained in smaller radii in water. In DB-S/DPS designs, it 
is desirable to have sensor sizes as small as possible. As an 
example of this situation, in Fig. 6, from the point of obtain-
ing both a small and sensitive sensor, it is observed that CTA 
provides high dynamic sensitivity using small radii.

Figure 8 was performed with signal excitation of 1 to 
10 kHz in air by selecting ξ = 0.7 and t = 30 µm, while Fig. 9 
was performed with signal excitation of 1 to 10 kHz by 
selecting ξ = 0.7 and t = 30 µm in water. Figure 8 refers to 
the behavior that shows the typical radius-static sensitivity 
relationship in the literature. But this behavior corresponds 
to one of the four different situations examined in this study. 
These four states are low damped air, high damped air, low 
damped water, and high damped water. With increasing ξ, 
according to Fig. 6, the radius at which the maximum preci-
sion was achieved in Fig. 8 has grown, and after this value, 
the sensitivity has not decreased and remained constant. It 
is seen that as the damping increases, the radius should be 

Fig. 5  Dynamic sensitivity versus frequency (in the MHz band) at high ξ values with various diaphragm materials in air and water
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ξ=0.3, t=3e-5 m ξ=0.3, t=3e-5 m ξ=0.3, t=3e-5 m

ξ=0.3, t=3e-5 m ξ=0.3, t=3e-5 m ξ=0.3, t=3e-5 m

Fig. 6  Dynamic sensitivity versus radius at different frequencies with various diaphragm materials in air (ξ = 0.3)

Fig. 7  Dynamic sensitivity versus radius at different frequencies with various diaphragm materials in water (ξ = 0.3)
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Fig. 8  Dynamic sensitivity versus radius at different frequencies with various diaphragm materials in air (ξ = 0.7)

Fig. 9  Dynamic sensitivity versus radius at different frequencies with various diaphragm materials in water (ξ = 0.7)



653Journal of Computational Electronics (2021) 20:643–657 

1 3

increased to increase the sensitivity, but after a certain value, 
the sensitivity of the diaphragm becomes independent from 
the radius. This situation reveals how important the dynamic 
field effect is again. Because as the radius increases, d(c) 
will increase, but the falling frequency and the spectral con-
tent of ξ and d(f) stabilized it by balancing it.

2.3  The effect of diaphragm thickness on dynamic 
sensitivity

Data related to another diaphragm parameter, thickness, are 
given in Figs. 10, 11, 12, and 13. As mentioned above, when 
the radius is increased (Figs. 6, 7, 8, 9) and the thickness is 
reduced (Figs. 10, 11, 12, 13), the displacement amplitude 
of a diaphragm center will increase. In this way, the first 
natural frequency will decrease, and a smaller sensor band-
width will be obtained. This raises another problem between 
sensor bandwidth and sensitivity which must be dealt with 
in designing a sensor. Thin diaphragms exhibit higher sen-
sitivity with greater deflection. However, thinning in the 
diaphragm causes an increase in the nonlinearity. Thus, it 
is necessary to establish a balance between sensitivity and 
linearity [49]. In Fig. 10, a decrease in the dynamic sensitiv-
ity is observed with increasing radius. However, after this 
decrease, the dynamic sensitivity increases with increas-
ing frequency which is approaching the natural frequency 
of the diaphragm. Along with the changing thickness, the 
natural resonance frequency of the diaphragm changes, and 

where this value equals the excitation frequency, maximum 
dynamic sensitivity occurs. Therefore, the effect of both 
thickness and frequency can be interpreted simultaneously. 
As can be seen from the graphs, sensitivity decreases with 
increasing thickness and reaches a minimum value at a cer-
tain thickness. With a further increase in thickness, sensi-
tivity starts to increase until the thickness corresponding 
to the resonance frequency value. At this point, increased 
dynamic sensitivity is not expected. This situation, which is 
ignored in the literature, is a result of the dynamic content 
of sensitivity.

In Fig. 11, only the medium was determined as water 
without changing the other parameters. With the increase in 
thickness in Fig. 11, the dynamic sensitivity did not decrease 
very quickly as in Fig. 10. Increasing thickness with the 
effect of the AVMI factor could not increase the natural fre-
quency; therefore, the sensitivity remained constant and then 
increased in thickness values close to resonance. As seen 
in Fig. 11, the sensitivity of aluminum in air is two to eight 
times that of other materials, and it reaches the same level 
in water as the other materials. Considering the thicknesses 
between 0 and 50 µm, depending on the radius values used in 
the analyses, the resonance frequency effect seen in the other 
five materials is not seen in the CTA. If higher thicknesses 
are chosen, the CTA will respond similarly.

In Fig.  12, taking ξ = 0.7, the change in sensitiv-
ity according to the diaphragm thickness at different 
frequency values and air media is shown for different 

Fig. 10  Dynamic sensitivity versus thickness at different frequencies with various diaphragm materials in air (ξ = 0.1)
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Fig. 11  Dynamic sensitivity versus thickness at different frequencies with various diaphragm materials in water (ξ = 0.1)

Fig. 12  Dynamic sensitivity versus thickness at different frequencies with various diaphragm materials in air (ξ = 0.7)
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diaphragm materials. Figure 12 shows the typical thick-
ness–static sensitivity relationship reported in the liter-
ature. But this behavior corresponds to one of the four 
different situations examined in this study. In this way, 
the effect of the increased damping of the diaphragm 
was observed clearly. Even a small increase in thickness 
reduced the dynamic sensitivity very quickly, and the sen-
sitivity could not be increased again. High damping sup-
pressed the effect of the frequency increase, preventing 
the diaphragm from oscillating. Figure 13 was performed 
with signal excitation of 1 kHz to 10 kHz by selecting 
ξ = 0.7 and t = 30 µm in water. In this graph, the dynamic 
sensitivity is first unresponsive to the increase in thickness 
and then decreases as expected. Increased thickness could 
not increase the fmn much due to the effect of the AVMI 
factor. Although the decrease in static sensitivity decreases 
the numerator of Eq. (10), the decrease in dynamic sen-
sitivity is very slow, as the increase in the denominator 
remains limited. At resonance frequency and subsequent 
thicknesses, the value of the denominator increases, and 
the dynamic sensitivity decreases very rapidly.

3  Conclusion

In the present work, the dynamic pressure performance of 
diaphragms in a DB-S/DPS design was investigated, and 
the effects of different diaphragm materials (silica, silicon, 
graphene, gold, aluminum, CTA) and different media (air, 
water, oil) on the sensor parameters were determined. Fol-
lowing a theoretical study, multiple parameter analyses were 
performed. With the study, forced oscillations are considered 
for the dynamic deflection value of the diaphragm, which 
is not mentioned in the literature. In these analyses, the 
changes of the diaphragm vibration-damping values accord-
ing to the OM and materials and as a result, the effects on 
dynamic sensitivity are shown. Besides, thanks to these 
analyses, the necessary mechanical properties and geometric 
dimensions of the sensor diaphragm were determined under 
the desired working conditions. The effects of many possi-
ble parameters on the dynamic sensitivity of the diaphragm 
at the same time are revealed through the graphs obtained 
from the theoretical results. With this study, very extensive 
and impressive research was carried out to shed light on the 
process of determining DB-S/DPS design parameters.
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