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Abstract
The nonequilibrium Green’s function method is often used to predict transport in atomistically resolved nanodevices and 
yields an immense numerical load when inelastic scattering on phonons is included. To ease this load, this work extends the 
atomistic mode space approach of Mil’nikov et al. (Phys Rev B 85(3):035317, 2012) to include inelastic scattering on optical 
and acoustic phonons in silicon nanowires. This work also includes the exact calculation of the real part of retarded scattering 
self-energies in the reduced basis representation using the Kramers–Kronig relations. The inclusion of the Kramers–Kronig 
relation for the real part of the retarded scattering self-energy increases the impact of scattering. Virtually perfect agree-
ment with results of the original representation is achieved with matrix rank reductions of more than 97%. Time-to-solution 
improvements of more than 200× and peak memory reductions of more than 7 × are shown. This allows for the solution of 
electron transport scattered on phonons in atomically resolved nanowires with cross sections larger than 5 nm × 5 nm.

Keywords  Nanoelectronics · NEGF · Low-rank approximations · Inelastic scattering · Mode space

1  Introduction

The characteristic length scale of state-of-the-art logic 
devices has reached dimensions with a countable number 
of atoms [1–3]. At this scale, quantum effects such as tun-
neling, interference and confinement drastically change 
device performance [4–7]. Understanding and optimizing 
these effects almost always requires predictive models. The 
nonequilibrium Green’s function (NEGF) formalism is a 

well-accepted model for coherent and incoherent electron 
transport in nanodevices [8, 9].

Characteristic nanoelectronic device dimensions con-
tain a countable number of atoms, but a typical transistor 
contains hundreds to thousands of atoms in the volume of 
only a few cubic nanometers. Accurate basis representations 
such as the empirical tight binding method [10, 11] usu-
ally contain tens of matrix elements per atom representing 
atomic orbitals [9]. Solving the NEGF equations in a tight 
binding basis can be computationally cumbersome due to 
the required matrices consisting of thousands of rows and 
columns [12–14]. To ease this numerical load, the recursive 
Green’s function method (RGF) [15] provides a block-wise 
recursive solution for NEGF equations that can be discre-
tized with block-tridiagonal sparse matrices [16–18]. In that 
case, NEGF has been solved for nanodevices represented 
in realistic basis sets [19–22]. With RGF, computational 
complexity depends on the cross section and length of the 
device. In a typical nanowire device, the size of the blocks 
solved with the RGF method is directly proportional to the 
degrees of freedom N in the cross section of the device. 
Time-to-solution of matrix operations on these blocks scales 
on the order of O(N3) . Memory scales on the order of O(N2).

The NEGF equations must be self-consistently solved 
with the Poisson equation that represents the electrostatic 
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effects caused by the quantum mechanical evolution of the 
system [8, 23, 24]. This introduces a degree of complexity to 
the solution of NEGF, since solving the equations is required 
multiple times.

An advantage of the NEGF and RGF methods is the abil-
ity to introduce incoherent scattering through self-energies, 
which represent device structure uncertainties such as rough-
ness, alloy disorder and geometric errors, and temperature 
fluctuations through phonons [8, 25–34]. However, the intro-
duction of incoherent scattering into the RGF solution intro-
duces yet another degree of complexity through the self-
consistent solution of retarded ( GR ) and lesser ( G< ) Green’s 
functions. Their equations read symbolically

and the respective scattering self-energies

In the above equations, H is the electronic Hamiltonian, 
I is an identity matrix, and E is the electronic energy for 
which the Green’s functions G and self-energies Σ are being 
solved. D is the sum of environmental Green’s functions 
with phonon, impurity and roughness information [25, 35]. 
Within the self-consistent Born approximation, the scatter-
ing self-energies and Green’s functions are solved iteratively 
to achieve particle number conservation [25, 36, 37]. It is 
worth mentioning that some alternatives to the self-con-
sistent Born approximation of scattering exist, such as low-
order approximations [38–40], the Büttiker probe scattering 
model [8, 41, 42] and the multi-scale approach of Ref. [43]. 
Although these methods are compatible with the mode space 
approach, they are beyond the scope of this work.

Many discretized degrees of freedom are common in 
atomistic representations, as well as the two layers of self-
consistency, and usually result in heavy computational bur-
dens. To ease this burden, incoherent scattering effects are 
often neglected in NEGF transport calculations [5, 44–47]. 
In the case of atomistic representations, even ballistic 
NEGF calculations often yield large computational loads. 
Such situations have motivated the introduction of a low 
rank approximation [48] into NEGF [17, 26, 45, 49–51], 
which is often called the mode space approach [13, 16, 44, 
52]. Since scattering phenomena are important to retain in 
quantum transport simulations, the goal of this work is to 
introduce a low rank approximation that accurately retains 
scattering phenomena and is still based on an atomistic 
device representation.

(1)GR = (EI − H − ΣR)−1,

(2)G< = GRΣ<GR†,

(3)ΣR = GRDR + GRD< + G<DR,

(4)Σ< = G<D<.

2 � Method

2.1 � Mode space approach in tight binding

Low-rank approximations such as the mode space method 
[13, 49, 52] follow a common process: The system’s Hamil-
tonian is transformed into a basis representation that allows 
for filtering of degrees of freedom that are unlikely to con-
tribute to device operation. This reduces the rank of the sys-
tem’s Hamiltonian and thus the complexity of the NEGF 
equations. Choosing the eigenvectors of the Hamiltonian 
according to their eigen-energies often provides a good 
measure of filtering empty states [1, 51]. Unfortunately, this 
direct filtering fails in tight binding due to the appearance of 
spurious states [1, 52]. The method developed by Mil’nikov 
et al. [1] removes these spurious states.

For completeness, we repeat this method here: The first 
step of the method is to obtain the eigenvectors �i within the 
desired energy interval Δ� . The original basis Hamiltonian 
H is transformed to a lower rank (mode space) basis using 
a rectangular transformation matrix Φeig constructed from 
the eigenvectors �i:

At this stage, the reduced Hamiltonian h yields several 
unphysical states. A modified reduced Hamiltonian h̃ is cre-
ated by adding new orthogonal basis states Φ̃ ( ΦT

eig
Φ̃ = 0 ) 

such that

where

The added states Φ̃ do not deteriorate the basis and have no 
effect on non-spurious states. The purpose of the added state 
Φ̃ is to remove the spurious states, thus Φ̃ are chosen such 
that they reduce the number of spurious states in the band 
structure. Since adding states to the basis keeps the physics 
unaltered [1], Φ̃ states are added until all spurious states 
within the energy interval Δ� are removed and a transforma-
tion matrix Φ is produced. The method by Mil’nikov et al. 
is therefore a minimization problem [1]. Although devices 
in this work are homogeneous, and only require one basis 
to transform all portions of the nanowire, a heterogeneous 
device of varying cross sections or materials may be trans-
formed by use of multiple basis transformation matrices 
Φ . It is therefore possible to introduce explicit defects such 
as roughness and impurities when Φ is obtained with such 
defects.

(5)h = ΦT
eig
HΦeig.

(6)h̃ =
|||
||

h X

X† HΦ̃Φ̃

|||
||

(7)X = ΦT
eig
HΦ̃.
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2.2 � Mode generation in NEMO5

In this work, the mode space basis states are determined 
by following Mil’nikov et  al. [1] with the ModeSpace 
solver [52] of the multipurpose nanodevice simulation tool 
NEMO5 [53, 54]. Details of this algorithm can be found in 
Refs. [1, 52]. Ratios of the reduced n and original N Matrix 
ranks n∕N ≤ 10% are regularly achieved with this NEMO5 
solver while the transport physics are preserved [13, 52]. 
This has enabled speedups for ballistic NEGF simulations 
of up to 10,000 times [16].

2.3 � Expanding atomistic mode space to incoherent 
scattering simulations

In this work, this method is augmented to handle incoherent 
scattering that allows for intermode transitions. Scattering 
self-energies for the scattering of electrons on phonons are 
originally defined in a real space representation. Electron 
scattering on acoustic and optical phonons via deformation 
potentials is considered following Ref. [2] (cf. Eqs. 1–6 of 
Ref. [2]). Calculations in polar materials (such as InAs) 
include scattering of electrons on polar optical phonons as 
well [55]. Since these self-energies are formulated in real 
space and require position information, an issue arises as 
this information is no longer directly available after a mode 
space basis transformation.

2.4 � Form factor transformation

To make position information available for the solution of 
scattering self-energies while limiting the number of trans-
formations, a form factor is introduced. This form factor is 
fully explained by Ref. [56]. The form factor F contains all 
modes involved in the respective scattering process:

where i,j,k,l are indices of the n real modes (columns) of the 
transformation matrix Φ . The index � is iterated through the 
N rows of Φ . We define each element of ΣR,<

acoustic
 and ΣR,<

optical
 

of Eqs. 4–6 of Ref. [2] as Σi,j and each element of a Green’s 
function matrix GR,< as Gk,l . We also define C as the product 
of all scalar factors involved in each of Eqs. 4–6 of Ref. [2]. 
The form factor elements Fi,j,k,l are applied to the Green’s 
function elements Gk,l as follows:

In this way, all matrices remain in mode space.

(8)Fi,j,k,l =
∑

�

�i(�)�j(�)�k(�)�l(�)

(9)Σi,j =
∑

l

∑

k

CFi,j,k,lGk,l.

2.5 � Approximation of form factor

The form factor F is four-dimensional and scales rapidly 
with the number of modes in terms of memory ( O(n4) ), time 
for construction ( O(n4N) ) and time for application ( O(n4) ). 
This can easily result in the form factor construction taking 
a significant amount of time and memory and application 
taking a significant amount of time. Similarly to Ref. [56], 
we have observed that eliminating off-diagonal elements of 
the form factor F, such that Fi,j,k,l = 0 for i ≠ j and k ≠ l , 
provides reasonable physical results. This approximation 
corresponds to the lack of interaction between modes which 
are uncoupled in real space. Therefore, no inter-mode scat-
tering takes place when the form factor is diagonal. This 
does not restrict inelastic scattering, since the electronic 
energy is a mode-independent parameter. This approxima-
tion provides a memory-thin form factor with memory scal-
ing on the order of O(n2) . The construction complexity of 
the form factor is also reduced to O(n2N) , while the applica-
tion complexity is reduced to O(n2) . Note that although this 
yields an accurate calculation of self-energies ΣR,<

acoustic
 and 

ΣR,<

optical
 , mode coupling terms ( Gk,l for k ≠ l ) must remain for 

an accurate calculation of electron density [56].

2.6 � Inclusion of real part of retarded scattering 
self‑energies using Kramers–Kronig relations

The general form of the retarded scattering self-energy ΣR 
includes a principal value integral P of large computational 
burden [1, 2, 57–60]. ΣR(E) can be obtained by its separate 
real and imaginary parts [57–59] such that

Typically, the real part of the retarded self-energy is entirely 
excluded, and although the approximation often yields rea-
sonable physical results [1, 59], it is known that excluding 
the real part causes deviations. In particular, off-state current 
densities are underestimated in this approximation [2, 57, 
58]. Note that the real part of retarded self-energies shifts 
resonance energies and thus influences band edges and 
threshold voltages [36]. In this work, the exact real part of 
the retarded scattering self-energies is obtained using the 
Kramers–Kronig relations [61]. For each matrix element ΣR

i,j
 

of a retarded self-energy, its real part Σ(E)R
i,j,real

 is obtained 
by applying the Kramers–Kronig relation on its imaginary 
part Σ(E)R

i,j,imag
 . Using a Hilbert transform H , the real part 

becomes:

(10)Re[ΣR(E)] =
i

�
P∫ dE� Im[ΣR(E�)]

E − E�
.

(11)Σ(E)R
i,j,real

= H(Σ(E)R
i,j,imag

).
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This Hilbert transform is performed using a fast Fourier 
transform (FFT), a multiplication in the Fourier space, and 
an inverse FFT afterwards [62].

3 � Results and discussion

3.1 � Simulation setup

To ensure the validity of the presented low-rank approxima-
tion for transport in nanowire devices including inelastic 
scattering, multiple tests were performed with NEMO5 [53, 
63, 64]. First, for validation, results of simulations in a mode 
space basis were benchmarked against calculations in the 
original tight binding basis. These result comparisons are 
shown in Sect. 3.2. Second, multiple performance tests com-
paring time-to-solution and peak memory improvements in 
mode space are shown in Sect. 3.3 for various device widths 
w. The device used for both validation and performance tests 
was a w × w× 20.65 nm silicon nanowire as shown in Fig. 1, 
where w is the variable width in nm of the square cross 
section of the device. The device had a 1-nm gate oxide 
layer surrounding the central region. The original basis was 
a 10-band sp3d5s∗ tight binding model using the parameter 
set of Ref. [65]. A source-drain bias of 0.2 V was applied to 
the device. Note that the applied source-drain bias does not 
affect the validity of the presented method, and mode space 
calculations with higher source-drain voltages can be found 
in Refs. [16, 52, 66]. The device was NIN doped, with the s 
= 5.97 nm source and d = 6.66 nm drain regions having a 
1020 cm−3 doping density and the central c = 8.02 nm intrin-
sic region having a 1015 cm−3 doping density. The lengths 
s, d and c are labeled in Fig. 1. Simulations of Si devices 
included both inelastic optical phonon and elastic acous-
tic phonon deformation potential scattering, applied to the 
NEGF equations through self-energies in the self-consistent 
Born approximation [2, 27]. For polar materials, scattering 
on polar optical phonons was included as well. The inho-
mogeneous energy grid was generated using an adaptive 
grid generator in NEMO5 [2]. Due to the high numerical 
load of the Kramers–Kronig relation for scattering in tight 

binding representations, the real parts of all scattering self-
energies in the benchmarking scenarios of Sects. 3.2, 3.3 
and 3.4 were neglected. This is not the case in Sect. 3.5, 
where a nonzero real part of the scattering self-energy will 
be included.

An assessment of the real part of the retarded self-ener-
gies was done by comparison of the resulting current–volt-
age (I–V) characteristics shown in Sect. 3.5. For this assess-
ment, the material of the transistor in Fig. 1 was chosen 
to be InAs, with two tested device widths w = 2.42 nm 
and w = 3.63 nm. Both devices had an s = 5.97 nm p-type 
source doped at 5 × 1019 cm−3 , an n-type d = 9.66 nm drain 
doped at 2 × 1019 cm−3 and a c = 14.66 nm central undoped 
region. A source-drain bias of 0.3 V was applied. Since 
TFETs require the occupation of both electrons and holes, 
the method of Ref. [1] was applied to obtain modes for a 
wide energy window that included bands near the conduc-
tion and valence band edges. The inclusion of holes also 
necessitates a proper definition of electrons and holes as 
states tunnel from valence band to conduction band in the 
TFET. An interpolation method was applied as defined by 
Ref. [2] to avoid sharp transitions from holes to electrons or 
vice versa. Simulations included optical phonon, acoustic 
phonon and polar-optical phonon scattering to represent the 
polar nature of InAs. Due to the non-local nature of polar-
optical phonon scattering, such a calculation would be very 
expensive even in a reduced basis. To avoid this, a local 
scattering calculation was performed using a cross-section-
dependent compensation factor defined in Ref. [28]. Com-
pensating scaling factors of 30.0 and 26.56 were used in 
the calculation of polar-optical phonon scattering for the 
w = 2.42 nm and w = 3.63 nm devices, respectively. Note, 
the form factor approximation as described in Sect. 2.5 was 
not performed in this case.

3.2 � Validation of mode space simulation results

For validation, a silicon nanowire of width w = 3.26 nm was 
used (see Fig. 1). The mode space simulation had a reduction 
ratio n/N of 2.8%, transforming matrix blocks from 2880 × 
2880 matrices to 81 × 81 matrices. NEGF was solved using 
the scattering-compatible RGF algorithm [27]. Figure 2 
shows the current–voltage (I–V) characteristic curves of 
both the original tight binding basis and mode space basis 
for sweeping gate biases ranging from − 0 .1 to 0.5 V. The 
mode space scattering results of Fig. 2 were obtained using 
the full form factor as described in Sect. 2.4. The virtually 
identical results of mode space and tight binding show that 
the mode space low-rank approximation provides a valid 
and highly efficient model for quantum transport simula-
tions with inelastic scattering. Figure 3 shows that the mode 
space approach with approximate form factors, as discussed 
in Sect. 2.5, also yields results very close to those of the 

Fig. 1   Schematic of the nanowire devices considered in this work 
with a w × w cross section and a 1-nm gate oxide layer surround-
ing the center of the device. s labels the source length, c the channel 
length and d the drain length of the device
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original basis calculations. Figure 4 shows a contour plot of 
the potential profile of the center cross section of the device 
for a tight binding simulation at the applied gate bias of 
0.5 V. Contour lines show the relative error of the mode 
space potential profile results relative to the original tight 
binding data. Note that the mode space method agrees with 
NEGF calculations in the original tight binding representa-
tion for many wire cross sections as similarly well as those 
shown in Figs. 2 and 3. Similar benchmark data can be found 
in Refs. [1, 52, 66].

3.3 � Assessment of computational performance

The device in Fig. 1 was used with varying widths w to 
measure performance improvements in NEMO5 time-to-
solution and peak memory. Each width also had a corre-
sponding mode space transformation matrix with its respec-
tive number of modes. Correspondingly, the reduction ratios 
n/N in Figs. 5 and 6 vary. The exact width values simulated 
were 4, 6, 8, 10 and 12 silicon unit cells, and the respec-
tive reduction ratios n/N were 5.6%, 2.8%, 2.9%, 2.8% and 
3.0%. The lattice parameter of silicon was assumed to be 
0.54  nm. All performance simulations were performed 
with the same inputs of Sect. 3.2, with the exception that 
a fixed number of 256 energies was used. Since results for 
the approximate form factor are shown in Fig. 3 to closely 
match those of the full form factor, mode space data for per-
formance comparisons in this section were generated using 
the approximate form factor. The Green’s functions were 
solved for 256 energies with 1 energy per MPI process. Each 
MPI process was designated to a 32-core node on the Blue 
Waters petascale supercomputer at the University of Illinois 
at Urbana-Champaign [67]. Each MPI process was assigned 
32 OpenMP threads for multithreaded matrix operations and 
form factor construction and application. Figure 5 shows 

Fig. 2   Current–gate-voltage (I–V) characteristic curve of a 3.26  nm 
× 3.26 nm × 20.65 nm silicon nanowire. The agreeing results prove 
the mode space approach provides a valid physical model. All simula-
tions include inelastic scattering on phonons

Fig. 3   I–V curve of the 3.26  nm × 3.26  nm × 20.65  nm silicon 
nanowire of Fig.  2 with an approximate form factor. The agreeing 
results justify the form factor approximation

Fig. 4   Potential profile (contour plot) of the center cross section of 
the simulated 3.26 nm × 3.26 nm × 20.65 nm silicon nanowire device 
in original tight binding basis. Contour lines represent the relative 
error of the potential in mode space compared to tight binding rep-
resentation
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the average time (of 6 iterations) to compute a single self-
consistent Born iteration. Each self-consistent Born iteration 
includes the time to compute the RGF algorithm as well as 
the time to compute lesser scattering self-energies Σ< and 
retarded scattering self-energies ΣR for optical and acoustic 
deformation potential inelastic scattering. The calculation 
of scattering self-energies involves a large degree of com-
munication between MPI processes as discussed in Ref. [2].

The timing shown does not include the calculation of 
other aspects of quantum transport such as the solution of 
the Poisson’s equation and the generation of the adaptive 
energy grid. This exclusion of such calculations can be 

justified by the fact that the time-to-solution is negligible 
when compared to the solution of NEGF. In production runs, 
those calculations are performed only a small fraction of 
times when compared to the multiple self-consistent Born 
iterations per Poisson iteration. The maximum speedup 
obtained with low-rank approximations for an iteration in 
this work was of 209.5 times. Due to computational limita-
tions, the tight binding simulation for the point w = 6.52 nm 
was not assessed, since a single iteration would have taken 
about 38,000 s according to a power fitting function of the 
existing data. By extrapolating the data, the speedup for 
w = 6.52 nm is predicted to be of 187.5 times, as is shown 
in Fig. 5. It can be noted that this is lower than the speedup 
of w = 5.43 nm . This is likely due to the fact that the reduc-
tion ratio for w = 6.52 nm is slightly higher at 3.0% than 
for w = 5.43 nm at 2.8%. Figure 6 shows the peak memory 
of the same simulations run for Fig. 5. The maximum peak 
memory reduction was of 7.14× . Similarly to Fig. 5, a power 
fitting function was used to predict the peak memory for a 
device of w = 6.52 nm , which results in a predicted peak 
memory reduction of 5.67×.

3.4 � Simulating beyond existing capabilities

With the time-to-solution and memory footprint signifi-
cantly reduced, the opportunity to simulate larger devices 
with complex physical phenomena such as incoherent scat-
tering of multiple types (phonons, roughness, impurities) is 
now accessible. Reference [2] describes the simulation of 
a circular nanowire, with acoustic and optical deformation 
potential scattering and a 10-band tight binding basis. The 
diameter of the cross section of this device was 3 nm, and 
the device length was 27 nm. Solution of an I–V character-
istic curve took approximately 275 h on 330 cores on the 
Blue Waters petascale supercomputer. The peak memory 
was 60 GB per node, which is close to the maximum node 
memory of 64 GB. This device therefore approaches the 
limit of what can be simulated in a full basis representation 
such as tight binding. To demonstrate the capability of solv-
ing larger devices in a reduced basis, a full I–V curve was 
generated for a square nanowire of Fig. 1 with w = 5.43 . Due 
to the different cross-sectional geometry, this nanowire has 
over 4 times more atoms in the cross section than the circular 
nanowire of Ref. [2]. The reduction ratio n/N for the square 
nanowire was of 2.8%. Figure 7 shows an I–V characteristic 
curve for optical and acoustic phonon deformation poten-
tial scattering compared to that of a ballistic simulation. As 
expected, the on-current density is reduced by the inelastic 
scattering on phonons [2, 35, 57]. The scattered transport 
simulation of the w = 5.43 nm device took approximately 
160 total hours on 16,384 cores (2.62 million core hours) on 
the Blue Waters supercomputer. We estimate that the same 
I–V calculation would take about 550 million core hours 

Fig. 5   Time-to-solution for a single self-consistent Born iteration 
(left) and speedup ratio (right) with low-rank approximations for the 
20.65 nm silicon nanowire of Fig. 1 for various widths w. The tight 
binding timing data were extrapolated beyond w = 5.43 nm using a 
power fitting function shown as a dashed line. All simulations include 
inelastic scattering

Fig. 6   Peak memory (left) and memory improvement ratio (right) 
with low-rank approximations for 20.65  nm silicon nanowires of 
Fig. 1 for various widths w. All simulations include inelastic scatter-
ing
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and 168 GB of memory in the original tight binding basis 
representation.

3.5 � Assessment of real part of retarded 
self‑energies

The 2-norms of the real and imaginary parts of the retarded 
self-energy ΣR can show the relative amplitude of their 
contributions. Comparing the 2-norms of fully charge-self-
consistent calculations is misleading, however, since scat-
tering impacts the density of states: The Poisson potential 
would compensate some of the density of state differences 
to accommodate the device’s doping profile. Therefore, for 
this comparison only, scattering self-energies and Green’s 
functions were solved self-consistently with a fixed Poisson 
potential. That potential was deduced from a converged bal-
listic transport solution of the same device. The calculations 
were performed for the on-state bias of 0.4 V. Table 1 shows 

the 2-norm values of the real and imaginary parts of the ΣR 
when the Kramers–Kronig relation is observed and when 
the real part is set to 0. In both of the simulated cross sec-
tions, the norm of the real part is comparable to the norm of 
the imaginary part. Due to the reduced size of self-energy 
matrices, it was possible to perform the Hilbert transform 
on all energies without introducing memory issues and long 
computation times. Therefore in this work, all energy points 
generated by the adaptive energy grid in NEMO5 [2] were 
included in the Hilbert transform of the self-energies.

Figures  8 and 9 show the I–V characteristics of the 
w = 2.42 nm and w = 3.64 nm devices, respectively. Both 
figures show the differences of the two scattering models 
(with and without the real part of ΣR ) when compared to 
the ballistic transport. Incoherent scattering increases the 
off-current density due to scattering-supported gate leakage 
and decreases the on-current density due to stronger back-
scattering. This is in agreement with findings in literature 
[2, 37, 57, 59, 68]. It should also be noted that the real part 
of scattering self-energies has notable effects on devices of 
any dimension, e.g., 1D, 2D and 3D [28, 57]. The impact of 
the real part of ΣR becomes more apparent in situations with 
larger scattering strengths, e.g., when higher temperatures, 
impurity scattering or surface roughness scattering are pre-
sent. Figure 10 shows the I–V characteristics of the device in 
Fig. 9 solved with NEGF when all electron–phonon scatter-
ing self-energies were multiplied by 2. More significant gate 

Fig. 7   Comparison of I–V characteristics for a 5.43 nm × 5.43 nm × 
20.65 nm n-type FET device for simulations with and without inelas-
tic scattering. The reduction ratio n/N for this simulation was 2.8%. 
This device size significantly exceeds the largest nanowires possible 
to resolve in a scattered NEGF calculation in the original atomic rep-
resentation

Table 1   2-Norms of the retarded scattering self-energies ΣR solved in 
NEGF simulations of two InAs TFETs with a width w and an applied 
gate bias of 0.4 V

The norm of the real part, calculated using the Kramers–Kronig rela-
tions, is comparable to the norm of the imaginary part and must have 
a similar significance to simulation results

width w (nm) Zero real ΣR Kramers–Kronig

Real Imag. Real Imag.

2.42 0 0.1184 0.0965 0.1130
3.64 0 0.1080 0.0920 0.1104

Fig. 8   I–V characteristics for a 2.42  nm × 2.42  nm × 30.29  nm 
InAs TFET device solved in NEGF including incoherent scattering 
on polar optical phonons, acoustic phonons and optical deforma-
tion potential phonons. Scattering, even without a real part of ΣR , 
increases the off-current densities and lowers on-current densities. 
When the real part of the retarded self-energy ΣR is included, the 
Kramers–Kronig relations are obeyed and scattering shows an even 
larger impact. The insets zoom into the first two and the last two 
points of the curves
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leakage and back-scattering effects can be observed than 
that shown in Fig. 9. More importantly, however, Fig. 10 
shows that the exact ΣR with a nonzero real part provides 
even higher scattering strengths than the approximate, zero 
real part case. This impact is particularly visible if the charge 
self-consistency does not compensate deviations from the 
doping profile. This is exemplified in Fig. 1 of Supplemen-
tary Material 1 which shows the charge density in a transis-
tor after a single scattering iteration both in mode space and 
full tight binding representations. This figure also confirms 

the physics of the real part of scattering is correctly covered 
in mode space.

4 � Conclusion

In this work, the atomistic mode space approach of Ref. [1] 
has been augmented to handle inelastic scattering on various 
types of phonons. The method was verified and benchmarked 
against results solved in the original representation for sili-
con nanowires of various sizes. Valid results were achieved 
with matrix ranks reduced down to 2.8% of their original 
rank. Time-to-solution was improved by up to 209.5 times, 
and peak memory was improved by up to 7.14 times. A full 
I–V calculation was performed in mode space for a 5.43 nm 
× 5.43 nm × 20.65 nm silicon nanowire in a sp3d5s∗ tight 
binding basis, which represents a system size larger than can 
normally be atomically simulated including inelastic phonon 
scattering. The solution of the real part of the retarded scat-
tering self-energies ΣR with the Kramers–Kronig relations 
ensures the exact treatment of incoherent scattering. It is 
demonstrated with calculations of various nanowires that 
the real part of ΣR contributes to transport similarly to the 
imaginary part. Therefore, a reliable prediction of transport 
in NEGF must solve for the total complex ΣR.
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