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Abstract
A new technique is proposed herein for the design and optimization of double-gate heteromaterial tunnel field-effect transis-
tors (FETs). The presented approach determines the optimum device dimensions, using a reference analytical model of the 
surface potential as an objective function. Many high-performance evolutionary optimization algorithms have been applied to 
determine optimum dimensions at reduced computational cost and complexity. A comparison of all these algorithms reveals 
particle swarm optimization to be the most suitable in terms of achieving an optimum surface potential at higher convergence 
speed. The optimized values are validated against technology computer-aided design (TCAD) simulation results, revealing 
acceptable values for the ON-current, and an OFF-current of 4.8 × 10−15 A in accordance with International Technology 
Roadmap for Semiconductor (ITRS) 2014 requirements. The subthreshold slope is found to be 45 mV/dec. The algorithm 
dynamically fixes the lengths of the source, channel, and drain junctions, device thickness, etc. The automated determina-
tion of these parameters can effectively improve the computational complexity while providing accurate designs for tunnel 
field-effect transistors.
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1  Introduction

The downscaling of metal–oxide–semiconductor field-effect 
transistors (MOSFETs) has resulted in some serious issues, 
such as drain-induced barrier lowering (DIBL), high OFF-
current and subthreshold swing (SS), as well as several 
other distinct short-channel effects (SCEs). Hence, tunnel 
field-effect transistors (TFETs) are being considered as an 
alternate to overcome such drawbacks of MOSFETs [1–5]. 
TFETs are well known for their steeper SS [6] and low OFF-
current (IOFF) [7], but suffer from a lower ON-current than 
required by the ITRS [8]. Many novel structures have been 
reported to improve the ON-current of TFETs. However, 
when applying traditional approaches [6, 7], such structures 
are optimized using trial-and-error methods. The derivation 
of analytical expressions for a particular electrical parameter 
followed by the use of optimization techniques on them to 

obtain the best device dimensions would thus represent a 
great achievement. The derivation of an optimal solution 
when designing a TFET involves many approximations, 
making the process tiresome and lengthy. The application 
of optimization algorithms [9–11] to identify an optimized 
structure is thus a convenient option to improve the compu-
tational efficiency of the design process. Their good approxi-
mation ability and high convergence speed have resulted in 
the use of various evolutionary and behavior-based optimi-
zation techniques to solve problems in real time [9–11].

No work has been carried out to optimize the dimensions 
of TFET designs using algorithms, with trial-and-error tech-
niques always being applied to determine optimum device 
dimensions. In the work presented herein, a TFET model 
based on an analytical surface potential presented in Ref. 
[12] is applied. The surface potential is chosen because it 
plays an important role in determining the electric field 
in the tunnel junction, which greatly affects the tunneling 
probability. A number of efficient algorithms, viz. parti-
cle swarm optimization (PSO) [13], differential evolution 
(DE) [14], human behavior-based PSO (HBPSO) [15], and 
hybrid DEPSO [16], are thus used to find the optimum sur-
face potential, thereby obtaining the optimum dimensions 
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for the proposed TFET. Next, to validate the accuracy of 
the proposed method, a device with the obtained dimensions 
is designed in TCAD software. A comparison with the ref-
erence confirms the effectiveness of the proposed method. 
The remainder of this manuscript is organized as follows: In 
Sect. 2, the objective function, design variables, and optimi-
zation algorithms are described. The results, analysis, and 
validation are elaborated in Sect. 3. The optimized device 
structure is reported in Sect. 4. Finally, the conclusions that 
can be drawn from this work are highlighted in Sect. 5.

2 � Analytical model

The analytical model for the surface potential obtained from 
Ref. [12] is used as the objective function, expressed as

where ψk is the one-dimensional (1D) surface potential, and 
B and C are constants given by the following equations:

where φ1 and φ2 are potentials that are determined by con-
sidering the external potential applied at x = 0 and x = L3.
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As seen from this equation, the optimum value of x for 
which ψs(x) is optimized must be found, thus the optimum 
values for L1, L2, and L3, which are part of x, must be found.

2.1 � The effect of varying L1, L2, and L3

To understand the effect of the variation of the lengths, L1, 
L2, and L3 are not used as the design variables; rather, they 
are found analytically by a trial-and-error method. The only 
design variable is x. Equation 1 is optimized for different 
combinations of lengths using two optimization techniques. 
The results are presented in Table 1, revealing that the com-
bination L1 = 0.01x, L2 = 0.91x, L3 = 0.08x is more optimal, 
because increasing the value of L1 or L3 and decreasing L2 
increases the surface potential. Further combinations of the 
three lengths were tried, but the results were very large. 
Thus, based on this analysis, it is observed that L1, L2, and 
L3 play a major role in changing the surface potential, indi-
cating the importance of optimizing their values.

2.2 � The determination of the surface potential 
using computationally efficient algorithms

The surface potential plays an important role in TFET 
design. In this work, the analytical expression for the surface 
potential is taken from Ref. [12]. However, it is observed that 
obtaining the optimum dimensions for the proposed device is 
a tedious process. So, it is necessary to enhance the compu-
tational efficiency of this process. In this work, various com-
putationally efficient evolutionary algorithms are applied to 
optimize the expression for the surface potential and thus 
obtain the optimal device dimensions. These metaheuristics-
based algorithms achieve better accuracy in comparison with 
other mathematical techniques for the solution of technical 
problems in real time. Therefore, the discussed algorithms 
are found to be most suitable in terms of their approximation 
to the optimum, computational complexity, and convergence 
speed [9–11, 13–17]. The algorithms considered herein 
include the particle swarm optimization (PSO) algorithm 

Table 1   The effect of varying the lengths on the surface potential

Arbitrary values of 
L1, L2, and L3

Variable Range (nm) PSO-based opti-
mum x (nm)

PSO-based optimum 
surface potential (V)

DE-based opti-
mum x (nm)

DE-based optimum 
surface potential 
(V)

L1 = 0.01x
L2 = 0.91x
L3 = 0.08x

x 0–35 35 0.73 30.24 0.670

L1 = 0.01x
L2 = 0.9x
L3 = 0.09x

x 0–35 35 1.0226 27.59 1.09

L1 = 0.02x
L2 = 0.9x
L3 = 0.08x

x 0–35 35 4.89 17.19 1.2533
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described by Kennedy and Eberhart [13], the differential 
evolution (DE) algorithm described by Storn and Price [14], 
a human behavior-based PSO algorithm (HBPSO) described 
by Liu et al. [15], a hybrid DE and PSO algorithm (DEPSO) 
described by Jhang and Xi [16], and Salp Swarm Algorithm 
(SSA) [17]. A comparative analysis among the results 
obtained using these algorithms indicates that PSO is the 
most efficient for obtaining the desired value of the surface 
potential in terms of the percentage error and convergence 
speed. Figure 1 depicts the flowchart of the PSO algorithm.

2.3 � The estimation of the design variables and their 
ranges

The expression for the surface potential in Eq. (1) is used 
as an objective function along with the design constraints 
explained in Eqs. (2–5) as well as in Eq. (6):

Using this equation, the design variables can be obtained 
as

The design variables are chosen judiciously to reduce 
the computational time. The parameters which play a vital 
role in the performance of the TFET with respect to the 
surface potential are chosen as the design variables. Thus, 
six design variables are obtained, as listed in Table 2. As 
explained in Sect. 2.1, the lengths L1, L2, and L3 at various 
points in x affect the value of the surface potential and are 
thus major factors affecting it. Therefore, to optimize the 
surface potential, these lengths must also be optimized. The 
ranges of the design variables are formulated based on the 
ITRS, whereas other design limitations are not incorporated. 
Thereby, the optimized values should lie within the ranges 
presented in Table 2. The constants in the objective function 
are presented in Table 3.

2.4 � The parameters used in the optimization 
algorithms

The values of the parameters used in the algorithms to solve 
the objective function are described as follows:

(a)	 For PSO and DEPSO, the social learning rate (c1) is 
taken as 0.12, while the cognitive learning rate (c2) is 
1.2, keeping a dimension of 6 and swarm size of 100.

(b)	 For DE, the mutation factor (F) is taken as 0.5 with a 
crossover rate of 0.9 for a population size of 100 with 
dimension of 6.

(6)x = L1 + L2 + L3.

XTFET =
[
L1, L2, L3, x, ts, VDS

]

For each particle set local best fitness = current fitness
and local best position as current position

Set global best fitness=max(local best fitness)

Update velocities and positions of each particle

Evaluate the fitness value of each particle

Current fitness>
local best fitness ?

Set local best fitness = current fitness

Current fitness>
global best fitness ?

Set global best fitness = current fitness

Stopping criteria
met ?

Yes

     No

No

No

Stop

Start

Initialize the position and velocities of each particle

Fig. 1   The flowchart of the PSO algorithm
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(c)	 For SSA, 50 search agents are used with dimension of 
6.

(d)	 HBPSO is implemented with a population size of 100 
and a dimension of 6.

3 � The optimization results and their analysis

The objective function defined in Sect. 2 is solved to deter-
mine the optimized values for the design variables speci-
fied in Table 2. The simulations are performed in MATLAB 
2013 on a processor with speed of 3.4 GHz. The resulting 
optimum values are presented in Table 4, revealing that the 
PSO algorithm offers the best performance with a minimum 
error, as shown in Fig. 4. The algorithms are compared 
based on convergence plots in Fig. 2. The optimum results 
obtained by the PSO algorithm are validated by designing a 
double-gate heteromaterial tunnel FET in Synopsys TCAD 
using the optimum dimensions and the remaining parameters 

from our work. The range for the surface potential in the 
TCAD simulation is 0.5–0.9 V, as mentioned in Ref. [12], 
being almost equal to that obtained using the PSO algo-
rithm as shown in Fig. 3. The simulation results obtained in 
MATLAB and TCAD differ by a smaller range during the 
construction of the tunnel FET because some parameters are 
rounded off to the nearest decimal values (Figs. 4, 5). The 
simulation plots and results in Figs. 6, 7 and 8 are obtained 
from TCAD simulations, validating the obtained result as 
optimum when compared with the design specification.       

3.1 � Validation using TCAD software

As explained in Sect. 3, the PSO algorithm provides the 
best value of the surface potential. So, the device structure 
is simulated in TCAD using the values of the design vari-
ables obtained using this algorithm. Figure 6 shows the lin-
ear ID–VGS characteristic of the device with the optimized 
dimensions. Figure 7 shows the log ID versus VGS charac-
teristic of the optimized device, revealing an ON-current of 
4.8 × 10−4 A and an OFF-current of 4.8 × 10−15 A. Figure 8 
shows the surface potential of the optimized device. The 
subthreshold slope is found to be 45 mV/dec.

Table 2   The design variables 
and their ranges

Variable Range

L1 (nm) (0.01–0.99) × x
L2 (nm) (0.01–0.99) × x
L3 (nm) (0.01–0.99) × x
x (nm) 0–35
ts (nm) 10–40
VDS (V) 0.5–1.2

Table 3   The design constants of the proposed TFET structure

Parameter Symbol Dimension

Device layer thickness ts 20 × 109 nm
Absolute permittivity ε0 8.854 × 1012

Relative permittivity of SiO2 ε* 3.9 × ε0

Relative permittivity of medium ε 11.4 × ε0

Donor concentration in drain region Nd 5 × 1018 cm−3

Electronic charge q 1.6 × 10−19

phi_1 φ1 0
phi_2 φ2 1.2

Table 4   The optimized values 
of the design variables

Design vari-
ables

Range PSO DE HBPSO DEPSO SSA

L1 (nm) (0.01–0.99) × x 0.700 × 34 0.0100 × 33.56 0.0100 × 34.25 0.0100 × 34.25 0.0100 × 34
L2 (nm) (0.01–0.99) × x 0.20 × 34 0.955 × 33.56 0.9800 × 34.25 0.9800 × 34.25 0.9800 × 34
L3 (nm) (0.01–0.99) × x 0.10 × 34 0.035 × 33.56 0.0100 × 34.25 0.0100 × 34.25 0.0200 × 34
x (nm) 0–35 34 33.56 34.25 34.25 34
ts (nm) 10–40 25 38.66 40 40 39.72
VDS (V) 0.5–1.2 0.7 0.55 0.52 0.52 0.51

Fig. 2   The convergence plots of the different algorithms
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Fig. 3   A plot of the simulated versus reference surface potential

Fig. 4   The percentage error in the surface potential computation at 
x = 34 nm

Fig. 5   The proposed optimized structure

Fig. 6   The linear ID–VGS curve of the proposed device

Fig. 7   The log ID–VGS curve of the proposed device

Fig. 8   The surface potential of the proposed design
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4 � The proposed architecture of the device

The proposed structure incorporates a p-type germanium 
source, n-type drain, and intrinsic channel, as shown in 
Fig. 5. The structure is designed with a heterogate dielectric, 
having a low-k gate oxide (SiO2) on the drain side to reduce 
the ambipolar current and a high-k oxide (HfO2) at the tun-
neling junction. An N+ polysilicon electrode with work func-
tion of 4.5 eV is used as the  gate electrode. To increase 
the tunneling probability, the source side is designed with a 
low-bandgap material (germanium). The device is operated 
with its source grounded, 1.5 V applied to the gates, and the 
drain connected to 0.7 V. The dimensions of the device are 
obtained using the optimization techniques as explained in 
the previous section. The doping concentration of the source, 
channel, and drain is 1020, 1016, and 5 × 1018 cm−3, respec-
tively. The length L1 represents the channel region under the 
SiO2 gate oxide, which is a lightly doped region; L2 is the 
source depletion region, and L3 is the source region beneath 
the HfO2 gate oxide.

5 � Conclusions

A mathematical model for the surface potential is obtained 
from Ref. [12], and the optimum device dimensions are 
determined using optimization algorithms. Various opti-
mization techniques are applied to determine the optimum 
device dimensions for a double-gate tunnel FET. TCAD 
simulations are carried out on the device with the optimized 
dimensions. The values of the surface potential obtained 
from the simulated design for various values of x match 
those given in the reference paper. The ON-current, OFF-
current, and subthreshold swing values are also obtained 
from the simulation. A comparison with Ref. [12] confirms 
the good accuracy of the proposed model, with the PSO 
method offering improved accuracy. A small deviation 
arises due to the inability to implement precise values of 
the obtained dimensions in the simulation tool. The effec-
tiveness and accuracy of the computation are improved by 
using the proposed methodology.
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